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Transformations in Graphics

● Overview
– Homogeneous coordinates

– Affine transformations
● 2D and 3D
● Changing coordinate systems

– Viewing in 3D
● Camera setup
● Perspective projection
● Canonical view volume: 3D clipping
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Transformations in Graphics

● Coordinate systems
– Homogeneous coordinates

● Key concept in computer graphics
● Why? Points and vectors can now be mixed in operations

– Points: (x, y, z, 1)

– Vectors: (x, y, z, 0)

– Some operations
● Subtraction: (*, *, *, 1) − (*, *, *, 1) = (*, *, *, 0)
● Addition: (*, *, *, 1) + (*, *, *, 0) = (*, *, *, 1)
● Affine linear combinations of points produce another point
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Transformations in Graphics

● Transformations
– Translations, rotations, scaling, …

● Why are transformations useful?
– Constructing complex objects

● They are usually composed of simple objects

– Moving camera around
● Different views on the same scene

– Computer animation
● Translate/rotate/warp object over time



  NMCGJ
2024-2025

Transformations in Graphics

● 2D affine transformations
– Coordinates of Q are linear combination of coordinates of P

– Properties
● Preservation of affine linear combinations
● Preservation of lines
● Preservation of parallelism of lines
● Preservation of relative ratios
● Areas are scaled with |det(M)|

Q=(Q x

Q y

1 )=(m11 m12 m13

m21 m22 m23

0 0 1 )(Px

Py

1 )=MP
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Transformations in Graphics

● 2D affine transformations
– Examples

scaling

translation rotation

shear
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Transformations in Graphics

● 2D affine transformations
– Translation

Q=(Q x

Q y

1 )=(1 0 T x

0 1 T y

0 0 1 )(P x

P y

1 )=TP

Qx=P x+T x

Qy=Py+T y

(Qx ,Q y ,1)(P x , Py ,1)
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Transformations in Graphics

● 2D affine transformations
– Scaling

Q=(Q x

Q y

1 )=(Sx 0 0
0 Sy 0
0 0 1)(Px

P y

1 )=SP

Qx=S x Px

Qy=Sy P y
(Qx ,Q y ,1)

(P x , Py ,1)
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Transformations in Graphics

● 2D affine transformations
– Shear

Q=(Q x

Q y

1 )=(1 h 0
0 1 0
0 0 1)(P x

Py

1 )=Sh P

Qx=P x+hPy

Qy=Py

(Qx ,Q y ,1)(P x , Py ,1)
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Transformations in Graphics

● 2D affine transformations
– Rotation

Q=(Q x

Q y

1 )=(cosθ −sin θ 0
sin θ cosθ 0

0 0 1)(Px

Py

1 )=RP

P x=Rcosϕ
P y=Rsin ϕ

Qx=R cos(ϕ+θ)
Qy=Rsin(ϕ+θ)

cos(ϕ +θ)=cosϕ cosθ−sin ϕ sin θ
sin(ϕ+θ)=sinϕ cosθ+cosϕ sin θ

(Qx ,Q y ,1)

(P x , Py ,1)

ϕ

θ

R

R
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Transformations in Graphics

● 2D affine transformations
– Undo transformation by inverting matrix

– Composite transformations
● Window-to-viewport transform: scaling + translation

● Example: Rotation around a point:
– Translate rotation center to origin (T)
– Rotate around origin (R)
– Translate origin back to rotation center (      )

T−1=(1 0 −T x

0 1 −T y

0 0 1 ) S−1=(1/Sx 0 0
0 1 /Sy 0
0 0 1) Sh

−1=(1 −h 0
0 1 0
0 0 1) R−1=( cosθ sinθ 0

−sin θ cosθ 0
0 0 1)

Q=(T−1 RT )P

T−1
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Transformations in Graphics

● 2D affine transformations
– Composite transformations: Order is important!!!

rotate

translate

rotate

rotate

translate
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Transformations in Graphics

● 3D affine transformations
– Same idea as 2D, but now 4x4 matrices

– Properties
● Preservation of affine linear combinations
● Preservation of lines and planes
● Preservation of parallelism of lines and planes
● Preservation of relative ratios
● Volumes are scaled with |det(M)|

Q=(
Q x

Q y

Qz

1
)=(

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1
)(P x

P y

Pz

1
)=MP
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Transformations in Graphics

● 3D affine transformations
– Translation

Q=(
Q x

Q y

Qz

1
)=(

1 0 0 T x

0 1 0 T y

0 0 1 T z

0 0 0 1
)(Px

P y

Pz

1
)=TP

(Qx ,Q y ,Qz ,1)

(P x , Py , Pz ,1)
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Transformations in Graphics

● 3D affine transformations
– Scaling

Q=(
Q x

Q y

Qz

1
)=(

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

)(P x

P y

Pz

1
)=SP

(Qx ,Q y ,Qz ,1)

(P x , Py , Pz ,1)
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Transformations in Graphics

● 3D affine transformations
– Rotation around X-axis (similar for other axes)

Q=(
Q x

Q y

Qz

1
)=(

1 0 0 0
0 cosθx −sin θx 0
0 sin θx cosθx 0
0 0 0 1

)(
Px

Py

Pz

1
)=Rx P

(Qx ,Q y ,Qz ,1)(P x , Py , Pz ,1)

θx
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Transformations in Graphics

