Papers with Peer Review
- N. Lamsahel, C. Manni, A. Ratnani, S. Serra-Capizzano, and H. Speleers.
Outlier-free isogeometric discretizations for Laplace eigenvalue problems: Closed-form eigenvalue and eigenvector expressions.
Numerische Mathematik, in press.
- S. Eddargani, C. Manni, and H. Speleers.
Quadrature rules for splines of high smoothness on uniformly refined triangles.
Mathematics of Computation, in press.
- T. Lyche, J-L. Merrien, and H. Speleers.
A C1 simplex-spline basis for the Alfeld split in ℝs.
Computer Aided Geometric Design 117, art. 102412, pp. 1–16, 2025.
- G. Barbarino, M. Claesson, S-E. Ekström, C. Garoni, D. Meadon, and H. Speleers.
Matrix-less spectral approximation for large structured matrices.
BIT Numerical Mathematics 65, art. 2, pp. 1–35, 2025.
- C. Garoni, C. Manni, F. Pelosi, and H. Speleers.
Study and use of spectral symbol properties for isogeometric matrices on trimmed geometries.
Numerical Linear Algebra with Applications 32(1), art. e2601, pp. 1–15, 2025.
- T. Lyche, C. Manni, and H. Speleers.
A parsimonious approach to C2 cubic splines on arbitrary triangulations: Reduced macro-elements on the cubic Wang-Shi split.
In: M. Lanini et al. (eds.) Approximation Theory and Numerical Analysis Meet Algebra, Geometry, Topology,
Springer INdAM Series 60, pp. 265–287, 2024.
- J. Grošelj and H. Speleers.
Using geometric symmetries to achieve super-smoothness for cubic Powell-Sabin splines.
In: M. Lanini et al. (eds.) Approximation Theory and Numerical Analysis Meet Algebra, Geometry, Topology,
Springer INdAM Series 60, pp. 205–229, 2024.
- S. Eddargani, T. Lyche, C. Manni, and H. Speleers.
Quadrature rules for C1 quadratic spline finite elements on the Powell-Sabin 12-split.
Computer Methods in Applied Mechanics and Engineering 430, art. 117196, pp. 1–32, 2024.
- K. Raval, C. Manni, and H. Speleers.
Adaptive isogeometric analysis based on locally refined Tchebycheffian B-splines.
Computer Methods in Applied Mechanics and Engineering 430, art. 117186, pp. 1–27, 2024.
- M. Marsala, C. Manni, and H. Speleers.
Maximally smooth cubic spline quasi-interpolants on arbitrary triangulations.
Computer Aided Geometric Design 112, art. 102348, pp. 1–22, 2024.
- T. Lyche, C. Manni, and H. Speleers.
A local simplex spline basis for C3 quartic splines on arbitrary triangulations.
Applied Mathematics and Computation 462, art. 128330, pp. 1–27, 2024.
- C. Manni, E. Sande, and H. Speleers.
Outlier-free spline spaces for isogeometric discretizations of biharmonic and polyharmonic eigenvalue problems.
Computer Methods in Applied Mechanics and Engineering 417(B), art. 116314, pp. 1–33, 2023.
- M. Donatelli, C. Manni, M. Mazza, and H. Speleers.
Spectral analysis of matrices in B-spline Galerkin methods for Riesz fractional equations.
In: A. Cardone et al. (eds.) Fractional Differential Equations,
Springer INdAM Series 50, pp. 53–73, 2023.
- J. Grošelj and H. Speleers.
Extraction and application of super-smooth cubic B-splines over triangulations.
Computer Aided Geometric Design 103, art. 102194, pp. 1–15, 2023.
- K. Raval, C. Manni, and H. Speleers.
Tchebycheffian B-splines in isogeometric Galerkin methods.
Computer Methods in Applied Mechanics and Engineering 403(A), art. 115648, pp. 1–31, 2023.
- M. Mazza, M. Donatelli, C. Manni, and H. Speleers.
On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties.
Numerical Linear Algebra with Applications 30(1), art. e2462, pp. 1–23, 2023.
- C. Garoni, C. Manni, F. Pelosi, and H. Speleers.
Spectral analysis of matrices resulting from isogeometric immersed methods and trimmed geometries.
Computer Methods in Applied Mechanics and Engineering 400, art. 115551, pp. 1–30, 2022.
- T. Lyche, C. Manni, and H. Speleers.
