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Partial Differential Equations

Some Facts about PDE Solvers:

▶ Precise physical models exist.

▶ The discretization process is very well understood.

▶ Often optimal solvers are available.
▶ A rich bouquet of highly sophisticated solvers are developed:

▶ Finite-element methods
▶ Wavelet-based approaches
▶ ...

Why do we need deep neural networks?

; Deep neural networks can beat the curse of dimensionality in high
dimensional problems!
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Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:
Approximate the solution u of a PDE

L(u) = f

by a neural network Φ, i.e., determine

L(Φ) ≈ f .

Key Ideas:

▶ Sampling of points in the spatial domain

▶ Incorporate PDE in the loss functions

Incomplete List of Contributions:
[Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano,

Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Raissi, Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], . . .



Let’s Now Enter the World of Parametric PDEs



Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of
science and engineering.

Some Exemplary Problem Classes:

▶ Complex design problems

▶ Inverse problems

▶ Optimization tasks

▶ Uncertainty quantification

▶ ...

The number of parameters can be

▶ finite (physical properties such as domain geometry, ...)

▶ infinite (modeling of random stochastic diffusion field, ...)

Parametric Map:

Y ∋ y 7→ uy ∈ H such that L(uy , y) = fy .



Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

by (uy , v) = fy (v), for all y ∈ Y, v ∈ H,
where

▶ Y ⊆ Rp (p large) is the compact parameter set,

▶ H is a Hilbert space,

▶ by : H×H → R is a symmetric, uniformally coercive, and uniformally
continuous bilinear form,

▶ fy ∈ H∗ is the uniformly bounded, parameter-dependent right-hand
side,

▶ uy ∈ H is the solution.

We assume the solution manifold

S(Y) := {uy : y ∈ Y}
to be compact in H.



Multi-Query Situation

Many applications require solving the parametric PDE multiple times for
different parameters:

Rp ⊃ Y ∋ y = (y1, . . . , yp) 7→ uy ∈ H

Examples:

▶ Design optimization

▶ Optimal control

▶ Routine analysis

▶ Uncertainty quantification

▶ Inverse problems

Curse of Dimensionality:

Computational cost often much too high!
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High-Fidelity Approximations

Galerkin Approach: Instead of by (uy , v) = fy (v), we solve

by
(
uhy , v

)
= fy (v) for all v ∈ Uh,

where Uh ⊂ H with D := dim
(
Uh

)
<∞ is the high-fidelity discretization

and uhy ∈ Uh is the solution.

Cea’s Lemma: uhy is (up to a constant) a best approximation of uy by

elements in Uh.

Galerkin Solution: Let (φi )
D
i=1 be a basis for Uh. Then uhy satisfies

uhy =
D∑
i=1

(uhy )iφi with uhy :=
(
Bh

y

)−1
fhy ∈ RD ,

where Bh
y := (by (φj , φi ))

D
i ,j=1 and fhy := (fy (φi ))

D
i=1.



High-Fidelity Approximations

Galerkin Approach: Instead of by (uy , v) = fy (v), we solve

by
(
uhy , v

)
= fy (v) for all v ∈ Uh,

where Uh ⊂ H with D := dim
(
Uh

)
<∞ is the high-fidelity discretization

and uhy ∈ Uh is the solution.

Cea’s Lemma: uhy is (up to a constant) a best approximation of uy by

elements in Uh.

Galerkin Solution: Let (φi )
D
i=1 be a basis for Uh. Then uhy satisfies

uhy =
D∑
i=1

(uhy )iφi with uhy :=
(
Bh

y

)−1
fhy ∈ RD ,

where Bh
y := (by (φj , φi ))

D
i ,j=1 and fhy := (fy (φi ))

D
i=1.



What about Deep Neural Networks?

Parametric Map:

Y ∋ y 7→ uhy ∈ RD such that by
(
uhy , v

)
= fy (v) ∀v ∈ Uh.

Can a Neural Network Approximate the Parametric Map?

Advantages:

▶ After training, extremely rapid computation of the map.

▶ Flexible, universal approach.

Questions: Let ϵ > 0.

(1) Does there exist a neural network Φ such that

∥Φ− uhy∥ ≤ ϵ for all y ∈ Y?

