

From 3D World to 2D Screen

Hendrik Speleers

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Overview
– Synthetic camera

– Rendering pipeline

– World window versus viewport

– Clipping
● Cohen-Sutherland algorithm

– Rasterizing
● Bresenham algorithm

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Three different actors in a scene
– Objects: exist in space, independent of viewer
– Viewer: camera, human, …
– Lights: shading, shadows, ...

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Viewer
– Pinhole camera (camera obscura)

● Projection plane behind projection center: an inverted image
● Easy mathematical description

– Synthetic camera
● Projection plane in front of projection center: no inversion

camera
object

y

z z

y

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Viewer
– We don’t want to see everything
– Clipping

● Looking through a 2D window

– Two clipping models
● 2D clipper: First project, and then cut everything outside window
● 3D clipper: Cut everything outside view pyramid, and then project

 NMCGJ
2024-2025

From 3D World to 2D Screen

● 3D graphics libraries
– OpenGL, Direct3D, Java3D, …
– Provide routines for modeling and rendering
– Communicate with graphics hardware
– Synthetic camera is the basis

Application
program

Graphics
library

Graphics
hardware

Keyboard / Mouse

Display

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rendering pipeline

– Conversion from 3D world vertices to 2D screen pixels
● Transform to camera coordinate system (camera in origin)
● Project 3D coordinates to 2D coordinates

+ Clip away everything we don’t see in window
● Transform to pixels in the frame buffer

Transformer Projector Rasterizer
3D 2D

 NMCGJ
2024-2025

From 3D World to 2D Screen

● World window versus viewport
– World window: specifies which part of the world should be drawn
– Viewport: rectangle in screen window in which we want to draw

World window

Viewport

Screen windowWindow

 NMCGJ
2024-2025

From 3D World to 2D Screen

● World window versus viewport
– Mapping (x,y)→(s,t) is linear

– Preserving aspect ratio (width/height) of world window
– Maximizing and centering in viewport

x

Wl Wr

s

Vl Vr

s=Ax+B, A=
V r−V l

W r−W l
, B=V l−AW l

 NMCGJ
2024-2025

From 3D World to 2D Screen

● 2D Clipping
– Lines outside world window are not to be drawn

– Algorithm clipSegment(...)
● If line is within window then return true (accept)
● If line is outside window then return false (reject)
● Otherwise clip and return true

 NMCGJ
2024-2025

From 3D World to 2D Screen

● 2D Clipping
– Cohen-Sutherland region outcodes

● Divide space into 9 regions

● 4 bits per region
– Left? Above? Right? Below?

● Trivial accept:
– Both endpoints are FFFF

● Trivial reject:
– Both endpoints have T in the same position

TTFF FTFF FTTF

TFFF FFFF FFTF

TFFT FFFT FFTT

 NMCGJ
2024-2025

chop

From 3D World to 2D Screen

● 2D Clipping
– Cohen-Sutherland chopping

● If line is neither trivial accept nor reject
● Then clip against edges of window repeatedly

chop accept

 NMCGJ
2024-2025

From 3D World to 2D Screen

● 2D Clipping
– Cohen-Sutherland line clipper

boolean clipSegment(Point p1, Point p2) {
 do {
 if (trivial accept) return true;
 if (trivial reject) return false;
 if (p1 is outside) {
 if (p1 is left) chop left;
 if (p1 is above) chop above;
 ...
 }
 if (p2 is outside) { ... }
 } while (true)
}

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing
– Viewport on raster display

● Cathode ray tube (CRT) monitor
● Liquid crystal display (LCD) monitor
● Image is discrete

– Framebuffer
● Raster image is stored in memory as a matrix of pixels (= picture elements)
● The color of each pixel specifies the beam intensity
● Video hardware scans framebuffer at 60Hz

– Changes in framebuffer visible on screen ═> double buffering
– Switch buffers when one buffer is finished

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing

– How to convert lines/polygons to pixels?
● Continuous to discrete: scan conversion

Framebuffer

Video
controller

Raster display

Graphics
software

Rasterizer

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing
– Scan converting lines

● Find the pixels closest to the ideal line

– Naive algorithm
● If slope |m| ≤ 1 : illuminate one pixel per column; work incrementally
● If slope |m| > 1 : illuminate one pixel per row; work incrementally

 (just x ↔ y)

(y −y 1)=m(x−x1) , m=Dy
Dx

=
y2−y 1

x2−x1

(x1, y1)

(x2, y2)

Dy

Dx

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing
– Scan converting lines: slope |m| ≤ 1

– Inefficient:
● Computation of round(y) for each integer x
● And floating point addition

y = y1;
for (i = x1; i <= x2; i++) {
 plotPixel(i, Math.round(y));
 y += m;
}

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing
– Scan converting lines: Bresenham algorithm

● Only integer arithmetic

– What is the next pixel?
● Assuming slope 0 ≤ m ≤ 1, two possibilities

● Decision variable: d = a − b
– If (d > 0) … Else …

● Alternative: d = Dx (a − b)
– Only interested in sign, so this gives the same result
– Incremental computation

a

b

i+1
2

i+3
2

j+ 1
2

j+ 3
2

y = m x + h

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing
– Scan converting lines: Bresenham algorithm

dk = dk − 1 – 2 Dy or dk = dk − 1 – 2 (Dy – Dx)

ak

m bk

ak

m bk

 NMCGJ
2024-2025

From 3D World to 2D Screen

● Rasterizing
– Scan converting lines: Bresenham algorithm

● dk = Dx (ak – bk)
 = Dx ((ak − 1 – m) – (bk − 1 + m))
 = Dx (ak − 1 – bk − 1) – 2 Dx m
 = dk − 1 – 2 Dy

● dk = Dx (ak – bk)
 = Dx ((2 – m – bk − 1) – (m – ak − 1))
 = Dx (ak − 1 – bk − 1) – 2 Dx (m – 1)
 = dk − 1 – 2 (Dy – Dx)

● Exercise: Write the entire algorithm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

