Hendrik Speleers

- Overview
 - Homogeneous coordinates
 - Affine transformations
 - 2D and 3D
 - Changing coordinate systems
 - Viewing in 3D
 - Camera setup
 - Perspective projection
 - Canonical view volume: 3D clipping

Università di Roma

- Coordinate systems
 - Homogeneous coordinates
 - Key concept in computer graphics
 - Why? Points and vectors can now be mixed in operations
 - Points: (*x*, *y*, *z*, 1)
 - Vectors: (*x*, *y*, *z*, 0)
 - Some operations
 - Subtraction: (*, *, *, 1) (*, *, *, 1) = (*, *, *, 0)
 - Addition: (*, *, *, 1) + (*, *, *, 0) = (*, *, *, 1)
 - Affine linear combinations of points produce another point

- Transformations
 - Translations, rotations, scaling, ...
- Why are transformations useful?
 - Constructing complex objects
 - They are usually composed of simple objects
 - Moving camera around
 - Different views on the same scene
 - Computer animation
 - Translate/rotate/warp object over time

- 2D affine transformations
 - Coordinates of Q are linear combination of coordinates of P

$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = MP$$

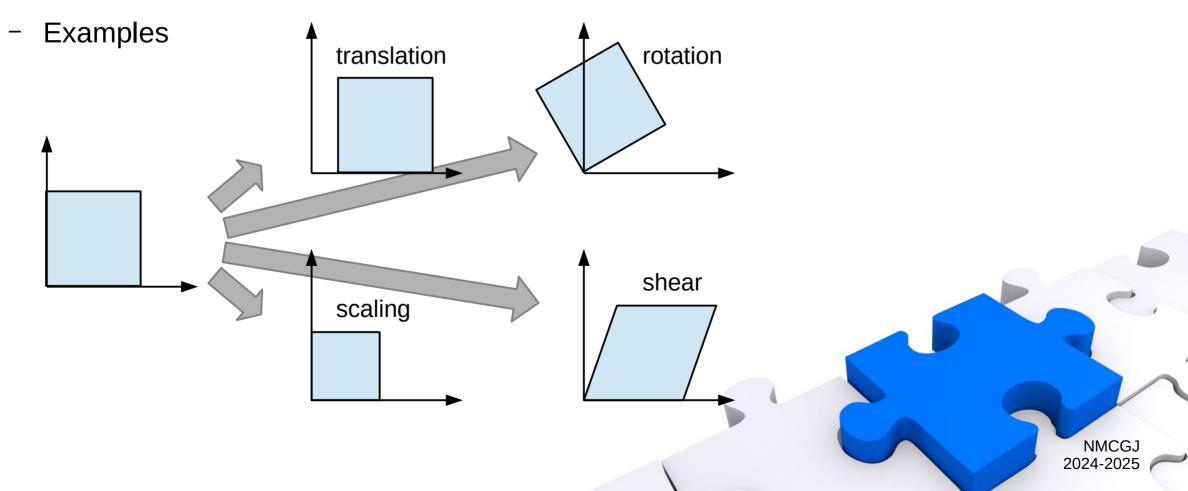
- Properties
 - Preservation of affine linear combinations
 - Preservation of lines
 - Preservation of parallelism of lines
 - Preservation of relative ratios
 - Areas are scaled with |det(*M*)|

2024-202

Iniversità di Roma

Tor Vergata

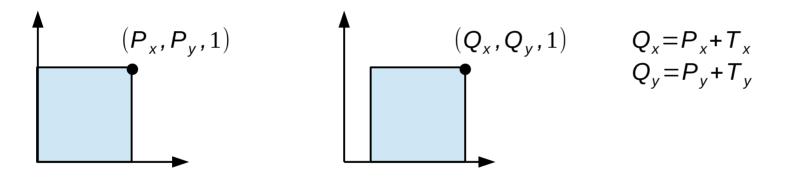
• 2D affine transformations



Università di Roma

Tor Vergata

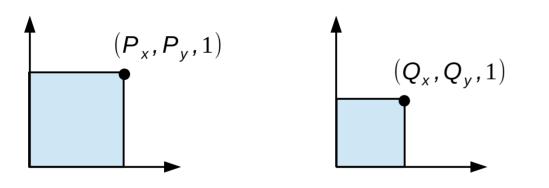
- 2D affine transformations
 - Translation



