Axiomatic and algebraic Quantum Field Theory

Yoh Tanimoto

University of Rome "Tor Vergata"

Theoretical high energy physics seminar/Group therapy, Buenos Aires 17 November 2022

Mathematical Quantum Field Theory

- Quantum mechanics: Hilbert space, Hamiltonian (a specific self-adjoint operator), $[Q, P] = i\hbar$, spectral analysis, observables...
- Quantum field theory (QFT): infinite degrees of freedom on continuum configulation space (infrared and ultraviolet difficulties)
- Axiomatic approaches: Wightman, Osterwalder-Schrader, Araki-Haag-Kastler.
- Examples: free fields, $\mathcal{P}(\phi)_2$ models (and more "(super)renormalizable" models), some gauge theories in $d = 1 + 1, 1 + 2, \phi_3^4$ model, integrable models in d = 1 + 1, conformal field theories (CFT) in d = 1 + 1.
- No known interacting example in d = 3 + 1. Constructing the Yang-Mills theory is a Millenium problem.
- Research topics: Constructing examples, studying representations (states, fusion rules), calculating entanglement measures, curved spacetime...

What is a quantum field?

- A (scalar) classical field φ is a function on the Minkowski space. Together with its momentum Π, it satisfies a certain equation of motion.
- A quantum field should be an **operator-valued** object on the Minkowski space, acting on a certain Hilbert space, satisfying the same equation of motion.
- They should also satisfy the equal time canonical commutation relations (CCR)

$$[\phi(x),\Pi(y)]=i\hbar\delta(x-y)$$

so they must be operator-valued **distributions**. $\phi(x)^n$ do not make sense directly.

- There should be the vaccum vector Ω .
- We are interested in correlation functions

$$\langle \Omega, \phi(x_1) \cdots \phi(x_n) \Omega \rangle,$$

invariant under the Poincaré transformations.

Wightman axioms

A **Wightman field theory** on a Hilbert space \mathcal{H} consists of a (family of) operator-valued distribution(s) ϕ on a dense common invariant domain \mathcal{D} , a unitary representation U of the Poincaré group and a vacuum $\Omega \in \mathcal{H}$ satisfying

- Locality: $[\phi(f), \phi(g)] = 0$ if f, g have spacelike separated supports.
- Covariance: $U(g)\phi(x)U(g)^* = \phi(g \cdot x)$.
- Positive energy: The spectrum of $U|_{\mathbb{R}^{d+1}}$ is contained in the future lightcone.
- Vacuum: Ω is unique s.t. $U(g)\Omega = \Omega$ and $\phi(f_1) \cdots \phi(f_n)\Omega$ span \mathcal{H} .

From the set of correlation functions $\langle \Omega, \phi(x_1) \cdots \phi(x_n) \Omega \rangle$ satisfying locality, invariance, spectrum condition and the clustering property, one can (re)construct Wightman fields.

Examples: free fields in all d, $\mathcal{P}(\phi)_2$ models, Yukawa model $d = 2, 3, \phi_3^4$ model, some gauge fields d = 2, 3 (except the uniqueness of vacuum), many CFT in d = 2.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Araki-Haag-Kastler axioms

An **Araki-Haag-Kastler net** consists of a family of von Neumann algebras $\{\mathcal{A}(O)\}$, a unitary representation U of the Poincaré group and a vacuum $\Omega \in \mathcal{H}$ satisfying

- Isotony: If $\mathcal{O}_1 \subset \mathcal{O}_2$, then $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2).$
- Locality: If O_1 and O_2 are spacelike separated, then $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}.$
- Covariance: $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(g \cdot O).$
- Positive energy: The spectrum of $U|_{\mathbb{R}^{d+1}}$ is contained in the future lightcone.
- Vacuum: Ω is unique s.t. $U(g)\Omega = \Omega$ and $\bigcup_O \mathcal{A}(O)\Omega$ span \mathcal{H} .

Assume that a Wightman field satisfies a technical condition (linear energy bounds). For spacetime regions O, define $\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}''$. Here, for a set M of bounded operators, M' is called the **commutant** of M and it is the set of all bounded operators on \mathcal{H} commuting with all elements of M. M'' is the double commutant, and is the smallest von Neumann algebra including M. Then \mathcal{A}, U, Ω satisfy the AHK axioms.

