
High-Dimensional Integration

Dirk Nuyens — NUMA, KU Leuven, Belgium

CIME Summer School on High-Dimensional Approximation
Cetraro, Italy

September 2024
1

The promises

▶ High-dimensional integration by
▶ Quasi-Monte Carlo (QMC) methods and
▶ how to beat “the curse of dimensionality”.

But, when can you beat the curse?

Show me the fine print...

In three lectures
1. Introduction to high-dimensional integration
2. Weighted function spaces and tractability
3. Advanced topics

2

The promises

▶ High-dimensional integration by
▶ Quasi-Monte Carlo (QMC) methods and
▶ how to beat “the curse of dimensionality”.

But, when can you beat the curse?

Show me the fine print...

In three lectures
1. Introduction to high-dimensional integration
2. Weighted function spaces and tractability
3. Advanced topics

2

The promises

▶ High-dimensional integration by
▶ Quasi-Monte Carlo (QMC) methods and
▶ how to beat “the curse of dimensionality”.

But, when can you beat the curse?

Show me the fine print...

In three lectures
1. Introduction to high-dimensional integration
2. Weighted function spaces and tractability
3. Advanced topics

2

The promises

▶ High-dimensional integration by
▶ Quasi-Monte Carlo (QMC) methods and
▶ how to beat “the curse of dimensionality”.

But, when can you beat the curse?

Show me the fine print...

In three lectures
1. Introduction to high-dimensional integration
2. Weighted function spaces and tractability
3. Advanced topics

2

Topics

Topics:
▶ Weighted Sobolev spaces of mixed smoothness
▶ Periodic setting: Lattice rules
▶ Non-periodic setting: Interlaced polynomial lattice rules
▶ Dimension-independent bounds (tractability)

I will try to divide the material in
▶ "easy",
▶ "intermediate" and
▶ "expert" levels.

3

d = 1 d++ LR

Lecture 1:
Introduction to high-dimensional integration

4

d = 1 d++ LR

The plan for today

▶ A light introduction to “lattice points” & “lattice rules”.
▶ Usage for numerical integration of “periodic” functions.
▶ Analysis of the error.
▶ Some words on function spaces and the worst-case error.
▶ Some Julia code to demonstrate things. . .

5

d = 1 d++ LR

1. One-dimensional integrals

6

d = 1 d++ LR

One-dimensional integrals

Suppose you want to integrate∫ 2

0
exp(−x5 + x) dx .

What do you do?

No closed form. . .
Quadratures:
▶ Gaussian quadrature
▶ Newton–Cotes
▶ Simpson rule
▶ Trapezoid rule
▶ . . .

Automatic integration? (E.g. quadpack.)

7

d = 1 d++ LR

One-dimensional integrals

Suppose you want to integrate∫ 2

0
exp(−x5 + x) dx .

What do you do? No closed form. . .

Quadratures:
▶ Gaussian quadrature
▶ Newton–Cotes
▶ Simpson rule
▶ Trapezoid rule
▶ . . .

Automatic integration? (E.g. quadpack.)

7

d = 1 d++ LR

One-dimensional integrals

Suppose you want to integrate∫ 2

0
exp(−x5 + x) dx .

What do you do? No closed form. . .
Quadratures:
▶ Gaussian quadrature
▶ Newton–Cotes
▶ Simpson rule
▶ Trapezoid rule
▶ . . .

Automatic integration? (E.g. quadpack.)

7

d = 1 d++ LR

One-dimensional integrals

Suppose you want to integrate∫ 2

0
exp(−x5 + x) dx .

What do you do? No closed form. . .
Quadratures:
▶ Gaussian quadrature
▶ Newton–Cotes
▶ Simpson rule
▶ Trapezoid rule
▶ . . .

Automatic integration? (E.g. quadpack.)

7

d = 1 d++ LR

Excursion in Julia

Let’s try some experiment.
I will do quite specific things.
They will generalise to high dimensions later.
(The code on the slides is for reference. I try to be complete, but I
will be executing it live.)

f = x -> exp(-x^5 + x)
domain = (0, 2)

true_value = 1.5596783055678136 # up to double precision

8

d = 1 d++ LR

Our client over [0, 2]

9

d = 1 d++ LR

Mapping to [0, 1]

Map point x in [0, 1] to given range [a, b], assuming a < b.
map_range(a, b) = x -> x * (b - a) + a
vol_range(a, b) = prod(b .- a)

Convenience functions:
map_range(ab) = map_range(ab[1], ab[2])
vol_range(ab) = vol_range(ab[1], ab[2])

10

d = 1 d++ LR

Some easy quadrature rules: rect and midp

n = 10

Leftrectangle rule
xs = map_range(domain).((0:n-1)/n)
sum(f.(xs)) / n * vol_range(domain)

Midpoint rule
xs = map_range(domain).((0:n-1)/n .+ 1/(2*n))
sum(f.(xs)) / n * vol_range(domain)

as functions (o needs to be \circ for function composition):
leftrectangle_rule(f, domain, n) =
sum(f o map_range(domain),

(0:n-1)/n) / n * vol_range(domain)
midpoint_rule(f, domain, n) =
sum(f o map_range(domain),

(0:n-1)/n .+ 1/(2*n)) / n * vol_range(domain)

11

d = 1 d++ LR

Convergence as expected. . .

12

d = 1 d++ LR

What about trapezoid rule?

Glad you asked!

▶ Trapezoid should also give n−2 convergence.
▶ Advantage of trapezoid over midpoint?

You can keep on doubling the number of points. . .
▶ Very important: left rectangle and trapezoid rules are like

taking simple averages: the weights change in an obvious way if
you double the number of points!

Trick: tent-transform. Lebesgue preserving.

tent(x) = 1 .- abs.(1 .- 2*x)

13

d = 1 d++ LR

What about trapezoid rule?

Glad you asked!

▶ Trapezoid should also give n−2 convergence.
▶ Advantage of trapezoid over midpoint?

You can keep on doubling the number of points. . .
▶ Very important: left rectangle and trapezoid rules are like

taking simple averages: the weights change in an obvious way if
you double the number of points!

Trick: tent-transform. Lebesgue preserving.

tent(x) = 1 .- abs.(1 .- 2*x)

13

d = 1 d++ LR

Convergence as expected. . .

14

d = 1 d++ LR

Tent transform

15

d = 1 d++ LR

Tent transform

The trapezoid rule can be obtained by using the tent-transform:

sum(f o map_range(domain) o tent,
(0:n-1)/n) / n * vol_range(domain)

We will use this in higher dimensions as well. . .

16

d = 1 d++ LR

What do you remember about error bounds?

17

d = 1 d++ LR

What do you remember about error bounds?

We have indeed that
▶ Left rectangle rule is n−1 for “smoothness 1”.
▶ Midpoint rule is n−2 for “smoothness 2”.
▶ Trapezoid is n−2 for “smoothness 2”.

Smoothness is in terms of derivatives: Sobolev spaces.

But: for periodic functions the trapezoidal rule can give n−α for
α > 2 and even exponential convergence. . . Why is that? Next. . .

N.B. for a periodic function f (0) = f (1) and the left rectangle rule is
identical to the trapezoidal rule.

Also for non-periodic functions a transformed trapezoidal rule can
give higher order convergence: Clenshaw–Curtis rules. . .

19

d = 1 d++ LR

“Periodic” functions over T ≃ [0, 1)

Suppose
f (x) =

∑
h∈Z

f̂ (h) exp(2πi hx)

with

f̂ (h) =

∫ 1

0
f (x) exp(−2πi hx) dx

and absolutely summable Fourier coefficients∑
h∈Z

|f̂ (h)| <∞.

We have

I (f) :=

∫ 1

0
f (x) dx = f̂ (0).

20

d = 1 d++ LR

Quadrature error for periodic function

We have for the trapezoidal rule (or left rectangle rule):

QT
n (f)− I (f) =

1
n

∑
k∈Zn

f (k/n)−
∫ 1

0
f (x) dx

=
1
n

∑
k∈Zn

f (k/n)− f̂ (0)

=
∑

0 ̸=h∈Z
f̂ (h)

[1
n

∑
k∈Zn

exp(2πi hk/n)
]

=
∑

0 ̸=h∈Z
h≡0 (mod n)

f̂ (h).

Only Fourier frequencies that are multiples of n contribute to error.

21

d = 1 d++ LR

Quadrature error bound for periodic function
Thus, for α > 1/2,

|QT
n (f)− I (f)| =

∣∣∣ ∑
0 ̸=h∈Z

h≡0 (mod n)

f̂ (h)
∣∣∣

=
∣∣∣ ∑

0 ̸=h∈Z
h≡0 (mod n)

f̂ (h)
|2πh|α

|2πh|α
∣∣∣

≤
(∑

0 ̸=h∈Z
|f̂ (h)|2 |2πh|2α

)1/2(∑
0 ̸=h∈Z

h≡0 (mod n)

|2πh|−2α
)1/2

= ∥f (α)∥L2

√
2ζ(2α)

(2πn)α
.

So if f (τ) is periodic, i.e., f (τ)(0) = f (τ)(1), for τ = 0, . . . , α− 1
and f (α) ∈ L2, then we have convergence n−α.

22

d = 1 d++ LR

2. Higher dimensions

23

d = 1 d++ LR

Discussion: what about higher dimensions?
Do you think the following integral is hard?∫

[0,2]d

d∏
j=1

exp(−x5
j + xj) dx

This is just the tensor product of our previous function.

Assume black box, otherwise yes, just do
∏d

j=1
∫ 2
0 exp(−x5

j + xj) dxj .
▶ The volume is 2d . The absolute error will scale with the volume.
▶ The difference between larger than 1 and smaller than 1 values

from the one-dimensional function will blow up exponentially for
the d-dimensional function.