$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & T_{x} \\ 0 & 1 & T_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = TP$$

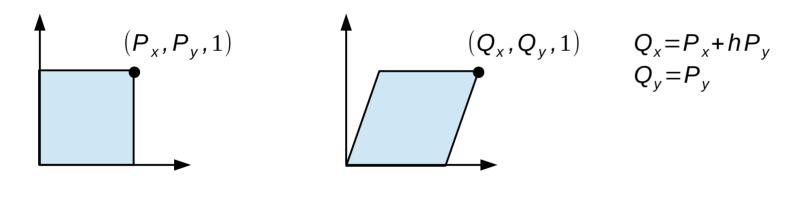
 $Q_x = S_x P_x$ $Q_y = S_y P_y$

- 2D affine transformations
 - Scaling



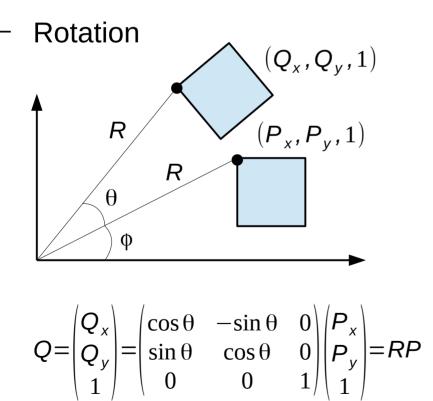
$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = SP$$

- 2D affine transformations
 - Shear



$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = S_{h}P$$

• 2D affine transformations



 $P_x = R\cos\phi$ $P_y = R\sin\phi$

 $Q_{x} = R\cos(\phi + \theta)$ $Q_{y} = R\sin(\phi + \theta)$

 $\cos(\phi + \theta) = \cos\phi \cos\theta - \sin\phi \sin\theta$ $\sin(\phi + \theta) = \sin\phi \cos\theta + \cos\phi \sin\theta$

- 2D affine transformations
 - Undo transformation by inverting matrix

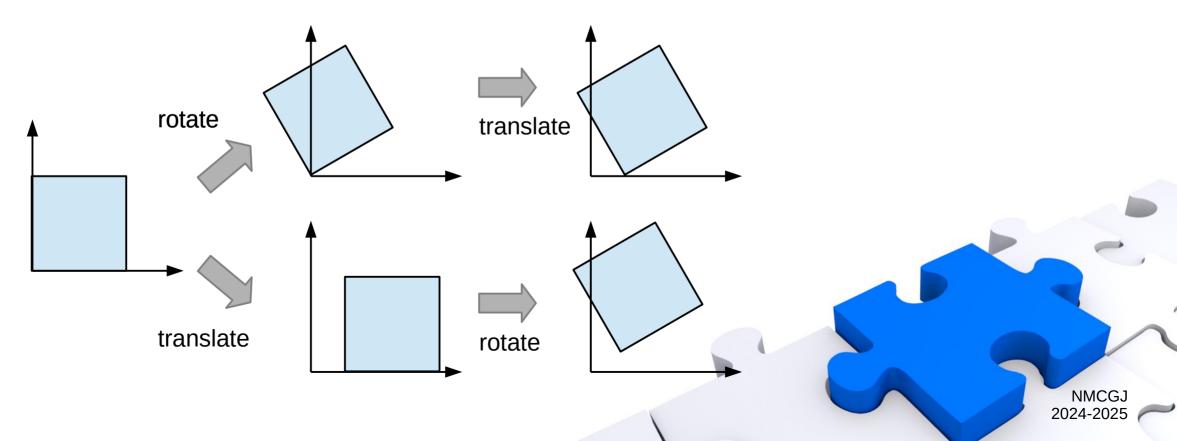
$$T^{-1} = \begin{pmatrix} 1 & 0 & -T_{x} \\ 0 & 1 & -T_{y} \\ 0 & 0 & 1 \end{pmatrix} \qquad S^{-1} = \begin{pmatrix} 1/S_{x} & 0 & 0 \\ 0 & 1/S_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad S^{-1}_{h} = \begin{pmatrix} 1 & -h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R^{-1} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Composite transformations
 - Window-to-viewport transform: scaling + translation
 - Example: Rotation around a point: $Q = (T^{-1}RT)P$
 - Translate rotation center to origin (T)
 - Rotate around origin (R)
 - Translate origin back to rotation center (T^{-1})

NMCGJ 2024-2025

Tor Vergata

- 2D affine transformations
 - Composite transformations: Order is important!!!