Construction of C2 cubic splines on arbitrary triangulations.
Foundations of Computational Mathematics 22(5), pp. 1309–1350, 2022.
- D. Fakhoury, E. Fakhoury, and H. Speleers.
ExSpliNet: An interpretable and expressive spline-based neural network.
Neural Networks 152, pp. 332–346, 2022.
- C. Hofreither, L. Mitter, and H. Speleers.
Local multigrid solvers for adaptive isogeometric analysis in hierarchical spline spaces.
IMA Journal of Numerical Analysis 42(3), pp. 2429–2458, 2022.
- E. Sande, C. Manni, and H. Speleers.
Ritz-type projectors with boundary interpolation properties and explicit spline error estimates.
Numerische Mathematik 151(2), pp. 475–494, 2022.
- H. Speleers.
Algorithm 1020: Computation of multi-degree Tchebycheffian B-splines.
ACM Transactions on Mathematical Software 48(1), art. 12, pp. 1–31, 2022.
[Matlab toolbox]
- C. Manni, E. Sande, and H. Speleers.
Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations.
Computer Methods in Applied Mechanics and Engineering 389, art. 114260, pp. 1–38, 2022.
- M.L. Cardinali, C. Garoni, C. Manni, and H. Speleers.
Isogeometric discretizations with generalized B-splines: Symbol-based spectral analysis.
Applied Numerical Mathematics 166, pp. 288–312, 2021.
- J. Grošelj and H. Speleers.
Super-smooth cubic Powell-Sabin splines on three-directional triangulations: B-spline representation and subdivision.
Journal of Computational and Applied Mathematics 386, art. 113245, pp. 1–23, 2021.
- M.S. Floater, C. Manni, E. Sande, and H. Speleers.
Best low-rank approximations and Kolmogorov n-widths.
SIAM Journal on Matrix Analysis and Applications 42(1), pp. 330–350, 2021.
- H. Speleers and D. Toshniwal.
A general class of C1 smooth rational splines: Application to construction of exact ellipses and ellipsoids.
Computer-Aided Design 132, art. 102982, pp. 1–14, 2021.
- C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
NURBS in isogeometric discretization methods: A spectral analysis.
Numerical Linear Algebra with Applications 27(6), art. e2318, pp. 1–34, 2020.
- M. Mazza, C. Manni, and H. Speleers.
Spectral analysis of isogeometric discretizations of 2D curl-div problems with general geometry.
In: S.J. Sherwin et al. (eds.) Spectral and High Order Methods for Partial Differential Equations: ICOSAHOM 2018,
Lecture Notes in Computational Science and Engineering 134, 251–262, 2020.
- F. Patrizi, C. Manni, F. Pelosi, and H. Speleers.
Adaptive refinement with locally linearly independent LR B-splines: Theory and applications.
Computer Methods in Applied Mechanics and Engineering 369, art. 113230, pp. 1–20, 2020.
- R.R. Hiemstra, T.J.R. Hughes, C. Manni, H. Speleers, and D. Toshniwal.
A Tchebycheffian extension of multidegree B-splines: Algorithmic computation and properties.
SIAM Journal on Numerical Analysis 58(2), pp. 1138–1163, 2020.
- E. Sande, C. Manni, and H. Speleers.
Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis.
Numerische Mathematik 144(4), pp. 889–929, 2020.
- D. Toshniwal, H. Speleers, R.R. Hiemstra, C. Manni, and T.J.R. Hughes.
Multi-degree B-splines: Algorithmic computation and properties.
Computer Aided Geometric Design 76, art. 101792, pp. 1–16, 2020.
- H. Speleers.
Algorithm 999: Computation of multi-degree B-splines.
ACM Transactions on Mathematical Software 45(4), art. 43, pp. 1–15, 2019.
[Matlab toolbox]
- C. Garoni, H. Speleers, S-E. Ekström, A. Reali, S. Serra-Capizzano, and T.J.R. Hughes.
Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: Exposition and review.
Archives of Computational Methods in Engineering 26(5), pp. 1639–1690, 2019.
- T. Lyche, C. Manni, and H. Speleers.
Tchebycheffian B-splines revisited: An introductory exposition.
In: C. Giannelli and H. Speleers (eds.) Advanced Methods for Geometric Modeling and Numerical Simulation,
Springer INdAM Series 35, pp. 179–216, 2019.
- E. Sande, C. Manni, and H. Speleers.