▶ Looks like an innocent product, but, even,
d∏

j=1

(1 + xj) =
∑

u⊆{1,...,d}

(∏
j ̸∈u

1
)(∏

j∈u
xj

)
=

∑
u⊆{1,...,d}

∏
j∈u

xj

and exp(xj) = 1+ xj − x2
j /2+ · · · . (Remember this ↑ formula.)

24

d = 1 d++ LR

Discussion: what about higher dimensions?
Do you think the following integral is hard?∫

[0,2]d

d∏
j=1

exp(−x5
j + xj) dx

This is just the tensor product of our previous function.
Assume black box, otherwise yes, just do

∏d
j=1
∫ 2
0 exp(−x5

j + xj) dxj .

▶ The volume is 2d . The absolute error will scale with the volume.
▶ The difference between larger than 1 and smaller than 1 values

from the one-dimensional function will blow up exponentially for
the d-dimensional function.

▶ Looks like an innocent product, but, even,
d∏

j=1

(1 + xj) =
∑

u⊆{1,...,d}

(∏
j ̸∈u

1
)(∏

j∈u
xj

)
=

∑
u⊆{1,...,d}

∏
j∈u

xj

and exp(xj) = 1+ xj − x2
j /2+ · · · . (Remember this ↑ formula.)

24

d = 1 d++ LR

Discussion: what about higher dimensions?
Do you think the following integral is hard?∫

[0,2]d

d∏
j=1

exp(−x5
j + xj) dx

This is just the tensor product of our previous function.
Assume black box, otherwise yes, just do

∏d
j=1
∫ 2
0 exp(−x5

j + xj) dxj .
▶ The volume is 2d . The absolute error will scale with the volume.
▶ The difference between larger than 1 and smaller than 1 values

from the one-dimensional function will blow up exponentially for
the d-dimensional function.

▶ Looks like an innocent product, but, even,
d∏

j=1

(1 + xj) =
∑

u⊆{1,...,d}

(∏
j ̸∈u

1
)(∏

j∈u
xj

)
=

∑
u⊆{1,...,d}

∏
j∈u

xj

and exp(xj) = 1+ xj − x2
j /2+ · · · . (Remember this ↑ formula.)

24

d = 1 d++ LR

How to generalise quadrature formulae to higher dimensions?
Aim:
▶ Uncomplicated.
▶ No “curse by construction”.
▶ Optimal convergence.
▶ Possibility for dimension-independent bounds.

What about product rules?

n1∑
k1=1

w1
k1
· · ·

nd∑
kd=1

wd
kd
f (x1

k1
, . . . , xdkd)

E.g. take product of nj = 10 point rule in d = 10 dimensions.
How many points is that?

What about d = 100?
Ok we could have decreasing nj , but then something like
n11 = n12 = n13 = · · · = 1 must happen. Good intuition though.
So the question is: how high dimensional?

25

d = 1 d++ LR

How to generalise quadrature formulae to higher dimensions?
Aim:
▶ Uncomplicated.
▶ No “curse by construction”.
▶ Optimal convergence.
▶ Possibility for dimension-independent bounds.

What about product rules?

n1∑
k1=1

w1
k1
· · ·

nd∑
kd=1

wd
kd
f (x1

k1
, . . . , xdkd)

E.g. take product of nj = 10 point rule in d = 10 dimensions.
How many points is that? What about d = 100?

Ok we could have decreasing nj , but then something like
n11 = n12 = n13 = · · · = 1 must happen. Good intuition though.
So the question is: how high dimensional?

25

d = 1 d++ LR

How to generalise quadrature formulae to higher dimensions?
Aim:
▶ Uncomplicated.
▶ No “curse by construction”.
▶ Optimal convergence.
▶ Possibility for dimension-independent bounds.

What about product rules?

n1∑
k1=1

w1
k1
· · ·

nd∑
kd=1

wd
kd
f (x1

k1
, . . . , xdkd)

E.g. take product of nj = 10 point rule in d = 10 dimensions.
How many points is that? What about d = 100?
Ok we could have decreasing nj , but then something like
n11 = n12 = n13 = · · · = 1 must happen. Good intuition though.
So the question is: how high dimensional?

25

d = 1 d++ LR

26

d = 1 d++ LR

Higher dimension generalisations

So all depends on how high dimensional.
▶ Sparse grid and Smolyak constructions: but still scales like

n (log n)d−1 points.
▶ Monte Carlo sampling: but only n−1/2 convergence.
▶ Quasi-Monte Carlo sampling.

We are going for something that works for really high dimensions.
(Yes I mean Monte Carlo and quasi-Monte Carlo.)

27

d = 1 d++ LR

3. Lattice rules

28

d = 1 d++ LR

Lattice rule = equal weight cubature using lattice points
For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

29

d = 1 d++ LR

Lattice rule = equal weight quadrature using lattice points
For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

29

d = 1 d++ LR

Lattice rule = equal weight cubature using lattice points
For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

⇝ For good lattice rule Qn,z converges like n−α ∥f ∥α. Optimal
(Bakhvalov ’59): matching upper and lower bounds (modulo logs).

29

d = 1 d++ LR

Julia – Simple lattice rule example

Given n and z ∈ Zd
n :

xk :=
kz mod n

n
, Qn,z(f) :=

1
n

∑
k∈Zn

f (xk).

lattice_points(z, n) = (((k * z) .% n) ./ n for k in 0:n-1)

example function
f = r -> x -> abs(sum(exp.(2*pi*im*x)))^r

z = [1, 55]; n = 89 # Fibonacci lattice rule
mean(x -> f(1, x), lattice_points(z, n))

30

d = 1 d++ LR

Old slide: Matlab & Python

31

d = 1 d++ LR

Deterministic vs randomized lattice rules
Deterministic worst-case error for f ∈ Hα for a given algorithm Qn:

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

⇝ For good lattice rule Qn,z converges like n−α ∥f ∥α. Optimal
(Bakhvalov ’59): matching upper and lower bounds (modulo logs).

For a random family of deterministic rules Q∗
n := {Qω

n }ω:
Randomized error or worst-case expected error for f ∈ Hα:

eran(Q∗
n ,Hα) := sup

f ∈Hα
∥f ∥α≤1

Eω[|I (f)− Qω
n (f)|].

⇝ Possible to get n−α−1/2 ∥f ∥α. (Optimal. Bakhvalov.)
(For lattice rules: randomize number of points.
Kritzer, Kuo, Nuyens, M. Ullrich (2019), . . .)

32

d = 1 d++ LR

Error estimation by randomization

Easy way to randomize a lattice rule is by a random shift.
Given a shift ∆ ∈ [0, 1)d the kth shifted point becomes

xk(∆) =
(kz mod n

n
+∆

)
mod 1

=
(kz

n
+∆

)
mod 1 =

{kz
n

+∆
}
.

A shifted lattice rule:

Qn,z(f ;∆) =
1
n

∑
k∈Zn

f (xk(∆)).

If you take M shifts i.i.d. U([0, 1)d) then you have M independent
observations {Qn,z(f ;∆i)}Mi=1.
⇒ Calculate mean and standard error. (Construct CI.)

33

d = 1 d++ LR

Lattice sequences

Normally in base 2.
Can use the van der Corput sequence for enumerating.
Or if only interested in totals of 2m: evaluate the next odd indices.

34

d = 1 d++ LR

“Monte Carlo type” methods: 1
n

∑n
k=1 f (xk)

What kind of cubature/quadrature method to use for d large?
▶ A product of classical quadrature rules? (Product of weights!)

→ n = md ⇒ The curse “by construction”!
▶ The plain Monte Carlo method: xk ∼ U[0, 1)d .

→ Free to choose n.
▶ Quasi-Monte Carlo methods: using some algebraic structure.

→ Free to choose n.

grid MC QMC

n = md n free n free
error = O(n−r/d) std = O(n−1/2) error = O(n−1), . . .

35

d = 1 d++ LR

Julia – Lattice sequence in base 2 (as a plain rule sequence)
exew_base2_m20_a3_HKKN.txt from Magic Point Shop:
z = [1, 364981, 245389, 97823, 488939, 62609, 400749, 385317,

21281, 223487] # 10 dimension with max 2^20 points

lr_seq(d, z, m1, m2) =
(lattice_points(z[1:d], 2^m) for m in m1:m2)

d = 2; m1 = 10; m2 = 20;

Simple test function which integrates to 1
f = x -> prod(1 .+ (x .- 1/2))

Such nice vectorisation...
Es = abs.(mean.(f, lr_seq(d, z, m1, m2)) .- 1) # true integral=1

ns = 2 .^ (m1:m2)
scatter(ns, Es, xscale=:log10, yscale=:log10)
plot!(ns, ns .^ -1, xscale=:log10, yscale=:log10)

36

d = 1 d++ LR

Absolute error versus n for d = 2 → order 1 convergence

37

d = 1 d++ LR

Absolute error versus n for d = 10 → order 1 after bump

38

d = 1 d++ LR

What do we see?

▶ The curse of dimensionality. . .
▶ Why does this happen?

I promised you no curse. . .
It depends on the function space. . .

▶ When does this happen?
Or when does this not happen. . . next. . .

▶ And how do you know you have a good generating vector z?

All big questions which we will try to answer tomorrow.