Università di Roma

Tor Vergata

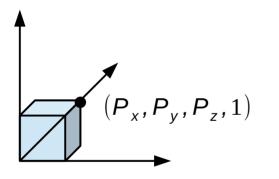
• 3D affine transformations

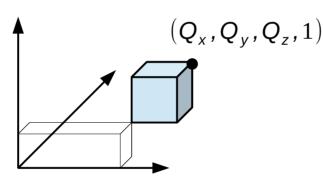
- Same idea as 2D, but now 4x4 matrices

$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix} = MP$$

- Properties
 - Preservation of affine linear combinations
 - Preservation of lines and planes
 - Preservation of parallelism of lines and planes
 - Preservation of relative ratios
 - Volumes are scaled with |det(*M*)|

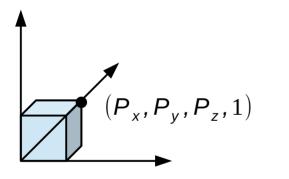
- 3D affine transformations
 - Translation

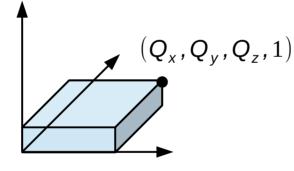




$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix} = TP$$

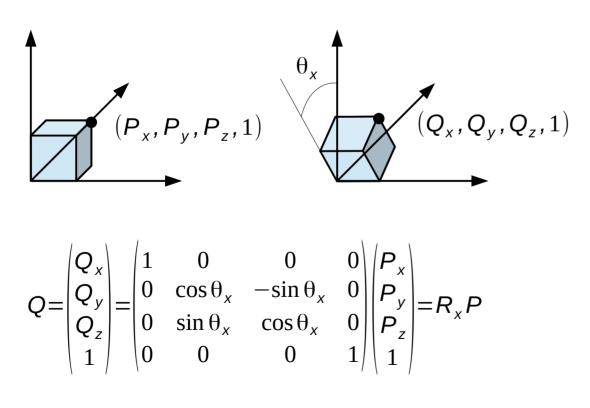
- 3D affine transformations
 - Scaling





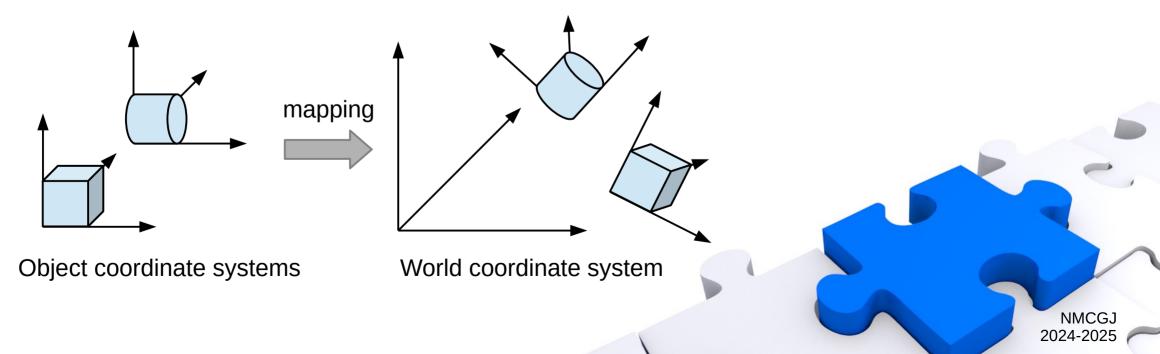
$$Q = \begin{pmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix} = SP$$

- 3D affine transformations
 - Rotation around X-axis (similar for other axes)

