Longo-Witten endomorphisms and interacting two-dimensional models

Yoh Tanimoto (based on arXiv:1107.2629, to appear in CMP)

Institut für Theoretische Physik, Göttingen University

December 1st 2011, Aarhus

Introduction

Historical problem

- Long standing open problem: interacting QFT models in 4-dim
- Construction of nets of von Neumann algebras

Recent progress:

- Wedge-local net in 2-dim, based on a single von Neumann algebra and the modular theory (Borchers '92)
- Factorizing S-matrix models (Lechner '08).

Present approach:

- Chiral conformal net on S^1 : many examples
- Endomorphisms of the half-line algebra (Longo-Witten '11)

Main result

Interacting massless wedge-local nets in 2-dim

Fundamental notions

- ℋ: a Hilbert space
- $B(\mathcal{H})$: the *-algebra of all bounded operators on \mathcal{H} .

The weak operator topology on $B(\mathcal{H})$: a net of bounded operators x_n is convergent to x if and only if $\langle \xi, x_n \eta \rangle \to \langle \xi, x \eta \rangle$ for any $\xi, \eta \in \mathcal{H}$.

von Neumann algebras

A *-subalgebra $\mathcal M$ (closed under addition, multiplication and the *-operation) of $B(\mathcal H)$ is a **von Neumann algebra** if it contains the identity operator I and is closed in the weak operator topology.

Theorem (von Neumann)

A *-subalgebra $\mathcal M$ of $B(\mathcal H)$ is a von Neumann algebra if and only if $\mathcal M=(\mathcal M')'$, where $\mathcal M'=\{y\in B(\mathcal H): [x,y]=0 \text{ for } x\in \mathcal M\}.$

A vector ξ is **cyclic** for \mathcal{M} if $\overline{\mathcal{M}\xi}=\mathcal{H}$ and **separating** if $x\xi\neq 0$ for $0\neq x\in \mathcal{M}$.

Quantum fields

Conventional quantum field

- ϕ : operator valued distribution on \mathbb{R}^d
- *U*: implementation of the spacetime symmetry
- \bullet Ω the vacuum vector
- Locality: $x \perp y \Rightarrow [\phi(x), \phi(y)] = 0$.
- Poincaré covariance: $\exists U$: positive energy rep of \mathcal{P}_+^{\uparrow} such that $\mathrm{Ad}\,U(g)\phi(x)=\phi(g\cdot x).$
- Vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$.

One can smear ϕ by a compactly supported function f on \mathbb{R}^d to obtain an unbounded operator $\phi(f)$ " =" $\int \phi(x)f(x)dx$, then a bounded operator by exponentiation $e^{i\phi(f)}$.

Net of von Neumann algebras

Definition

A **Poincaré covariant net** of von Neumann algebras is $\mathcal{A}(O)$: von Neumann algebras parametrized by open regions $O \subseteq \mathbb{R}^d$ such that

- Isotony: $O_1 \subset O_2 \Rightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$.
- Locality: $O_1 \perp O_2 \Rightarrow [\mathcal{A}(O_1), \mathcal{A}(O_2)] = 0$.
- Poincaré covariance: $\exists U$: positive energy rep of \mathcal{P}_+^{\uparrow} such that $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(gO)$.
- Vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$ and cyclic for $\mathcal{A}(O)$.

If one has a quantum field ϕ , he can construct a net by $\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}''$. Conversely, if a net \mathcal{A} has a conformal symmetry (see below), one can reconstruct the field from \mathcal{A} .

Problem

To construct nets of von Neumann algebras.

Chiral conformal net

Definition

A **conformal net** on S^1 is a map \mathcal{A} from the set of intervals in S^1 into the set of von Neumann algebras on \mathcal{H} which satisfies

- Isotony: $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$.
- Locality: $I \cap J \Rightarrow [A(I), A(J)] = 0$.
- Möbius covariance: $\exists U$: positive energy rep of $PSL(2, \mathbb{R})$ such that $AdU(g)\mathcal{A}(I) = \mathcal{A}(gI)$.
- Vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$ and cyclic for $\mathcal{A}(I)$.

Many examples: U(1)-current (free massless boson), Free massless fermion, Virasoro nets (stress energy tensor), Loop group nets (noncommutative currents).

In the present work, important is the U(1)-current net which admits the Fock space structure.

Example: the U(1)-current net

The abelian current algebra

$$[J(f),J(g)]=i\int f(x)g'(x)dx$$

where $f,g\in C^\infty(\mathbb{R},\mathbb{R})$ admits the vacuum representation π_0 on the Fock space $F(L^2(\mathbb{R},dp))$ (there is a representation U of Möb which renders W covariant). One defines the U(1)-current net by

$$\mathcal{A}^{(0)}(I) = \{ e^{i\pi_0(J(f))} : \operatorname{supp} f \subset I \}'',$$

where we identified \mathbb{R} with $S^1\setminus\{-1\}$.