39

d = 1 d++ LR

One last example: random shifting

Random shifting gives us a practical error estimator:

shift_mod1(shift) = x -> (x + shift) .% 1

M = 10 # number of random shifts
shifts = rand(d, M)

Gives an 11-by-10 matrix (M=10, number of powers of 2 = 11)
Qs = reduce(hcat,

mean.(f o shift_mod1(shift), lr_seq(d, z, m1, m2))
for shift in eachcol(shifts))

Qbar = mean(Qs, dims=2)
std_err = std(Qs, dims=2) / M

40

d = 1 d++ LR

Standard error plot d = 2

41

d = 1 d++ LR

Standard error plot d = 5

42

d = 1 d++ LR

Standard error plot d = 5 and tent-transform

43

Space LR wce Analysis RKHS CBC

Lecture 2:
Weighted function spaces and tractability

44

Space LR wce Analysis RKHS CBC

4. Function spaces

45

Space LR wce Analysis RKHS CBC

Function spaces

▶ We express “smoothness” in terms of norms of derivatives.
▶ Such spaces are called Sobolev spaces.
▶ There is many ways of defining these norms / spaces.
▶ Even for “classical” Sobolev spaces.

▶ For high-dimensional spaces we will use “mixed” norms.
▶ For tractability we will add weights over the dimensions.

▶ We define spaces as being those functions for which the norm
exists and is finite; and extra properties such as periodicity. . .

46

Space LR wce Analysis RKHS CBC

Classical Sobolev space H1(Ω)
Define the classical L2 Sobolev space norm of order 1 as

∥u∥H1(Ω) :=
(
∥u∥2

L2(Ω) + ∥∇u∥2
L2(Ω)

)1/2

=
(∫

Ω
|u(x)|2 dx +

∫
Ω
|∇u(x)|2 dx

)1/2

=
(∫

Ω
|u(x)|2 dx +

∫
Ω

d∑
j=1

|∂ju(x)|2 dx
)1/2

=
(
∥u∥2

L2(Ω) +
∑
τ∈Nd

0
∥τ∥1=1

∥Dτu∥2
L2(Ω)

)1/2

=
(∑

τ∈Nd
0

∥τ∥1≤1

∥Dτu∥2
L2(Ω)

)1/2
.

47

Space LR wce Analysis RKHS CBC

Classical L2 Sobolev spaces Hα(Ω)
So

∥u∥H1(Ω) :=
(∑

τ∈Nd
0

∥τ∥1≤1

∥Dτu∥2
L2(Ω)

)1/2
.

Define the corresponding space

H1(Ω) := {u ∈ L2(Ω) : ∥u∥H1(Ω) <∞}.

For α ∈ N0 define the Sobolev norm of order α by

∥u∥Hα(Ω) :=
(∑

τ∈Nd
0

∥τ∥1≤α

∥Dτu∥2
L2(Ω)

)1/2
,

and
Hα(Ω) :=

{
u ∈ L2(Ω) : ∥u∥Hα(Ω) <∞

}
.

NB: H0(Ω) ≡ L2(Ω).
48

Space LR wce Analysis RKHS CBC

Classical W α,p norms

Instead of taking L2 norms, one can also take Lp norms.

For α ∈ N0 and 1 ≤ p ≤ ∞, define the norm

∥u∥Wα,p(Ω) :=



(∑
τ∈Nd

0
∥τ∥1≤α

∥Dτu∥pLp(Ω)

)1/p
for 1 ≤ p <∞,

max
τ∈Nd

0
∥τ∥1≤α

∥Dτu∥L∞(Ω) for p = ∞,

and the corresponding spaces

W α,p(Ω) :=
{
u ∈ Lp(Ω) : ∥u∥Wα,p(Ω) <∞

}
.

49

Space LR wce Analysis RKHS CBC

Mixed Sobolev spaces
Classical norms have ∥τ∥1 ≤ α.

Mixed norms have ∥τ∥∞ ≤ α.

We will stick to the Hilbert space setting p = 2. Hence:

For α ∈ N0 define the mixed Sobolev norm of order α by

∥u∥Hα
mix(Ω) :=

(∑
τ∈Nd

0
∥τ∥∞≤α

∥Dτu∥2
L2(Ω)

)1/2
,

and
Hα

mix(Ω) :=
{
u ∈ L2(Ω) : ∥u∥Hα

mix(Ω) <∞
}
.

NB: H0
mix(Ω) ≡ H0(Ω) ≡ L2(Ω).

NBB: For Ω ⊂ R, i.e., d = 1: Hα
mix(Ω) ≡ Hα(Ω).

50

Space LR wce Analysis RKHS CBC

Fourier series and derivatives
Let us fix Ω = [0, 1]d and go back to periodic functions:

f (x) =
∑
h∈Zd

f̂ (h) exp(2πih · x) =
∑
h∈Zd

f̂ (h)
d∏

j=1

e2πi hjxj .

We have, for m ∈ Nd
0 , (and under sufficient smoothness conditions),

Dmf (x) =

51

Space LR wce Analysis RKHS CBC

Fourier series and derivatives
Let us fix Ω = [0, 1]d and go back to periodic functions:

f (x) =
∑
h∈Zd

f̂ (h) exp(2πih · x) =
∑
h∈Zd

f̂ (h)
d∏

j=1

e2πi hjxj .

We have, for m ∈ Nd
0 , (and under sufficient smoothness conditions),

Dmf (x) =
∑
h∈Zd

f̂ (h)
[d∏

j=1
s.t. mj ̸=0

∂mj

∂x
mj

j

e2πi hjxj
] [d∏

j=1
s.t. mj=0

e2πi hjxj
]

51

Space LR wce Analysis RKHS CBC

Fourier series and derivatives
Let us fix Ω = [0, 1]d and go back to periodic functions:

f (x) =
∑
h∈Zd

f̂ (h) exp(2πih · x) =
∑
h∈Zd

f̂ (h)
d∏

j=1

e2πi hjxj .

We have, for m ∈ Nd
0 , (and under sufficient smoothness conditions),

Dmf (x) =
∑
h∈Zd

f̂ (h)
[d∏

j=1
s.t. mj ̸=0

∂mj

∂x
mj

j

e2πi hjxj
] [d∏

j=1
s.t. mj=0

e2πi hjxj
]

=
∑
h∈Zd

s.t. hj ̸=0 when mj ̸=0

f̂ (h)
[d∏

j=1
s.t. mj ̸=0

(2πi hj)mj

]
e2πi h·x .

51

Space LR wce Analysis RKHS CBC

Combine with integration. . .
Fix v ⊆ {1, . . . , d}, then

Iv(f) :=

∫
[0,1]|v|

f (x) dxv =
∑
h∈Zd

f̂ (h)
[∏
j∈v

∫ 1

0
e2πi hjxj dxj

][∏
j ̸∈v

e2πi hjxj
]

=
∑
h∈Zd

s.t. hj=0 when j∈v

f̂ (h) exp(2πih · x).

We had

Dmf (x) =
∑
h∈Zd

s.t. hj ̸=0 when j∈supp(m)

f̂ (h)
[∏
j∈supp(m)

(2πi hj)mj

]
e2πi h·x .

Define supp∗(m) := {1, . . . , d} \ supp(m), then

Isupp∗(m)D
mf (x) =

∑
h∈Zd

s.t. supp(h)=supp(m)

f̂ (h)
[∏
j∈supp(h)

(2πi hj)mj

]
e2πi h·x .

52

Space LR wce Analysis RKHS CBC

Combine with integration. . .
Fix v ⊆ {1, . . . , d}, then

Iv(f) :=

∫
[0,1]|v|

f (x) dxv =
∑
h∈Zd

f̂ (h)
[∏
j∈v

∫ 1

0
e2πi hjxj dxj

][∏
j ̸∈v

e2πi hjxj
]

=
∑
h∈Zd

s.t. hj=0 when j∈v

f̂ (h) exp(2πih · x).

We had

Dmf (x) =
∑
h∈Zd

s.t. hj ̸=0 when j∈supp(m)

f̂ (h)
[∏
j∈supp(m)

(2πi hj)mj

]
e2πi h·x .

Define supp∗(m) := {1, . . . , d} \ supp(m), then

Isupp∗(m)D
mf (x) =

∑
h∈Zd

s.t. supp(h)=supp(m)

f̂ (h)
[∏
j∈supp(h)

(2πi hj)mj

]
e2πi h·x .

52

Space LR wce Analysis RKHS CBC

Combine with integration. . .
Fix v ⊆ {1, . . . , d}, then

Iv(f) :=

∫
[0,1]|v|

f (x) dxv =
∑
h∈Zd

f̂ (h)
[∏
j∈v

∫ 1

0
e2πi hjxj dxj

][∏
j ̸∈v

e2πi hjxj
]

=
∑
h∈Zd

s.t. hj=0 when j∈v

f̂ (h) exp(2πih · x).

We had

Dmf (x) =
∑
h∈Zd

s.t. hj ̸=0 when j∈supp(m)

f̂ (h)
[∏
j∈supp(m)

(2πi hj)mj

]
e2πi h·x .

Define supp∗(m) := {1, . . . , d} \ supp(m), then

Isupp∗(m)D
mf (x) =

∑
h∈Zd

s.t. supp(h)=supp(m)

f̂ (h)
[∏
j∈supp(h)

(2πi hj)mj

]
e2πi h·x .

52

Space LR wce Analysis RKHS CBC

Finally, the norm. . .
Note that ∑

h∈Zd

A(h) =
∑

u⊆{1,...,d}

∑
h∈Zd

s.t. supp(h)=u

A(h).

Using Parseval, it follows that∑
m∈{0,α}d

∥Isupp∗(m)D
mf ∥2

L2
=

∑
u⊆{1,...,d}

∥I{1,...,d}\uDαuf ∥2
L2

=
∑

u⊆{1,...,d}

∑
h∈Zd

s.t. supp(h)=u

|f̂ (h)|2
∏
j∈u

|2πhj |2α

=
∑
h∈Zd

|f̂ (h)|2
∏

j∈supp(h)

|2πhj |2α.