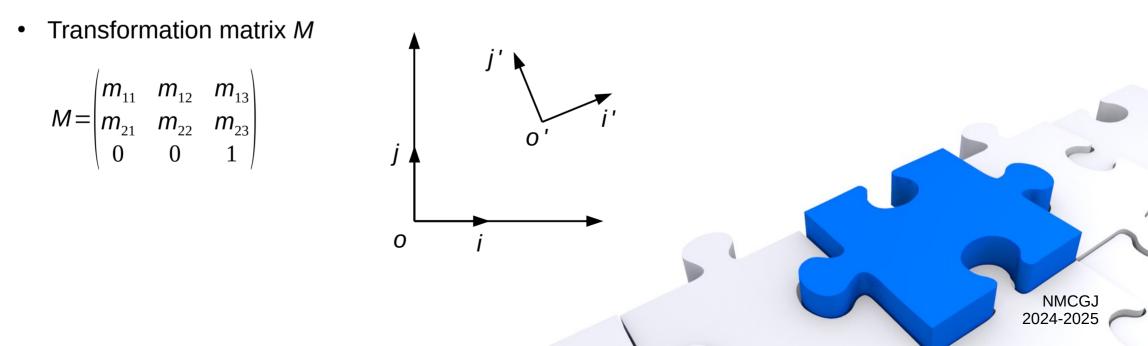


- 3D affine transformations
 - Composite transformations
 - Same ideas as 2D
 - Example: Rotation around arbitrary axis U: $Q = (R_y^{-1} R_z^{-1} R_x R_z R_y) P$
 - 2 rotations such that *U* is aligned with *X*-axis
 - X-rotation over desired angle
 - Undo the 2 rotations to restore *U* to the original direction
 - Columns in matrix reveal transformed coordinate frame
 - First 3 columns: mapped X/Y/Z-axes
 - Last column: mapped origin

- Changing coordinate systems
 - Most natural approach
 - Objects are modeled in their own coordinate system
 - Compute coordinates of transformed object in world coordinate system



- Changing coordinate systems
 - Global vs. local coordinate system
 - o = (0, 0, 1); unit vectors i = (1, 0, 0), j = (0, 1, 0)
 - $o' = (m_{13}, m_{23}, 1)$; unit vectors $i' = (m_{11}, m_{21}, 0)$, $j' = (m_{12}, m_{22}, 0)$



Jniversità di Roma

Tor Vergata

h

0

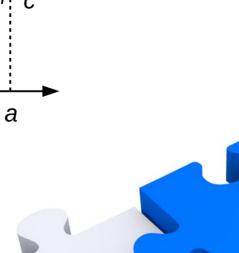
- Changing coordinate systems
 - Transformation matrix M
 - Transforms $\langle o, i, j \rangle$ into $\langle o', i', j' \rangle$

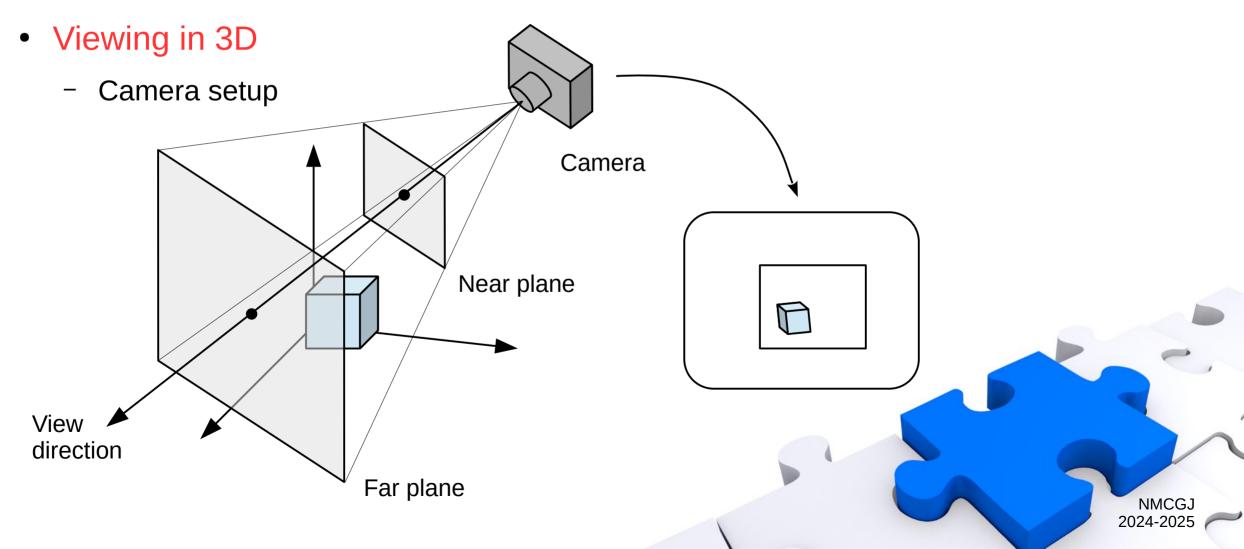
o'=Mo i'=Mi j'=Mj

Transforms local coordinates of *P* into global coordinates of *P*

 $\begin{pmatrix} a \\ b \\ 1 \end{pmatrix} = M \begin{pmatrix} c \\ d \\ 1 \end{pmatrix}$

