Construction of wedge-local QFT through Longo-Witten endomorphisms

Yoh Tanimoto (with M. Bischoff)

Institut für Theoretische Physik, Universität Göttingen

August 9th 2011, Aalborg

Introduction

Construction of two-dimensional QFT

- Lagrangian, Euclidean approach
- formfactor bootstrap program
- operator-algebraic approach

Recent progress in operator-algebraic approach:

- wedge-local net in 2-dim, based on a single von Neumann algebra and the Tomita-Takesaki theory (Borchers '92)
- factorizing S-matrix models (Lechner '08)

Present approach:

- input: chiral conformal net on S^1 (many examples)
- endomorphisms of the half-line algebra (Longo-Witten '11)

Main result

Interacting massless/massive nets of von Neumann algebras in 2-dim

Net of von Neumann algebras

Conventional quantum field

- ϕ : operator valued distribution on \mathbb{R}^d , $[\phi(x), \phi(y)] = 0$ if $x \perp y$
- U: the spacetime symmetry, $U(g)\phi(x)U(g)^*=\phi(gx)$
- Ω the vacuum vector

Net of observables

 $\mathcal{A}(O)$: **von Neumann algebras** (weakly closed algebras of bounded operators on a Hilbert space \mathcal{H}) parametrized by open regions $O \subseteq \mathbb{R}^d$

• isotony:
$$O_1 \subset O_2 \Rightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$$

- locality: $\mathit{O}_1 \perp \mathit{O}_2 \Rightarrow [\mathcal{A}(\mathit{O}_1), \mathcal{A}(\mathit{O}_2)] = 0$
- Poincaré covariance: $\exists U$: positive energy rep of \mathcal{P}^{\uparrow}_+ such that $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(gO)$
- vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$ and cyclic for $\mathcal{A}(\mathcal{O})$

Correspondence:
$$\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}_{\square}^{\prime\prime}$$

Nets of von Neumann algebras are still complicated to construct directly, since they involve infinitely many von Neumann algebras. The notion of **Borchers triple** reduces the question to a single von Neumann algebra if the spacetime has **dimension 2**.

- local net: von Neumann algebras $\mathcal{A}(O)$ parametrized by open regions O
- \bullet Borchers triple: a single von Neumann algebra ${\mathfrak M}$ acted on by spacetime translations

Idea (net \implies Borchers triple): to consider only the algebra $\mathcal{A}(W_R)$ corresponding to the wedge region $W_R := \{a = (a_0, a_1) : |a_0| < a_1\}$. Any double cone $D_{a,b}$ is of the form $(W_R + a) \cap (W_L + b)$ and (if the net \mathcal{A} satisfies the Haag duality) \mathcal{A} can be recovered by $\mathcal{A}(W_R)$, its commutant $\mathcal{A}(W_R)' := \{x \in \mathcal{B}(\mathcal{H}) : [x, y] = 0 \text{ for all } y \in \mathcal{B}(\mathcal{H})\}$ and the translation:

$$\mathcal{A}(D_{a,b}) = (U(a)\mathcal{A}(W_R)U(a)^*) \cap (U(b)\mathcal{A}(W_R)'U(b)^*).$$

3

э

イロト イヨト イヨト イヨト

Definition

 $(\mathcal{M}, \mathcal{T}, \Omega)$, where \mathcal{M} : vN algebra, \mathcal{T} : positive-energy rep of \mathbb{R}^2 , Ω : vector, is a Borchers triple if Ω is cyclic and separating for \mathcal{M} and

• Ad $T(a)(\mathcal{M}) \subset \mathcal{M}$ for $a \in W_{\mathbb{R}}$, $T(a)\Omega = \Omega$

Borchers triple \Longrightarrow net

If one defines a "net" by $\mathcal{A}(D_{a,b}) := (U(a)\mathcal{M}U(a)^*) \cap (U(b)\mathcal{M}'U(b)^*))$, then T can be extended to a rep U of Poincaré group and satisfies all the axioms of local net **except the cyclicity of vacuum**.

Problem

- to construct new Borchers triples (wedge-local QFT)
- to show the cyclicity of vacuum (strict locality)

イロト 不得下 イヨト イヨト

Definition

A **conformal net** on S^1 is a map \mathcal{A}_0 from the set of intervals in S^1 into the set of von Neumann algebras on \mathcal{H}_0 which satisfies

- isotony: $I \subset J \Rightarrow \mathcal{A}_0(I) \subset \mathcal{A}_0(J)$.
- locality: $I \cap J \Rightarrow [\mathcal{A}_0(I), \mathcal{A}_0(J)] = 0.$
- Möbius covariance: $\exists U_0$: positive energy rep of $PSL(2, \mathbb{R})$ such that $AdU_0(g)\mathcal{A}_0(I) = \mathcal{A}_0(gI)$.
- vacuum: $\exists \Omega_0$ such that $U_0(g)\Omega_0 = \Omega_0$ and cyclic for $\mathcal{A}_0(I)$.

