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» how to beat “the curse of dimensionality”.



The promises

» High-dimensional integration by
» Quasi-Monte Carlo (QMC) methods and

» how to beat “the curse of dimensionality”.

But, when can you beat the curse?



The promises

» High-dimensional integration by
» Quasi-Monte Carlo (QMC) methods and

» how to beat “the curse of dimensionality”.

But, when can you beat the curse?

Show me the fine print...



The promises

» High-dimensional integration by
» Quasi-Monte Carlo (QMC) methods and

» how to beat “the curse of dimensionality”.

But, when can you beat the curse?

Show me the fine print...

In three lectures
1. Introduction to high-dimensional integration
2. Weighted function spaces and tractability
3. Advanced topics



Topics

Topics:
» Weighted Sobolev spaces of mixed smoothness
> Periodic setting: Lattice rules
» Non-periodic setting: Interlaced polynomial lattice rules
» Dimension-independent bounds (tractability)

| will try to divide the material in
> IIeaSyII’
> "intermediate" and

> "expert" levels.



Lecture 1:
Introduction to high-dimensional integration



The plan for today

» A light introduction to “lattice points” & “lattice rules”.
» Usage for numerical integration of “periodic” functions.
» Analysis of the error.

» Some words on function spaces and the worst-case error.

» Some Julia code to demonstrate things. ..
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1. One-dimensional integrals
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One-dimensional integrals

Suppose you want to integrate

2
/ exp(—x° + x) dx.
0

What do you do?
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Suppose you want to integrate

2
/ exp(—x° + x) dx.
0

What do you do? No closed form. ..
Quadratures:
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> Trapezoid rule
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One-dimensional integrals

Suppose you want to integrate

2
/ exp(—x° + x) dx.
0

What do you do? No closed form. ..
Quadratures:

» Gaussian quadrature

» Newton—Cotes

» Simpson rule

> Trapezoid rule

L

Automatic integration? (E.g. quadpack.)
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Excursion in Julia

Let's try some experiment.

| will do quite specific things.

They will generalise to high dimensions later.

(The code on the slides is for reference. | try to be complete, but |
will be executing it live.)

f =x -> exp(-x"5 + x)
domain = (0, 2)

true_value = 1.5596783055678136 # up to double precision
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Our client over [0, 2]

!— f lf
b / \
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Mapping to [0, 1]

# Map point x in [0, 1] to given range [a, b], assuming a < b.
map_range(a, b) = x -> x *x (b - a) + a
vol_range(a, b) = prod(b .- a)

# Convenience functions:
map_range (ab) = map_range(ab[1], ab[2])
vol_range(ab) = vol_range(ab[1], ab[2])

10
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Some easy quadrature rules: rect and midp
n = 10

# Leftrectangle rule
xs = map_range(domain).((0:n-1)/n)
sum(f.(xs)) / n * vol_range(domain)

# Midpoint rule
xs = map_range(domain).((0:n-1)/n .+ 1/(2*n))
sum(f. (xs)) / n * vol_range(domain)

# as functions (o needs to be \circ for function composition):
leftrectangle_rule(f, domain, n) =
sum(f o map_range(domain),
(0:n-1)/n) / n * vol_range(domain)
midpoint_rule(f, domain, n) =
sum(f o map_range(domain),
(0:n-1)/n .+ 1/(2*%n)) / n * vol_range(domain)

11
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Convergence as expected. . .
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What about trapezoid rule?

13
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What about trapezoid rule?

Glad you asked!

» Trapezoid should also give n=2 convergence.

» Advantage of trapezoid over midpoint?
You can keep on doubling the number of points. ..

> Very important: left rectangle and trapezoid rules are like
taking simple averages: the weights change in an obvious way if
you double the number of points!

Trick: tent-transform. Lebesgue preserving.

tent(x) =1 .- abs.(1 .- 2%x)

13
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Convergence as expected. . .
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Tent transform
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d++ LR
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Tent transform

The trapezoid rule can be obtained by using the tent-transform:
sum(f o map_range(domain) o tent,

(0:n-1)/n) / n * vol_range(domain)

We will use this in higher dimensions as well. ..

16
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What do you remember about error bounds?

17



Tabel 8.2: Samengestelde kwadratuurformules van graad n met m deelintervallen

{(b—a)/m voor n =0, {m voor n =0,
h= N =
(b—a)/(nm) voorn >1, nm+1 voorn >1,
z;=a+1ih, i=0,...,N—1 (vitz: x} = a+ih+ h/2 voor Q5 .,)
graad regel Qnm grens voor |Ry, |
N1 1 b—a)®
n=0 Qualf)=h Y fla+in) Boml < 3 1710 52
=0
No1 1 b— a)
Qoulf)=h Y fla+ih+h/2) Byl < o 1 O
=0
a + f -« 1 b
21 Q) A0S iy ) < 17 0 -4
_ _, fla)+£(b) 1wy (b—a)®
n=2 QZ,m(f) =h 3 ) |R2,m| < 180 ”f ”00 (N _ 1)4
+ho > 3 fla+ih)

i=1,3,...,N—2

+h Y %f(a+ih)

i=2,4,..,N—3
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What do you remember about error bounds?

We have indeed that
» Left rectangle rule is n=! for “smoothness 1".
» Midpoint rule is =2 for “smoothness 2".
» Trapezoid is n=2 for “smoothness 2".

Smoothness is in terms of derivatives: Sobolev spaces.

But: for periodic functions the trapezoidal rule can give n=% for
a > 2 and even exponential convergence... Why is that? Next...

N.B. for a periodic function f(0) = f(1) and the left rectangle rule is
identical to the trapezoidal rule.

Also for non-periodic functions a transformed trapezoidal rule can
give higher order convergence: Clenshaw—Curtis rules. . .

19
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“Periodic” functions over T ~ [0, 1)

Suppose

f(x) = f(h) exp(2ri hx)

heZ
with

1
f(h) = /0 f(x) exp(—2mi hx) dx

and absolutely summable Fourier coefficients

Z|f )| < 0.

hez

/f = £(0).

We have

20
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Quadrature error for periodic function

We have for the trapezoidal rule (or left rectangle rule):

QI(f) —I(f) = ka/n /f

kGZn

=~ 3 f(k/m) ~ 7(0)

k€Zn

= Z f(h) [% Z exp(2ri hk/n)]

0#£heZ kE€Zn

= > f(h).

04heZ
h=0 (mod n)

Only Fourier frequencies that are multiples of n contribute to error.

21
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Quadrature error bound for periodic function
Thus, for a > 1/2,

QI -1AI=] > )
0+£heZ
h=0 (mod n)

2\ |2mh|®
= F(h
‘ Z (h) |27 h|>
0#heZ
h=0 (mod n)

< (X EmPRen) (S e )

0#heZ 0#h€eZ
h=0 (mod n)

2¢(2a)
— [|f(a)y, VAT
”f HLZ (271'!7)0‘ :
So if f(7) is periodic, i.e., f()(0) = f(1)(1), for 7 =0,...,a — 1

and (@) ¢ L,, then we have convergence n=¢.
22
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2. Higher dimensions

d++
i

LR
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Discussion: what about higher dimensions?
Do you think the following integral is hard?
d

/[0 2 [ exp(—x +x) dx
) J:]-

This is just the tensor product of our previous function.