(2) How does the complexity of Φ depend on p and D?

(3) How do neural networks perform numerically on this task?
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Deep Learning Approaches to (Parametric) PDEs

Solving PDEs with Neural Networks:

▶ Lagaris, Likas, Fotiadis; 1998

▶ E, Yu; 2017

▶ Sirignano, Spiliopoulos; 2017

▶ Han, Jentzen, E; 2017

▶ Berner, Grohs, Jentzen; 2018

▶ Regazzoni, Dedè, Quarteroni; 2019

▶ Reisinger, Zhang; 2019

▶ ...

Solving Parametric PDEs with Neural Networks:

▶ K. Lee, K. Carlberg; 2018
Learn a parametrization of S(Y) represented by neural networks.

▶ J.S. Hesthaven, S. Ubbiali; 2018
Find reduced basis and then train neural networks to predict coefficients of
solution in that basis.

▶ Schwab, Zech; 2018
Assume that there is a reduced basis of polynomial chaos functions. These
and the coefficients can be efficiently represented by neural networks.
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Approximation of the Parametric Map

by Deep Neural Networks



What about Deep Neural Networks?

Parametric Map:

Y ∋ y 7→ uhy ∈ RD such that by
(
uhy , v

)
= fy (v) ∀v ∈ Uh.

Can a Neural Network Approximate the Parametric Map?

Advantages:

▶ After training, extremely rapid computation of the map.

▶ Flexible, universal approach.

Questions: Let ϵ > 0.

(1) Does there exist a ReLU neural network Φ such that

∥Φ− uhy∥ ≤ ϵ for all y ∈ Y?

(2) How does the complexity of Φ depend on p and D?

(3) How do neural networks perform numerically on this task?



Reduced Basis Method: Key Ideas

High-Fidelity Discretization:

Key Idea:

Offline (slow):

Compute snap shots

Online (fast):

Compute solutions for new parameters



Reduced Basis Method: Details

Assumption: For all ϵ > ϵ0, there exists Urb ⊂ H,
d(ϵ) := dim

(
Urb

)
≪ D such that

sup
y∈Y

inf
w∈Urb

∥uy − w∥H ≤ ϵ.

; Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

▶ Let Urb := span (ψi )
d(ϵ)
i=1 with (ψi )

d(ϵ)
i=1 =

(∑D
j=1Vj ,iφj

)d(ϵ)

i=1
.

▶ Set Brb
y := (by (ψj , ψi ))

d(ϵ)
i ,j=1 = VTBh

yV ∈ Rd(ϵ)×d(ϵ).

▶ Set frby := (fy (ψi ))
d(ϵ)
i=1 = VT fhy ∈ Rd(ϵ).

Galerkin Solution: (supy∈Y ∥uy − urby ∥H ≤ Cϵ)

urby =

d(ϵ)∑
i=1

(
urby

)
i
ψi =

D∑
j=1

(
Vurby

)
j
φj =

D∑
j=1

(
V(Brb

y )−1VT fhy

)
j
φj .
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Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

▶ For all ϵ > 0, there exists d(ϵ) ≪ D, V ∈ RD×d(ϵ), such that for all
y ∈ Y there exists Brb

y ∈ Rd(ϵ)×d(ϵ) with

∥V(Brb
y )−1VT fhy − uhy∥ ≤ ϵ.

▶ There exist ReLU neural networks ΦB and Φf of size
O(poly(p)d(ϵ)2polylog(ϵ)) such that, for all y ∈ Y,

∥ΦB − Brb
y ∥ ≤ ϵ and ∥Φf − frby ∥ ≤ ϵ.

Then there exists a ReLU neural network Φ of size O(d(ϵ)3polylog(ϵ)+
D + poly(p)d(ϵ)2polylog(ϵ)) such that

∥Φ− uhy∥ ≤ ϵ for all y ∈ Y.



Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):

Let (ψi )
d(ϵ)
i=1 denote the reduced basis. We assume in addition the

following:

▶ There exist ReLU neural networks (Φi )
d(ϵ)
i=1 of size O(polylog(ϵ))

such that ∥Φi − ψi∥H ≤ ϵ for all i = 1, . . . , d(ϵ).

