Thermal states in conformal QFT (joint work with P. Camassa, R. Longo and M. Weiner)

Yoh Tanimoto

Department of Mathematics, University of Rome "Tor Vergata"

25/04/11, Bucharest

 $\mathcal{A}:$ C*-algebra. "algebra of observables".

 α_t : one-parameter automorphism group of \mathcal{A} . "time-translation". We want to study thermal equilibrium states.

KMS state on C*-algebra

A β -KMS state φ on \mathcal{A} with respect to α_t is a state with the following condition: for any $x, y \in \mathcal{A}$ there is an analytic function f such that

$$f_{x,y}(t) = \varphi(x\alpha_t(y)), f_{x,y}(t+i\beta) = \varphi(\alpha_t(y)x).$$

 $T = \frac{1}{\beta}$ is called the **temperature** of φ .

Example (matrix algebra)

$$\mathcal{A} = M_n(\mathbb{C}), \alpha_t = \operatorname{Ad}(e^{itH}), H$$
: positive. The state $\varphi(x) = \frac{\operatorname{Tr}(e^{-\beta H}x)}{\operatorname{Tr}(e^{-\beta H})}$ is a β -KMS state.

The Gibbs state in grand canonical ensemble.

Remark

For finite dimensional systems, the KMS condition $\ensuremath{\textbf{characterizes}}$ the Gibbs state.

For infinite dimensional A, the Hamiltonian H is typically not trace-class.

Example (modular automorphism group)

 $\mathcal{A} = M$, a von Neumann algebra, φ : a faithful normal state, σ^{φ} : the modular automorphism. φ is a β -KMS state with $\beta = -1$.

3/11

イロト イヨト イヨト イヨト

Introduction: conformal nets

- Spacetime: the circle $S^1 = \mathbb{R} \cup \{\infty\}.$
- Möbius symmetry $PSL(2, \mathbb{R})$: translation $\tau_s : t \mapsto t + s$, dilation $\delta_s : t \mapsto e^s t$, rotation $\rho_s : z \mapsto e^{is} z$.
- Diffeomorphism covariance.

Conformal net

A conformal net A is an assignment of von Neumann algebra A(I) to each interval $I \subset S^1$ such that

- $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$
- $I \cap J = \emptyset \Rightarrow [A(I), A(J)] = 0.$
- There is a projective representation $U : \text{Diff}(S^1) \to \mathcal{U}(\mathcal{H})$ such that $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI)$, with positive generator of rotation.
- There is a vector Ω invariant under $PSL(2, \mathbb{R}) \subset Diff(S^1)$.

4 / 11

< □ > < ---->

KMS states on conformal nets

Translation on $S^1 = \mathbb{R} \cup \{\infty\}$ corresponds to the translation in lightlike direction in two-dimension. Main objects:

$$\begin{split} \mathcal{A} &= \overline{\bigcup_{I \Subset \mathbb{R}} \mathcal{A}(I)}^{\|\cdot\|}, \text{ the quasilocal algebra.} \\ \alpha_t &= \mathrm{Ad} U(\tau_t), \text{ where } \tau_t \text{ is translation.} \end{split}$$

Uniformity of the phase structure

Dilation covariance: correspondence between KMS states in different temperatures.

$$\varphi$$
 is a β -KMS state $\iff \varphi \circ \operatorname{Ad} U(\delta_s)$ is a βe^s -KMS state.

We consider always $\beta = 1$.

Fact: Bisognano-Wichmann property

The vacuum state ω is a KMS state for $\mathcal{A}(\mathbb{R}_+)$ with respect to **dilation**.

Fact: the exponential map

The exponential map

$$t \longmapsto e^t$$

is a diffeomorphism between ${\rm I\!R}$ and ${\rm I\!R}_+,$ and this intertwines translation and dilation.

This diffeomorphism Exp is implemented **locally** by a unitary U.

Theorem (The geometric KMS state)

The state $\omega \circ \text{Exp}$ is well defined and a KMS state with respect to translation.

Image: A matrix

Complete rationality

Complete rationality

A conformal net ${\mathcal A}$ is said to be **completely rational** if it satisfies the following:

- Split property: for $I \Subset J, \exists F$ type I factor s.t $\mathcal{A}(I) \subset F \subset \mathcal{A}(J)$.
- Strong additivity: $\mathcal{A}(I) = \mathcal{A}(I_1) \lor \mathcal{A}(I_2)$ if $I_1 \cup I_2 = I \setminus \{p\}$.
- The index of $\mathcal{A}(I_1 \cup I_3) \subset \mathcal{A}(I_2 \cup I_4)'$ is finite $(S^1 = \overline{I_1 \cup I_2 \cup I_3 \cup I_4})$.

Examples of complete rational nets

- Loop group nets (current algebras with compact group G).
- Virasoro nets with c < 1 (the algebras of stress-energy tensor).
- Finite index inclusions and extensions.

Theorem (Uniqueness of KMS state)

Any completely rational net admits only the geometric KMS state.

Thermal completion

- φ : a primary KMS state on a net \mathcal{A} .
- π_{φ} : the GNS representation with respect to φ .
- Φ : the corresponding GNS vector.

The inclusion $(\pi_{\varphi}(\mathcal{A}(\mathbb{R}_+)) \subset \pi_{\varphi}(\mathcal{A}(\mathbb{R})), \Phi)$ is a standard half-sided modular inclusion.

We can construct a covariant called the **thermal completion** of \mathcal{A} with respect to φ .

In completely rational case, the thermal completion is an irreducible conformal **extension** of the original net with finite index.

Complete rationality: finiteness of sectors and extensions

Fact

A completely rational net admits only finitely many inequivalent DHR representations.

- A completely rational net admits only "finite charges".
- A thermal state should contain "infinite charges" (Contradiction?).

A completely rational net admits only finitely many extensions of net. Among extensions, there are **maximal** extensions.

Lemma

The thermal completion of the geometric KMS state φ_{geo} is the original net.

Lemma

Any KMS state φ on a completely rational maximal net \mathcal{A} is $\varphi = \varphi_{\text{geo}} \circ \gamma$ where $\gamma = \pi_{\varphi} \circ \pi_{\varphi_{\text{geo}}}^{-1}$ is an automorphism of $\mathcal{A}|_{\mathbb{R}_+}$.

Lemma

If γ is an automorphism which does not preserve φ_{geo} , then $\{\delta_s \circ \gamma \circ \delta_s\}$ are unitarily inequivalent.

Theorem

A maximal completely rational net admits only φ_{geo} .

Proof:

 $\varphi = \varphi_{\text{geo}} \circ \gamma$ and there would be infinitely many sectors $\{\delta_s \circ \gamma \circ \delta_{-s}\}$ (contradiction).

Theorem

Any completely rational net admits only φ_{geo} .

Image: Image:

Theorem

For non-completely rational nets, we have classified KMS states on:

- the U(1)-current net: $arphi^q$, $q\in\mathbb{R}$
- the Virasoro net Vir_c with c = 1: φ_1^q , $q \in \mathbb{R}_+$,

and constructed KMS states φ^q_c , $q \in \mathbb{R}_+$ on Vir_c , c > 1.

Theorem

Any two-dimensional completely rational conformal net admits only the geometric state.