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Reusing Classes

● Overview
– Composition

– Inheritance

– Polymorphism

– Method overloading vs. overriding

– Visibility of variables and methods

– Specification of a contract
● Abstract classes, interfaces
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Reusing Classes

● Software development
– One of the holy grails of OOP: reusing classes

– When you need a class, you can
●  Get the perfect one off the shelf          »   one extreme

– e.g., library,  GUI builder environment 
●  Write it completely from scratch             »   other extreme
●  Reuse an existing class with composition
●  Reuse an existing class or class framework with inheritance

– A good class design is important
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Reusing Classes

● Composition
– Simplest way to reuse existing code
– Instances of existing classes inside a new class 

● Flexibility: can change objects at runtime
● A “has-a” relationship between classes 

MyNewClass

  Instance of 
  existing class 1

  Instance of
  existing class 2

etc.

class MyNewClass {
   Foo x = new Foo(); 
   Bar x = new Bar(); 
   Baz x = new Baz(); 
   ... 
}
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Reusing Classes

● Inheritance
– Pure inheritance

● Interface duplication for interchangeable objects
● Redefinition of methods with the same interface
● An “is-a” relationship between classes 

– Extension inheritance
● Inheritance to extend the interface
● Additional variables and methods
● An “is-like-a” relationship between classes 

– Single inheritance (e.g., Java) 
vs. Multiple inheritance (e.g., C++)

ParentClass

ChildClass1 ChildClass2

method1()
method2()
method3()

method1()
method2()

method1()
method2()

reuse
new
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Reusing Classes

● Inheritance
– Terminology

● Parent, superclass, base class, ...
● Child, subclass, derived class, ... 

– Class Object is the root of the class hierarchy
● Every class has Object as a superclass

– A class can have at most one parent but of course more ancestors 

– Creating a subclass by the extends keyword

class <class name> extends <class name>
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Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

Shape

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()

Circle

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()
getRadius()
setRadius()
...

a Circle is a Shape
a Rectangle is a Shape

Rectangle

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()
getWidth()
getHeight()
...
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Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

public class Shape {
   protected Point center;
   public Shape() { center = new Point(); }
   public Shape(int x, int y) { center = new Point(x, y); }
   public Point getCenter() { return center; }
   public void moveCenterTo(int x, int y) { 
      center.setLocation(x, y); }
   public double getArea() { return 0.0; }
   ...   
}
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Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

public class Point {
   protected int coordX, coordY;
   public Point() { setLocation(0, 0); }
   public Point(int x, int y) { setLocation(x, y); }
   public void setLocation(int x, int y) { 
      coordX = x; coordY = y; }
   public int getX() { return coordX; }
   public int getY() { return coordY; } 
   ...  
}
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Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

public class Circle extends Shape {
   protected double radius;
   public Circle() { 
      center = new Point(); radius = 1.0; }
   public Circle(int x, int y, double r) { 
      center = new Point(x, y); radius = r; }
   public double getRadius() { return radius; }
   public double getArea() { 
      return Math.PI * radius * radius; }
   ...   
}

inherits from Shape the methods
getCenter, moveCenterTo, ... 

but NOT the constructors 

initialize class variables
of class and superclass 
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Reusing Classes

● Polymorphism
– Upcasting

● A variable of class X can refer to objects of class X or any of its subclasses

– Separation of interface from implementation
● Substitutability
● Extensibility

Shape shape;
shape = new Shape();
shape = new Circle(1, 0, 2.5);



  NMCGJ
2024-2025

Reusing Classes

● Polymorphism
– Upcasting

● A variable of class X can refer to objects of class X or any of its subclasses

– Substitutability

Shape
Circle

Rectangle

getCenter()
getArea()
getPerimeter()
...
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Reusing Classes

● Polymorphism
– Upcasting

● A variable of class X can refer to objects of class X or any of its subclasses

– Extensibility Circle

Rectangle

Triangle

Shape
getCenter()
getArea()
getPerimeter()
...
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Reusing Classes

● Method overriding versus overloading
– Method binding = connecting a method call to a method body

– Method overriding 
● Redefinition of a (parent) method with exactly the same interface
● Same name, same number of parameters, same type of parameters
● Dynamic binding (at run-time)

– Method overloading
● Redefinition of a method with a similar interface
● Same name, but different set of parameters (number and/or type)
● Static binding (at compile time)
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Reusing Classes

● Visibility of variables and methods
– Recall:  public – private – protected

● Public: visible to the world (everybody outside and inside the class) 
● Private: visible only to the class 
● Protected: visible to the package and all subclasses
● Default (friendly), no keyword:  visible to the package

– Use public or protected to be accessible to subclasses 

– Good access strategy
● Limit direct access to variables
● Control access via Getters/Setters (methods)



  NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– Name conflicts of variables inside methods 