24
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Do you think the following integral is hard?
d

/[0 2 [ exp(—x +x) dx
) J:]-

This is just the tensor product of our previous function.
Assume black box, otherwise yes, just do Hflzl f02 exp(—x7 + x;) dx;.

24
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Discussion: what about higher dimensions?
Do you think the following integral is hard?
d

/[0 2 [ exp(—x +x) dx
) J:]-

This is just the tensor product of our previous function.

: ) 2
Assume black box, otherwise yes, just do Hflzl Jo exp(—=x? + x;) dx;.
» The volume is 29. The absolute error will scale with the volume.

» The difference between larger than 1 and smaller than 1 values

from the one-dimensional function will blow up exponentially for
the d-dimensional function.

» Looks like an innocent product, but, even,

Moo= Y (II)(Ix)= X I

j=1 uC{l,....d} j&u jEU uC{1,....d} jeu

and exp(xj) = 1+ xj — xj2/2 +---. (Remember this 1 formula.)

24
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How to generalise quadrature formulae to higher dimensions?
Aim:
» Uncomplicated.
» No “curse by construction”.

» Optimal convergence.
» Possibility for dimension-independent bounds.

What about product rules?

ng
§ 1 E d 1 d
Wkl"' Wkdf(xkl""7xkd)

k=1 kg=1

E.g. take product of nj = 10 point rule in d = 10 dimensions.
How many points is that?

25
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How to generalise quadrature formulae to higher dimensions?
Aim:
» Uncomplicated.
» No “curse by construction”.

» Optimal convergence.
» Possibility for dimension-independent bounds.

What about product rules?

ng
§ 1 E d 1 d
Wkl"' Wkdf(xkl""7xkd)

k=1 kg=1

E.g. take product of nj = 10 point rule in d = 10 dimensions.
How many points is that? What about d = 1007

25
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How to generalise quadrature formulae to higher dimensions?
Aim:
» Uncomplicated.
» No “curse by construction”.
» Optimal convergence.
» Possibility for dimension-independent bounds.

What about product rules?

ng
§ 1 E d 1 d
Wkl"' Wkdf(xkl""7xkd)

k=1 kg=1

E.g. take product of nj = 10 point rule in d = 10 dimensions.

How many points is that? What about d = 1007

Ok we could have decreasing nj, but then something like

N1 = np = m3 = --- = 1 must happen.  Good intuition though.

So the question is: how high dimensional?
25
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Higher dimension generalisations

d++ LR

So all depends on how high dimensional.

» Sparse grid and Smolyak constructions: but still scales like
n (log n)4=1 points.

» Monte Carlo sampling: but only n=1/2 convergence.
» Quasi-Monte Carlo sampling.

We are going for something that works for really high dimensions.
(Yes | mean Monte Carlo and quasi-Monte Carlo.)

27
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3. Lattice rules
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Lattice rule = equal weight using lattice points

For f € H,, approximate the d-dimensional integral

by an n-point lattice rule with generating vector z € Z¢

Qn(f) == % S f(ka:d”>

k€Znp

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn )

edet(Qn’fHa) = sup |I(f)— Qn(f)|.

29
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Lattice rule = equal weight using lattice points

For f € H,, approximate the d-dimensional integral

by an n-point lattice rule with generating vector z € Z¢

Qn(f) = % S f(Zk”;Od”>

k€Znp

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn )

edet(Qn’fHa) = sup |I(f)— Qn(f)|.

29
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Lattice rule = equal weight using lattice points

For f € H,, approximate the d-dimensional integral

by an n-point lattice rule with generating vector z € Z¢
1 zk mod n
sz(f) = ; Z f(n>
kEZn

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup |/(f) - Q”(f)l
feHa
flla<1

~+ For good lattice rule Q, , converges like n=¢||f]|,. Optimal

(Bakhvalov '59): matching upper and lower bounds (modulo logs).
29
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Julia — Simple lattice rule example

Given n and z € ZJ:

kz mod n 1
= Qna(f) = > f(xi).
k€Zn

lattice_points(z, n) = ( ( (k * 2z) .%n) ./ n for k in O0:n-1 )

# example function
f=r ->x -> abs(sum(exp. (2*%pi*im*x))) r

z = [1, 55]; n = 89 # Fibonacci lattice rule
mean(x -> f(1, x), lattice_points(z, n))

30
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Old

d++ LR
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slide: Matlab & Python

0x01 Intro 0x02 Rule 0x03 Curse 0x04 Space 0x05 Poly 0x06 Maglc 0x07 QMC4PDE 0x08 End
000000 oce 0000 00000 00 0o o

Lattice rule

One-liners in Matlab/Octave, Python,

So assume you are given a “good"” z for your choice of N, then

27i x;

N-1
Qn(fiz,N)= L Z f(Zk mod N), and take eg f(x) =
=

(Example I(f) is expected distance of rth moment of distance travelled by d-step random walk in the plane, see,
Borwein, N., Straub, Wan (2011).)

z = [1; 55]; N =89; % points as [d x N] (Fortran), dim=1,2

f = @(r, x) abs( sum( exp(2*pixli*xx), 1) ).”r;

% one-liner:

Q = mean( f(1, mod(z*(0:N-1), N)/N ) )

from numpy import *; # using Numpy

z = [1, 55]; N = 89; # points as [N x d] (C), axis=0,1
f = lambda r, x: abs( sum( exp(2*pi*1j¥x), axis=1) )s*r
# one-liner:

Q = mean( f(1, (outer(range(N), z) % N)/float(N) ) )

Quasi-Monte Carlo Sampling Algorithms Dirk Nuyens (NUMA, KU Leuven) 9/26

31
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Deterministic vs randomized lattice rules
Deterministic worst-case error for f € H,, for a given algorithm Q,:
e®(Qn Ha) == sup [I(f) — Qu(F)].

feHa
[flla<1

~+ For good lattice rule Q, , converges like n=“ ||f]|,. Optimal
(Bakhvalov '59): matching upper and lower bounds (modulo logs).

For a random family of deterministic rules Q := {Q%}.:

Randomized error or worst-case expected error for f € H:

e®(Qp, Ha) == sup E,[[I(f) — Q7 ()]

~~ Possible to get n=*~ /2 |/f||,. (Optimal. Bakhvalov.)
(For lattice rules: randomize number of points.
Kritzer, Kuo, Nuyens, M. Ullrich (2019), ...)
32
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Error estimation by randomization

Easy way to randomize a lattice rule is by a random shift.
Given a shift A € [0,1)9 the kth shifted point becomes

xk(A) = (@ —i—A) mod 1
<E+A) mod 1 = {kTZ—l-A}.

A shifted lattice rule:

Qnz(f; ) Z f(xi(A

kGZn

If you take M shifts i.i.d. U([0,1)9) then you have M independent
observations {Q, ,(f; &)}V,
= Calculate mean and standard error. (Construct Cl.)

33



d=1 d++ LR
(IR RRRNRRRNNEN N (ERERT ERNRRNRNR

Lattice sequences
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Normally in base 2.
Can use the van der Corput sequence for enumerating.
Or if only interested in totals of 2™: evaluate the next odd indices.

34
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“Monte Carlo type” methods: £ 377 | f(xy)
What kind of cubature/quadrature method to use for d large?

» A product of classical quadrature rules? (Product of weights!)
— n=m? = The curse “by construction”!