Then there exists a ReLU neural network Φ of size O(d(ϵ)3polylog(ϵ)+
poly(p)d(ϵ)2polylog(ϵ)) such that

∥Φ− uy∥H ≤ ϵ for all y ∈ Y.

Remark: The hypotheses are fulfilled, for example, by

▶ Diffusion equations,

▶ Linear elasticity equations.
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Key Idea of the Proof

Main Task: Approximate V(Brb
y )−1VT fhy by a ReLU neural network and

control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x , 2− 2x} and gs := g ◦ . . . ◦ g (s times), we have

x2 = lim
n→∞

x −
n∑

s=1

gs(x)

22s
for all x ∈ [0, 1].

Also, g can be represented by a neural network due to

g(x) = 2ϱ(x)− 4ϱ(x − 1

2
) + 2ϱ(x − 2) for all x ∈ [0, 1].

Moreover,

xz = 1/4((x + z)2 − (x − z)2) for all x , z ∈ R.

=⇒ Scalar multiplication on [−1, 1]2 can be ϵ-approximated by a
neural network of size O(log2(1/ϵ)).
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Key Idea of the Proof

Step 2 (Multiplication):
A matrix multiplication of two matrices of size d × d can be performed by
d3 scalar multiplications.
=⇒ Matrix multiplication can be ϵ-approximated by a neural network of
size O(d(ϵ)3 log2(1/ϵ)).

Step 3 (Inversion):

▶ Neural networks can approximate matrix polynomials.

▶ Neural networks can the inversion operator A 7→ A−1 using
m∑
s=0

As −→ (IdRd − A)−1 as m → ∞.

=⇒ Matrix inversion can be ϵ-approximated by a neural network of size
O(d(ϵ)3 logq2(1/ϵ)) for a constant q > 0.
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Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

▶ Now use the assumptions on Brb
y and frby .

=⇒ The map y 7→ (Brb
y )−1frby can be ϵ-approximated by a neural

network Φrb of size O(d(ϵ)3 logq2(1/ϵ) + poly(p)d(ϵ)2 logq2(1/ϵ)).

For Theorem 1:

▶ Now use the assumption that every element from the reduced basis
can be approximately represented in the high-fidelity basis.

▶ Consider then V ◦ Φrb.

=⇒ The discrete parametric map can be ϵ-approximated by a neural
network of size O(d(ϵ)3 logq2(1/ϵ) + d(ϵ)D + poly(p)d(ϵ)2 logq2(1/ϵ)).

For Theorem 2:

▶ Now use the assumption that neural networks can approximate each
element of the reduced basis.

=⇒ The continuous parametric map can be ϵ-approximated by a neural
network of size O(d(ϵ)3 logq2(1/ϵ) + poly(p)d(ϵ)2 logq2(1/ϵ)).
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Numerical Experiments



Practical Learning Problems: A Different World?

Approximation-Theoretical Explanation for a Practical Learning Problem:

▶ Tightness of the upper bounds

▶ Optimization and sampling prevent approximation theoretical effect from
materializing

▶ Asymptotic estimates

Goal:

We aim to analyze the approximation-theoretical effect of the architecture

on the overall performance of the learning problem in practice!



Numerical Results
(Geist, Petersen, Raslan, Schneider, K; 2020)

Problem with Comparability of Tests:

▶ Effect of the sampling procedure

▶ Effect of the optimization procedure

▶ Quantification of the intrinsic complexity

Our Set-up:

▶ Keeping the architecture fixed

▶ Analyzing the convergence behavior a posteriori

▶ Establishing independence of sample generation

▶ Design of semi-ordered test-cases

Hypotheses:

▶ The performance does not suffer from the curse of dimensionality.

▶ The performance is very sensitive to parametrization.

