

Reusing Classes

Hendrik Speleers

 NMCGJ
2024-2025

Reusing Classes

● Overview
– Composition

– Inheritance

– Polymorphism

– Method overloading vs. overriding

– Visibility of variables and methods

– Specification of a contract
● Abstract classes, interfaces

 NMCGJ
2024-2025

Reusing Classes

● Software development
– One of the holy grails of OOP: reusing classes

– When you need a class, you can
● Get the perfect one off the shelf » one extreme

– e.g., library, GUI builder environment
● Write it completely from scratch » other extreme
● Reuse an existing class with composition
● Reuse an existing class or class framework with inheritance

– A good class design is important

 NMCGJ
2024-2025

Reusing Classes

● Composition
– Simplest way to reuse existing code
– Instances of existing classes inside a new class

● Flexibility: can change objects at runtime
● A “has-a” relationship between classes

MyNewClass

 Instance of
 existing class 1

 Instance of
 existing class 2

etc.

class MyNewClass {
 Foo x = new Foo();
 Bar x = new Bar();
 Baz x = new Baz();
 ...
}

 NMCGJ
2024-2025

Reusing Classes

● Inheritance
– Pure inheritance

● Interface duplication for interchangeable objects
● Redefinition of methods with the same interface
● An “is-a” relationship between classes

– Extension inheritance
● Inheritance to extend the interface
● Additional variables and methods
● An “is-like-a” relationship between classes

– Single inheritance (e.g., Java)
vs. Multiple inheritance (e.g., C++)

ParentClass

ChildClass1 ChildClass2

method1()
method2()
method3()

method1()
method2()

method1()
method2()

reuse
new

 NMCGJ
2024-2025

Reusing Classes

● Inheritance
– Terminology

● Parent, superclass, base class, ...
● Child, subclass, derived class, ...

– Class Object is the root of the class hierarchy
● Every class has Object as a superclass

– A class can have at most one parent but of course more ancestors

– Creating a subclass by the extends keyword

class <class name> extends <class name>

 NMCGJ
2024-2025

Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

Shape

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()

Circle

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()
getRadius()
setRadius()
...

a Circle is a Shape
a Rectangle is a Shape

Rectangle

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()
getWidth()
getHeight()
...

 NMCGJ
2024-2025

Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

public class Shape {
 protected Point center;
 public Shape() { center = new Point(); }
 public Shape(int x, int y) { center = new Point(x, y); }
 public Point getCenter() { return center; }
 public void moveCenterTo(int x, int y) {
 center.setLocation(x, y); }
 public double getArea() { return 0.0; }
 ...
}

 NMCGJ
2024-2025

Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

public class Point {
 protected int coordX, coordY;
 public Point() { setLocation(0, 0); }
 public Point(int x, int y) { setLocation(x, y); }
 public void setLocation(int x, int y) {
 coordX = x; coordY = y; }
 public int getX() { return coordX; }
 public int getY() { return coordY; }
 ...
}

 NMCGJ
2024-2025

Reusing Classes

● Inheritance
– Example: the classes Shape, Circle, Rectangle

public class Circle extends Shape {
 protected double radius;
 public Circle() {
 center = new Point(); radius = 1.0; }
 public Circle(int x, int y, double r) {
 center = new Point(x, y); radius = r; }
 public double getRadius() { return radius; }
 public double getArea() {
 return Math.PI * radius * radius; }
 ...
}

inherits from Shape the methods
getCenter, moveCenterTo, ...

but NOT the constructors

initialize class variables
of class and superclass

 NMCGJ
2024-2025

Reusing Classes

● Polymorphism
– Upcasting

● A variable of class X can refer to objects of class X or any of its subclasses

– Separation of interface from implementation
● Substitutability
● Extensibility

Shape shape;
shape = new Shape();
shape = new Circle(1, 0, 2.5);

 NMCGJ
2024-2025

Reusing Classes

● Polymorphism
– Upcasting

● A variable of class X can refer to objects of class X or any of its subclasses

– Substitutability

Shape
Circle

Rectangle

getCenter()
getArea()
getPerimeter()
...

 NMCGJ
2024-2025

Reusing Classes

● Polymorphism
– Upcasting

● A variable of class X can refer to objects of class X or any of its subclasses

– Extensibility Circle

Rectangle

Triangle

Shape
getCenter()
getArea()
getPerimeter()
...