» The plain Monte Carlo method: xj ~ U[0,1)7.
— Free to choose n.

» Quasi-Monte Carlo methods: using some algebraic structure.
— Free to choose n.

grid MC QMC

————— e
l o o0 00 oo Fo°.e M
b o o000 oo gt ° we 3
& o° E|

l o e 0 a0 oo . b
L e e e oo AL
L o e e a0 oo g e
L o 0006 06 0 o E oo _...'é
> 6 © ¢ ¢ © o o E .o:.og
AAAAAAA Euuu® STTEY.Y ST <!

n=m n free

error = O(n~"/9) std = O(n~1/?) error = O(n71), ...

35



d=1 d++ LR
EERRERRRRERNNRN NN (NNRRNRNE RARRY

Julia — Lattice sequence in base 2 (as a plain rule sequence)

# exew_base2_m20_a3_HKKN.txt from Magic Point Shop:
z = [1, 364981, 245389, 97823, 488939, 62609, 400749, 385317,
21281, 223487] # 10 dimension with max 2720 points

lr_seq(d, z, ml, m2) =
( lattice_points(z[1:d], 2"m) for m in ml:m2 )

# Simple test function which integrates to 1
f=x ->prod(l .+ (x .- 1/2))

# Such nice vectorisation...
Es = abs.(mean.(f, lr_seq(d, z, ml, m2)) .- 1) # true integral=1

ns = 2 .~ (ml:m2)
scatter(ns, Es, xscale=:logl0, yscale=:1ogl0)
plot!(ns, ns .~ -1, xscale=:1logl0, yscale=:1logl0)

36
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Absolute error versus n for d =2 — order 1 convergence
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Absolute error versus n for d = 10 — order 1 after
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What do we see?

» The curse of dimensionality. ..

» Why does this happen?
| promised you no curse. . .
It depends on the function space. . .

» When does this happen?
Or when does this not happen... next...

» And how do you know you have a good generating vector z7

All big questions which we will try to answer tomorrow.

39
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One last example: random shifting

Random shifting gives us a practical error estimator:

shift_modl(shift) = x -> (x + shift) .% 1

M = 10 # number of random shifts
shifts = rand(d, M)

# Gives an 11-by-10 matrix (M=10, number of powers of 2 = 11)
Qs = reduce(hcat,
mean. (f o shift_modl(shift), lr_seq(d, z, ml, m2))
for shift in eachcol(shifts) )

Qbar = mean(Qs, dims=2)
std_err = std(Qs, dims=2) / M

40
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Standard error plot d = 2
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Standard error plot d =5
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Standard error plot d = 5 and tent-transform

stderr

Qbar errors
stderr tent
Qbar tent errors
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Lecture 2:
Weighted function spaces and tractability

44
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4. Function spaces

Analysis
rrerern

RKHS

CBC
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Function spaces

vvyyypy

We express “smoothness” in terms of norms of derivatives.
Such spaces are called Sobolev spaces.
There is many ways of defining these norms / spaces.

Even for “classical” Sobolev spaces.

» For high-dimensional spaces we will use “mixed” norms.

» For tractability we will add weights over the dimensions.

We define spaces as being those functions for which the norm
exists and is finite; and extra properties such as periodicity. . .

46
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Classmal Sobolev space H(Q)

Define the classical L? Sobolev space norm of order 1 as

1/2
lull iy = (Il + IV ulagey )

(/| |2dx+/ \Vu(x)]zdx) e
(/| |2dx+/2|8u(x |2dx)
= (I

1/2
il + Y 107Ul

TENg
[l7ll=1
1/2
— T 112
—( > b UHLz(Q)) :
TGNB’
<1

CBC
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Classmal L2 Sobolev spaces HY(R2)
So

/
Jullnggy = (32 107ulam)

TENg
[rl1<1

Define the corresponding space
Hl(Q) ={uv e LL(NQ): HuHHl(Q) < 00}
For o € Ny define the Sobolev norm of order o by

/
ol = (32 107 ulag)

TENg
ITli<a

and
H*(Q) := {u € La(Q) : |lul|pa(q) < oo}

NB: HO(Q) = L%(Q).

CBC

48



Space LR wce Analysis RKHS

Classical W%P norms

Instead of taking L? norms, one can also take LP norms.

For o € Ng and 1 < p < o0, define the norm

T, |P 1/p
( Z |D uHLp(Q)> for 1 < p < o0,
TeNd
[ullwer) =19 Irli<a

max ||D7 ul| e (q) for p = o0,
TENG
I7ll1<e

and the corresponding spaces

WeP(Q) := {u € Lp(Q) : lullwanrg) < o0}

CBC
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I\/llxed Sobolev spaces

Classical norms have ||7|1 < a.
Mixed norms have ||7|/s < a.
We will stick to the Hilbert space setting p = 2. Hence:

For v € Ny define the mixed Sobolev norm of order « by

/
g = (X 1D7ulag)

TGNB’
[7llcc <

and
HI%IX ) = {U € L2(Q) : HuHHfr“ix(Q) < OO}

NB: HO. (Q) = HO(Q) = L2(Q).

NBB: For Q C R, ie., d = 1: HY. (Q) = H(Q).

mix

CBC
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Fourier series and derivatives

Let us fix Q = [0,1]9 and go back to periodic functions:

d
Z f(h) exp(27ih - x) Z f(h) Hezﬂihfxf.
hezd hezd j=1

We have, for m € N¢, (and under sufficient smoothness conditions),

D™f(x) =

51
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Fourier series and derivatives

Let us fix Q = [0,1]9 and go back to periodic functions:
d .
Z f(h) exp(27ih - x) Z f(h) l_Ie27TI hi,
hezd hezd j=1

We have, for m € N¢, (and under sufficient smoothness conditions),

d

omi . .
m 2mi hjx; 2mi hjx;
DmF(x)= > F(h [ [ e } [ []
hezd j=1 J Jj=1
s.t. mﬂéo s.t. ijO

51



Space
trrrrrend

Fourier series and derivatives

Let us fix Q = [0,1]9 and go back to periodic functions:
d .
Z f(h) exp(27ih - x) Z f(h) l_Ie27TI hi,
hezd hezd j=1

We have, for m € N¢, (and under sufficient smoothness conditions),

d

omi . .
m 2mi hjx; 2mi hjx;
DmF(x)= > F(h [ [ e } [ []
hezd j=1 J Jj=1
s.t. mﬂéo s.t. ijO

Q

L,
Il
—
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Combine with integration. ..
Fix v C{1,...,d}, then

P ' on 7% dx; e?mi i
W(F) = /[O’l]n f(x)dxn:hezzzdf(h){g/o e2mih dJ} {Jl;{ 2rih }
= > f(h)exp(2rih-x).

