
Exercises Laboratorio di Calcolo:

Practicing SciPy + SymPy

Exercise 1

Piecewise linear interpolation has approximation order O(h2) where h is the maximal distance
between the interpolation sites. This means that the error between any smooth function and its
interpolant (measured in any Lq-norm, 1 ≤ q ≤ ∞) behaves asymptotically like O(h2). Check
this behavior by approximating the function sin(x) on the interval [0, 10] and measuring the
error in the inf-norm (q = ∞).

1. Compute a sequence of piecewise linear interpolants. Choose the interpolation sites
uniformly over the interval [0, 10] such that the maximal distance h = 10 / 2L, for L =
0, ..., 9. Use the built-in SciPy function interpolate.interp1d.

2. Visualize the computed interpolants.
3. Compute the inf-norm of the error between sin(x) and all interpolants. This can be

approximately done by taking a dense sampling of the error (say N = 1000 samples).
4. Visualize the convergence of the error in inf-norm, and show numerically that it

behaves like O(h2). A semi-log plot is very useful here.

Exercise 2

A quadrature rule provides an approximation of the definite integral of a function, formulated
as a weighted sum of function values at specified points within the domain of integration.

An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule
constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable
choice of the nodes xi and weights wi for i = 1, …, n. The most common domain of integration
for such a rule is [-1, 1], so

 ∫
−1

1

f (x)dx≈∑
i=1

n

wi f (xi) ,

which is known as the Gauss-Legendre quadrature rule.

Compute numerically the integral of the polynomial x11 + 3x4 on the interval [0, π] in the
following three ways:

1. Gauss-Legendre quadrature based on the nodes and weights provided by the built-in
function np.polynomial.legendre.leggauss from the NumPy module
polynomial.legendre;

2. Gauss-Legendre quadrature based on the nodes and weights provided by the built-in
function special.roots_legendre from the SciPy module special;

3. Adaptive quadrature using the built-in function integrate.quad from the SciPy
module integrate.

Then:

1. Compute the numerical error of the three quadrature implementations. The exact value
of the integral is π 12 /12 + π 5 3/5.

2. Time the three quadrature implementations, and check which one is the fastest.

Remark: a change of variable is necessary in the Gauss-Legendre quadrature cases, to match
the domain of integration!

Exercise 3

Consider the n x n matrix Tn and the n x 1 vector bn with the following structure:

 T n=[
1 −3 −5 −7 ⋯

2 1 −3 −5 ⋯

3 2 1 −3 ⋯

4 3 2 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

] , bn=[
n
n−1
n−2
n−3
⋮

] .

Then, compute the solution xn of the linear system

 Tn xn = bn

in the following two ways:

1. Solve this system numerically using the SciPy module linalg.
2. Solve this system symbolically using the module sympy.

Compare the 2 solutions.