Yesterday with d = 1 we had ∥f (α)∥L2 semi-norm. . .
53

Space LR wce Analysis RKHS CBC

5. Error bounds for lattice rules

54

Space LR wce Analysis RKHS CBC

Cubature error for lattice rule

Remember: lattice rule = average over lattice points (kz mod n)/n.
For periodic function, + smoothness conditions:

1
n

∑
k∈Zn

f (zk/n)− I (f) =
∑

0 ̸=h∈Zd

f̂ (h)
1
n

∑
k∈Zn

exp(2πi (h · z) k/n)

=
∑

0̸=h∈Zd

h·z≡0 (mod n)

f̂ (h).

Error consists of the Fourier coefficients for which h · z is a multiple
of n, except h = 0.

55

Space LR wce Analysis RKHS CBC

Error bound
Hence, for α > 1/2,∣∣∣1
n

∑
k∈Zn

f (zk/n)− I (f)
∣∣∣ = ∣∣∣ ∑

0̸=h∈Zd

h·z≡0 (mod n)

f̂ (h)
∣∣∣

=
∣∣∣ ∑

0 ̸=h∈Zd

h·z≡0 (mod n)

f̂ (h)

∏
j∈supp(h) |2πhj |α∏
j∈supp(h) |2πhj |α

∣∣∣
≤
(∑

h∈Zd

|f̂ (h)|2
∏

j∈supp(h)

|2πhj |2α
)1/2(∑

0̸=h∈Zd

h·z≡0 (mod n)

∏
j∈supp(h)

|2πhj |−2α
)1/2

= ∥f ∥2
α e(α, z , n).

We implicitly defined a norm, recognizable from previous slides.
Now we need to show that e(α, z , n) is of order n−α.

56

Space LR wce Analysis RKHS CBC

Function space, including weights

Korobov space of dominating mixed smoothness α > 1/2:

Hα :=

f ∈ L2([0, 1]d) : ∥f ∥2
α :=

∑
h∈Zd

r2
α(h) |f̂ (h)|2 <∞

 ,

with
rα(h) := γ−1

supp(h)

∏
j∈supp(h)

|hj |α.

Weighted spaces: Sloan & Woźniakowski (2001),
Novak & Woźniakowski (2008, 2010, 2012), . . .

We need the weights to get error bounds independent of d .

57

Space LR wce Analysis RKHS CBC

6. Worst-case error analysis

58

Space LR wce Analysis RKHS CBC

How to measure deterministic algorithms? (Intro to IBC)
▶ Worst-case error for approximating I (f) by Qn(f) for f ∈ Fd :

e(Qn,Hd ,α,γ) := sup
f ∈Hd,α,γ

∥f ∥d,α,γ≤1

|I (f)− Qn(f)| ≤ upper bound for Qn.

▶ Best possible error using n function values (benchmark):

e(n,Hd ,α,γ) := inf
Qn:{(wk ,xk)}nk=1

e(Qn;Hd ,α,γ) ≥ lower bound for any Qn

= error of best algorithm using n function evaluations.

▶ Information complexity: the minimal number of function values
needed to reach error at most ϵ:

n(ϵ,Hd ,α,γ) := min {n : ∃Qn for which e(Qn,Hd ,α,γ) ≤ ϵ}
= number of function evaluations of best algorithm.

See a multitude of references, e.g., Novak (2016) or the
Novak–Woźniakowski trilogy (2008,2010,2012), . . .

59

Space LR wce Analysis RKHS CBC

The curse of dimensionality & types of tractability
Tractability started by Woźniakowski (1994) and since then vastly
expanded. . .
▶ The curse of dimensionality is defined as needing an exponential

number of function values in d to reach an error ϵ ≤ ϵ0:

n(ϵ,Hd ,α,γ) ≥ c (1 + γ)d , for some c , γ, ϵ0 > 0.

▶ A problem is called (weakly) tractable if

lim
ϵ−1+d→∞

ln n(ϵ, d)

ϵ−1 + d
= 0,

and intractable otherwise.
▶ Different types, e.g., polynomial tractability

n(ϵ,Hd ,α,γ) ≤ c ϵ−p dq, for some c, p, q ≥ 0.

See a multitude of references, in particular the Novak–Woźniakowski trilogy
(2008,2010,2012), . . .

60

Space LR wce Analysis RKHS CBC

The curse might always be there. . .
Define Fd with f ∈ Fd when

∥f ∥Fd
:= max

x ,y∈[0,1]d
|f (x)− f (y)|
∥x − y∥∞

< ∞,

then (Maung Zho Newn and Sharygin, 1971)

e(n,Fd) =
d

2d + 2
n−1/d .

This is for any (linear) algorithm!
See also Novak (2016).
The aim is to not just avoid the “curse by construction” (product
rule n = md), but also
▶ rate independent of d ⇒ “mixed dominating smoothness”.
▶ constant Cd ,α,γ independent of d ⇒ “weighted spaces”.

61

Space LR wce Analysis RKHS CBC

Tools / assumptions
▶ Mixed dominating smoothness spaces:

Classical Sobolev norm with ∥τ∥1 ≤ α gives O(n−α/d); mixed
norm with ∥τ∥∞ ≤ α gives O(n−α). I.e.,∑

τ∈{0,...,α}d
∥τ∥∞≤α

∥Dτ f ∥2
L2

versus
∑

τ∈{0,...,α}d
∥τ∥1≤α

∥Dτ f ∥2
L2
.

▶ Dimension-independent error bounds:
Switch to weighted spaces: not all combinations of variables are
as important. Denote the importance of the variables in
u ⊆ {1, . . . , d} by γu. I.e.,∑

τ∈{0,...,α}d
∥τ∥∞≤α

γ−1
supp(τ)∥D

τ f ∥2
L2
.

Mixed spaces: Novak, Sickel, Temlyakov, Kühn, Ullrich, Ullrich, Potts, . . .
Weights: Hickernell (1998), Sloan & Woźniakowski (1998), Novak–Woźniakowski, Dick,
Kuo, Sloan (2013), . . .

62

Space LR wce Analysis RKHS CBC

Again our favourite function space

Korobov space of dominating mixed smoothness α > 1/2:

Hd ,α,γ :=
{
f ∈ L2([0, 1]d) : ∥f ∥2

d ,α,γ <∞
}
,

with
∥f ∥2

d ,α,γ :=
∑
h∈Zs

r2
d ,α,γ(h) |f̂ (h)|2

and
r2
d ,α,γ(h) := γ−1

supp(h)

∏
j∈supp(h)

|hj |2α.

(Sometimes the 2π is present, sometimes it is not.)
(Sometimes the 2α is taken as α, different convention.)
(Sometimes the weights are squared.)

63

Space LR wce Analysis RKHS CBC

For integer smoothness

When α ∈ N then this norm can be written as the norm of the
unanchored periodic Sobolev space of dominating mixed smoothness
α:

∥f ∥2
d ,α,γ :=

∑
h∈Zd

r2
d ,α,γ(h) |f̂ (h)|2 =

∑
h∈Zd

γ−1
supp(h) |f̂ (h)|

2
∏

j∈supp(h)

|hj |2α

=
∑

ν∈{0,α}d
u:=supp(ν)

γ−1
u∏

j∈u(2π)
2νj

∫
[0,1]|u|

∣∣∣∫
[0,1]d−|u|

f (ν)(y−u, yu) dy−u︸ ︷︷ ︸
“unanchored”

∣∣∣2 dyu

=
∑

ν∈{0,α}d
u:=supp(ν)

γ−1
u ∥I−u f

(ν)∥2
L2
.

64

Space LR wce Analysis RKHS CBC

Usual error bounds

Example theorem.
For f ∈ Hd ,α,γ with α > 1/2 and n ∈ N we can construct a
generating vector z ∈ Zd

n such that

|I (f)− Qn,z(f)| ≤
Cd ,α,γ,λ

nλ
∥f ∥d ,α,γ for all λ ∈ [1/2, α)

with
Cd ,α,γ,λ = ...

With the right summability conditions on the weights this becomes a
dimension-independent convergence bound for some C ′

α,γ,λ with
Cd ,α,γ,λ < C ′

α,γ,λ <∞.

See a lot of CBC and fast CBC papers: Kuo, Sloan, Dick, Nuyens, Kritzer,
Ebert, Wilkes, Schwab, . . .

65

Space LR wce Analysis RKHS CBC

7. Reproducing kernel Hilbert spaces

66

Space LR wce Analysis RKHS CBC

Example of a good lattice rule
Eg: n = 21 and z = (1, 13): Fibonacci rule: n = Fk , z = (1,Fk−1).

Only d = 2, d ≥ 2: Constructive methods for deterministic error:
Fast component-by-component (Nuyens & Cools 2006, . . .)
→ Fixed vector z for a given n.

(Or sequence of n = pm, Cools, Kuo & Nuyens 2006).

67

Space LR wce Analysis RKHS CBC

Spaces based on series representations & Koksma–Hlawka
Assume L2-ONB {ϕh}h, ϕ0 = 1, Qn(1) = 1, and abs. summ.

f (x) =
∑
h

f̂ (h)ϕh(x), with f̂ (h) :=
∫
[0,1]d

f (x)ϕh(x) dx ,

then, for rα,γ(h) > 0 an “increasing” function,

|I (f)− Qn(f)| =

∣∣∣∣∣∣
∑
h ̸=0

f̂ (h)Qn(ϕh) rα,γ(h) r−1
α,γ(h)

∣∣∣∣∣∣
≤

(∑
h

∣∣∣f̂ (h)∣∣∣p rpα,γ(h)
)1/p

∑
h ̸=0

|Qn(ϕh)|q r−q
α,γ(h)

1/q

norm × worst-case error∗ .

(See next slide.)