hez?
s.t. hj=0 when jecv
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Combine with integration. ..
Fix v C{1,...,d}, then

ly(f) := /[0’1]U f(x)dx, = Z f(h)[H/Ol e2mihig dxj} [Hezmhfxf}

hezd jev Jjév
= > f(h) exp(2ri h - x).
hczd
s.t. hj=0 when jecv
We had
D™ (x) = 3 £(h) [ [] (i h,-)mf} e2mihx.
hezd Jj€supp(m)

s.t. hj#0 when jesupp(m)
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Combine with integration. ..
Fix v C{1,...,d}, then

ly(f) := /[0’1]U f(x)dx, = Z f(h)[H/Ol e2mihig dxj} [Hezmhfﬂ

hezd jev jév
= Z f(h) exp(2mih - x).
hezd
s.t. hj=0 when jecv
We had
D™ (x) = 3 £(h) [ [] (i h,-)mf} e2mihx.
hez? Jj€supp(m)

s.t. hj#0 when jesupp(m)
Define supp*(m) :={1,...,d} \ supp(m), then
lyupp (m) D™ (X) = 3 £(h) [ I1 (i h,-)mf} e2mihx,

hez? Jj€esupp(h)
s.t. supp(h)=supp(m)
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Finally, the norm. ..
Note that

S Al = > > A

hezd uC{1,...,d} hezd
s.t. supp(h)=u

Using Parseval, it follows that

Z Hlsupp*(m)Dme%z = Z ||/{1,..4,d}\uDauf||i2

me{0.a} uC{L,...,d}
= ) > WP ] 2w
uC{l,...d}  hezd jeu

s.t. supp(h)=u

=Y 1P I leanPe.

hezd Jj€supp(h)

Yesterday with d = 1 we had || f(®)||,, semi-norm. ..
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5. Error bounds for lattice rules

RKHS

CBC
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Cubature error for lattice rule

Remember: lattice rule = average over lattice points (kz mod n)/n.
For periodic function, + smoothness conditions:

% > f(zk/n)—1(F)= > f(h)% > " exp(27i(h- z) k/n)

kE€Zn 0+£hezd kE€Zn
= > f(h).

0+£hczd

h-z=0 (mod n)

Error consists of the Fourier coefficients for which h - z is a multiple
of n, except h = 0.

CBC
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Error bound
Hence, for a > 1/2,

SN fekm 10| = X )]
kEZn 0£hezd
h-z=0 (mod n)

Z I?(h) Hj€supp(h) ’27rhj‘a ‘
HjESupp(h) ’27Thj|a

0+#£hezd
h-z=0 (mod n)
N / /
<(SEmE I o) (XTI lenki )"
hezd Jj€supp(h) 0+£hczd  jesupp(h)

h-z=0 (mod n)
= |If12 e, z,n).

We implicitly defined a norm, recognizable from previous slides.

Now we need to show that e(a, z, n) is of order n™.
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Function space, including weights

Korobov space of dominating mixed smoothness o > 1/2:
Ho = {f € Lo([0.119) I3 := D ra(h) [F(h)? < 00}7
hezd

with
-1 ey
ra(h) = Vsupp(h) H |y

Jjé€supp(h)

Weighted spaces: Sloan & Wozniakowski (2001),
Novak & Wozniakowski (2008, 2010, 2012), ...

We need the weights to get error bounds independent of d.
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6. Worst-case error analysis

Analysis
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RKHS

CBC
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How to measure deterministic algorithms? (Intro to IBC)
» Worst-case error for approximating /(f) by Q,(f) for f € Fg4:

e(Qn,Hda~) = sup |I(f)— Qn(f)] < upper bound for Qp.
EHd,aﬁ
[lld,a,~<1

» Best possible error using n function values (benchmark):

e(n,Ha,an) i= inf e(Qni Hd,a) = lower bound for any

Qn:{ (Wi, X)) ezt

= error of best algorithm using n function evaluations.

» Information complexity: the minimal number of function values
needed to reach error at most e:
n(e, Hd a~) :=min{n: 3Q, for which e(Qn, Hgn~) < €}

= number of function evaluations of best algorithm.

See a multitude of references, e.g., Novak (2016) or the
Novak-Wozniakowski trilogy (2008,2010,2012), ...
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The curse of dimensionality & types of tractability

Tractability started by Wozniakowski (1994) and since then vastly
expanded. ..

» The curse of dimensionality is defined as needing an exponential
number of function values in d to reach an error € < ¢p:

n(e, Ha.an) > c(1+7), for some ¢,7, ¢ > 0.
» A problem is called (weakly) tractable if

i In n(e, d)

=0
e~ l4+d—oo e1 +d ’
and intractable otherwise.

» Different types, e.g., polynomial tractability

n(e, Hd,aq) < ce Pd, for some ¢, p,q > 0.

See a multitude of references, in particular the Novak—Wozniakowski trilogy
(2008,2010,2012), ...
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The curse might always be there. .

Define Fy with f € Fy when

f(x)— f
1l = max RO
xyelo1d [Ix =yl

then (Maung Zho Newn and Sharygin, 1971)

d _
e(n, Fq) = 2d+2" 1/d,

This is for any (linear) algorithm!
See also Novak (2016).

The aim is to not just avoid the “curse by construction” (product

rule n = md), but also

> rate independent of d = “mixed dominating smoothness”.

» constant Cy,~ independent of d = “weighted spaces”.

CBC
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Tools / assumptions

» Mixed dominating smoothness spaces:
Classical Sobolev norm with ||7]|; < a gives O(n~/9); mixed
norm with ||7|loc < a gives O(n™%). l.e.,

> |ID7f|, versus > IDTf|E,.
7€{0,...,a}? 7¢{0,...,a}?
[7lloo<ex 7]l <ex
» Dimension-independent error bounds:
Switch to weighted spaces: not all combinations of variables are
as important. Denote the importance of the variables in

uC{l,...,d} by . le,
ST gk D7,

T€{0,...,a}d
[7lloo<ex

Mixed spaces: Novak, Sickel, Temlyakov, Kiihn, Ullrich, Ullrich, Potts, ...
Weights: Hickernell (1998), Sloan & Wozniakowski (1998), Novak—Wozniakowski, Dick,
Kuo, Sloan (2013), ...
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Agam our favourite function space

Korobov space of dominating mixed smoothness @ > 1/2:

Haory = {F € L2011 [F]30y < 00}

with
1z an = Y raa~(h)IF(h)?
heZs
and
rs,a,’y(h) = 7;1,1,p(h) H |hj’2a.
j€supp(h)

(Sometimes the 27 is present, sometimes it is not.)
(Sometimes the 2« is taken as «, different convention.)
(Sometimes the weights are squared.)

CBC
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For integer smoothness

When o € N then this norm can be written as the norm of the
unanchored periodic Sobolev space of dominating mixed smoothness
a:

2 . 2 2
HfHd,Otv’)’ = Z rdv%’)’ Z ’Ysupp (h) |f ’ H |hf| “

hEZd heZd Jesupp(h)
= Z 1_[’7# / / f(u) (.y—LU yu) d‘y_u dyu
ve{0,a}d ~HUEY ™ (0,11l /0, 1] 1ul
w:=supp(v) “unan‘cﬁored,,
= > W,
ve{0,a}¢
w:=supp(v)

64



Analysis
trrreenn

Usual error bounds

Example theorem.
For f € Hy .~ with @ > 1/2 and n € N we can construct a
generating vector z € Z9 such that

Ca.o
() = Qua(F)] < =522 fllaary  forall A€ [1/2,a)

with
Camn = -

With the right summability conditions on the weights this becomes a
dimension-independent convergence bound for some C’ A with
Cd,Oé,‘}’,)\ < C "Y)\ < Q.

See a lot of CBC and fast CBC papers: Kuo, Sloan, Dick, Nuyens, Kritzer,
Ebert, Wilkes, Schwab, ...