● Priority: local variables  >  parameters  >  class variables  >  parent class variables

– Name conflicts of methods 
● Priority: methods  >  parent methods

– Name conflicts can be avoided by a self-referencing pointer 
● The this keyword
● The super keyword
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Reusing Classes

● Visibility of variables and methods
– The this keyword is a reference to the current object 

● Referring to class variables
● Referring to methods inside class (no extra functionality)

public class Circle extends Shape {
   protected double radius;
   public void setRadius(double radius) {
      this.radius = radius;
   }
}
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Reusing Classes

● Visibility of variables and methods
– Constructor delegation using the this keyword

● This guarantees consistent initialization
● It has to be the first statement in the constructor

public class Circle extends Shape {
public Circle() {

      this(0, 0, 1.0);
   }
   public Circle(int x, int y, double r) { 
      center = new Point(x, y); radius = r;
   }
}
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Reusing Classes

● Visibility of variables and methods
– The super keyword is a reference to the current parent object

● Referring to parent class variables
● Referring to parent methods

public class Shape {
   public String toString() { 
      return "shape (area " + getArea() + ")"; }
}
public class Circle extends Shape {   
   public String toString() { 
      return "circle " + super.toString(); }
}



  NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– Constructor delegation using the super keyword

● Constructors are not inherited; implicit default call super() if available
● It has to be the first statement in the constructor

public class Shape {
   public Shape(int x, int y) { 
      center = new Point(x, y); }
}
public class Circle extends Shape {   
   public Circle(int x, int y, double r) { 
      super(x, y); radius = r; }
}
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Reusing Classes

● Specification of a contract
– Separation of interface from implementation
– Abstract classes using the abstract keyword

● an “is-a” or “is-like-a” relationship 
● One or more methods in the class have no implementation

– Pure interfaces using the interface keyword  
● a “can-do” relationship 
● No method has an implementation

– A class can implement 
● One abstract class via the extends keyword 
● Multiple interfaces via the implements keyword
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Reusing Classes

● Specification of a contract
– Abstract classes

● Postponing implementation till where it makes sense
● Creating objects can only through (not abstract) subclasses

public abstract class Shape {
   ...
   public abstract double getArea();
}
public class Circle extends Shape {
   ...   
   public double getArea() { 
      return Math.PI * radius * radius; }
}
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Reusing Classes

● Specification of a contract
– Abstract classes

● Postponing implementation till where it makes sense
● Creating objects can only through (not abstract) subclasses

Shape

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()

UML: italic font type for
abstract classes/methods
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Reusing Classes

● Specification of a contract
– Pure interfaces

● A class can implement multiple interfaces
● Interfaces can inherit from other interfaces

public interface Figure {
   public void moveCenterTo(int x, int y);
}
public class Shape implements Figure {
   ...
   public void moveCenterTo(int x, int y) { 
      center.setLocation(x, y); }
}
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Reusing Classes

● Specification of a contract
– Pure interfaces

● A class can implement multiple interfaces
● Interfaces can inherit from other interfaces

Figure Shape

Circle

Rectangle

Triangle

UML: difference in
Interface – Inheritance
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Reusing Classes

● Specification of a contract
– Example: Adventure

CanSwim CanFly

ActionMan

CanFight

Hero
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Reusing Classes

● Specification of a contract
– Example: Adventure

public interface CanFight {
   public void fight();
}
public interface CanSwim {
   public void swim();
}
public interface CanFly {
   public void fly();
}
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Reusing Classes

● Specification of a contract
– Example: Adventure

public class ActionMan implements CanFight {
   public void fight() { perform("Fight!"); }
   protected void perform(String action) {
      System.out.println(action); }
}
public class Hero extends ActionMan 
                  implements CanSwim, CanFly {
   public void swim() { perform("Swim!"); }
   public void fly() { perform("Fly!"); }
}
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Reusing Classes

● Specification of a contract
– Example: Adventure

public class Adventure {
   public static void t(CanFight x) { x.fight(); }
   public static void u(CanSwim x) { x.swim(); }
   public static void v(CanFly x) { x.fly(); }
   public static void main(String[] args) {
      Hero h = new Hero();
      t(h); // Treat it as a CanFight
      u(h); // Treat it as a CanSwim
      v(h); // Treat it as a CanFly
}}
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Reusing Classes

● Specification of a contract
– Pure interfaces

● Class variables are automatically static and final
● An interface is convenient to create groups of constants (like enum)

public interface Months {
   int JANUARY = 1, FEBRUARY = 2, MARCH = 3,
       APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,
       AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,
       NOVEMBER = 11, DECEMBER = 12;
}
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Reusing Classes

● Example: interfaces
– Look at the file InterFaceEx.java
– Make a class diagram of all the involved classes/interfaces
– Predict the output of the main method
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