▶ Learning is effcient also for non-affinely parametrized problems.
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Related Approaches

Numerical Study of Deep Learning for Parametric PDEs:

▶ Hesthaven and Ubbiali; 2018
Train neural networks to predict coefficients of solution in a precomputed
reduced basis

▶ Tripathy and Bilionis; 2018
Solution of the parametric PDE is learned at point evaluations in fixed
spatial coordinates

▶ Dal Santo, Deparis, and Pegolotti; 2019
Solution of the parametric PDE is learned in a precomputed reduced basis

Study of the Relation of Approximation-Theoretical Findings and Practise:

▶ Bölcskei, Grohs, K, and Petersen; 2019
Reproduction of approximation rates of optimally memory-efficient NNs

▶ Fokina and Oseledets; 2019
Reproduction of certain exponential convergence rates of NNs

▶ Adcock and Dexter; 2020
Numerical study of visibility of approximation theoretic results in practise



Test Set-Up

Parametric Diffusion Equation:
We will consider the following parametric diffusion equation:

−∇ · (ay (x) · ∇uy (x)) = f (x), on Ω = (0, 1)2, uy |∂Ω = 0,

where f ∈ L2(Ω) and ay ∈ L∞(Ω) is a diffusion coefficient depending on a
parameter y ∈ Y.

Parametric Map:
We learn a discretization of the map Rp ⊃ Y ∋ y 7→ uy , where p ∈ N, for various
choices of parametrizations

Rp ⊃ Y ∋ y 7→ ay .

What We Vary...

▶ Type of parametrization

▶ Dimension of parameter space

▶ Complexity of hyper-parameters



Parametric Diffusion Equation

Parametric Diffusion Equation:

−∇ · (a(x) · ∇ua(x)) = f (x), on Ω = (0, 1)2, u|∂Ω = 0,

where

a ∈ A = {ay : y ∈ Y} ⊂ L∞(Ω) and f (x) = 20 + 10x1 − 5x2.

Affine Parametrization: For fixed functions (ai )
p
i=0 ⊂ L∞(Ω),

A =

{
ay = a0 +

p∑
i=1

yiai : y = (yi )
p
i=1 ∈ Y

}
.

▶ Trigonometric polynomials

▶ Chessboard partition

▶ Cookies with fixed radii

Non-Affine Parametrization:

▶ Cookies with variable radii

▶ Clipped polynomials



Further Set-Up

Finite Element Space:

▶ Ω = [0, 1]2 with 101× 101 equidistant grid points

Fixed Neural Network:

▶ (p, 300, . . . , 300, 10201) with L = 11 layers

▶ Activation function: 0.2-LReLU.

Fixed Training Procedure:

▶ Training set: 20000 i.i.d. parameter samples

▶ Neural network: Initialized according to a normal distribution with mean 0
and standard deviation 0.1

▶ Loss function: Relative error on the finite-element discretization of H
▶ Optimization: Batch gradient descent

Dimension:

▶ Various dimensions of the parameter set up to 91.



Numerical Experiments, I

Trigonometric Polynomials:

Atp(p, σ) :=

{
µ+

p∑
i=1

yi · iσ · (1 + ai ) : y ∈ Y = [0, 1]p

}
,

for some fixed shift µ > 0, scaling coefficient σ ∈ R, and

ai (x) = sin

(⌊
i + 2

2

⌋
πx1

)
sin

(⌈
i + 2

2

⌉
πx2

)
, for i = 1, . . . , p.

Numerical Results:
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Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.



Numerical Experiments, II

Chessboard Partition: Let p = s2 for some s ∈ N. Then

Acb(p, µ) :=

{
µ+

p∑
i=1

yiXΩi
: y ∈ Y = [0, 1]p

}
,

where (Ωi )
p
i=1 forms a s × s chessboard partition of (0, 1)2 and µ > 0 is a fixed

shift.

Numerical Results:
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Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.



Numerical Experiments, III

Cookies with Variable Radii: For s ∈ N and every i = 1, . . . , s, we are given
disks Ωi,yi+s2

with centers ((2k + 1)/(2s), (2ℓ− 1)/(2s)), where i = ks + ℓ for
uniquely determined k ∈ {0, . . . s − 1} and ℓ ∈ {1, . . . , s} and radius yi+s2/(2s):

Acvr(p, µ) :=

{
µ+

p∑
i=1

yiXΩi,y
i+s2

: y ∈ Y = [0, 1]p × [0.5, 0.9]p

}
.