- The derivative of the free massless bosonic field on 2 dimensions decomposes into the tensor product of two copies of the U(1)-current net.
- For a unitary V_1 on $L^2(\mathbb{R}, dp)$, one defines the second quantization $\Gamma(V_1) = \mathbb{1} \oplus V_1 \oplus (V_1 \otimes V_1) \otimes \cdots$

Endomorphisms of $\mathcal{A}^{(0)}(\mathbb{R}_+)$

Definition

A Longo-Witten endomorphism of a net A on S^1 is an endomorphism of $\mathcal{A}(\mathbb{R}_+)$ implemented by a unitary V commuting with translation $\mathcal{T}(t)$.

Simplest examples: AdT(s) for $s \ge 0$, inner symmetry (automorphism which preserves each local algebra A(I) and the vacuum state)

An **inner symmetric** function φ is the boundary value of a bounded analytic function on the upper-half plane with $|\varphi(p)|=1, \varphi(p)=\varphi(-p)$ for $p \in \mathbb{R}$. Example: $\varphi(p) = e^{i\kappa p}$ with $\kappa \geq 0$, $\frac{p-i\kappa}{p+i\kappa}$ with $\kappa > 0$

Theorem (Longo-Witten '11)

 $\mathcal{A}^{(0)}$: the U(1)-current net

 $V_{\varphi} := \Gamma(\varphi(P_1))$ implements a Longo-Witten endomorphism of $\mathcal{A}^{(0)}$, where P_1 is the generator of the translation on the one-particle space.

Boundary quantum field net

Definition (Two-dimensional net with boundary)

A net $\mathcal B$ of von Neumann algebras in two dimensions with boundary is an assignment of von Neumann algebra $\mathcal B(D)$ to a diamond D in the right-half plane satisfying locality, covariance with respect to time-translation, etc.

- \mathcal{A} be a net on S^1 , restricted to \mathbb{R} .
- ullet V: a unitary implementing a Longo-Witten endomorphism

Theorem (Longo-Witten '11)

If one defines $\mathfrak{B}(D)=\mathcal{A}(I_1)\vee \operatorname{Ad}V(\mathcal{A}(I_2))$, then $\mathfrak B$ is a two-dimensional net with boundary.

Hence such a unitary implementing an endomorphisms of $\mathcal{A}(\mathbb{R}_+)$ leads to a net with boundary.

Borchers triple (Borchers '92)

- \bullet Local net: von Neumann algebras $\mathcal{A}(\mathit{O})$ parametrized by open regions O
- \bullet Borchers triple: a single von Neumann algebra $\mathfrak M$ acted on by spacetime translations

Definition

 \mathcal{M} : vN algebra, T: positive-energy rep of \mathbb{R}^2 , Ω : vector, is a Borchers triple if Ω is cyclic and separating for \mathcal{M} and

• Ad $T(a)(\mathfrak{M}) \subset \mathfrak{M}$ for $a \in W_R$, $T(a)\Omega = \Omega$

Correspondence: $\mathcal{A}(W_R) \Leftrightarrow \mathcal{M}$, where $W_R := \{a = (a_0, a_1) : |a_0| < a_1\}$.

examples

- Factorizing S-matrix models (Lechner '06)
- Deformations (Buchholz-Lechner-Summers '10, Dybalski-T. '11, Lechner '11, etc.)

Chiral CFT in 2 dimensions

Although there exist a plenty of conformal nets on S^1 , there is no notion of *interaction* for one-dimensional theory.

However, it is easy to construct a (noninteracting) two-dimensional net from a *pair* of nets on S^1 .

For two nets A_+ , A_- on S^1 , we define

- a chiral net on \mathbb{R}^2 : $\mathcal{A}(I \times J) := \mathcal{A}_+(I) \otimes \mathcal{A}_-(J)$
- a representation $U = U_+ \otimes U_-$ of $\mathrm{PSL}(2,\mathbb{R}) \otimes \mathrm{PSL}(2,\mathbb{R}) \supset \mathcal{P}_+^{\uparrow}$,
- ullet the vacuum $\Omega=\Omega_+\otimes\Omega_-$

A chiral net $\mathcal A$ is *not* interacting (Dybalski-T. '11). Such nets with a simple tensor product structure can be considered as free theory in 2 dimensions.

Some construction of wedge-local nets (T. '11)

- \mathcal{A}_0 : a conformal net on $S^1 = \mathbb{R} \cup \{\infty\}$
- P_0 : the generaor of translation $T_0(t) = e^{itP_0}$

We set, for $\kappa > 0$,

- $\mathcal{M}_{\kappa} := \{x \otimes \mathbb{1}, e^{i\kappa P_0 \otimes P_0} (\mathbb{1} \otimes y) e^{-i\kappa P_0 \otimes P_0} : x \in \mathcal{A}_0(\mathbb{R}_-), y \in \mathcal{A}_0(\mathbb{R}_+)\}''$
- $T := T_0 \otimes T_0$
- $\Omega := \Omega_0 \otimes \Omega_0$

Theorem (T. '11)

 $(\mathcal{M}_{\kappa}, T, \Omega)$ is an asymptotically complete Borchers triple with the S-matrix $e^{i\kappa P_0 \otimes P_0}$.

