
Project NMCGJ 2024-2025:

Sokoban Game

The aim of the project is to design and
implement a variation of the video game
Sokoban. Sokoban is a classic puzzle game,
and fits in the category of legendary games
like Pacman and Tetris.

Gameplay
The purpose of the game is to push crates (or
boxes) around in a warehouse, trying to get
them to designated storage locations.

The player can navigate a “pusher”, either a
man or a push-truck, through the warehouse.
The pusher can move in four directions (left,
right, up, and down) but not diagonal. The
player should steer the pusher so as to push
each of the crates to one of the storage
locations, with a minimal number of moves.

In the beginning of the game, all the crates
are spread over the warehouse. The game
ends when these crates are all placed at the
designated storage locations. The score is
computed by earning 50 points per correctly
stored crate minus the number of moves the
pusher needed to complete the task.

The figures on the right show three snap-
shots at different moments during the game.
Figure 1 illustrates a possible initial game
setup: the pusher (yellow truck) is parked
somewhere in a given warehouse (its floor
plan is indicated with gray walls); in this
case there are 16 crates to be stored (brown
boxes) and the same number of storage
locations (pink disks). Figure 2 depicts the
game situation after the pusher has already
stored 5 crates and is completing another
one; crates that are stored at a correct
location get a different color. In Figure 3 we
see the final game situation where all crates
have been stored correctly. Here, the pusher
needed 669 moves to complete the task...

Figure 2: Snapshot of the game after a while

Figure 3: Snapshot of the game when all the
crates have been stored at a correct location

Figure 1: Snapshot of the initial game setup

Problem
The puzzle game Sokoban has to be implemented for this project. The game is played on a
board of virtual squares. The board contains the floor plan of a warehouse. This must be
completely surrounded by a wall (like in the example), and any number of walls can be placed
in the interior to build up the warehouse. The initial position of the crates and the storage
locations must be chosen so that there exists a feasible way for the pusher to get each of the
crates to one of the storage locations.

The implementation needs to be flexible: it should be easy to specify/modify the floor plan of
the warehouse, the number and position of the crates, etc. Note that there are several “board
objects” (namely the pusher, crates, storage positions, and the stones/walls identifying the
warehouse) which share certain common features (like a board position). This suggests that
such features could be collected in one or more super-classes, and that concrete classes for
these objects could be constructed by means of inheritance.

The pusher is confined to the board and may move horizontally or vertically onto empty
squares (never through walls or crates). In each step of the game, the pusher should check
whether the player has pressed a key to make a move. Each direction is linked with a special
key (for example, one of the arrow keys in the keyboard). The pusher can move a crate by
bumping into it and pushing it to the square beyond. Crates cannot be pulled, and they cannot
be pushed to squares with walls or other crates. The puzzle is solved when all crates are
placed at storage locations. Note that any crate can be placed at any storage location to solve
the puzzle.

It could happen that one or more crates
cannot be moved any further. An example of
such a “deadlock” situation is shown in
Figure 4. In such case the puzzle cannot be
solved anymore and so it is game over
(without completion of the puzzle).

In order to be able to analyze the game
situation (and the performance of solving the
puzzle), it is required to keep track of all the
game steps done so far. These steps may be
combined into an animated video that may
be watched at any moment. It should also be
possible to interrupt the video and continue
the game from there on (that is the game
situation in the video at the moment of
interruption).

In order to simplify the task, the following classes have been prepared.

BoardPanel A panel for working with a graphical gameboard.

BoardFrame
AnimationBoardFrame
KeyAnimationBoardFrame

A frame containing a BoardPanel
... with animation
... with keyboard interaction.

Figure 4: Example of a deadlock situation

The class BoardPanel

The class BoardPanel provides a panel for simple drawings arranged into a board
consisting of a certain number of rows and columns. This class is very similar to the class
GraphicsPanel, but is more efficient in drawing and removing specific objects at certain
board positions.

BoardPanel(int rows, int cols) Constructs a board panel.

getRows() Returns the number of rows of the board.

getColumns() Returns the number of columns of the board.

isInside(int i, int j): boolean Checks whether the position (i, j) is inside or not.

clear() Clears the complete board.

clear(int i, int j) Clears the component at board position (i, j).

drawRectangle(int i, int j, Color
color, int density)

Draws a filled rectangle at board position (i, j) with a
given color and density/size.

drawOval(int i, int j, Color color,
int density)

Draws a filled oval at board position (i, j) with a given
color and density/size.

drawLine(int i, int j, Color color,
int dir, int density)

Draws an axis-aligned line at board position (i, j) with
a given color, direction, and density/size.

drawCross(int i, int j, Color color,
int[] dirs, int density)

Draws an axis-aligned cross at board position (i, j) with
a given color, array of directions, and density/size.

drawImage(int i, int j, Image
image, int density)

Draws a scaled version of a given image at board
position (i, j) with a given density/size.

repaint() Repaints the board panel

The class BoardFrame

The class BoardFrame provides a frame with a board panel. It inherits from the class
JFrame which is part of the package javax.swing. The following methods are available
in the class BoardFrame, which is very similar to the class GraphicsFrame:

BoardFrame(String title, int rows,
int cols, int size)

Constructs a board frame with a given title, and the
dimensions of the board.

start() Visualizes the frame.

close() Closes the frame.

setTitle(String title) Sets the title of the frame.

setMenuVisible(boolean visible) Indicates whether the menu bar is visible or not.

setGraphicsDimension(int width,
int height)

Sets the preferred dimension of the board panel.

getBoardPanel(): BoardPanel Gives the board panel of the frame.