65



Space LR wce Analysis
rrrreren et rrerern

7. Reproducing kernel Hilbert spaces

RKHS
AR

CBC
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Example of a good lattice rule

Eg: n =21 and z = (1,13): Fibonacci rule: n = Fy, z = (1, Fx_1).

\\\\\\\\\\\\‘\\\\\\\

\\\\\\\,\\\\\\\\\\\\

Only d = 2, d > 2: Constructive methods for deterministic error:
Fast component-by-component (Nuyens & Cools 2006, ...)
— Fixed vector z for a given n.

(Or sequence of n = p™, Cools, Kuo & Nuyens 2006).
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Spaces based on series representations & Koksma—Hlawka
Assume Lp-ONB {¢p}n, do =1, Qn(1) =1, and abs. summ.

) = S Hhonta). with F(h) = /[O,lldf(x)th(x)dx,

CBC
1
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Spaces based on series representations & Koksma—Hlawka
Assume Lp-ONB {¢p}n, do =1, Qn(1) =1, and abs. summ.

:zh:f(h)qﬁh(x), with  f(h) := /{01 f(x) on(x) dx

then, for r, ~(h) > 0 an “increasing” function,

1) )l = | F(h) Qu(n) raq(h) 25 (h)

h#£0

1/p 1/q
< (Z‘f(h))prgﬁ(h)> (Zon(cbh)"ra,f’,(h))
h

h40
norm X worst-case error” .

(See next slide.)
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Worst-case error (continued. . .)

[1(F) = Qu(F)] = |D_ F(h) Qu(h) ra(h) 2 (h)

h#£0

1/p
< (Z ‘f(h))” rg,.,(h)> (Z | @n(n)|? g,
h

h#0

norm X worst-case error” .

For 1 < p < oo and compatible choices of ¢, Q, and r,  we can

find a “worst-case” representer £(x) for which

1Qn(€) = 1(E)]M7 = e(Qn, Fa),

independent of the particular @, e.g., Fourier series and lattice
rules, Walsh series and digital nets, see Nuyens (2014) and

Hickernell (1998a,b).

CBC

1/q
)
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Reproducing kernel H||bert spaces, p = q = 2

Given a one-dimensional reproducing kernel K(x,y) = K(y, x).
Suppose H(K) is separable: H(K) = span{¢n}n and ¢g = 1.
Determine the eigenvalues and eigenfunctions, and assume \g = 1,

/ 6(x) K(x,y) dx = A (y).
[01]

Then

o) () on(y)
Koo = 0 O = 5 )

the ¢y, are Lr-orthogonal, with ||¢p|l, = VAp and [|én|lx = 1, with

(8= S P ER, 7B =X [F)|
h h
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|\/|u|t|var|ate weighted reproducing kernel Hilbert space

Use the one-dimensional space as building block for d dimensions by
taking weighted tensor products (tensor product basis):

K(x,y) = Z Tu HK(XJ7)/1 Z'Ysupp(h)]__[d)h XJ \)7)

uC{l,..d} Jjeu
= Z o, x) on(y),

with
d

-2 —1
oy (h) = supp(y | [ A1
=1

With 5 =1 and Q,(1) =1,

2 (QmH)= -1+ Z wi wy K(Xk, ¥0)-
k=1

CBC
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For a shift-invariant space and lattice rule
For a shift-invariant space we have

K(X7y) = K(X—y,O)
and for a lattice rule we have

Xk — Xk = Xk—k’ mod n»

all on the torus [0,1)7.
Hence:

e (QnzH) =1+ Z wie wy K(Xk, yy)
k=1

= Z Z ka Emodnao)
=1 k=1
:—1+EZK(xk,0)
k=1

CBC

72



8. Fast component-by-component construction of
good lattice rules

CBC
I
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Construction of lattice rules and polynomial lattice rules

Point sets constructed for
weighted spaces using fast
component-by-component
constructions using number
theoretic transforms.

See https://www.cs.kuleuven.be/~dirkn/qmcépde/ and
https://www.cs.kuleuven.be/~dirkn/fast-cbc/.

See, e.g., Nuyens & Cools (2006a,2006b), Cools, Kuo, & Nuyens (2006), Dick, Kuo, Le
Gia, Nuyens & Schwab (2014), Nuyens (2014), Kuo & Nuyens (2016), ...
Variations and speedups by: Gantner, Kritzer, Laimer, Leobacher, Pillichshammer,
Schwab, ... New methods: Ebert, Kritzer, Nuyens, Osisiogu (2021), Kuo, Nuyens,
Wilkes (2023), Nuyens, Wilkes (2023), ...
74
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Point generators

» Matlab/Octave: procedural generators like Matlab’s rand:
> latticeseq_b2.m: radical inverse lattice sequence generator,
> digitalseq_b2g.m: gray coded radical inverse digital
sequence generator (incl. higher-order, max 53 bit).
» Python: iterator classes, which can be used as standalone point
generators from the command line (__main__):
> latticeseq_b2.py: iterator based (__iter__), set_state
for parallel computing,
> digitalseq_b2g.py: ditto, arbitrary precision using mpmath if
needed.
» C++: header file based implementation with driver program for
the command line:
> latticeseq_b2. (hlcpp): complies to ForwardIterator
concept, set_state for parallel computing,
> digitalseq_b2g. (hlcpp): ditto, max 64 bit.
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Welcome to % ﬂ{{@w @oﬁi (5’/@0’
Different flavours of quasi-Monte Carlo points to choose:
> Lattice rules.
> Lattice sequences.
» Polynomial lattice rules.
» Interlaced Sobol' sequences (higher-order).
» Interlaced polynomial lattice rules (higher-order).
And code (C++, Python and Matlab) to use them. ..

PTG [T g T g T
r ° | E o o © e o ©
° o E o o o o ©
° > E o ©
° 1 g o ©
° ° o E ° e °
° M E o © °
° ° . ; ° ° °
° E o o ©
° Eeo ®
° E °
fe ., poe o o ©
E e ] Ee o © o o o o ° -
et @@ v ] e

Subsidiaries: Q{‘C4PDE construct points for parametrised PDEs.

CBC
(N
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9. Applications in uncertainty quantification (UQ)
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High-dimensional integrals for G(u(x, y))

Task: Approximate an s-dimensional integral / expectation
BIG()] = 1(6(u) = [ 6(uly))ply)dy
= [ GluP )y,
[0.,1]°

Method: An n-point cubature/quadrature method

Qn(G(u)) = @n(G(v); {(Wis yi) }k=1) ZWkG u(y))

(Using functional analysis and number theoretic uniform point sets.

To tackle integration, approximation and “other” high dimensional problems. )

Applications: random fields, parametrised PDEs, financial

engineering, Bayesian integrals, uncertainty quantification,. ..

DNN
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Uncertainty quantification

= Forward UQ =

Input L Mathematical model |  Output
f(x), BC A(y) (u(x;y)) = f(x) 1 G(ulx:y))
T sampled output®
sampleslo, E
Parameters ,
+ Backward (UQ) < |
a(y), y ~ u(UY) (Le) ;
A 1
Noi
Real world e N Measurements

QMC for high-dimensional integrals,
use s for number of (truncated) “stochastic” dimensions:

» Forward UQ: expected value of a quantity of interest.