● 3D affine transformations
– Composite transformations

● Same ideas as 2D

● Example: Rotation around arbitrary axis U:
– 2 rotations such that U is aligned with X-axis
– X-rotation over desired angle
– Undo the 2 rotations to restore U to the original direction

– Columns in matrix reveal transformed coordinate frame
● First 3 columns: mapped X/Y/Z-axes
● Last column: mapped origin

Q=(Ry
−1 Rz

−1 R x Rz Ry )P
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Transformations in Graphics

● Changing coordinate systems
– Most natural approach

● Objects are modeled in their own coordinate system
● Compute coordinates of transformed object in world coordinate system

Object coordinate systems World coordinate system

mapping
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Transformations in Graphics

● Changing coordinate systems
– Global vs. local coordinate system

● o = (0, 0, 1); unit vectors  i = (1, 0, 0),  j = (0, 1, 0)

● o ' = (m13, m23, 1); unit vectors  i ' = (m11, m21, 0),  j ' = (m12, m22, 0)

● Transformation matrix M

o i

j o '
i '

j '

M=(m11 m12 m13

m21 m22 m23

0 0 1 )
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Transformations in Graphics

● Changing coordinate systems
– Transformation matrix M

● Transforms              into  

● Transforms local coordinates of P
into global coordinates of P

o i

j o '
i '

j '
o '=M o i '=M i j '=M j

(ab1)=M (cd1 )

P

a

b

c
d

Modeling Transformation

⟨o , i , j ⟩ ⟨o' , i ' , j ' ⟩
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Transformations in Graphics

● Viewing in 3D
– Camera setup

View 
direction

Far plane

Near plane

Camera
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Transformations in Graphics

● Viewing in 3D
– Camera definition: any position and any orientation (6 dof)

– Attach coordinate system to camera
● Origin (= eye): position of camera
● U-axis: points ‘rightwards’
● V-axis: points ‘upwards’
● N-axis: opposite viewing direction

– Angles of orientation of this system are called:
● Pitch: around U-axis (nose up or down)
● Yaw: around V-axis (nose left or right)
● Roll: around N-axis

n

u

v
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Transformations in Graphics

● Viewing in 3D
– Suppose we have eye, lookat, and up

– Change coordinates to camera system
● From world system to camera system: matrix V
● From object system to world system: matrix M
● So... objects are expressed by

n= eye−lookat
‖eye−lookat‖

u=up×n
v=n×u

Q=V M P Viewing + Modeling Transformation

n

u

v

lookat

eye

up
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Transformations in Graphics

● Viewing in 3D
– All objects are now expressed in camera system

– What’s left to do?
● Perspective projection

● 3D clipping
– Cut everything outside view pyramid

● Depth
– Needed for removal of hidden points
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Transformations in Graphics

● Viewing in 3D
– Perspective projection

● Project 3D point on 2D plane

– Properties:
● Division by ze: perspective foreshortening
● Effect of N: scaling of the picture
● Straight lines project to straight lines

x s=
N

−ze
xe y s=

N
−ze

y e

P (xe , y e , ze)P ' (x s , y s)

Xe

Y e

Ze

Ze=0

Ze=−N
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Transformations in Graphics

● Viewing in 3D
– Adding depth

● Which point is closer: P1 or P2 ?

● Maintain a depth function
– Same denominator ze

– Pseudo-depth = −1 at near plane
– Pseudo-depth = +1 at far plane 

zs=
a ze+b

−ze
a=

−(F+N )
F−N

b=−2FN
F−N

P ' (x s , y s)

Xe

Y e

Ze

P1

P2



  NMCGJ
2024-2025

Transformations in Graphics

● Viewing in 3D
– Hidden surfaces: Z-buffer

● During rasterizing
● Interpolate pseudo-depth between vertices
● Store depth of pixel in Z-buffer
● If new depth < old depth: recolor pixel

– Artefacts with Z-buffer
● Pixel-precision (one value per pixel)
● Pseudo-depth interpolated, not real depth! N = 1

F = 100
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Transformations in Graphics

● Viewing in 3D
– Perspective transform

● Projection + depth testing: transformation matrix?

● View volume

x s=
N

−ze
xe y s=

N
−ze

y e zs=
a ze+b
−ze

−N −1 1
Z e Z

Y

−F
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Transformations in Graphics

● Viewing in 3D
– Perspective transform

● From view pyramid to unit box [−1, 1] x [−1, 1] x [−1, 1]
– Perspective + additional scaling and translation

● Homogeneous coords have 4th value != 1 (Division by −ze required)

(
2N

R−L
0 R+L

R−L
0

0 2N
T−B

T+B
T−B

0

0 0
−(F +N )

F−N
−2FN
F−N

0 0 −1 0
) Ze

Y e

Xe

(L ,T ,−N )

(R ,B,−N )
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Transformations in Graphics

● Viewing in 3D
– Canonical view volume (CVV)

● We have transformed everything into a unit box

– 3D clipping
● Four sides of view pyramid ( x = −1, 1 and y = −1, 1 )
● Near and far planes ( z = −1, 1 )
● Clipping against CVV is very efficient
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Transformations in Graphics

● Viewing in 3D
– Putting it all together

● Every point is transformed by the modeling transformation
● … then the viewing transformation
● … then the perspective transformation
● … then clip against the CVV
● … then keep the 2D perspective coordinates
● … then do the window-to-viewport transformation

– This can all be specified in OpenGL!
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