
Exercises Laboratorio di Calcolo:
 

Practicing SciPy + SymPy
 

Exercise 1

Piecewise linear interpolation has approximation order O(h2) where h is the maximal distance
between the interpolation sites. This means that the error between any smooth function and its
interpolant (measured in any Lq-norm, 1 ≤ q ≤ ∞) behaves asymptotically like O(h2).  Check
this behavior by approximating the function sin(x) on the interval [0, 10] and measuring the
error in the inf-norm (q = ∞). 

1. Compute a sequence of piecewise linear interpolants.  Choose the interpolation sites
uniformly over the interval [0, 10] such that the maximal distance h = 10 / 2L, for L =
0, ..., 9. Use the built-in SciPy function interpolate.interp1d. 

2. Visualize the computed interpolants.
3. Compute the  inf-norm of the  error between  sin(x)  and all interpolants.  This can be

approximately done by taking a dense sampling of the error (say N = 1000 samples).
4. Visualize  the  convergence  of  the  error  in  inf-norm,  and  show numerically  that  it

behaves like O(h2). A semi-log plot is very useful here.

Exercise 2

A quadrature rule provides an approximation of the definite integral of a function, formulated
as a weighted sum of function values at specified points within the domain of integration. 

An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule
constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable
choice of the nodes xi and weights wi for i = 1, …, n. The most common domain of integration
for such a rule is [-1, 1], so 

                                          ∫
−1

1

f (x )dx≈∑
i=1

n

wi f (xi) ,

which is known as the Gauss-Legendre quadrature rule.

Compute numerically the integral of the polynomial  x11  + 3x4 on the interval [0,  π]  in the
following three ways:

1. Gauss-Legendre quadrature based on the nodes and weights provided by the built-in
function  np.polynomial.legendre.leggauss from  the  NumPy  module
polynomial.legendre;

2. Gauss-Legendre quadrature based on the nodes and weights provided by the built-in
function special.roots_legendre from the SciPy module special;

3. Adaptive quadrature using the built-in function  integrate.quad from the SciPy
module integrate.



Then:

1. Compute the numerical error of the three quadrature implementations. The exact value
of the integral is π 12 /12 + π 5 3/5.

2. Time the three quadrature implementations, and check which one is the fastest.

Remark: a change of variable is necessary in the Gauss-Legendre quadrature cases, to match
the domain of integration! 

Exercise 3

Consider the n x n matrix Tn and the n x 1 vector bn with the following structure:

                  T n=[
1 −3 −5 −7 ⋯

2 1 −3 −5 ⋯

3 2 1 −3 ⋯

4 3 2 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

] ,         bn=[
n
n−1
n−2
n−3
⋮

] .            

Then, compute the solution xn of the linear system

                                               Tn xn = bn

in the following two ways:

1. Solve this system numerically using the SciPy module linalg.
2. Solve this system symbolically using the module sympy.

Compare the 2 solutions.