Many examples: U(1)-current (free massless boson), Free massless fermion, Virasoro nets (stress energy tensor), Minimal models, Loop group nets (WZW models).

In the present work, important are the U(1)-current net and the free massless fermion which admit the Fock space structure.

One-dimensional objects:

- \mathcal{A}_0 : a conformal net on $S^1 = \mathbb{R} \cup \{\infty\}$
- P_0 : the generator of translation $T_0(t) = e^{itP_0}$
- Ω_0 : the vacuum

Two-dimensional objects:

- $\mathcal{M} := \{x \otimes \mathbb{1}, \mathbb{1} \otimes y : x \in \mathcal{A}_0(\mathbb{R}_-), y \in \mathcal{A}_0(\mathbb{R}_+)\}''$
- $T := T_0 \otimes T_0$
- $\Omega := \Omega_0 \otimes \Omega_0$

Theorem

 (\mathcal{M}, T, Ω) is a massless Borchers triple with the S-matrix $\mathbb{1}$.

Some construction of Borchers triples (T. '11)

- \mathcal{A}_0 : a conformal net on $S^1 = \mathbb{R} \cup \{\infty\}$
- P_0 : the generator of translation $T_0(t) = e^{itP_0}$

We set, for $\kappa > 0$,

- $\mathfrak{M}_{\kappa} := \{x \otimes \mathbb{1}, \mathrm{Ad} e^{i\kappa P_0 \otimes P_0}(\mathbb{1} \otimes y) : x \in \mathcal{A}_0(\mathbb{R}_-), y \in \mathcal{A}_0(\mathbb{R}_+)\}''$
- $T := T_0 \otimes T_0$
- $\Omega := \Omega_0 \otimes \Omega_0$

Theorem (T. '11)

 $(\mathcal{M}_{\kappa}, \mathcal{T}, \Omega)$ is a massless Borchers triple with the S-matrix $e^{i\kappa P_0 \otimes P_0}$.

Key of the proof: to show that Ω is separating for \mathcal{M}_{κ} (wedge-locality). Important to note: $\mathrm{Ad}e^{itP_0}$ for $t \geq 0$ is an **endomorphism** of $\mathcal{A}_0(\mathbb{R}_+)$, because translation by t takes \mathbb{R}_+ into itself.

・ロン ・聞と ・ ほと ・ ほと

Endomorphisms of the U(1)-current algebra $\mathcal{A}_{U(1)}(\mathbb{R}_+)$

Definition

A Longo-Witten endomorphism of a Möbius covariant net \mathcal{A}_0 is an endomorphism of $\mathcal{A}_0(\mathbb{R}_+)$ implemented by a unitary V_0 commuting with translation $\mathcal{T}_0(t)$.

Simplest examples: $\operatorname{Ad} T_0(s)$ for $s \ge 0$, gauge symmetry (automorphism which preserves each local algebra $\mathcal{A}_0(I)$ and the vacuum state)

An **inner symmetric** function φ is the boundary value of a bounded analytic function on the upper-half plane with $|\varphi(p)| = 1, \varphi(p) = \overline{\varphi(-p)}$ for $p \in \mathbb{R}$. Example: $\varphi(p) = e^{i\kappa p}$ with $\kappa \ge 0, \frac{p-i\kappa}{p+i\kappa}$ with $\kappa > 0$

Theorem (Longo-Witten '11)

 $\mathcal{A}_{U(1)}$: the U(1)-current net generated by the free massless current. $V_{\varphi} := \Gamma(\varphi(P_1))$ implements a Longo-Witten endomorphism of $\mathcal{A}_{U(1)}$, where P_1 is the generator of the translation on the one-particle space. We construct directly the scattering operator. $\mathcal{A}_{U(1)}$: the U(1)-current net. For an inner symmetric function φ , set