Sharp error estimates for spline approximation: Explicit constants, n-widths, and eigenfunction convergence.
Mathematical Models and Methods in Applied Sciences 29(6), pp. 1175–1205, 2019.
- C. Giannelli, T. Kanduč, F. Pelosi, and H. Speleers.
An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines.
Journal of Computational and Applied Mathematics 349, pp. 410–423, 2019.
- C. Bracco, T. Lyche, C. Manni, and H. Speleers.
Tchebycheffian spline spaces over planar T-meshes: Dimension bounds and dimension instabilities.
Journal of Computational and Applied Mathematics 349, pp. 265–278, 2019.
- M. Mazza, C. Manni, A. Ratnani, S. Serra-Capizzano, and H. Speleers.
Isogeometric analysis for 2D and 3D curl-div problems: Spectral symbols and fast iterative solvers.
Computer Methods in Applied Mechanics and Engineering 344, pp. 970–997, 2019.
- C. Manni and H. Speleers.
Dimension of Tchebycheffian spline spaces over planar T-meshes: The conformality method.
Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino 76(2), pp. 135–145, 2018.
- J. Grošelj and H. Speleers.
Three recipes for quasi-interpolation with cubic Powell-Sabin splines.
Computer Aided Geometric Design 67, pp. 47–70, 2018.
- X. Wei, Y.J. Zhang, D. Toshniwal, H. Speleers, X. Li, C. Manni, J.A. Evans, and T.J.R. Hughes.
Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering 341, pp. 609–639, 2018.
- S-E. Ekström, I. Furci, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Are the eigenvalues of the B-spline isogeometric analysis approximation of -Δu=λu known in almost closed form?
Numerical Linear Algebra with Applications 25(5), art. e2198, pp. 1–34, 2018.
- D. Toshniwal, H. Speleers, and T.J.R. Hughes.
Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations.
Computer Methods in Applied Mechanics and Engineering 327, pp. 411–458, 2017.
- J. Grošelj and H. Speleers.
Construction and analysis of cubic Powell-Sabin B-splines.
Computer Aided Geometric Design 57, pp. 1–22, 2017.
- C. Manni, F. Roman, and H. Speleers.
Generalized B-splines in isogeometric analysis.
In: G.E. Fasshauer and L.L. Schumaker (eds.) Approximation Theory XV: San Antonio 2016,
Springer Proceedings in Mathematics & Statistics 201, pp. 239–267, 2017.
- F. Roman, C. Manni, and H. Speleers.
Numerical approximation of GB-splines by a convolutional approach.
Applied Numerical Mathematics 116, pp. 273–285, 2017.
- C. Garoni, C. Manni, S. Serra-Capizzano, D. Sesana, and H. Speleers.
Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods.
Mathematics of Computation 86(305), pp. 1343–1373, 2017.
- H. Speleers.
Hierarchical spline spaces: Quasi-interpolants and local approximation estimates.
Advances in Computational Mathematics 43(2), pp. 235–255, 2017.
- D. Toshniwal, H. Speleers, R.R. Hiemstra, and T.J.R. Hughes.
Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering 316, pp. 1005–1061, 2017.
- T. Kanduč, C. Giannelli, F. Pelosi, and H. Speleers.
Adaptive isogeometric analysis with hierarchical box splines.
Computer Methods in Applied Mechanics and Engineering 316, pp. 817–838, 2017.
- C. Garoni, C. Manni, S. Serra-Capizzano, D. Sesana, and H. Speleers.
Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices.
Journal of Mathematical Analysis and Applications 446(1), pp. 365–382, 2017.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis.
SIAM Journal on Numerical Analysis 55(1), pp. 31–62, 2017.
- F. Roman, C. Manni, and H. Speleers.
Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness.
Numerische Mathematik 135(1), pp. 169–216, 2017.
- F. Pelosi, C. Giannelli, C. Manni, M.L. Sampoli, and H. Speleers.
Splines over regular triangulations in numerical simulation.
Computer-Aided Design 82, pp. 100–111, 2017.
- C. Bracco, T. Lyche, C. Manni, F. Roman, and H. Speleers.
On the dimension of Tchebycheffian spline spaces over planar T-meshes.
Computer Aided Geometric Design 45, pp. 151–173, 2016.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Spectral analysis and spectral symbol of matrices in isogeometric collocation methods.
Mathematics of Computation 85(300), pp. 1639–1680, 2016.
