Exercises Laboratorio di Calcolo: Practicing SciPy + SymPy

Exercise 1

Piecewise linear interpolation has approximation order $O(h^2)$ where *h* is the maximal distance between the interpolation sites. This means that the error between any smooth function and its interpolant (measured in any L_q -norm, $1 \le q \le \infty$) behaves asymptotically like $O(h^2)$. Check this behavior by approximating the function $\sin(x)$ on the interval [0, 10] and measuring the error in the inf-norm ($q = \infty$).

- 1. Compute a sequence of piecewise linear interpolants. Choose the interpolation sites uniformly over the interval [0, 10] such that the maximal distance $h = 10 / 2^L$, for L = 0, ..., 9. Use the built-in SciPy function interpolate.interpld.
- 2. Visualize the computed interpolants.
- 3. Compute the inf-norm of the error between sin(x) and all interpolants. This can be approximately done by taking a dense sampling of the error (say N = 1000 samples).
- 4. Visualize the convergence of the error in inf-norm, and show numerically that it behaves like $O(h^2)$. A semi-log plot is very useful here.

Exercise 2

A quadrature rule provides an approximation of the definite integral of a function, formulated as a weighted sum of function values at specified points within the domain of integration.

An *n*-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n - 1 or less by a suitable choice of the nodes x_i and weights w_i for i = 1, ..., n. The most common domain of integration for such a rule is [-1, 1], so

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i),$$

which is known as the Gauss-Legendre quadrature rule.

Compute numerically the integral of the polynomial $x^{11} + 3x^4$ on the interval $[0, \pi]$ in the following three ways:

- 1. Gauss-Legendre quadrature based on the nodes and weights provided by the built-in function np.polynomial.legendre.leggauss from the NumPy module polynomial.legendre;
- 2. Gauss-Legendre quadrature based on the nodes and weights provided by the built-in function special.roots_legendre from the SciPy module special;
- 3. Adaptive quadrature using the built-in function integrate.quad from the SciPy module integrate.

Then:

- 1. Compute the numerical error of the three quadrature implementations. The exact value of the integral is $\pi^{12}/12 + \pi^{5}3/5$.
- 2. Time the three quadrature implementations, and check which one is the fastest.

Remark: a change of variable is necessary in the Gauss-Legendre quadrature cases, to match the domain of integration!

Exercise 3

Consider the $n \ge n$ matrix T_n and the $n \ge 1$ vector b_n with the following structure:

	1	-3	-5	-7]	$b_n = \begin{bmatrix} n \\ n-1 \\ n-2 \end{bmatrix} .$
		1				$\left n-1\right $
	3	2				$b_n = n-2 $.
	4		2			$\begin{bmatrix} n-3\\ \vdots \end{bmatrix}$
	:	÷	÷	÷	·.	

Then, compute the solution x_n of the linear system

$$T_n x_n = b_n$$

in the following two ways:

- 1. Solve this system numerically using the SciPy module linalg.
- 2. Solve this system symbolically using the module sympy.

Compare the 2 solutions.