 NMCGJ
2024-2025

Reusing Classes

● Method overriding versus overloading
– Method binding = connecting a method call to a method body

– Method overriding
● Redefinition of a (parent) method with exactly the same interface
● Same name, same number of parameters, same type of parameters
● Dynamic binding (at run-time)

– Method overloading
● Redefinition of a method with a similar interface
● Same name, but different set of parameters (number and/or type)
● Static binding (at compile time)

 NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– Recall: public – private – protected

● Public: visible to the world (everybody outside and inside the class)
● Private: visible only to the class
● Protected: visible to the package and all subclasses
● Default (friendly), no keyword: visible to the package

– Use public or protected to be accessible to subclasses

– Good access strategy
● Limit direct access to variables
● Control access via Getters/Setters (methods)

 NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– Name conflicts of variables inside methods

● Priority: local variables > parameters > class variables > parent class variables

– Name conflicts of methods
● Priority: methods > parent methods

– Name conflicts can be avoided by a self-referencing pointer
● The this keyword
● The super keyword

 NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– The this keyword is a reference to the current object

● Referring to class variables
● Referring to methods inside class (no extra functionality)

public class Circle extends Shape {
 protected double radius;
 public void setRadius(double radius) {
 this.radius = radius;
 }
}

 NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– Constructor delegation using the this keyword

● This guarantees consistent initialization
● It has to be the first statement in the constructor

public class Circle extends Shape {
public Circle() {

 this(0, 0, 1.0);
 }
 public Circle(int x, int y, double r) {
 center = new Point(x, y); radius = r;
 }
}

 NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– The super keyword is a reference to the current parent object

● Referring to parent class variables
● Referring to parent methods

public class Shape {
 public String toString() {
 return "shape (area " + getArea() + ")"; }
}
public class Circle extends Shape {
 public String toString() {
 return "circle " + super.toString(); }
}

 NMCGJ
2024-2025

Reusing Classes

● Visibility of variables and methods
– Constructor delegation using the super keyword

● Constructors are not inherited; implicit default call super() if available
● It has to be the first statement in the constructor

public class Shape {
 public Shape(int x, int y) {
 center = new Point(x, y); }
}
public class Circle extends Shape {
 public Circle(int x, int y, double r) {
 super(x, y); radius = r; }
}

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Separation of interface from implementation
– Abstract classes using the abstract keyword

● an “is-a” or “is-like-a” relationship
● One or more methods in the class have no implementation

– Pure interfaces using the interface keyword
● a “can-do” relationship
● No method has an implementation

– A class can implement
● One abstract class via the extends keyword
● Multiple interfaces via the implements keyword

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Abstract classes

● Postponing implementation till where it makes sense
● Creating objects can only through (not abstract) subclasses

public abstract class Shape {
 ...
 public abstract double getArea();
}
public class Circle extends Shape {
 ...
 public double getArea() {
 return Math.PI * radius * radius; }
}

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Abstract classes

● Postponing implementation till where it makes sense
● Creating objects can only through (not abstract) subclasses

Shape

getCenter()
moveCenterTo()
moveCenterBy()
toString()
getArea()
getPerimeter()

UML: italic font type for
abstract classes/methods

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Pure interfaces

● A class can implement multiple interfaces
● Interfaces can inherit from other interfaces

public interface Figure {
 public void moveCenterTo(int x, int y);
}
public class Shape implements Figure {
 ...
 public void moveCenterTo(int x, int y) {
 center.setLocation(x, y); }
}

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Pure interfaces

● A class can implement multiple interfaces
● Interfaces can inherit from other interfaces

Figure Shape

Circle

Rectangle

Triangle

UML: difference in
Interface – Inheritance

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Example: Adventure

CanSwim CanFly

ActionMan

CanFight

Hero

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Example: Adventure

public interface CanFight {
 public void fight();
}
public interface CanSwim {
 public void swim();
}
public interface CanFly {
 public void fly();
}

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Example: Adventure

public class ActionMan implements CanFight {
 public void fight() { perform("Fight!"); }
 protected void perform(String action) {
 System.out.println(action); }
}
public class Hero extends ActionMan
 implements CanSwim, CanFly {
 public void swim() { perform("Swim!"); }
 public void fly() { perform("Fly!"); }
}

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Example: Adventure

public class Adventure {
 public static void t(CanFight x) { x.fight(); }
 public static void u(CanSwim x) { x.swim(); }
 public static void v(CanFly x) { x.fly(); }
 public static void main(String[] args) {
 Hero h = new Hero();
 t(h); // Treat it as a CanFight
 u(h); // Treat it as a CanSwim
 v(h); // Treat it as a CanFly
}}

 NMCGJ
2024-2025

Reusing Classes

● Specification of a contract
– Pure interfaces

● Class variables are automatically static and final
● An interface is convenient to create groups of constants (like enum)

public interface Months {
 int JANUARY = 1, FEBRUARY = 2, MARCH = 3,
 APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,
 AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,
 NOVEMBER = 11, DECEMBER = 12;
}

 NMCGJ
2024-2025

Reusing Classes

● Example: interfaces
– Look at the file InterFaceEx.java
– Make a class diagram of all the involved classes/interfaces
– Predict the output of the main method

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