- H. Speleers and C. Manni.
Effortless quasi-interpolation in hierarchical spaces.
Numerische Mathematik 132(1), pp. 155–184, 2016.
- C. Bracco, T. Lyche, C. Manni, F. Roman, and H. Speleers.
Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines.
Applied Mathematics and Computation 272(1), pp. 187–198, 2016.
- H. Speleers and C. Manni.
Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines.
Journal of Computational and Applied Mathematics 289, pp. 68–86, 2015.
- C. Manni, A. Reali, and H. Speleers.
Isogeometric collocation methods with generalized B-splines.
Computers & Mathematics with Applications 70(7), pp. 1659–1675, 2015.
- D. Lettieri, C. Manni, F. Pelosi, and H. Speleers.
Shape preserving HC2 interpolatory subdivision.
BIT Numerical Mathematics 55, pp. 751–779, 2015.
- H. Speleers.
A new B-spline representation for cubic splines over Powell-Sabin triangulations.
Computer Aided Geometric Design 37, pp. 42–56, 2015.
- L. Beirão da Veiga, T.J.R. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali, and H. Speleers.
A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS.
Mathematical Models and Methods in Applied Sciences 25(8), pp. 1519–1551, 2015.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Two-grid optimality for Galerkin linear systems based on B-splines.
Computing and Visualization in Science 17(3), pp. 119–133, 2015.
- H. Speleers.
Inner products of box splines and their derivatives.
BIT Numerical Mathematics 55(2), pp. 559–567, 2015.
- H. Speleers.
A family of smooth quasi-interpolants defined over Powell-Sabin triangulations.
Constructive Approximation 41(2), pp. 297–324, 2015.
- C. Manni, F. Mazzia, A. Sestini, and H. Speleers.
BS2 methods for semi-linear second order boundary value problems.
Applied Mathematics and Computation 255, pp. 147–156, 2015.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Robust and optimal multi-iterative techniques for IgA collocation linear systems.
Computer Methods in Applied Mechanics and Engineering 284, pp. 1120–1146, 2015.
- M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers.
Robust and optimal multi-iterative techniques for IgA Galerkin linear systems.
Computer Methods in Applied Mechanics and Engineering 284, pp. 230–264, 2015.
- D. Lettieri, C. Manni, and H. Speleers.
Piecewise rational quintic shape-preserving interpolation with high smoothness.
Jaen Journal on Approximation 6(2), pp. 233–260, 2014.
- C. Garoni, C. Manni, F. Pelosi, S. Serra-Capizzano, and H. Speleers.
On the spectrum of stiffness matrices arising from isogeometric analysis.
Numerische Mathematik 127(4), pp. 751–799, 2014.
- C. Manni, F. Pelosi, and H. Speleers.
Local hierarchical h-refinements in IgA based on generalized B-splines.
In: M.S. Floater et al. (eds.) Mathematical Methods for Curves and Surfaces,
Lecture Notes in Computer Science 8177, pp. 341–363, 2014.
- C. Giannelli, B. Jüttler, and H. Speleers.
Strongly stable bases for adaptively refined multilevel spline spaces.
Advances in Computational Mathematics 40(2), pp. 459–490, 2014.
- L.L. Schumaker and H. Speleers.
Convexity preserving C0 splines.
Advances in Computational Mathematics 40(1), pp. 117–135, 2014.
- H. Speleers, C. Manni, and F. Pelosi.
From NURBS to NURPS geometries.
Computer Methods in Applied Mechanics and Engineering 255, pp. 238–254, 2013.
- H. Speleers.
Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations.
Constructive Approximation 37(1), pp. 41–72, 2013.
- H. Speleers.
Multivariate normalized Powell-Sabin B-splines and quasi-interpolants.
Computer Aided Geometric Design 30(1), pp. 2–19, 2013.
- C. Giannelli, B. Jüttler, and H. Speleers.
THB-splines: The truncated basis for hierarchical splines.
Computer Aided Geometric Design 29(7), pp. 485–498, 2012.
- H. Speleers.
Interpolation with quintic Powell-Sabin splines.
Applied Numerical Mathematics 62(5), pp. 620–635, 2012.
- H. Speleers, C. Manni, F. Pelosi, and M.L. Sampoli.
Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems.
Computer Methods in Applied Mechanics and Engineering 221–222, pp. 132–148, 2012.
- H. Speleers.