68

Space LR wce Analysis RKHS CBC

Spaces based on series representations & Koksma–Hlawka
Assume L2-ONB {ϕh}h, ϕ0 = 1, Qn(1) = 1, and abs. summ.

f (x) =
∑
h

f̂ (h)ϕh(x), with f̂ (h) :=
∫
[0,1]d

f (x)ϕh(x) dx ,

then, for rα,γ(h) > 0 an “increasing” function,

|I (f)− Qn(f)| =

∣∣∣∣∣∣
∑
h ̸=0

f̂ (h)Qn(ϕh) rα,γ(h) r−1
α,γ(h)

∣∣∣∣∣∣
≤

(∑
h

∣∣∣f̂ (h)∣∣∣p rpα,γ(h)
)1/p

∑
h ̸=0

|Qn(ϕh)|q r−q
α,γ(h)

1/q

norm × worst-case error∗ .

(See next slide.)

68

Space LR wce Analysis RKHS CBC

Worst-case error (continued. . .)

|I (f)− Qn(f)| =

∣∣∣∣∣∣
∑
h ̸=0

f̂ (h)Qn(ϕh) rα,γ(h) r−1
α,γ(h)

∣∣∣∣∣∣
≤

(∑
h

∣∣∣f̂ (h)∣∣∣p rpα,γ(h)
)1/p

∑
h ̸=0

|Qn(ϕh)|q r−q
α,γ(h)

1/q

norm × worst-case error∗ .

For 1 < p ≤ ∞ and compatible choices of ϕh, Qn and rα,γ we can
find a “worst-case” representer ξ(x) for which

|Qn(ξ)− I (ξ)|1/q = e(Qn,Fd), (*)

independent of the particular Qn, e.g., Fourier series and lattice
rules, Walsh series and digital nets, see Nuyens (2014) and
Hickernell (1998a,b).

69

Space LR wce Analysis RKHS CBC

Reproducing kernel Hilbert spaces, p = q = 2
Given a one-dimensional reproducing kernel K (x , y) = K (y , x).
Suppose H(K) is separable: H(K) = span{ϕh}h and ϕ0 = 1.
Determine the eigenvalues and eigenfunctions, and assume λ0 = 1,∫

[0,1]
ϕ(x)K (x , y) dx = λϕ(y).

Then

K (x , y) =
∑
h

ϕh(x)√
λh

ϕh(y)√
λh

=
∑
h

ϕh(x)

∥ϕh∥L2

ϕh(y)

∥ϕh∥L2

,

the ϕh are L2-orthogonal, with ∥ϕh∥L2 =
√
λh and ∥ϕh∥H = 1, with

⟨f , g⟩H =
∑
h

λh f̂ (h) ĝ(h), ∥f ∥2
H =

∑
h

λh

∣∣∣f̂ (h)∣∣∣2 .
70

Space LR wce Analysis RKHS CBC

Multivariate weighted reproducing kernel Hilbert space
Use the one-dimensional space as building block for d dimensions by
taking weighted tensor products (tensor product basis):

K (x , y) =
∑

u⊆{1,...,d}

γu
∏
j∈u

K (xj , yj) =
∑
h

γsupp(h)

d∏
j=1

ϕhj (xj)√
λhj

ϕhj (yj)√
λhj

=
∑
h

r−2
α,γ(h)ϕh(x)ϕh(y),

with

r−2
α,γ(h) = γsupp(h)

d∏
j=1

λ−1
hj
.

With γ∅ = 1 and Qn(1) = 1,

e2(Qn;H) = −1 +
n∑

k,ℓ=1

wk wℓ K (xk , y ℓ).

71

Space LR wce Analysis RKHS CBC

For a shift-invariant space and lattice rule
For a shift-invariant space we have

K (x , y) = K (x − y , 0)

and for a lattice rule we have

xk − xk ′ = xk−k ′ mod n,

all on the torus [0, 1)d .
Hence:

e2(Qn,z ;H) = −1 +
n∑

k,ℓ=1

wk wℓ K (xk , y ℓ)

= −1 +
n∑

ℓ=1

1
n

n∑
k=1

1
n
K (xk−ℓ mod n, 0)

= −1 +
1
n

n∑
k=1

K (xk , 0).

72

Space LR wce Analysis RKHS CBC

8. Fast component-by-component construction of
good lattice rules

73

Space LR wce Analysis RKHS CBC

Construction of lattice rules and polynomial lattice rules

Point sets constructed for
weighted spaces using fast
component-by-component
constructions using number
theoretic transforms.

See https://www.cs.kuleuven.be/~dirkn/qmc4pde/ and
https://www.cs.kuleuven.be/~dirkn/fast-cbc/.

See, e.g., Nuyens & Cools (2006a,2006b), Cools, Kuo, & Nuyens (2006), Dick, Kuo, Le
Gia, Nuyens & Schwab (2014), Nuyens (2014), Kuo & Nuyens (2016), . . .
Variations and speedups by: Gantner, Kritzer, Laimer, Leobacher, Pillichshammer,
Schwab, . . . New methods: Ebert, Kritzer, Nuyens, Osisiogu (2021), Kuo, Nuyens,
Wilkes (2023), Nuyens, Wilkes (2023), . . .

74

https://www.cs.kuleuven.be/~dirkn/qmc4pde/
https://www.cs.kuleuven.be/~dirkn/fast-cbc/

Space LR wce Analysis RKHS CBC

Point generators

▶ Matlab/Octave: procedural generators like Matlab’s rand:
▶ latticeseq_b2.m: radical inverse lattice sequence generator,
▶ digitalseq_b2g.m: gray coded radical inverse digital

sequence generator (incl. higher-order, max 53 bit).
▶ Python: iterator classes, which can be used as standalone point

generators from the command line (__main__):
▶ latticeseq_b2.py: iterator based (__iter__), set_state

for parallel computing,
▶ digitalseq_b2g.py: ditto, arbitrary precision using mpmath if

needed.
▶ C++: header file based implementation with driver program for

the command line:
▶ latticeseq_b2.(h|cpp): complies to ForwardIterator

concept, set_state for parallel computing,
▶ digitalseq_b2g.(h|cpp): ditto, max 64 bit.

75

Space LR wce Analysis RKHS CBC

Welcome to
Different flavours of quasi-Monte Carlo points to choose:
▶ Lattice rules.
▶ Lattice sequences.
▶ Polynomial lattice rules.
▶ Interlaced Sobol’ sequences (higher-order).
▶ Interlaced polynomial lattice rules (higher-order).

And code (C++, Python and Matlab) to use them. . .

Subsidiaries: : construct points for parametrised PDEs.

76

UQ Diff Numerics DNN

Lecture 3:
Advanced topics

77

UQ Diff Numerics DNN

9. Applications in uncertainty quantification (UQ)

78

UQ Diff Numerics DNN

High-dimensional integrals for G (u(x , y))
Task: Approximate an s-dimensional integral / expectation

E[G (u)] = I (G (u)) :=

∫
Rs

G (u(y)) p(y) dy

=

∫
[0,1]s

G (u(P−1(y))) dy .

Method: An n-point cubature/quadrature method

Qn(G (u)) = Qn(G (u); {(wk , yk)}
n
k=1) :=

n∑
k=1

wk G (u(yk)).

(Using functional analysis and number theoretic uniform point sets.
To tackle integration, approximation and “other” high dimensional problems.)

Applications: random fields, parametrised PDEs, financial
engineering, Bayesian integrals, uncertainty quantification,. . .

79

UQ Diff Numerics DNN

Uncertainty quantification

QMC for high-dimensional integrals,
use s for number of (truncated) “stochastic” dimensions:
▶ Forward UQ: expected value of a quantity of interest.
▶ Backward UQ: estimate parameter values by Bayesian integrals.

(QMC can also be used for function approximation.)
80

UQ Diff Numerics DNN

Truncation, discretization, cubature: three errors

1. Truncate after s terms

as(x ; y) = a0(x) +
s∑

j=1

yj φj(x),

then the solution us is the solution of the truncated problem.
2. Discretize the PDE: use FEM and discretize with elements of

diameter h. The discretized solution we denote by ush.
3. Cubature approximation of integral:

1
n

n∑
k=1

G (ush(·; t(k))).

⇒ Total error is the sum of three errors.

81

UQ Diff Numerics DNN

Example: random fields / parametrised PDEs (s = ∞)
Parametric representation (e.g., Karhunen–Loève expansion)

a(x , y) = a0(x) +
∑
j≥1

yj ψj(x), x ∈ D, y ∈ [−1
2 ,

1
2]

N,

by sample variables yj . Use in porous flow using Darcy’s law:

q(x , y) + a(x , y)∇p(x , y) = f (x),
∇ · q(x , y) = 0.

See, e.g., Barth, Charrier, Cliffe, Dick, Gantner, Giles, Graham, Haji-Ali, Harbrecht,
Kuo, Le Gia, Nuyens, Nichols, Nobile, Peters, Robbe, Scheichl, Schwab, Siebenmorgen,
Sloan, Teckentrup, Tempone, Ullmann, Vandewalle, Zollinger, von Schwerin, . . .

82

UQ Diff Numerics DNN

Example: option pricing (s = hundreds, thousands, ∞)
Simulation of SDE

dX (t) = a(X (t)) dt + b(X (t)) dW (t), X (0) = X0, 0 ≤ t ≤ T ,

using Euler–Maruyama, X̂0 = X0,

X̂i+1 = X̂i + a(X̂i) h + b(X̂i)
√
h Zi , i = 1, . . . , n − 1, h = T/n,

with Zi sampled from standard normal distribution.

See, e.g., Achtsis, Baldeaux, Boyle, Cools, Gerstner, Giles, Glasserman, Griebel, Holtz,
Imai, Irrgeher, Joshi, Kucherenko, Kuo, L’Écuyer, Larcher, Lemieux, Leobacher, Lin,
Nuyens, Niu, Ökten, Pages, Platen, Sloan, Staum, Szölgyenyi, Tan, Tezuka, Tichy,
Traub, Tuffin, Wang, Waterhouse, . . .

