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Radical Change of our Society in its Full Breadth!



Impact on Mathematical Problem Settings

Some Examples:

Inverse Probleme/Imaging Science (2012-)
~ Denoising

~> Edge Detection

~> Inpainting

~> Classification

~» Superresolution

~> Limited-Angle Computed Tomography




Impact on Mathematical Problem Settings

Some Examples:

Inverse Probleme/Imaging Science (2012-)
~ Denoising

~> Edge Detection

~> Inpainting

~> Classification

~» Superresolution

~> Limited-Angle Computed Tomography

Numerical Analysis of Partial Differential Equations (2017-)
~> Black-Scholes PDE
~> Allen-Cahn PDE
~» Parametric PDEs




Artificial Intelligence = Alchemy?

Scienc

Al researchers allege that machine learning is
alchemy

By Matthew Hutson | May. 3, 2018, 11:15 AM

Ali Rahimi, a researcher in artificial intelligence (Al) at Google in San Francisco, California, took a
swipe at his field last December—and received a 40-second ovation for it. Speaking at an Al
conference, Rahimi charged that machine learning algorithms, in which computers learn through
trial and error, have become a form of "alchemy." Researchers, he said, do not know why some
algorithms work and others don', nor do they have rigorous criteria for choosing one Al
architecture over another. Now, in a paper presented on 30 April at the International Conference
on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document
examples of what they see as the alchemy problem and offer prescriptions for bolstering Al's
rigor.
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Problem with Reliability

Problems with Safety
Example:
Accidents involving robots

Problems with Security
Example:
Risks of hacking into Al systems

Problems with Privacy
Example:
Privacy violations of health data

Problems with Responsibility
Example:
Black-box and biased decisions




Problem with Reliability

Problems with Safety
Example:
Accidents involving robots

Problems with Security
Example:
Risks of hacking into Al systems

Problems with Privacy
Example:
Privacy violations of health data

Problems with Responsibility
Example:
Black-box and biased decisions

Current major problem worldwide:
Lack of reliability of Al technology!




Missing Mathematical Foundation

SIAM NEWS MAY 2017

@ Research | May 01, 2017

Deep, Deep Trouble

Deep Learning’s Impact on Image Processing, Mathematics, and Humanity
By Michael Elad

| am really confused. | keep changing my opinion on a daily basis, and | cannot seem to settle on one solid view
of this puzzle. No, | am not talking about world politics or the current U.S. president, but rather something far
more critical to humankind, and more specifically to our existence and work as engineers and researchers. | am
talking about...deep learning.

MONCHEN



Role of Mathematics

Two Key Challenges for Mathematics:

Mathematics for Artificial Intelligence!
Can we derive a deep mathematical understanding of deep learning?

How can we make deep learning more robust?

Artificial Intelligence for Mathematics!
How can we use deep learning to improve imaging science?

Can we develop superior PDE solvers via deep learning?




Delving Deeper into Artificial Intelligence...




First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):
Develop an algorithmic approach to learning.

Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!
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Artificial Neurons

Definition: An artificial neuron with weights wy,...,w, € R, bias b € R
and activation function ¢ : R — R is defined as the function f : R” —» R

given by

f(x1,..c,Xn) = 0 (ZXIWI - b) = o({x,w) — b),
i=1

where w = (w1, ..., w,) and x = (X1, ..., Xn).




Artificial Neurons

Definition: An artificial neuron with weights wy,...,w, € R, bias b € R
and activation function ¢ : R — R is defined as the function f : R” —» R

given by

f(x1,..c,Xn) = 0 (ZXIWI - b) = o({x,w) — b),
i=1

where w = (w1, ..., w,) and x = (X1, ..., Xn).

Examples of Activation Functions:
1, > 0,

Heaviside function o(x) = x
0, x<0.

Sigmoid function o(x) = 14—%

Rectifiable Linear Unit (ReLU) p(x) = max{0, x}. .
LM




Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

®:R3 5 R d(x) = WP o(WBx 4 pM)Yy 4 p(3),

® 0

O Wit Wio )
W = 0 0 W3
o 0wy




Distinction: Architecture and Realization

Problem: Different architectures can lead to the same function!

Example: Let

W(l) = ( I(Iiélflvo ) ) b(l) = b(z) = 07 W(z) = (IdRNM _Id]RNO)‘
—Idgn,

Then, for all x € RN,
®(x) = WAReLUWDx 4 b)) 4 b = ReLU(x) — ReLU(—x) = x.




Distinction: Architecture and Realization

Problem: Different architectures can lead to the same function!

Example: Let

W(l) = ( I(Iiélflvo ) ) b(l) = b(z) = 07 W(z) = (IdRNM _Id]RNO)‘
—Idgn,

Then, for all x € RN,
®(x) = WAReLUWDx 4 b)) 4 b = ReLU(x) — ReLU(—x) = x.

Solution: We distinguish
between architecture and realization of neural networks!