Further construction of wedge-local nets (T. '11)

Theorem (T. '11)

 $(\mathcal{M}_{\kappa}, T, \Omega)$ is an asymptotically complete Borchers triple with the S-matrix $e^{i\kappa P_0\otimes P_0}$.

Proof) To see that it is a Borchers triple, what is nontrivial is the separating property of Ω . We set

$$\begin{array}{lll} \mathfrak{M}_{\kappa} &:= & \{x \otimes \mathbb{1}, e^{i\kappa P_0 \otimes P_0} (\mathbb{1} \otimes y) e^{-i\kappa P_0 \otimes P_0} : x \in \mathcal{A}_0(\mathbb{R}_-), y \in \mathcal{A}_0(\mathbb{R}_+)\}'' \\ \mathfrak{M}_{\kappa}^1 &:= & \{e^{i\kappa P_0 \otimes P_0} (x \otimes \mathbb{1}) e^{-i\kappa P_0 \otimes P_0}, \mathbb{1} \otimes y : x \in \mathcal{A}_0(\mathbb{R}_+), y \in \mathcal{A}_0(\mathbb{R}_-)\}'' \end{array}$$

Note that $e^{i\kappa P_0\otimes P_0}=\int e^{i\kappa pP_0}\otimes dE_0(p)$, where E_0 is the spectral measure of P_0 . \mathcal{M}_{κ} and \mathcal{M}_{κ}^1 commute since

$$e^{i\kappa P_0\otimes P_0}(x\otimes 1)e^{-i\kappa P_0\otimes P_0}=\int e^{i\kappa pP_0}(x)e^{-i\kappa pP_0}\otimes dE_0(p).$$

 Ω is cyclic for \mathcal{M}^1_{κ} , hence separating for \mathcal{M}_{κ} .

Construction of Borchers triples based on $\mathcal{A}^{(0)}$

We take again the U(1)-current net $\mathcal{A}^{(0)}$. For an inner symmetric function φ , set

- $\mathcal{H}^n := \mathcal{H}_1^{\otimes n}$
- $\begin{array}{l} \bullet \ \ P_{i,j}^{m,n} := (\mathbb{1} \otimes \cdots \otimes P_1 \otimes \cdots \otimes \mathbb{1}) \otimes (\mathbb{1} \otimes \cdots \otimes P_1 \otimes \cdots \otimes \mathbb{1}), \\ \text{ acting on } \mathcal{H}^m \otimes \mathcal{H}^n, \ 1 \leq i \leq m \ \text{and} \ 1 \leq j \leq n. \end{array}$
- $\varphi_{i,j}^{m,n} := \varphi(P_{i,j}^{m,n})$ (functional calculus on $\mathcal{H}^m \otimes \mathcal{H}^n$).
- $S_{\varphi} := \bigoplus_{m,n} \prod_{i,j} \varphi_{i,j}^{m,n}$

We can take the spectral decomposition of S_{φ} only with respect to the right component:

$$S_{\varphi} = \bigoplus_{n} \int \prod_{j} \Gamma(\varphi(p_{j}P_{1})) \otimes dE_{1}(p_{1}) \otimes \cdots \otimes dE_{1}(p_{n})$$

Note that the integrand is a unitary operator which implements a Longo-Witten endomorphism for any value of $p_j \ge 0$.

Construction of Borchers triples

We set

$$ullet$$
 $\mathcal{M}_{arphi}:=\{x\otimes \mathbb{1}, S_{arphi}(\mathbb{1}\otimes y)S_{arphi}^*: x\in \mathcal{A}^{(0)}(\mathbb{R}_-), y\in \mathcal{A}^{(0)}(\mathbb{R}_+)\}''$

- $T := T_0 \otimes T_0$
- $\bullet \ \Omega := \Omega_0 \otimes \Omega_0$

Theorem (T. '11)

 $(\mathcal{M}_{\varphi}, T, \Omega)$ is an asymptotically complete Borchers triple with the S-matrix S_{φ} .

Proof) To see that it is a Borchers triple, what is nontrivial is the separating property of Ω . We set

$$\mathcal{M}^1_{\varphi}:=\{S_{\varphi}(x\otimes \mathbb{1})S_{\varphi}^*, \mathbb{1}\otimes y: x\in \mathcal{A}^{(0)}(\mathbb{R}_+), y\in \mathcal{A}^{(0)}(\mathbb{R}_-)\}''$$

 \mathcal{M}_{arphi} and \mathcal{M}_{arphi}^1 commute since

$$S_{\varphi}(x \otimes 1)S_{\varphi}^* = \bigoplus_{n} \int \operatorname{Ad} \left(\prod_{j} \Gamma(\varphi(p_j P_1)) \right) (x) \otimes dE_1(p_1) \otimes \cdots dE_1(p_n).$$

Conclusion

Summary

Interacting wedge-local nets parametrized by symmetric inner functions

Open problems

- Further examples with different asymptotic algebra
- Strict locality
- Massive analogue