83

UQ Diff Numerics DNN

Example: option pricing (s = hundreds, thousands, ∞)
Simulation of SDE

dX (t) = a(X (t)) dt + b(X (t)) dW (t), X (0) = X0, 0 ≤ t ≤ T ,

using Euler–Maruyama, X̂0 = X0,

X̂i+1 = X̂i + a(X̂i) h + b(X̂i)
√
h Zi , i = 1, . . . , n − 1, h = T/n,

with Zi sampled from standard normal distribution.

See, e.g., Achtsis, Baldeaux, Boyle, Cools, Gerstner, Giles, Glasserman, Griebel, Holtz,
Imai, Irrgeher, Joshi, Kucherenko, Kuo, L’Écuyer, Larcher, Lemieux, Leobacher, Lin,
Nuyens, Niu, Ökten, Pages, Platen, Sloan, Staum, Szölgyenyi, Tan, Tezuka, Tichy,
Traub, Tuffin, Wang, Waterhouse, . . .

83

UQ Diff Numerics DNN

Example: Bayesian integrals (s = hundreds, thousands, ∞)
Simulation of insulin-glucose model

dG (t)/dt = −λ (G (t)− Gb)− β X (t)G (t) + Ra(t)

dX (t)/dt = −µX (t) + µ (I (t)− Ib)

to infer parameters and quantify input uncertainty given noisy
measurement G η

ref(t) and uncertain input data Ra(t).

Using evaluation of the integral point-of-view: see, e.g., Dick, Gantner, Le Gia, Nuyens,
Scheichl, Schillings, Schwab, Stuart, Teckentrup, . . .

84

UQ Diff Numerics DNN

Example: Helmholtz equation (s = ∞)
Exterior Dirichlet problem on Rd \ S such that u(x , y) satisfies

−∇ · (A(x , y)∇u(x , y)− k2 n(x , y) u(x , y) = −f (x) outside of S ,

with u = 0 on ∂S and the Sommerfeld radiation condition

∂ru(x , y)− i k u(x , y) ∈ o(r−(d−1)/2) for r = ∥x∥2 → ∞.

Example QoI = expected far field pattern for random field n(x , y).

Graham, Kuo, Nuyens, Spence, Sloan (in preparation)
85

UQ Diff Numerics DNN

Example: DNN for PDE / function approximation (s large, ∞)
Assuming Chebyshev basis for random field (where yj ∈ [−1, 1] e.g.
Adcock, Brugiapaglia, Webster (2022)) but formulated in terms of
uniform yj ∈ [0, 1] variables:

a(x , y) = ϕ0(x) +
∑
j≥1

sin(2πyj)ϕj(x).

Use n training examples (y ,G) to optimize DNN. Training error is
used as proxy for real error / generalization error / L2 approximation
error:

E 2
T (θ) =

1
n

n∑
k=1

|G (y (k))− Gθ(y (k))|2,

E 2
G (θ) =

∫
[0,1]s

|G (y)− Gθ(y)|2 dy = ∥G − Gθ∥2
L2
.

POV: You are approximating the integral of |G − Gθ|2. . .
Keller, Kuo, Nuyens, Sloan (in preparation); Mishra, Rusch (2021), Longo, Mishra,
Rusch, Schwab (2021), . . .

86

UQ Diff Numerics DNN

10. Obtaining error bounds for the diffusion example

87

UQ Diff Numerics DNN

Error analysis for QMC part
Calculate expected value of G (u(x ; y)) over y ∼ ⊗j≥1µj(U)

E[G (u)] =

∫
UN

G (u(·; y))µ(dy)

with u(·; y) the solution of the PDE for the parameter choice y .

▶ This is an integral of a function F (y) = G (u(·; y)).
What with x?

▶ For QMC convergence analysis: need to know what function
space F belongs to. Easiest if G is a linear function that
removes the effect of x .

Demonstratation for “uniform case” a = a0 +
∑

j≥1 yjφj and for first
order mixed derivatives (1st order convergence for QMC) and G a
linear functional.

88

UQ Diff Numerics DNN

Solving the PDE: transform to weak form
Strong form of PDE demands u ∈ V to satisfy, for given y ,

−∇ · a(x ; y)∇u(x ; y) = f (x).

The weak form demands u ∈ V to satisfy, for given y ,∫
Ω
−∇ · a(x ; y)∇u(x ; y) v(x) dx =

∫
Ω
f (x) v(x) dx , ∀v ∈ V0.

For QMC analysis we have norms depending on mixed derivatives.
Want to know the sensitivity w.r.t. the parameters (y1, y2, . . .):

∂yju(x ; y) :=
∂

∂yj
u(x ; y), ∂uyu(x ; y) :=

∏
j∈u

∂

∂yj
u(x ; y) =

∂|u|

∂yu

u(x ; y),

∂τy u(x ; y) :=
∏
j∈u

∂τj

∂y
τj
j

u(x ; y) =
∂|τ |

∂yτ
u(x ; y).

89

UQ Diff Numerics DNN

Solving the PDE: transform to weak form
Strong form of PDE demands u ∈ V to satisfy, for given y ,

−∇ · a(x ; y)∇u(x ; y) = f (x).

The weak form demands u ∈ V to satisfy, for given y ,∫
Ω
a(x ; y)∇u(x ; y) · ∇v(x) dx =

∫
Ω
f (x) v(x) dx , ∀v ∈ V0.

For QMC analysis we have norms depending on mixed derivatives.
Want to know the sensitivity w.r.t. the parameters (y1, y2, . . .):

∂yju(x ; y) :=
∂

∂yj
u(x ; y), ∂uyu(x ; y) :=

∏
j∈u

∂

∂yj
u(x ; y) =

∂|u|

∂yu

u(x ; y),

∂τy u(x ; y) :=
∏
j∈u

∂τj

∂y
τj
j

u(x ; y) =
∂|τ |

∂yτ
u(x ; y).

89

UQ Diff Numerics DNN

Towards the norm for the QMC cubature
For QMC we want to bound a norm like

∥F∥2
α :=

∑
τ∈{0:α}s

γ−2
supp(τ) ∥∂

τ
y F∥2

L2
.

But our function F = G (u(x ; y)).
Assume G is a linear functional then for any y

∂τy G (u(x ; y))(y) = G (∂τy u(x ; y)) ≤ ∥G∥V ∗ ∥∂τy u(·; y)∥V .

Define a corresponding Bochner norm

∥u∥2
α,Us ,V :=

∑
τ∈{0:α}s

γ−2
supp(τ) ∥∥∂

τ
y u(·; y)∥2

V ∥2
L2
.

We have

∥G (u(·; y))∥α,Us ,V ≤ ∥G∥V ∗ ∥u(·; y)∥α,Us ,V .

To bound ∥u∥α,Us ,V we need bounds on ∥∂τy u(·; y)∥V for given y .
90

UQ Diff Numerics DNN

Differentiate under the integral in the weak form
Apply derivative to weak form, for all v ∈ V0 and for any given y :

∂τy

∫
Ω
a(x ; y)∇u(x ; y) · ∇v(x) dx = ∂τy

∫
Ω
f (x) v(x) dx

⇔
∫
Ω
∂τy (a(x ; y)∇u(x ; y)) · ∇v(x) dx = 0.

Use Leibniz formula:

∂τy (a(x ; y)∇u(x ; y)) =
∑
ω≤τ

(
τ

ω

)
∂ωy (a(x ; y)) ∂τ−ω

y (∇u(x ; y))

“uniform” case, a(x ; y) = a0(x) +
∑

j≥1 yj φj(x):

=
∑
ω≤τ
|ω|≤1

(
τ

ω

)
∂ωy (a(x ; y)) ∂τ−ω

y (∇u(x ; y))

= a(x ; y)∇∂τy u(x ; y) +
∑

j∈supp(τ)

τj φj(x)∇∂
τ−e j
y u(x ; y).

91

UQ Diff Numerics DNN

Continued. . .
Thus for any given y and for any v ∈ V0 the solution u satisfies∫

Ω
a(x ; y)∇∂τy u(x ; y) · ∇v(x) dx

= −
∑

j∈supp(τ)

τj

∫
Ω
φj(x)∇∂

τ−e j
y u(x ; y) · ∇v(x) dx .

We are free to choose v(x) = ∂τu(x ; y). Define the energy norm
(Cohen, Bachmayr, Migliorati)

∥∂τy u(·; y)∥2
ay :=

∫
Ω
a(x ; y) |∇∂τy u(x ; y)|2 dx

and the V -norm

∥∂τy u(·; y)∥2
V :=

∫
Ω
|∇∂τy u(x ; y)|2 dx ≤ a−1

min ∥∂
τu(·; y)∥2

ay .

(Note that for the solution of the PDE we need a(x ; y) ≥ amin > 0.)
92

UQ Diff Numerics DNN

Continued. . . (2)
Thus we have

∥∂τy u(·; y)∥2
ay = −

∫
Ω

∑
j∈supp(τ)

τj φj(x)∇∂
τ−e j
y u(x ; y)·∇∂τy u(x ; y) dx

Now there are different routes in different papers. We follow a
particularly nice one (imho). (Refs: Kazashi, Schwab & Herrmann)
For some bj > 0 and bτ =

∏
j≥1 b

τj
j , apply Cauchy–Schwarz tob−2τ

∑
j∈supp(τ)

τj φj(x)∇∂
τ−e j
y u(x ; y) · ∇∂τy u(x ; y)

2

≤
∑

j∈supp(τ)

b−e j τj |φj(x)|
∣∣∣b−(τ−e j)∇∂τ−e j

y u(x ; y)
∣∣∣2

×
∑

j∈supp(τ)

b−e j τj |φj(x)|
∣∣b−τ ∇∂τy u(x ; y)

∣∣2
93

UQ Diff Numerics DNN

Continued. . . (3)
Now we apply the next nice trick. (Refs: Cohen, DeVore, Schwab)
For some k consider the sum∑

|τ |=k

∑
j∈supp(τ)

Aj(τj)Bτ−e j =
∑

|ω|=k−1

∑
j≥1

Aj(ωj + 1)Bω.