» Backward UQ: estimate parameter values by Bayesian integrals.
(QMC can also be used for function approximation.)



uQ Diff Numerics DNN

Truncation, discretization, cubature: three errors

1. Truncate after s terms
a*(x;y) = ao(x) + Zyj pj(x

then the solution u® is the solution of the truncated problem.

2. Discretize the PDE: use FEM and discretize with elements of
diameter h. The discretized solution we denote by u}.

3. Cubature approximation of integral:
1 n
= G(up(5£9)).
gt

= Total error is the sum of three errors.
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Example: random fields / parametrised PDEs (s = o)
Parametric representation (e.g., Karhunen—Loéve expansion)

a(x,y) =a(x)+ > yivj(x), xeD, yel[-3 31",
j>1

by sample variables y;. Use in porous flow using Darcy's law:

q(x,y) + a(x,y) Vp(x,y) = f(x),
V- q(x,y) =0.

See, e.g., Barth, Charrier, Cliffe, Dick, Gantner, Giles, Graham, Haji-Ali, Harbrecht,
Kuo, Le Gia, Nuyens, Nichols, Nobile, Peters, Robbe, Scheichl, Schwab, Siebenmorgen,
Sloan, Teckentrup, Tempone, Ullmann, Vandewalle, Zollinger, von Schwerin, ...
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Example: option pricing (s = hundreds, thousands, o)
Simulation of SDE

dX(t) = a(X(t))dt + b(X(t))dW(t), X(0)=Xo, 0<t<T,
using Euler—Maruyama, Xo = Xo,
)A<,-+1:)A<,-+a()A(,-)h+b()A<,-)\/EZ,-, izl,...,n—l, h= T/n,

with Z; sampled from standard normal distribution.

o8k . h J
£ 0 0 ) 20

See, e.g., Achtsis, Baldeaux, Boyle, Cools, Gerstner, Giles, Glasserman, Griebel, Holtz,
Imai, Irrgeher, Joshi, Kucherenko, Kuo, L'Ecuyer, Larcher, Lemieux, Leobacher, Lin,
Nuyens, Niu, Okten, Pages, Platen, Sloan, Staum, Szdlgyenyi, Tan, Tezuka, Tichy,
Traub, Tuffin, Wang, Waterhouse, ...
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Example: option pricing (s = hundreds, thousands, co)
Simulation of SDE

dX(t) = a(X(t))dt + b(X(t))dW(t), X(0)=Xo, 0<t<T,
using Euler-Maruyama, Xo = Xo,
Xiy1 =Xi+a(X)h+b(X))VhZ, i=1,...,n—1, h=T/n,

with Z; sampled from standard normal distribution.

See, e.g., Achtsis, Baldeaux, Boyle, Cools, Gerstner, Giles, Glasserman, Griebel, Holtz,
Imai, Irrgeher, Joshi, Kucherenko, Kuo, L'Ecuyer, Larcher, Lemieux, Leobacher, Lin,
Nuyens, Niu, Okten, Pages, Platen, Sloan, Staum, Szdlgyenyi, Tan, Tezuka, Tichy,
Traub, Tuffin, Wang, Waterhouse, ...
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Example: Bayesian integrals (s = hundreds, thousands, o)
Simulation of insulin-glucose model
dG(t)/dt = —A(G(t) — Gb) — BX(t)G(t) + Ra(t)
dX(t)/dt = —p X(t) + p (I(t) = Ip)

to infer parameters and quantify input uncertainty given noisy
measurement G (t) and uncertain input data Rj(t).

160

7:00 800 9:00 10:00

Using evaluation of the integral point-of-view: see, e.g., Dick, Gantner, Le Gia, Nuyens,

Scheichl, Schillings, Schwab, Stuart, Teckentrup, ... 84
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Example: Helmholtz equation (s = )
Exterior Dirichlet problem on R?\ S such that u(x, y) satisfies

—V - (A(x,y)Vu(x,y) — k> n(x,y) u(x,y) = —f(x) outside of S,
with u =0 on 95 and the Sommerfeld radiation condition
dru(x,y) —iku(x,y) € o(r~@1/2) for r = ||x|| = 0.

Example Qol = expected far field pattern for random field n(x,y).

Graham, Kuo, Nuyens, Spence, Sloan (in preparation)
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Example: DNN for PDE / function approximation (s large, oo)

Assuming Chebyshev basis for random field (where y; € [-1,1] e.g.
Adcock, Brugiapaglia, Webster (2022)) but formulated in terms of
uniform y; € [0, 1] variables:

a(x,y) = do(x) + Y _sin(2my;) ¢;(x).
jz1
Use n training examples (y, G) to optimize DNN. Training error is

used as proxy for real error / generalization error / L, approximation
error:

1 n
EF(0) = - > 161" = Go(y ™17,
k=1

B0 = [ 160) = Gl dy =16 - Gl

POV: You are approximating the integral of |G — Gy|. ..
Keller, Kuo, Nuyens, Sloan (in preparation); Mishra, Rusch (2021), Longo, Mishra,
Rusch, Schwab (2021), ...
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10. Obtaining error bounds for the diffusion example
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Error analysis for QMC part
Calculate expected value of G(u(x;y)) over y ~ ®;>11j(U)

BIG()]) = [ Gluly)) uldy)
with u(-; y) the solution of the PDE for the parameter choice y.

» This is an integral of a function F(y) = G(u(-;y)).
What with x?

> For QMC convergence analysis: need to know what function
space F belongs to. Easiest if G is a linear function that
removes the effect of x.

Demonstratation for “uniform case” a = ag + )~ yj¢; and for first
order mixed derivatives (1st order convergence for QMC) and G a
linear functional.

88



uQ Diff Numerics DNN
RN LR RRRANAE e Iy

Solving the PDE: transform to weak form

Strong form of PDE demands u € V to satisfy, for given y,

The weak form demands u € V to satisfy, for given y,

89
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Solving the PDE: transform to weak form

Strong form of PDE demands u € V to satisfy, for given y,
—V -a(x;y)Vu(x;y) = f(x).

The weak form demands u € V to satisfy, for given y,

/ a(x;y)Vu(x;y) - Vv(x)dx = / f(x)v(x)dx, Vv € V.
Q Q

For QMC analysis we have norms depending on mixed derivatives.
Want to know the sensitivity w.r.t. the parameters (y1, y2,...):

[
0yulxiy) = 5 -ulxy). Bulxiy) =TT 5Lulxiy) = Goutxy)

u
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Towards the norm for the QMC cubature
For QMC we want to bound a norm like

IFIE = 3 a2 10T IR,
T7€{0:a}*

But our function F = G(u(x;y)).
Assume G is a linear functional then for any y

9y G(u(x;y))(y) = G(dyu(x;y)) < |G
Define a corresponding Bochner norm

lulZ oy = D Vame(r 1135 NIV,
Te{0:a}®

Oyu(; y)lv-

V*

We have
1G(uCs y)layvs,v < Gllve Ju( y)lla,vs,v-

To bound ||ul[q,us,v we need bounds on [[07 u(-; y)|v for given y.
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Differentiate under the integral in the weak form
Apply derivative to weak form, for all v € V and for any given y:

dy /Q a(x;y)Vu(x;y) - Vv(x)dx = 9y /Q f(x)v(x)dx

o /Qa; (a(x: y) Vu(x: y)) - Vv(x)dx = 0.
Use Leibniz formula:
9 b y) Vulx ) = 3 (0)28 Gt a5 (Tulxiy)
uniforn” case, a(xi ) = au(x) + 003 5():
= 3 (0)% Glemmag = (Tutxy)

lw|<1

=a(x;y) Voyu(x;y) + Z 7j j(x) VB;_ej u(x;y).
j€supp(T)
01



Diff

Continued. . .