FAQ

- Q1 We don't have a good definition of QFT. Why is AQFT good?
- A1 The axioms of AQFT are very weak. If we don't have a QFT as Wightman/AQFT, we haven't understood it enough.
- Q2 But the Lagrangian approach is better. Why should one care about AQFT?
- A2 Some Lagrangian QFTs have been constructed as Wightman/AQFT, including some (just, non-super) renormalizable models (Federbush model, Gross-Neveu model, Thirring model in 2d). If we don't have a QFT as Wightman/AQFT, we haven't understood it enough. **4d** Yang-Mills, **4d** QED, the standard model in **4d**...
- Q3 For Yang-Mills, we have a good lattice theory. Why AQFT?
- A3 Numerically yes. But should we be satisified with \mathbb{Q}^{d+1} instead of \mathbb{R}^{d+1} ? Poincaré covariance?
- Q4 So is AQFT useful?
- A4 See below.

Von Neumann algebras $\mathcal{A}(O)$ are algebras of bounded operators. This is convenient because one can consider

- states as normalized positive functionals
- representations for states (charged, thermal), application of subfactor theory
- fusion of representations (composition of endomorphisms)
- the Tomita-Takesaki theory (modular operator, relative entropy)

As consequenes, one has

- classification of chiral components of 2d CFT
- construction of full 2d CFT
- (rigorous) computations of relative entropy and mutual information in some models
- construction of 2d massive integrable models.

Two-dimensional chiral conformal field theory

- In relativistic QFT in d = 1 + 1, one puts the Lorentzian metric $(x, y) = x_0y_0 x_1y_1$ on \mathbb{R}^2 .
- The conformal group (transformations of ℝ² which preserve the metric up to a function) is Diff(ℝ) × Diff(ℝ), acting on the lightrays x₀ ± x₁ = 0.
- In a quantum theory, ${\rm Diff}(\mathbb{R})\times {\rm Diff}(\mathbb{R})$ gets a (projective) unitary representation.
- There are observables that are invariant by ι × Diff(ℝ) (or Diff(ℝ) × ι): chiral observables.
- Chiral observables are quantum fields living on the lightray \mathbb{R} . By conformal symmetry, they extend to the one-point compactification (the circle S^1 under the stereographic projection, and have $\text{Diff}(S^1)$ as the symmetry group).
- The full CFT is a certain extension of a pair of chiral components.

Chiral conformal net

Definition

A **conformal net** on S^1 is $(\mathcal{A}, \mathcal{U}, \Omega)$, where \mathcal{A} is a map from the set of intervals in S^1 into the set of von Neumann algebras on \mathcal{H} which satisfies

- Isotony: $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$.
- Locality: $I \cap J = \emptyset \Rightarrow [\mathcal{A}(I), \mathcal{A}(J)] = \{0\}.$
- Diffeomorphism covariance: U is a projective unitary representation of $\operatorname{Diff}(S^1)$ such that $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI)$ and if $\operatorname{supp} g \cap I = \emptyset$, then $U(g)xU(g)^* = x$ for $x \in \mathcal{A}(I)$.
- Positive energy: the restriction of U to rotations has the positive generator L_0 .
- Vacuum: there is a unique (up to a scalar) unit vector Ω such that $U(g)\Omega = \Omega$ for $g \in PSL(2, \mathbb{R})$ and cyclic for $\mathcal{A}(I)$.

Many examples: U(1)-current (free massless boson), Free massless fermion, Virasoro nets (stress energy tensor), WZW models.

Chiral conformal net

Let \mathcal{M} be a von Neumann algebra, Ω a cyclic and separating vector for M, i.e., $\overline{\mathcal{M}\Omega} = \mathcal{H}$ and $x\Omega \neq 0$ for $x \neq 0, x \in \mathcal{M}$. Define S to be the closure of the map

$$x\Omega \longmapsto x^*\Omega$$

Polar decomposition $S = J\Delta^{\frac{1}{2}}$.

Tomita's theorem: $\Delta^{it}\mathcal{M}\Delta^{-it} = \mathcal{M}, J\mathcal{M}J = \mathcal{M}'.$

Some consequences of the axioms of conformal net $(\mathcal{A}, \mathcal{U}, \Omega)$:

- The Reeh-Schlieder property: Ω is cyclic for single $\mathcal{A}(I)$, that is, $\overline{\mathcal{A}(I)\Omega} = \mathcal{H}$.
- The Bisognano-Wichmann property. $\Delta_{\mathcal{A}(I)}^{it} = U(D_I(-2\pi t))$ (the dilation preserving *I*).
- Haag duality. $\mathcal{A}(I') = \mathcal{A}(I)'$, where I' is the internal points of $S^1 \setminus I$.
- The split property. If *I*₁ ⊂ *I*₂, then there is a type I factor *R* (a von Neumann algebra isomorphic to some *B*(*K*)) such that *A*(*I*₁) ⊂ *R* ⊂ *A*(*I*₂).