• $\mathcal{H}^{n} := \mathcal{H}_{1}^{\otimes n}$ • $P_{i,j}^{m,n} := (\mathbb{1} \otimes \cdots \otimes P_{1} \otimes \cdots \otimes \mathbb{1}) \otimes (\mathbb{1} \otimes \cdots \otimes P_{1} \otimes \cdots \otimes \mathbb{1}),$ i -thacting on $\mathcal{H}^{m} \otimes \mathcal{H}^{n}, 1 \leq i \leq m \text{ and } 1 \leq j \leq n.$ • $\varphi_{i,j}^{m,n} := \varphi(P_{i,j}^{m,n})$ (functional calculus on $\mathcal{H}^{m} \otimes \mathcal{H}^{n}$). • $S_{\varphi} := \bigoplus_{m,n} \prod_{i,j} \varphi_{i,j}^{m,n}$

We can take the spectral decomposition of S_{φ} only with respect to the right component:

•
$$S_{\varphi} = \bigoplus_n \int \prod_j \Gamma(\varphi(p_j P_1)) \otimes dE_1(p_1) \otimes \cdots \otimes dE_1(p_n)$$

Note that the integrand is a unitary operator which implements a Longo-Witten endomorphism for any value of $p_j \ge 0$.

11 / 14

We set

•
$$\mathcal{M}_{\varphi} := \{x \otimes \mathbb{1}, S_{\varphi}(\mathbb{1} \otimes y)S_{\varphi}^* : x \in \mathcal{A}_{U(1)}(\mathbb{R}_-), y \in \mathcal{A}_{U(1)}(\mathbb{R}_+)\}''$$

•
$$\mathcal{T}:=\mathcal{T}_0\otimes\mathcal{T}_0,\ \Omega:=\Omega_0\otimes\Omega_0$$

Theorem (T. '11)

 $(\mathcal{M}_{\varphi}, \mathcal{T}, \Omega)$ is a massless Borchers triple with the S-matrix S_{φ} .

Further examples:

There is the inclusion $\mathcal{A}_{U(1)} \subset \mathcal{F}$, where \mathcal{F} is the net of the **free complex fermion** and $\mathcal{A}_{U(1)}$ is the fixed point with resect to the U(1)-gauge action. The net $\mathcal{F} \otimes \mathcal{F}$ can be "twisted" by a similar procedure, and some of the twisting procedures commute with the U(1)-gauge action, hence give rise to twisting of $\mathcal{A}_{U(1)} \otimes \mathcal{A}_{U(1)}$.

The S-matrix **does not preserve** the subspace of one right-moving + one left-moving waves. In other words, they represent "particle production" (Bischoff-T. '11).

12 / 14

Construction of massive Borchers triples based on $\mathcal{A}_{U(1)}$

Note: $\mathcal{A}_{U(1)}(\mathbb{R}_+)$, together with lightlike translations $\Gamma(e^{isP_1}), \Gamma(e^{\frac{it}{P_1}})$, is equivalent to the massive free net.

• take again two copies $\mathcal{A}_{U(1)}\otimes\mathcal{A}_{U(1)}$

•
$$Q_{i,j}^{m,n} := (\mathbb{1} \otimes \cdots \otimes \frac{1}{P_1} \otimes \cdots \otimes \mathbb{1}) \otimes (\mathbb{1} \otimes \cdots \otimes P_1 \otimes \cdots \otimes \mathbb{1})$$

 $\stackrel{i-\text{th}}{\longrightarrow} p_{i-\text{th}} \longrightarrow p_{i-\text{th}}$

•
$$\varphi_{i,j} := \varphi(Q_{i,j}), R_{\varphi} := \bigoplus_{m,n} \prod_{i,j} \varphi_{i,j}$$

• $\mathcal{M}_{\varphi} := \{x \otimes \mathbb{1}, R_{\varphi}(\mathbb{1} \otimes y) R_{\varphi}^* : x, y \in \mathcal{A}_{U(1)}(\mathbb{R}_+)\}''$

• T:
$$\Gamma(e^{isP_1}) \otimes \Gamma(e^{isP_1})$$
, $\Gamma(e^{\frac{\pi}{P_1}}) \otimes \Gamma(e^{\frac{\pi}{P_1}})$, $\Omega := \Omega_0 \otimes \Omega_0$

Theorem (T., in preparation)

 $(\mathcal{M}_{\varphi}, \mathcal{T}, \Omega)$ is a massive Borchers triple.

S-matrix should be **factorizing** with two species of particle. One can do a similar construction by taking the free fermion and the generator Q_0 of the gauge symmetry. This is **local** and **interacting** for some parameters due to **modular nuclearity**, and should be equivalent to the Federbush model.

Y. Tanimoto (Universität Göttingen)

Construction of wedge-local QFT

Summary

- construction of Borchers triples through Longo-Witten endomorphisms
- wedge-local massless models with particle-production like phenomena
- Iocal massive models

Open problems