Thus for any given y and for any v € V; the solution u satisfies
/ a(x;y) Voju(x;y) - Vv(x)dx
Q

- ¥ Tj/% YVO) % u(xiy) - Vv(x)dx.

Jjé€supp(T

We are free to choose v(x) = 07 u(x;y). Define the energy norm
(Cohen, Bachmayr, Migliorati)

0501, = [ aloxy) (955 utx ) dx
and the V-norm
|0y uC Y)Y = [ IVOFu(x;y)Pdx < aph 107 u(y)II3,
Q

(Note that for the solution of the PDE we need a(x;y) > amin > 0.)
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Continued. .. (2)

Thus we have

05 utIE, == [ 30 50 V8 ulxi v} Vo u(xiy) dx
j€supp(T)

Now there are different routes in different papers. We follow a

particularly nice one (imho). (Refs: Kazashi, Schwab & Herrmann)

For some b; > 0 and b™ = szl bJT’ apply Cauchy—Schwarz to

j€supp(T)

2
(sz Z 7 pj(x) V@;_eju(x; y)- V@;u(x;y))
. 2
< > b lp(0)] [b TV Yu(xiy)|
Jj€supp(T)
e e oar 2
x> b p(x)] [bTT VO u(x;y)]

Jj€supp(T)
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Continued. . . (3)

Now we apply the next nice trick. (Refs: Cohen, DeVore, Schwab)
For some k consider the sum

> D Al)Bre= 3, Y Alw+
|T|=k j€supp(T) lw|=k—1,>1

For our case, and limiting to 1st order, thus 7 € {0,1}°, then

>y s ’% |’b =)V, “u(x;y)

7€{0,1}* j€supp(T )
IT|=k

‘ 2

S
i (), = 2
- Z Jb- ‘b w V@;"u(x;y)‘ )
we{0,1}* j=1 J
|w|=k—1
We can use this to “reduced the order” from k to k — 1.
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Continued. .. (4)

Thus combining these tricks we obtain

2
> b uCiy)l3,
7€{0,1}°
|T|=k
: ‘(p(X)‘ —w w . 2
S/Q Z Z ij }b Vayu(x,y)‘ dx
we{0,1}° j=1
|w|=k—1

X/Q Z Z ‘%b(JX)‘ |b~" V@;u(x;y)|2 dx

7€{0,1}° jesupp(T)
|TI=k

DNN
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Continued. . . (5)

Rewrite:
2
> b oyuCiy)I3,

7€{0,1}°
|T|=k

2
S Lol )y
( o Janfm) by u( ),

we{0,1}°
> bT(oyu(y)I,

|w|=k—1
T7€{0,1}*°
I7|=k
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Continued. .. (6)
Finally, enclosing all with the trick from Kuo, Schwab, Sloan (2012),

Y by uCiy)IE,

7€{0,1}*°
|T|=k

2
167l Lo -
) (Z el IO DR RO
j=1 we{0,1}°

|w|=k—1

s 2k
I@ill Lo
< (2 bji ||U('?.V)||§y7
=1 j dmin

and
2k
s
_ 3max 10l Lo
DR A CRDl el B Dhenell I C(CH21(7
re{0,1}° min j=1 ’J 9min
IT[=k
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Continued. .. (7)
Now we are finally where we need to be.
From the last expression we obtain
2|7

ooy amax o)l oo
b2 |05 u(-; y) - Z : lu ¥y

o arT‘III'l b an’lll"l

Further, from the PDE we know the a priori bound
I£]
[u(5y)llv <

V*
>
note that for the “uniform case” this bound is uniform in y.

We ended up with product weights.
The bound is independent of s if we can find a sequence b; such that

Z HSOJHLOO
b amm

Jj>1

Amin
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Modern view of QMC error bounds

For the QMC error we end up with bounds for F(y) = G(ui(x,y))
of the form

[1(F) = Qu(F)l < [IFlls0~ wees,a~(n)

which basically looks like this:

(2 wa)”( X ws)

ug{lv"WS} ug{lv"ws}

1/2)

Modern view, e.g., Kuo, Sloan, Schwab (2012), is to minimize the
upper bound by choosing

A\ V)
(&)

Nguyen, Nuyens (2021a, 2021b).
99



uQ Diff Numerics DNN

11. Numerical example of porous flow
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Example of porous flow with circulant embedding
Assume the following elliptic PDE

—V - (a(x,w)Vu(x,w)) = f(x), forx € D, as. w € 1,

and u(x,w) =0 for x € §D, where
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Example of porous flow with circulant embedding
Assume the following elliptic PDE

—V - (a(x,w)Vu(x,w)) = f(x), forx € D, as. w € 1,

and u(x,w) =0 for x € §D, where
» D C RY is a “nice” bounded physical domain, d =1,2,3,
» w is a random event from (Q, A, P),

» a(x,w) is a scalar lognormal random field:

a(x,w) = exp(Z(x,w))
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Example of porous flow with circulant embedding
Assume the following elliptic PDE
—V - (a(x,w)Vu(x,w)) = f(x), forx € D, as. w € 1,

and u(x,w) =0 for x € §D, where
» D C RY is a “nice” bounded physical domain, d =1,2,3,
» w is a random event from (Q, A, P),
» a(x,w) is a scalar lognormal random field:

a(x,w) = exp(Z(x,w))

with Z(x,w) a homogenous Gaussian random field with Matérn
covariance function with parameter v > 1/2

) 2171/
r(v)

with r = ||x — x'||,, A the length scale and o the variance.

r(x,x'Y=p,(r)=0c (ar)” K, (ar), a=2v/\,

DNN
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From random field to parametrised problem
We parametrise the random event w by a vector y(w) € R*°.
E.g., using the Karhunen-Loéve (KL) expansion:

a(x,w) = a(x,y) = ao(x) exp Zyj VIGE(x) |

with y; ~ N(0,1), and {(xj,&;)}j>1 is the sequence of ordered
eigenvalues and eigenfunctions of the integral operator

(RE)(x) = /D ou(Ix = X]1p) £(x') dx'.

DNN
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From random field to parametrised problem
We parametrise the random event w by a vector y(w) € R*°.
E.g., using the Karhunen-Loéve (KL) expansion:

a(x,w) = a(x,y) = ao(x) exp Zyj VIGE(x) |

jz1

with y; ~ N(0,1), and {(xj,&;)}j>1 is the sequence of ordered
eigenvalues and eigenfunctions of the integral operator

(RE)(x) = /D ou(Ix = X]1p) £(x') dx'.

The “roughness” depends on the summability of b; = | /ji; ||| Lo~
for 0 < p < 1 (smaller is smoother) [Cohen, DeVore, Schwab'10]:

S (Vi lgll)? =3 bP < .

j>1 j>1
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Aim: Calculate expected value of quantity of interest

Given w and corresponding solution u(x,w) we are interested in

E,[G(u(x, )l = [ G(u(x,y)) ¢(y)dy

Roo

_ / G(u(x, ®(y)))dy,
(0,1)

for some linear functional G acting on the physical space x,

with ¢ the multivariate normal and ®~1 it's cumulative inverse.