Some simple dialog frames are also available:

showMessageDialog(String msg, String title) Shows a dialog with a given message.

showInputDialog(String msg, String init): String Shows a dialog requesting a string.

showInputDialogInt(String msg, int init): int Shows a dialog requesting an integer.

showInputDialogDouble(String msg, double init):
double

Shows a dialog requesting a floating
point.

Some useful methods for reading and writing images

readImage(File file): BufferedImage Reads an image from a file.

writeImage(File file, BufferedImage image) Writes an image to a file.

To change the actions of the menu bar, the following methods should be overridden:

clearBoard() Called by the menu File > New.

loadGraphicsFile(File file) Called by the menu File > Open.

saveGraphicsFile(File file) Called by the menu File > Save.

The class AnimationBoardFrame

The class AnimationBoardFrame is prepared for making animated 2D graphics. It is a
subclass of the class BoardFrame, and starts a new thread for each animation. The
following specific methods are available to run an animation:

playAnimation() Plays the animation when not currently active or
resumes the animation when paused. It has no effect if
the animation is already running.

pauseAnimation() Pauses the animation.

stopAnimation() Terminates the animation.

isAnimationEnabled(): boolean Indicates whether the animation is enabled or not.

isAnimationPaused(): boolean Indicates whether the animation is paused or not.

setAnimationDelay(long millis) Sets the delay time (in milliseconds) between each
animation step.

The class AnimationBoardFrame is an abstract class, and provides an animation
environment. It requires the implementation of the following abstract methods (similar to the
class AnimationGraphicsFrame):

animateInit() Initializes a new animation (is called before the start of
the animation).

animateNext() Executes the next step in the animation.

animateFinal() Finalizes the animation (is called after the end of the
animation).

These methods have to be implemented by a subclass and define the specific animation.

The class KeyAnimationBoardFrame

The class KeyAnimationBoardFrame is prepared for interacting with the keyboard. It is
a subclass of the class AnimationBoardFrame. The class is listening to key events, and
whenever a key is pressed the following abstract method is called:

processKey(KeyEvent e) Processes the given key event.

This method has to be implemented by a subclass and specifies the action that has to be
undertaken when a key is pressed. Information about the specific pressed key is passed by
means of an instance of the class KeyEvent.

The class KeyEvent is part of the package java.awt.event, and is designed for passing
key information. Each key has a specific key code, and can be retrieved by the method

getKeyCode(): int Returns the code associated with the key in this event.

The integer key codes are stored in static constants in the class KeyEvent. Some useful
examples are given by

VK_<C> Code of the key with the letter or number <C>. This
can be A-Z or 0-9

VK_UP, VK_DOWN, VK_LEFT,
VK_RIGHT

The codes of the arrow keys.

More info can be found on the webpage: https://docs.oracle.com/en/java/javase/22/docs/api/
java.desktop/java/awt/event/KeyEvent.html

https://docs.oracle.com/en/java/javase/22/docs/api/java.desktop/java/awt/event/KeyEvent.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.desktop/java/awt/event/KeyEvent.html

Minimal requirements

• The game consists of a pusher (steered by the player) and a specific warehouse
configuration with a certain number of crates to be stored (single game level).

• The implementation must allow to place the pusher, crates, storage locations and
walls/stones on the board at arbitrary places. The number of crates should be flexible.

• The pusher, crates and walls may have simple graphical shapes (rectangles, ovals,
lines, etc.). Use different shapes and/or colors to distinguish between the different
board objects.

• The implementation must be able to combine all the game steps played so far into an
animated video. It should be possible to interrupt the video and continue the game
from there on.

• A good Java program design.

Suggestions for further options

• The option to load a user-defined warehouse configuration from a file. For this
purpose, you can use the classes CoordinateIO and Coordinate (see the pre-
project for their description).

• A multi-player option where there are several pushers. Each of them are steered with a
different set of keys.

• The option to play with different puzzles (with different warehouse configurations,
crate positions, etc.). The puzzles could be organized according to level of difficulty,
and once a puzzle has been solved, the player(s) can move on to the next puzzle.

• Add new game elements to the basic puzzle. Examples include holes, teleports,
moving blocks, one-way passages, destructible walls.

• Instead of composing the board objects (the pusher, the crates, the walls, ...) of simple
graphical shapes (rectangles, ovals or lines) of different colors, they could also be
composed of more fancy images. This could be done with the aid of the pre-defined
methods readImage and drawImage provided by the classes BoardFrame and
BoardPanel, respectively. Their use is illustrated with the following example code:

BoardFrame frame = new BoardFrame("My Board Frame", 10, 10, 40);
BufferedImage image = frame.readImage(new File("MyImage.png"));
BoardPanel board = frame.getBoardPanel();
board.drawImage(1, 1, image);
frame.start();

• Surprise me...

Notes

• A good Java program is not just a program that produces “the right result”; it should
also be designed properly. In a good program design, every class (and method) should
be responsible for a single well-defined job.

• Do NOT modify any of the pre-defined classes BoardPanel, BoardFrame,
AnimationBoardFrame, KeyAnimationBoardFrame, CoordinateIO, and
Coordinate.

Practical Information
The deadline for the project is January 12, 2025. Your report of the project can be turned in
electronically by sending an email to speleers@mat.uniroma2.it. Such a report should include:

1. the source code of your program;
2. a class diagram of your program;
3. an overview of your program design decisions.

Good luck and have fun!

Hendrik Speleers