Numerical Results:
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Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.



Interpretation

Hypotheses and Results:

▶ The performance does not suffer from the curse of dimensionality.

▶ True, we never observed an exponential scaling.

▶ The performance is very sensitive to parametrization.

▶ True, there are strong differences in the performance.
▶ More complex parametrized sets yield higher errors, whereas simpler

sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors.

; The approximation theoretical intrinsic dimension of the parametric
problem is a main factor in determining the hardness!

▶ Learning is efficient also for non-affinely parametrized problems.

▶ True, there is no fundamental difference of the performance for
non-affinely parametrized problems.
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But...

Observation: Despite enormous amounts of money we still have major
robustness problems!

Even More Serious Problem: Sustainability/Energy Efficiency

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

Something much deeper must be going on...



But...

Observation: Despite enormous amounts of money we still have major
robustness problems!

Even More Serious Problem: Sustainability/Energy Efficiency

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

Something much deeper must be going on...



But...

Observation: Despite enormous amounts of money we still have major
robustness problems!

Even More Serious Problem: Sustainability/Energy Efficiency

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

Something much deeper must be going on...



Towards Reliable and Sustainable AI:

Next Generation AI Computing!



A Serious Problem

Computability on Digital Machines/Turing Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

Solution Set of Inverse Problem: For A ∈ Cm×N and y ∈ Cm let

Ψ(A, y) := arg min
x∈CN

∥x∥ℓ1 such that ∥Ax − y∥ℓ2 ≤ ε.

Theorem (Boche, Fono, K; 2023):
The problem described by the function Ψ : Cm×N × Cm → CN for fixed
parameters ε ∈ (0, 1), N ≥ 2, and m < N, is not computable on a Turing
machine.

; Interesting work by Hansen at al. on oracle Turing machines!
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The Hardware is the Problem!

Remark: There does not exist an algorithm on digital hardware which
yields neural networks ΦA approximating Ψ(A, ·) for any given accuracy
and all A ∈ Cm×N .

General Barrier:

▶ Limits of computability on today’s hardware

▶ Reason for problems with non-robustness?

Theorem (Boche, Fono, K; 2023):
Fix parameters ε ∈ (0, 14), N ≥ 2, and m < N. There does not exist a

(Banach–Mazur-)computable function Ψ̂ : Cm×N × Cm → CN such that

sup
(A,y)∈Cm×N×Cm

∥Ψ(A, y)− Ψ̂(A, y)∥ℓ2 <
1

4
.

Remark: The statement does not depend on the unboundedness
of the input domain, but holds true on a compact input set.
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What now? ... Mathematics Tells Us the Answer!

Theorem (Boche, Fono, K; 2023):
The solution of a finite-dimensional inverse problem is computable (by a
deep neural network) on an analog (Blum-Shub-Smale) machine!

Reliability for certain problem settings requires novel hardware!

Possible Future Developments:

▶ Neuromorphic computing

▶ Biocomputing

▶ Quantum computing
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...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

Vision for the Future:

Mathematically Reliable...by Analog Computing!
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Problem with Enormous Energy Consumption

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US)

Administration, 2021
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Neural Networks for Next Generation Computing



Neuromorphic Computing

Features of neuromorphic hardware:

▶ Closer to the human brain.

▶ Energy efficiency.

▶ Execution speed.

▶ Robustness.

▶ ...

; Suitable neural networks for neuromorphic computing?
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First and Second Generation of Artificial Neurons

First Generation
Perceptron model or Threshold gate

Second Generation
Sigmoid neuron

Some General Remarks:

▶ Both computational models of a neuron are biologically inspired, but
rather crude models.

▶ Both lead to networks, which are Universal Approximators.



Third Generation

Spiking Neuron:

▶ More biologically realistic than the first and second generation.

▶ Fires/generates short electrical pulse known as action-potential or
spike.

▶ Spike or action-potential is the elementary unit of signal transmission.



Spiking Neural Network

Some Remarks:

▶ Asynchronous transmission of information via spikes.

▶ Information is encoded in the timing of individual spikes.

▶ Numerous models for spiking neurons exist; one of those is the
Spike Response Model.