For our case, and limiting to 1st order, thus τ ∈ {0, 1}s , then

∑
τ∈{0,1}s
|τ |=k

∑
j∈supp(τ)

τj
|φj(x)|

bj

∣∣∣b−(τ−e j)∇∂τ−e j
y u(x ; y)

∣∣∣2

=
∑

ω∈{0,1}s
|ω|=k−1

s∑
j=1

|φj(x)|
bj

∣∣b−ω ∇∂ωy u(x ; y)
∣∣2 .

We can use this to “reduced the order” from k to k − 1.
94

UQ Diff Numerics DNN

Continued. . . (4)

Thus combining these tricks we obtain ∑
τ∈{0,1}s
|τ |=k

b−2τ ∥∂τy u(·; y)∥2
ay


2

≤
∫
Ω

∑
ω∈{0,1}s
|ω|=k−1

s∑
j=1

|φj(x)|
bj

∣∣b−ω ∇∂ωy u(x ; y)
∣∣2 dx

×
∫
Ω

∑
τ∈{0,1}s
|τ |=k

∑
j∈supp(τ)

|φj(x)|
bj

∣∣b−τ ∇∂τy u(x ; y)
∣∣2 dx

95

UQ Diff Numerics DNN

Continued. . . (5)

Rewrite: ∑
τ∈{0,1}s
|τ |=k

b−2τ ∥∂τy u(·; y)∥2
ay


2

≤

 s∑
j=1

∥φj∥L∞
bj amin

2 ∑
ω∈{0,1}s
|ω|=k−1

b−2ω∥∂ωy u(·; y)∥2
ay

×
∑

τ∈{0,1}s
|τ |=k

b−2τ∥∂τy u(·; y)∥2
ay

96

UQ Diff Numerics DNN

Continued. . . (6)
Finally, enclosing all with the trick from Kuo, Schwab, Sloan (2012),∑

τ∈{0,1}s
|τ |=k

b−2τ ∥∂τy u(·; y)∥2
ay

≤

 s∑
j=1

∥φj∥L∞
bj amin

2 ∑
ω∈{0,1}s
|ω|=k−1

b−2ω∥∂ωy u(·; y)∥2
ay

≤

 s∑
j=1

∥φj∥L∞
bj amin

2k

∥u(·; y)∥2
ay ,

and

∑
τ∈{0,1}s
|τ |=k

b−2τ ∥∂τy u(·; y)∥2
V ≤ amax

amin

 s∑
j=1

∥φj∥L∞
bj amin

2k

∥u(·; y)∥2
V .

97

UQ Diff Numerics DNN

Continued. . . (7)
Now we are finally where we need to be.
From the last expression we obtain

b−2τ ∥∂τy u(·; y)∥2
V ≤ amax

amin

 s∑
j=1

∥φj∥L∞
bj amin

2 |τ |

∥u(·; y)∥2
V

Further, from the PDE we know the a priori bound

∥u(·; y)∥V ≤ ∥f ∥V ∗

amin
,

note that for the “uniform case” this bound is uniform in y .
We ended up with product weights.
The bound is independent of s if we can find a sequence bj such that∑

j≥1

∥φj∥L∞
bj amin

< 1.

98

UQ Diff Numerics DNN

Modern view of QMC error bounds
For the QMC error we end up with bounds for F (y) = G (ush(x , y))
of the form

|I (F)− Qn(F)| ≤ ∥F∥s,α,γ wces,α,γ(n)

which basically looks like this:(∑
u⊆{1,...,s}

γ−1
u Au

)1/2 (∑
u⊆{1,...,s}

γλu Bu

)1/2λ
.

Modern view, e.g., Kuo, Sloan, Schwab (2012), is to minimize the
upper bound by choosing

γu =

(
Au

Bu

)1/(1+λ)

.

Nguyen, Nuyens (2021a, 2021b).
99

UQ Diff Numerics DNN

11. Numerical example of porous flow

100

UQ Diff Numerics DNN

Example of porous flow with circulant embedding
Assume the following elliptic PDE

−∇ ·
(
a(x , ω)∇u(x , ω)

)
= f (x), for x ∈ D, a.s. ω ∈ Ω,

and u(x , ω) = 0 for x ∈ δD, where

▶ D ⊂ Rd is a “nice” bounded physical domain, d = 1, 2, 3,
▶ ω is a random event from (Ω,A,P),
▶ a(x , ω) is a scalar lognormal random field:

a(x , ω) = exp(Z (x , ω))

with Z (x , ω) a homogenous Gaussian random field with Matérn
covariance function with parameter ν > 1/2

r(x , x ′) = ρν(r) = σ2 21−ν

Γ(ν)
(αr)ν Kν (αr) , α = 2

√
ν/λ,

with r = ∥x − x ′∥p, λ the length scale and σ2 the variance.

101

UQ Diff Numerics DNN

Example of porous flow with circulant embedding
Assume the following elliptic PDE

−∇ ·
(
a(x , ω)∇u(x , ω)

)
= f (x), for x ∈ D, a.s. ω ∈ Ω,

and u(x , ω) = 0 for x ∈ δD, where
▶ D ⊂ Rd is a “nice” bounded physical domain, d = 1, 2, 3,

▶ ω is a random event from (Ω,A,P),
▶ a(x , ω) is a scalar lognormal random field:

a(x , ω) = exp(Z (x , ω))

with Z (x , ω) a homogenous Gaussian random field with Matérn
covariance function with parameter ν > 1/2

r(x , x ′) = ρν(r) = σ2 21−ν

Γ(ν)
(αr)ν Kν (αr) , α = 2

√
ν/λ,

with r = ∥x − x ′∥p, λ the length scale and σ2 the variance.

101

UQ Diff Numerics DNN

Example of porous flow with circulant embedding
Assume the following elliptic PDE

−∇ ·
(
a(x , ω)∇u(x , ω)

)
= f (x), for x ∈ D, a.s. ω ∈ Ω,

and u(x , ω) = 0 for x ∈ δD, where
▶ D ⊂ Rd is a “nice” bounded physical domain, d = 1, 2, 3,
▶ ω is a random event from (Ω,A,P),

▶ a(x , ω) is a scalar lognormal random field:

a(x , ω) = exp(Z (x , ω))

with Z (x , ω) a homogenous Gaussian random field with Matérn
covariance function with parameter ν > 1/2

r(x , x ′) = ρν(r) = σ2 21−ν

Γ(ν)
(αr)ν Kν (αr) , α = 2

√
ν/λ,

with r = ∥x − x ′∥p, λ the length scale and σ2 the variance.

101

UQ Diff Numerics DNN

Example of porous flow with circulant embedding
Assume the following elliptic PDE

−∇ ·
(
a(x , ω)∇u(x , ω)

)
= f (x), for x ∈ D, a.s. ω ∈ Ω,

and u(x , ω) = 0 for x ∈ δD, where
▶ D ⊂ Rd is a “nice” bounded physical domain, d = 1, 2, 3,
▶ ω is a random event from (Ω,A,P),
▶ a(x , ω) is a scalar lognormal random field:

a(x , ω) = exp(Z (x , ω))

with Z (x , ω) a homogenous Gaussian random field with Matérn
covariance function with parameter ν > 1/2

r(x , x ′) = ρν(r) = σ2 21−ν

Γ(ν)
(αr)ν Kν (αr) , α = 2

√
ν/λ,

with r = ∥x − x ′∥p, λ the length scale and σ2 the variance.

101

UQ Diff Numerics DNN

Example of porous flow with circulant embedding
Assume the following elliptic PDE

−∇ ·
(
a(x , ω)∇u(x , ω)

)
= f (x), for x ∈ D, a.s. ω ∈ Ω,

and u(x , ω) = 0 for x ∈ δD, where
▶ D ⊂ Rd is a “nice” bounded physical domain, d = 1, 2, 3,
▶ ω is a random event from (Ω,A,P),
▶ a(x , ω) is a scalar lognormal random field:

a(x , ω) = exp(Z (x , ω))

with Z (x , ω) a homogenous Gaussian random field with Matérn
covariance function with parameter ν > 1/2

r(x , x ′) = ρν(r) = σ2 21−ν

Γ(ν)
(αr)ν Kν (αr) , α = 2

√
ν/λ,

with r = ∥x − x ′∥p, λ the length scale and σ2 the variance.
101

UQ Diff Numerics DNN

From random field to parametrised problem
We parametrise the random event ω by a vector y(ω) ∈ R∞.
E.g., using the Karhunen-Loève (KL) expansion:

a(x , ω) ≡ a(x , y) = a0(x) exp

∑
j≥1

yj
√
µj ξj(x)

 ,

with yj ∼ N(0, 1), and {(µj , ξj)}j≥1 is the sequence of ordered
eigenvalues and eigenfunctions of the integral operator

(R ξ)(x) =
∫
D
ρν(∥x − x ′∥p) ξ(x ′) dx ′.

The “roughness” depends on the summability of bj =
√
µj ∥ξj∥L∞ ,

for 0 < p < 1 (smaller is smoother) [Cohen, DeVore, Schwab’10]:∑
j≥1

(√
µj ∥ξj∥L∞

)p
=
∑
j≥1

bpj <∞.

102

UQ Diff Numerics DNN

From random field to parametrised problem
We parametrise the random event ω by a vector y(ω) ∈ R∞.
E.g., using the Karhunen-Loève (KL) expansion:

a(x , ω) ≡ a(x , y) = a0(x) exp

∑
j≥1

yj
√
µj ξj(x)

 ,

with yj ∼ N(0, 1), and {(µj , ξj)}j≥1 is the sequence of ordered
eigenvalues and eigenfunctions of the integral operator

(R ξ)(x) =
∫
D
ρν(∥x − x ′∥p) ξ(x ′) dx ′.