Representations of chiral CFT

- A representation of a conformal net (A, U, Ω) is a family of representations {ρ_I} on H_ρ of single algebras {A(I)} satisfying the compatibility: if I₁ ⊂ I₂, then ρ_{I2}|_{A(I1)} = ρ_{I1}.
- For many A, any such representation can be decomposed into irreducible ones.
- In a nice class of "rational" CFT, there are only finitely many inequivalent irreducibles.
- Any such representation is unitarily equivalent to a (Doplicher-Haag-Roberts) endomorphism localized in some *I*: $\mathcal{H}_{\sigma} = \mathcal{H}, \ \sigma_{I'} = \mathrm{id}$ by Haag duality.
- Two localized endomorphisms σ_1, σ_2 can be composed (fusion) and give a new endomorphism $\sigma_1 \circ \sigma_2$. Fused representations decompose into irreducibles, giving rise to the fusion rules.

Chiral CFT (Böckenhauer, Evans, Kawahigashi, Longo, Müger, Rehren, Wassermann, Xu...)

- Take a pair of disjoint intervals *I*₁, *I*₃. The complement is *I*₂, *I*₄. Consider the subfactor A(*I*₁ ∪ *I*₃) ⊂ A(*I*₂ ∪ *I*₄)'. If the index is finite, the net A is called completely rational.
- For a completely rational net A, we want to classify extensions A ⊂ B. From a representation σ of A and this extension, one considers α-induction (an analogue of induced representation) and obtain extended representations α[±]_σ. Z_{λ,σ} = dim Hom(α⁺_λ, α⁻_σ) gives a modular invariant.
- Classification follows from the classification of modular invariant.
- Carried out for the Virasoro net with c < 1, WZW model with SU(2) with different levels.
- Recent works by Carpi, Gui, Tener, Weiner on Vertex Operator Algebras and conformal nets.

Full 2d CFT (Kawahigashi, Longo, Rehren...)

- \bullet A full CFT contains a left and a right chiral components, $\mathcal{A}_{L/R}.$
- A full theory is an extension $\mathcal{A}_L \otimes \mathcal{A}_R \subset \mathcal{A}$.
- Consider the case where $\mathcal{A}_{L}=\mathcal{A}_{R}.$ Take a family Δ of irreducible representation that is closed under fusion and decomposition. Then one such $\mathcal A$ can be constructed in such a way that the extension is given on

$$\mathcal{H} = \bigoplus_{\lambda \in \Delta} \mathcal{H}_{\lambda} \otimes \mathcal{H}_{\bar{\lambda}},$$

where $\bar{\lambda}$ is the congjugate representation.

- Some more complicated combination of representations can be obtained again from modular invariants.
- For a fixed combination of representations, is there a unique extension \mathcal{A} ? This is a question of cohomology. Solved for Virasoro net with c < 1, SU(2)-WZW models but not in general.

- Let $\mathcal{M}_1 \otimes \mathcal{M}_2$ be a bipartite system of quantum mechanics. A state ρ is given by a density matrix \mathcal{M}_{ρ} and the trace: $\rho(x) = tr(\mathcal{M}_{\rho}x)$.
- For a density matrix M_{ρ} , the von Neumann entropy is given by $-\operatorname{tr}(M_{\rho}\log M_{\rho})$.
- The entanglement entropy is the von Neumann entropy of the restriction $\rho|_{\mathcal{M}_1}$ (partial trace).
- These are interesting objects also in QFT. Unfortunately, there is no trace in QFT (local algebras are of type III).
 - Consider a quantity that generalize the entanglement entropy.
 - Consider other entanglement measures (relative entropy, mutual information...).

イロト イヨト イヨト ・

Entanglement measures (Hollands, Longo, Sanders, Tanimoto, Otani, Xu...)

• Let Φ be another vector. Let $\omega = \langle \Omega, \cdot \Omega \rangle, \varphi = \langle \Phi, \cdot \Phi \rangle$. The relative modular objects is given by $S_{\omega,\varphi} = J_{\Omega,\varphi} \Delta_{\Omega,\varphi}^{\frac{1}{2}}$, where

$$S_{\omega,\varphi}x\Psi=x^*\Omega.$$

• The relative entropy of ${\mathcal M}$ with respect to ω, φ is

$$S(\omega, \varphi') = \langle \Omega, \log \Delta_{\omega, \varphi} \Omega \rangle.$$

(mathematically well-defined, although it can be infinite).

- For a pure state on QM, $S(\varphi) = \sup\{\sum_j \lambda_j S(\varphi_j, \varphi) : \sum_j \lambda_j = \varphi\} = \inf\{S(\varphi, \sigma) : \sigma \text{ is a separable state }\}$. In this sense, relative entropy is more fundamental.
- In some models and some states, S(ω, φ) can be calculated and also inf{S(φ, σ) : σ is a separable state } can be estimated for (a pair of) local algebra(s).