Modeling Transformation





- Viewing in 3D
 - Camera definition: any position and any orientation (6 dof)
 - Attach coordinate system to camera
 - Origin (= eye): position of camera
 - U-axis: points 'rightwards'
 - V-axis: points 'upwards'
 - N-axis: opposite viewing direction
 - Angles of orientation of this system are called:
 - Pitch: around *U*-axis (nose up or down)
 - Yaw: around V-axis (nose left or right)
 - Roll: around N-axis

NMCG. 2024-2025

11

n

Università di Roma Tor Vergata

NMCGJ 2024-2025

Transformations in Graphics

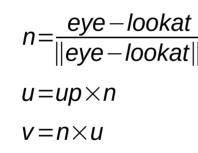
lookat

UD

U

n

- Viewing in 3D
 - Suppose we have eye, lookat, and up



- Change coordinates to camera system
 - From world system to camera system: matrix V
 - From object system to world system: matrix M
 - So... objects are expressed by

Q=*VMP* Viewing + Modeling Transformation

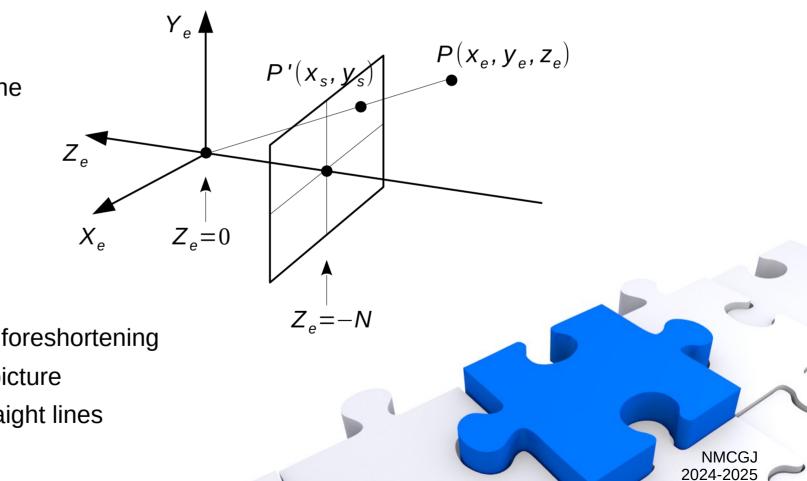
- Viewing in 3D
 - All objects are now expressed in camera system
 - What's left to do?
 - Perspective projection
 - 3D clipping
 - Cut everything outside view pyramid
 - Depth
 - Needed for removal of hidden points

Università di Roma Tor Vergata

- Viewing in 3D
 - Perspective projection
 - Project 3D point on 2D plane

$$x_{s} = \frac{N}{-z_{e}} x_{e} \qquad y_{s} = \frac{N}{-z_{e}} y_{e}$$

- Properties:
 - Division by z_e : perspective foreshortening
 - Effect of N: scaling of the picture
 - Straight lines project to straight lines



 Z_e

X_e

Y_e

 $P'(x_s, y_s)$

- Viewing in 3D
 - Adding depth
 - Which point is closer: *P*₁ or *P*₂?