On multivariate polynomials in Bernstein-Bézier form and tensor algebra.
Journal of Computational and Applied Mathematics 236(4), pp. 589–599, 2011.
- L.L. Schumaker and H. Speleers.
Convexity preserving splines over triangulations.
Computer Aided Geometric Design 28(4), pp. 270–284, 2011.
- H. Speleers.
A normalized basis for reduced Clough-Tocher splines.
Computer Aided Geometric Design 27(9), pp. 700–712, 2010.
- H. Speleers.
A normalized basis for quintic Powell-Sabin splines.
Computer Aided Geometric Design 27(6), pp. 438–457, 2010.
- L.L. Schumaker and H. Speleers.
Nonnegativity preserving macro-element interpolation of scattered data.
Computer Aided Geometric Design 27(3), pp. 245–261, 2010.
- H. Speleers, P. Dierckx, and S. Vandewalle.
On the local approximation power of quasi-hierarchical Powell-Sabin splines.
In: M. Dæhlen et al. (eds.) Mathematical Methods for Curves and Surfaces,
Lecture Notes in Computer Science 5862, pp. 419–433, 2010.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Quasi-hierarchical Powell-Sabin B-splines.
Computer Aided Geometric Design 26(2), pp. 174–191, 2009.
- H. Speleers, P. Dierckx, and S. Vandewalle.
On the Lp-stability of quasi-hierarchical Powell-Sabin B-splines.
In: M. Neamtu and L.L. Schumaker (eds.) Approximation Theory XII,
Nashboro Press, pp. 398–413, 2008.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Multigrid methods with Powell-Sabin splines.
IMA Journal of Numerical Analysis 28(4), pp. 888–908, 2008.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Powell-Sabin splines with boundary conditions for polygonal and non-polygonal domains.
Journal of Computational and Applied Mathematics 206(1), pp. 55–72, 2007.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Weight control for modelling with NURPS surfaces.
Computer Aided Geometric Design 24(3), pp. 179–186, 2007.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Local subdivision of Powell-Sabin splines.
Computer Aided Geometric Design 23(5), pp. 446–462, 2006.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Numerical solution of partial differential equations with Powell-Sabin splines.
Journal of Computational and Applied Mathematics 189(1–2), pp. 643–659, 2006.
Book Chapters
- T. Lyche, C. Manni, and H. Speleers.
Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement.
In: T. Lyche, C. Manni, and H. Speleers (eds.) Splines and PDEs: From Approximation Theory to Numerical Linear Algebra,
Lecture Notes in Mathematics 2219, Springer Cham, pp. 1–76, 2018.
- C. Manni and H. Speleers.
Standard and non-standard CAGD tools for isogeometric analysis: A tutorial.
In: A. Buffa and G. Sangalli (eds.) IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs,
Lecture Notes in Mathematics 2161, Springer Cham, pp. 1–69, 2016.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Computer aided geometric design with Powell-Sabin splines.
In: J.S. Wright and L.M. Hughes (eds.) Computer Animation,
Nova Science Publishers, pp. 177–208, 2011.
- H. Speleers, P. Dierckx, and S. Vandewalle.
Computer aided geometric design with Powell-Sabin splines.
In: C.M. De Smet and J.A. Peeters (eds.) Computer-Aided Design and Other Computing Research Developments,
Nova Science Publishers, pp. 319–350, 2009.
Books
- C. Manni and H. Speleers (eds.).
Geometric Challenges in Isogeometric Analysis.
Springer INdAM Series 49, Springer Cham, 2022.
- C. Giannelli and H. Speleers (eds.).
Advanced Methods for Geometric Modeling and Numerical Simulation.
Springer INdAM Series 35, Springer Cham, 2019.
- T. Lyche, C. Manni, and H. Speleers (eds.).
Splines and PDEs: From Approximation Theory to Numerical Linear Algebra.
Lecture Notes in Mathematics 2219, Springer Cham, 2018.
Other Publications
- H. Speleers.
Construction, analysis and application of Powell-Sabin spline finite elements.
Ph.D. Thesis, Dept. of Computer Science, University of Leuven, 2008.
- H. Speleers.
Numerical simulation using Powell-Sabin splines.
M.Sc. Thesis, Dept. of Computer Science, University of Leuven, 2004. (in Dutch)
This page is maintained by Hendrik Speleers
URL: https://www.mat.uniroma2.it/~speleers/research/publications.html