Time is one crucial factor in this model!
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Spiking Neurons under Spike Response Model, I

Definition: A spiking neural network Φ is a directed graph (V ,E ) and
consists of a finite set V of spiking neurons, a subset Vin ⊂ V of input
neurons, and a set E ⊂ V × V of synapses. Each synapse (u, v) ∈ E is
associated with

▶ a synaptic weight wuv ≥ 0,

▶ a synaptic delay duv ≥ 0,

▶ and a response function εuv : R → R.

Each neuron v ∈ V \ Vin is associated with

▶ a firing threshold θv > 0,

▶ and a membrane potential Pv : R → R,
which is given by

Pv (t) =
∑

(u,v)∈E

∑
tfu∈Fu

wuvεuv (t − t fu),

with Fu = {t fu : 1 ≤ f ≤ n for some n ∈ N} being the set of
firing times of neuron u, i.e., times t whenever Pu(t) reaches θu.
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Neuronal Response to Input Spikes

Evolution of the membrane potential as a result of incoming spikes:



Spiking Neurons under Spike Response Model, II

Remark: Given that a neuron spikes only once, the state of a neuron v in
a spiking neural network is given as

Pv (t) =
∑

(u,v)∈E

wuvεuv (t − tu), (1)

where tu = firing time of presynaptic neuron u.

Additional Assumption: Assume that the response function ε is linear
and satisfies the following condition

εuv (t) =

{
0, if t /∈ [duv , duv + δ],

(t − duv ), if t ∈ [duv , duv + δ],

where δ > 0 is the length of the linear segment of the response function ε.
Then (1) simplifies to

Pv (t) =
∑

(u,v)∈E

1{0<t−tu−duv≤δ}wuv (t − tu − duv ).
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Spiking Neurons under Spike Response Model, III

Assuming δ is large or even infinite in some cases, then

inf
t∈R

Pv (t) = inf
t∈R

∑
(u,v)∈E

1{t>tu+duv}wuv (t − tu − duv )

= inf
t∈R

∑
(u,v)∈E

wuvσ(t − tu − duv ) = θv ,

where σ(x) = max{0, x}. Then,

tv =
θv +

∑
(u,v)∈E :tv>tu+duv

wuv (tu + duv )∑
(u,v)∈E :tv>tu+duv

wuv
.

Proposition (Singh, Fono, K; 2024):
The output firing time is a piecewise linear function of the input firing
time. Under the additional mild assumption it is even continuous.
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Classical Neural Networks as Spiking Neural Networks

Main Question:
Can we quantify the advantage of spiking neural networks

over classical neural networks?

Theorem (Singh, Fono, K; 2024):
Let L, d ∈ N, [a, b]d ⊂ Rd and let Ψ be a classical ReLU-neural network of
depth L and width d . Then there exists a spiking neural network Φ with
N(Φ) = N(Ψ) + L(2d + 3)− (2d + 2) and L(Φ) = 3L− 2 that realizes Ψ
on [a, b]d .

Main Ingredient of Proof:
The ReLU-activation function can be realized by a 2-layer spiking neural
network on [a, b].

Lemma:
There does not exist a 1-layer spiking neural network that
realizes ReLU.
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Spiking Neural Networks as Classical Neural Networks

Theorem (Singh, Fono, K; 2024): For d ≥ 2, ℓ := ⌈log2(d + 1)⌉+ 1.
Let Φ be a 1-layer spiking neural network with one output neuron v and d
input neurons u1, . . . , ud with wuiv ∈ R>0 for i ∈ {1, . . . , d}. Then:
(a) tΦ can be realized by a classical ReLU-neural network Ψ with

L(Ψ) = ℓ and N(Ψ) ∈ O(ℓ · 22d3+3d2+d).

(b) tΦ can be realized by a classical ReLU-neural network Ψ with
L(Ψ) ∈ O(d) and N(Ψ) ∈ O(8d).

Main Ingredient of Proof:

Proposition: Let Φ be a spiking neural network as above with arbitrary
weights. Then tΦ partitions the input domain into at most 2d − 1 linear
regions. The following are equivalent:

(1) The maximal number of linear regions is attained.