The “roughness” depends on the summability of bj =
√
µj ∥ξj∥L∞ ,

for 0 < p < 1 (smaller is smoother) [Cohen, DeVore, Schwab’10]:∑
j≥1

(√
µj ∥ξj∥L∞

)p
=
∑
j≥1

bpj <∞.

102

UQ Diff Numerics DNN

Aim: Calculate expected value of quantity of interest
Given ω and corresponding solution u(x , ω) we are interested in

Eω [G(u(x , ω))] =
∫
R∞

G(u(x , y))ϕ(y) dy

=

∫
(0,1)∞

G(u(x ,Φ−1(y))) dy ,

for some linear functional G acting on the physical space x ,
with ϕ the multivariate normal and Φ−1 it’s cumulative inverse.

The error breaks down in three pieces:
1. u(x , y) ≈ uh(x , y) (FEM discretisation + quadrature),

2.
∫
(0,1)∞ ≈

∫
(0,1)s (KL-trunc. or avoid by circ. emb. → intp. err.)

3.
∫
(0,1)s ≈

1
N

∑N
k=1 (quadrature approximation for Eω).

Circulant embedding e.g.
[Dietrich,Newsam’97;Graham,Kuo,Nuyens,Scheichl,Sloan’11].

103

UQ Diff Numerics DNN

Aim: Calculate expected value of quantity of interest
Given ω and corresponding solution u(x , ω) we are interested in

Eω [G(u(x , ω))] =
∫
R∞

G(u(x , y))ϕ(y) dy

=

∫
(0,1)∞

G(u(x ,Φ−1(y))) dy ,

for some linear functional G acting on the physical space x ,
with ϕ the multivariate normal and Φ−1 it’s cumulative inverse.
The error breaks down in three pieces:
1. u(x , y) ≈ uh(x , y) (FEM discretisation + quadrature),

2.
∫
(0,1)∞ ≈

∫
(0,1)s (KL-trunc. or avoid by circ. emb. → intp. err.)

3.
∫
(0,1)s ≈

1
N

∑N
k=1 (quadrature approximation for Eω).

Circulant embedding e.g.
[Dietrich,Newsam’97;Graham,Kuo,Nuyens,Scheichl,Sloan’11].

103

UQ Diff Numerics DNN

A 2D discretisation example
1. Discretise using linear elements to represent uh.
2. Approximate Galerkin integrals with midpoint rule on each

element τ (single evaluation in center of mass xC
τ).

3. Approximate a(xC
τ , ω) by multilinear interpolation on the

regular grid.

104

UQ Diff Numerics DNN

A 2D discretisation example
1. Discretise using linear elements to represent uh.
2. Approximate Galerkin integrals with midpoint rule on each

element τ (single evaluation in center of mass xC
τ).

3. Approximate a(xC
τ , ω) by multilinear interpolation on the

regular grid.

104

UQ Diff Numerics DNN

A 2D discretisation example
1. Discretise using linear elements to represent uh.
2. Approximate Galerkin integrals with midpoint rule on each

element τ (single evaluation in center of mass xC
τ).

3. Approximate a(xC
τ , ω) by multilinear interpolation on the

regular grid.

104

UQ Diff Numerics DNN

A 2D discretisation example
1. Discretise using linear elements to represent uh.
2. Approximate Galerkin integrals with midpoint rule on each

element τ (single evaluation in center of mass xC
τ).

3. Approximate a(xC
τ , ω) by multilinear interpolation on the

regular grid.

104

UQ Diff Numerics DNN

A 2D discretisation example
1. Discretise using linear elements to represent uh.
2. Approximate Galerkin integrals with midpoint rule on each

element τ (single evaluation in center of mass xC
τ).

3. Approximate a(xC
τ , ω) by multilinear interpolation on the

regular grid.

104

UQ Diff Numerics DNN

Dimension independent error estimate for Eω [G(u(x , ω))]
using randomly shifted lattice rule

Theorem ([Graham,Kuo,Nuyens,Scheichl,Sloan ’18b])
If ∥b(s)∥p ≤ c , with 1 ≥ p > 2

3 ,

∥F∥s,γ ≲

 ∑
u⊆{1:s}

γ−1
u

(
|u|!

(log 2)|u|

)2∏
j∈u

b̃2
j

αj − bj

1/2

with all αj > bj , b̃j = bj/(2 exp(b2
j /2)Φ(bj)), then

RMS∆ (Is(F)− Qs,n(F ,∆)) ≲ Cp n
− 1
p+

1
2 ,

where Cp → ∞ for p → 2
3 .

105

UQ Diff Numerics DNN

3D porous flow example
m0 = 7, 14, 28, h = 0.24, 0.12, 0.06, s = 2 744, . . . , 37 933 056 stochastic dimensions

10−5

10−4

10−3

10−2
−0.48

−0.84

λ = 0.2

ν
=

0.
5

−0.47

−0.75

λ = 0.5

10−5

10−4

10−3

10−2
−0.48

−0.83

ν
=

3

−0.5

−0.73

102 103 104 105
10−5

10−4

10−3

10−2
−0.5

−0.8

ν
=

4

102 103 104 105

−0.52

−0.75

number of PDE solves (q = 64 shifts): N = q n (nbsolves)

re
la
ti
ve

st
an

d
ar
d
er
ro
r
(r
e
l
S
1
)

106

UQ Diff Numerics DNN

3D porous flow example
m0 = 7, 14, 28, h = 0.24, 0.12, 0.06, s = 2 744, . . . , 37 933 056 stochastic dimensions

10−5

10−4

10−3

10−2
−0.48

−0.84

λ = 0.2

ν
=

0.
5

−0.47

−0.76

λ = 0.5

10−5

10−4

10−3

10−2
−0.48

−0.84

ν
=

3

−0.5

−0.73

100 101 102 103
10−5

10−4

10−3

10−2
−0.5

−0.81

ν
=

4

100 101 102 103

−0.52

−0.76

time in minutes (q = 64 shifts for QMC) (cur_t_min)

re
la
ti
ve

st
an

d
ar
d
er
ro
r
(r
e
l
S
1
)

106

UQ Diff Numerics DNN

12. DNN regularity bounds

107

UQ Diff Numerics DNN

DNNs and function approximation
Elliptic PDEs with coefficients in Chebyshev / periodic setting.
G (y) could e.g. be us,h(x†, y). Approximate G by a DNN.
This motivates the “periodic” DNN, Gθ = G

[L]
θ ,G

[0]
θ (y) := W0 sin(2πy) + b0

G
[ℓ]
θ (y) := Wℓ(σ(G

[ℓ−1]
θ (y))) + bℓ, ℓ = 1, . . . , L.

▶ Wℓ is a dℓ+1 × dℓ matrix
▶ bℓ is a dℓ+1 × 1 vector
▶ d0 = s is the dimension of the input vector y
▶ dL+1 = 1 (for the example of point evaluation)
▶ σ is a smooth activation function

Keller, Kuo, Nuyens, Sloan (2024+)

108

UQ Diff Numerics DNN

Error analysis: approximation to integration
Mishra, Rusch (2021); Longo, Mishra, Rusch, Schwab (2021)
▶ Generalization error (L2 approximation error)

EG = EG (θ) :=

(∫
[0,1]s

|G (y)−Gθ(y)|2 dy
)1/2

= ∥G−Gθ∥L2

▶ Training error

ET = ET (θ) :=

(
1
n

n−1∑
k=0

|G (tk)−Gθ(tk)|2
)1/2

using lattice points

▶ Generalization gap

|EG − ET | ≤
√
|E 2

G − E 2
T | quadrature error for (G − Gθ)

2

▶ Hence

EG ≤ ET+|EG−ET | ≤ ET+CΘ e int(Qs,n,z ,Hs,α,γ) ∥(G − Gθ)
2∥s,α,γ ∼ n−α

Keller, Kuo, Nuyens, Sloan (2024+)
109

UQ Diff Numerics DNN

Regularity periodic DNN for L2 approximation
We have Gθ = G

[L]
θ withG

[0]
θ (y) := W0 sin(2πy) + b0

G
[ℓ]
θ (y) := Wℓ(σ(G

[ℓ−1]
θ (y))) + bℓ, ℓ = 1, . . . , L

Theorem. Keller, Kuo, Nuyens, Sloan (2024+)

|∂νGθ(y)| ≤ (2π R1 · · ·RL−1)
|ν| RL AL,|ν|

s∏
j=1

Tνj (βj)

▶ max1≤k≤d1 |W0,k,j | ≤ βj , j = 1, . . . , s
▶ max1≤k≤dℓ+1

∑
1≤j≤dℓ

|Wℓ,k,j | ≤ Rℓ, ℓ = 1, . . . , L
▶ AL,n depends on activation function

Hence the difference between approximation error and training error
will converge like n−α if you take training points on QMC point sets.
(Periodic and non-periodic.) See also Longo, Mishra, Rusch, Schwab
(2021) for higher-order polynomial lattice rules.

110

The end!

Thank you.

111

The end!

Thank you.

111

	0
	Lecture 1: Introduction to high-dimensional integration
	
	One-dimensional integrals
	Higher dimensions
	
	Lattice rules

	Lecture 2: Weighted function spaces and tractability
	
	Function spaces
	Eror bounds for lattice rules
	Analysis
	RKHS
	CBC

	Lecture 3. Advanced topics
	
	Applications in uncertainty quantification (UQ)
	Obtaining error bounds for the diffusion example
	Numerical example of porous flow
	DNN regularity bounds

	0