- Maintain a depth function
 - Same denominator *z*_e
 - Pseudo-depth = -1 at near plane
 - Pseudo-depth = +1 at far plane

$$z_s = \frac{a z_e + b}{-z_e}$$
 $a = \frac{-(F+N)}{F-N}$ $b = \frac{-2FN}{F-N}$

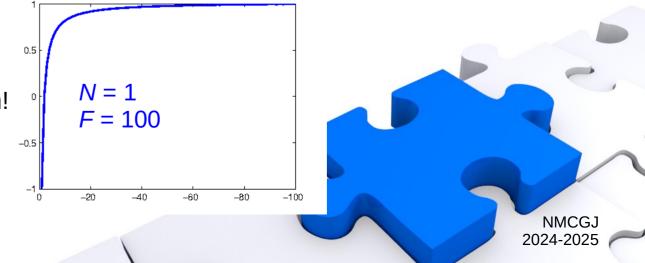
NMCGJ 2024-2025

 P_2

 P_1

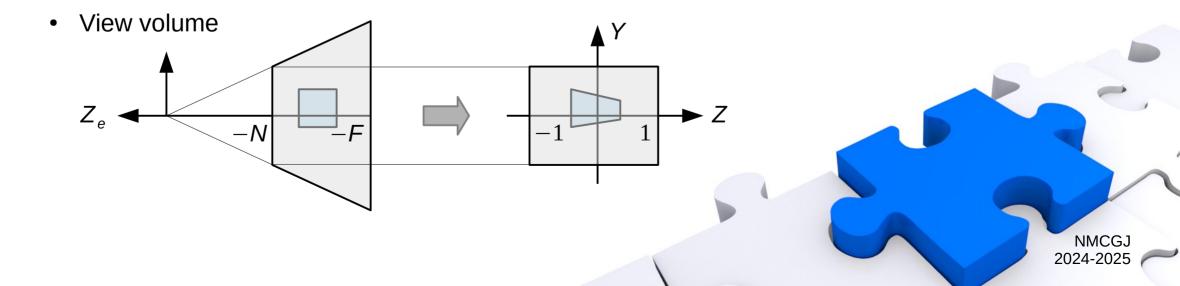
• Viewing in 3D

- Hidden surfaces: Z-buffer
 - During rasterizing
 - Interpolate pseudo-depth between vertices
 - Store depth of pixel in *Z*-buffer
 - If new depth < old depth: recolor pixel
- Artefacts with Z-buffer
 - Pixel-precision (one value per pixel)
 - Pseudo-depth interpolated, not real depth!



- Viewing in 3D
 - Perspective transform
 - Projection + depth testing: transformation matrix?

$$x_s = \frac{N}{-z_e} x_e$$
 $y_s = \frac{N}{-z_e} y_e$ $z_s = \frac{a z_e + b}{-z_e}$

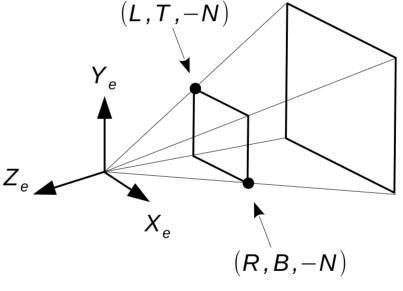


Università di Roma

Tor Vergata

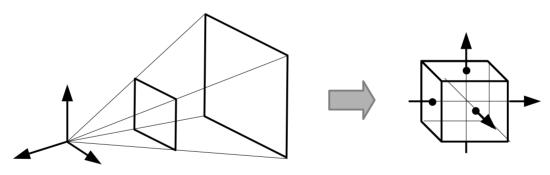
- Viewing in 3D
 - Perspective transform

 $\frac{2N}{R-L}$ $\frac{R+L}{R-L}$ 0 0 $\frac{T+B}{T-B}$ $\frac{2N}{T-B}$ 0 0 -(F+N)-2FN0 0 F-NF-N0 0 -1 0



- From view pyramid to unit box $[-1, 1] \times [-1, 1] \times [-1, 1]$
 - Perspective + additional scaling and translation
- Homogeneous coords have 4^{th} value != 1 (Division by $-z_e$ required)

- Viewing in 3D
 - Canonical view volume (CVV)
 - We have transformed everything into a unit box



Jniversità di Roma

Tor Vergata

- 3D clipping
 - Four sides of view pyramid (x = -1, 1 and y = -1, 1)
 - Near and far planes (z = -1, 1)
 - Clipping against CVV is very efficient

- Viewing in 3D
 - Putting it all together
 - Every point is transformed by the modeling transformation
 - ... then the viewing transformation
 - ... then the perspective transformation
 - ... then clip against the CVV
 - ... then keep the 2D perspective coordinates
 - ... then do the window-to-viewport transformation
 - This can all be specified in OpenGL!