DNN
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Aim: Calculate expected value of quantity of interest

Given w and corresponding solution u(x,w) we are interested in

E,[G(u(x, )l = [ G(u(x,y)) ¢(y)dy

Roo

_ / G(u(x, ®(y)))dy,
(0,1)

for some linear functional G acting on the physical space x,
with ¢ the multivariate normal and ®~1 it's cumulative inverse.

The error breaks down in three pieces:
1. u(x,y)~ up(x,y) (FEM discretisation + quadrature),

2. f(o,l)oo R f(o,l)s (KL-trunc. or avoid by circ. emb. — intp. err.)

3. f(o 1y A % Zivzl (quadrature approximation for E,,).

Circulant embedding e.g.
[Dietrich,Newsam'97;Graham,Kuo,Nuyens,Scheichl,Sloan'11].
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A 2D discretisation example

1. Discretise using linear elements to represent uy,.

2. Approximate Galerkin integrals with midpoint rule on each
element 7 (single evaluation in center of mass x).

3. Approximate a(x$,w) by multilinear interpolation on the
regular grid.
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A 2D discretisation example

1. Discretise using linear elements to represent uy,.

2. Approximate Galerkin integrals with midpoint rule on each
element 7 (single evaluation in center of mass x).

3. Approximate a(x$,w) by multilinear interpolation on the
regular grid.
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SAVATY S g U8 S VAVAVAYAVAT SN
PRSI SO
I AR ISKSB AR
RERS A R AN A7 VAVAV. AV AV AV AovAVy
AR KR N RN AR ]
KRR R A R e R AR
I A A TAVAV AW i s TAT Ay UATAVAN AT
RO A I SRR RPN ORI
PO K SR RIS DN SOOI
SR R O R R R S KA IR
KXVIA o S AYATAVs XORKS
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EROTY ORI ARSI
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RO SOORREKKRPRIAL KSR
RUAERK Vv N S S Ao e e TN N
RO KRR KR RIS K KIS
KNEGAA SRR N
PORKIRG A KNSRI ORI
RIAKIIRAA K RIS SRR
IR ISR RIS
ISR e NSRRI ISR AAX]
RO TS R b s v TAVATAVAY, S a W YAVAS VAN K SV 3 o 7avs AVATA R ravirg
BRI R A O K RS K SOOI NI
AR A RO RIS RSN
R RRRRA IR AR OSAR NSOKIIIA]

OSSR RIS KA
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1. Discretise using linear elements to represent uy,.

2. Approximate Galerkin integrals with midpoint rule on each
element 7 (single evaluation in center of mass x).

3. Approximate a(x$,w) by multilinear interpolation on the
regular grid.
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A 2D discretisation example

Discretise using linear elements to represent wuj,.

2. Approximate Galerkin integrals with midpoint rule on each
element 7 (single evaluation in center of mass x).

3. Approximate a(x$,w) by multilinear interpolation on the
regular grid.
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A 2D discretisation example

1. Discretise using linear elements to represent uy,.

2. Approximate Galerkin integrals with midpoint rule on each
element 7 (single evaluation in center of mass x).

3. Approximate a(x<,w) by multilinear interpolation on the
regular grid.
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Dimension independent error estimate for E,, [G(u(x,w))]
using randomly shifted lattice rule

Theorem ([Graham,Kuo,Nuyens,ScheichI,SIoan '18b])
If |bs)llp < ¢, with1>p > 2,

. 1/2
ol N b
1Fllen < N 1(
! c%.:} " \(log2)" Haf —bi

JjEU

with all o > bj, bj = bj/(2exp(b?/2)®(b;)), then

N

1
RMSa (Is(F) — QS,"(Fa A)) S Cp ”7p+ )

2
where C, — oo for p — 3.
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3D porous flow example

mo = 7,14,28, h = 0.24,0.12,0.06, s = 2744,

relative standard error (relSi)

107°

A=02

Numerics
RRENT]

A=05

...,37933056 stochastic dimensions

T

N Fesg

k|

vl vl et e S b il i il
LR B 1 e e e e Bl \PUBLALILLLA R o L e o L s e
(A 1 F By 1
T B W TV1 M I A WETI S N S WH TR S b i [ I WEUTI B S AR WY 1T] B R WRTTT B RN RHTT| M A
o e e L I L | \BSIRLLLLI R o A1) e e 1 e
= o [ 1
T TS R T R Y1 RSN ) FYTY B A MUY R A AW H T TT1 M R NETT] A

10%

103

10*

10°

102

10% 10*

10°

number of PDE solves (¢ = 64 shifts): N = gn (nbsolves)

DNN

106



uQ

Diff

3D porous flow example

mo = 7,14,28, h=10.24,0.12,0.06, s = 2744, ...,37933056 stochastic dimensions

relative standard error (relst)

v=0.5

A=02

Numerics
RRENT]

A=0.5

)
T, |

—0.76

&
o o By

o -
LT Ll

©
Lol |

10° 10! 10?

103 10()

10! 10%

103

time in minutes (¢ = 64 shifts for QMC) (cur_t_min)

DNN
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12. DNN regularity bounds
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DNNs and function approximation
Elliptic PDEs with coefficients in Chebyshev / periodic setting.

G(y) could e.g. be us 4(xT,y). Approximate G by a DNN.
This motivates the “periodic’ DNN, Gy = G[L],

G(EO](y) = Wpsin(2my) + bg
6(y) == Wilo (Gl ) + by, £=1,..., L.

Wy is a dp41 X dp matrix

by is a dyy1 x 1 vector

do = s is the dimension of the input vector y
di+1 = 1 (for the example of point evaluation)
» o is a smooth activation function

Keller, Kuo, Nuyens, Sloan (2024+)

108



uQ Diff Numerics DNN

Error analysis: approximation to integration

Mishra, Rusch (2021); Longo, Mishra, Rusch, Schwab (2021)
» Generalization error (L, approximation error)

1/2
o= £6(0) = ([ 160)-G0Pdy) = l16-Gill

» Training error

1 1/2
Er =Er(0) := (n Z |G(tr)—Gyp(ty)| > using lattice points

» Generalization gap

|Eq — Ev| < \/|E2 — EZ| quadrature error for (G — Gy)?

» Hence
Ec < Er+H|EG—ET| < ET+Co €™ (Qsnzy Hsam) [|(G — Gp)?[ls.amy ~ 0~

Keller, Kuo, Nuyens, Sloan (2024+)
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Regularity periodic DNN for L, approximation
We have Gy = G(gL] with

Gg)](y) = Wosin(2my) + bo
GA(y) = Wia (G y)) + b, £=1,...,L
Theorem. Keller, Kuo, Nuyens, Sloan (2024+)

0¥ Go(y)| < (@ Ry R R AL T Ty ()
j=1

> MaXi<k<d; ‘WO,k,j‘ Sﬁj, j: 1,...,5

> maxi<i<d,., 21§j§d¢: ‘W{:,k,j‘ <Ry £=1,...,L

» A/, depends on activation function
Hence the difference between approximation error and training error
will converge like = if you take training points on QMC point sets.
(Periodic and non-periodic.) See also Longo, Mishra, Rusch, Schwab

(2021) for higher-order polynomial lattice rules.
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The end!

Thank you.
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