Some massive 2d QFT are believed to be integrable.

• sine/sinh-Gordon, Gross-Neveu, Thirring...

Form factor programme (Babujian, Karowski, Smirnov...)

- Conjecture the S-matrix for a model.
- Form factors $\operatorname{out}(q_1, \cdots, q_m | O(x) | p_1, \cdots, p_n)^{\operatorname{in}}$ of local operators O(x) should satisfy certain relations. In some cases, they can be calculated.
- *n*-point functions $\langle \Omega, O(x)O(0)\Omega \rangle = \sum_{n} \int dp_1 \cdots dp_n \langle \Omega, O(x) | p_1, \cdots, p_n \rangle^{\text{in in}} \langle p_1, \cdots, p_n | O(0)\Omega \rangle$ should be computed.
- Convergence? Locality in e.g. the sine-Gordon model?

• • = • • = •

Construction of integrable models in 2d (Alazzawi, Bostelmann, Buchholz, Cadamuro, Lechner, Schroer, Tanimoto...)

Isotony: $O_1 \subset O_2 \Longrightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$ means that **larger** regions contain **more** observables, also **simpler** ones. Wedge: $W_{\mathrm{R}} := \{(t, x) : x > |t|\}.$

Why wedges?

- Form factors $^{\text{out}}\langle q_1, \cdots, q_m | O(x) \Omega \rangle^{\text{in}}$ of interacting pointlike fields O(x) are complicated.
- ullet For a large region $W_{
 m R}$, there might be simpler observables.

Construct first the algebras $\mathcal{A}(W_{\mathrm{R}})$ of observables in wedges. Local observables are obtained by $\mathcal{A}(O) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$.

Standard wedge and double cone

Construction of integrable models in 2d

- analytic two-particle S-matrix (e.g. the sinh-Gordon model) $S : \mathbb{R} + i(0, \pi) \to \mathbb{C},$ $\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \ \theta \in \mathbb{R}.$
- S-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto S-symmetric functions: $\Psi_n(\theta_1, \dots, \theta_n) = S(\theta_{k+1} - \theta_k) \Psi_n(\theta_1, \dots, \theta_{k+1}, \theta_k, \dots, \theta_n).$
- Zamolodchikov-Faddeev algebra: S-symmetrized creation and annihilation operators z[†](ξ) = Pa[†](ξ)P, z(ξ) = Pa(ξ)P, P = ⊕_n P_n.
- Wedge-local field: $\phi(f) = z^{\dagger}(f^+) + z(f^+)$.
- $\mathcal{A}(W_{\mathrm{R}}) = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}.$
- Proving that $\mathcal{A}(O) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$ can be reduced to proving that $\mathcal{A}(W_{\mathrm{R}} + a) \subset \mathcal{A}(W_{\mathrm{R}})$ is split. Modular nuclearity helps.
- Some models constructed in this way: Sinh-model with CDD factors, Bullough-Dodd model (work in progress), some diagonal S-matrices.

- One can generalize the definition of Haag-Kastler net (of C*-algebras) to curved spacetimes, omitting covariance and vacuum.
- One can study energy inequalities (ANEC, QNEC...) for free fields on various spacetimes.
- For the de Sitter space, there is a generalization of the notion of covariance and vacuum. 2d CFT and $\mathcal{P}(\phi)_2$ models can be constructed.

Outlook (personal, with Adamo, Giorgetti, Jäkel, Neeb...)

- Construct 2d CFT with Wightman fields.
 - Patch chiral primary fields together, following Longo-Rehren.
 - Explicit construction of inequivalent full CFT with the same chiral decomposition?
- Prove reflection positivity for unitary VOA
 - Vertex Operator Algebras are about formal series Y(a, z). z appears to be the Wich-rotated two-dimensional variable.
 - Are they genuine Euclidean QFT? Do they satisfy reflection positivity?
- Construct massive field theory by "perturbing" a CFT on the de Sitter space.
 - Zamolodchikov claims that some integrable models can be obtained by perturbing 2d CFT by "relevant fields".
 - Primary fields with low scaling dimensions can be restricted to the time-zero circle. Can they be added to the Hamiltonian to deform the dynamics?
 - Do primary fields make sense in the Euclidean space? Can the Euclidean vacuum perturbed by them?
- 4d Yang-Mills? The methods of Bałaban-Dimock?

Yoh Tanimoto (Tor Vergata)

Axiomatic and Algebraic QFT