(2) All synaptic weights are positive.
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Spiking Neural Networks as Classical Neural Networks

Theorem (Singh, Fono, K; 2024): For d ≥ 2, ℓ := ⌈log2(d + 1)⌉+ 1.
Let Φ be a 1-layer spiking neural network with one output neuron v and d
input neurons u1, . . . , ud with wuiv ∈ R>0 for i ∈ {1, . . . , d}. Then:
(a) tΦ can be realized by a classical ReLU-neural network Ψ with

L(Ψ) = ℓ and N(Ψ) ∈ O(ℓ · 22d3+3d2+d).

(b) tΦ can be realized by a classical ReLU-neural network Ψ with
L(Ψ) ∈ O(d) and N(Ψ) ∈ O(8d).

Architecture of Proof:

▶ Thus, tΦ is continuous piecewise linear with 2d − 1 linear regions.

▶ Then apply upper bounds on the size of classical ReLU-neural
networks to realize continuous piecewise linear mappings with a
fixed number of linear regions.



Toy Example

Consider a spiking neuron v with two input units u1 and u2. Set θv = wuiv =
du2v = 1 and du1v = 2. Then, the firing time of v on the corresponding linear
regions equals

tv =


tu1 + 3, if tu2 ≥ tu1 + 2,

tu2 + 2, if tu2 ≤ tu1 ,

1
2 (tu1 + tu2) + 2, if tu1 < tu2 < tu1 + 2.

.

▶ A spiking neuron partitions the input space into 3 different regions.

▶ The output firing time tv is continuous piecewise linear.



Example for Superiority of Spiking Neural Networks

A Special Continuous Piecewise Linear Function:
For a < 0 < θ < b, consider the continuous piecewise
linear function f : [a, b] → R given by

f (x) = −1

2
σ(−x−θ)−1

2
σ(−x+θ) = −1

2
max(−x−θ, 0)−1

2
max(−x+θ, 0).

Lemma:

▶ A 1-layer spiking neural network with 1 output neuron and 2 input
neurons can realize f .

▶ Any classical ReLU-neural network requires at least 2 layers and a
total number of 4 neurons to realize f .



Approximating the Minimum Function

Proposition: Let d ∈ N such that d ≥ 2. Then, there exists a spiking
neural network Φ with 1 output neuron v and d input neurons such that

|Φ(x1, . . . , xd)−min{x1, . . . , xd}| ≤
(d − 1)θ

2dw
for all x1, . . . , xd ∈ R,

with θ > 0 the threshold of v and w > 0 the weight of each connection.

Idea for Proof: Minimize the time gap between the earliest subset of
neurons that can cause firing and the subset of neurons that actually
induce firing by adjusting the ratio of threshold and weight appropriately.

Comparison with Classical ReLU-Neural Network:

▶ For any classical ReLU-neural network, irrespective of depth, to
approximate min, each hidden layer must have at least d neurons.

▶ Under certain assumptions on the weights and data distribution, a
classical ReLU-neural network of depth 3 is necessary to efficiently
approximate min.
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Spiking Neural Networks: Next Generation AI Computing

Open Questions:

▶ When and to which extent are spiking neural networks more
expressive than classical neural networks?

▶ What is an optimal training procedure?

▶ Can we quantify generalization abilities (Neuman, Petersen; 2024)?

▶ What is a suitable measure for their energy consumption?

▶ ...

Mathematics of spiking neural networks is a wide open field!



Some Final Thoughts...



Conclusions

AI and High-Dimensional PDEs:

▶ We derive upper bounds on the complexity of ReLU neural networks to
approximate parametric maps.

▶ Those neural networks do not suffer from the curse of dimensionality.

▶ The error on the training set converges always smoothly.

▶ The performance does not suffer from the curse of dimensionality.

Next Generation AI Computing:

▶ Computability:

▶ Problems of continuum nature are computed on digital hardware.
▶ Several key AI problems are not (Turing) computable.
▶ Analog hardware can solve the computability problem.

▶ Spiking Neural Networks:

▶ Spiking neural networks are suitable for neuromorphic chips.
▶ Very few mathematical results exist at present.
▶ Vision: Next generation AI computing!



THANK YOU!
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