Definition of a Deep Neural Network, Part 1

Definition:
A fully connected feedforward neural network is given by its architecture

a=(N,o),

where L € N, N € Nt and o: R — R.
We refer to

o0 as the activation function,
L as the number of layers, and
No, Ni, and Ny, ¢ € [L — 1], as the number of neurons in the input,
output, and (-th hidden layer, respectively.

We denote the number of parameters by

L
P(N) = Z NeNe—1 + Ne
=1




Definition of a Deep Neural Network, lllustration

Deep neural network with architecture a = ((3,4,6,1), 0):




Definition of a Deep Neural Network, Part 2

Definition (continued):
We define the corresponding realization function ®,: RN x RP(N) 5 RN,
which satisfies for every input x € R"o and parameters

L
6= (0 = (WO, p))j_y € X(RNMet s RM) = RPIV)

/=1
that ®,(x, ) = ®(1)(x, 0), where
oM (x,0) = whx + p(V),
O (x,0) = o(¢V(x,0)), £e€[L—1], and
o (x,0) = WD (x, 0) + b v e [L—1].




Definition of a Deep Neural Network, Part 2

Definition (continued):
We define the corresponding realization function ®,: RN x RP(N) 5 RN,
which satisfies for every input x € R"o and parameters

L
6= (0 = (WO, p))j_y € X(RNMet s RM) = RPIV)

/=1
that ®,(x,0) = () (x, ), where
oM (x,0) = Wwhx + p1),
O (x,0) = o(¢V(x,0)), £e€[L—1], and
o )(x, 0) = WD (x, 0) + b 2 e [L—1].
We refer to

W) ¢ RNexNe—1 and p(O) € RMe as the weight matrices and bias
vectors, and to

®© and &0 as the activations and pre-activations of the .
N¢ neurons in the {-th layer. LM




Definition of a Deep Neural Network, lllustration

Deep neural network with architecture a = ((3,4,6,1), 0):




Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))™, of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.
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yielding the network ®,.
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Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))™, of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.

Select an architecture a = (N, p) of a
deep neural network.

Sometimes selected entries of the matrices (W())E_, |

i.e., weights, are set to zero at this point.

Learn the weight matrices W() € RVNexNe-1 and the bias vectors
b € RNe by

mOin Z £(¢3(Xi, 0)7 f(X,)) + )‘P(e)
i=1

yielding the network ®,.
This is often done by stochastic gradient descent. .
LM

Goal: ®,(-,0) ~ f




Mathematics for Artificial Intelligence

Expressivity:
Which aspects of a neural network architecture affect the performance
of deep learning?

~ Applied Harmonic Analysis, Approximation Theory, ...
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Mathematics for Artificial Intelligence

Expressivity: (Lecture 1)
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of deep learning?
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Artificial Intelligence for Mathematics

Inverse Problems:

How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Imaging Science, Inverse Problems, Microlocal Analysis, ...
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Artificial Intelligence for Mathematics

Inverse Problems:
How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Imaging Science, Inverse Problems, Microlocal Analysis, ...

Partial Differential Equations: (Lecture 2)
Why do neural networks perform well in very high-dimensional
environments?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Numerical Mathematics, Partial Differential Equations, ...

Lecture 2: Limitations and Next Generation Al




Expressivity

High-Dimensional Approximation in the Al World




The Approximation Error

Key Questions:
What is the expressive power of a given architecture?
What effect has the depth of a neural network in this respect?
What is the complexity of the approximating neural network?

What are suitable function spaces to consider?




The Approximation Error

Key Questions:
What is the expressive power of a given architecture?
What effect has the depth of a neural network in this respect?
What is the complexity of the approximating neural network?

What are suitable function spaces to consider?

Definition:
The complexity of a deep neural network with architecture a = (N, o),
weight matrices W) ¢ RNexNe—1 1 < ¢ < [, and bias vectors bl¥) € RNe,
1 </ <L, is defined by
L
C(@a) =3 (IWWo + 16Dlo) -

(=1




Revisiting Approximation Theory




Function Approximation in a Nutshell

Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
(¢i)ier for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f € C is
given by

f—fN 2 = inf f— CiQill2.
| ” INC1L#IN=N,(ci)iely | ,EZ/% il
The largest v > 0 such that

sup || — fyll2 = O(N™7) as N — oo
fec

determines the optimal (sparse) approximation rate of C by (pi)icy.
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Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
(¢i)ier for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f € C is
given by

f—fN 2 = inf f— CiQill2.
| ” INC1L#IN=N,(ci)iely | ,EZ/% il
The largest v > 0 such that

sup || — fyll2 = O(N™7) as N — oo
fec

determines the optimal (sparse) approximation rate of C by (pi)icy.

Approximation accuracy <> Complexity of approximating system
in terms of sparsity




Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions £2(R?) is defined by

EAR?) ={fe > (R®): f=f+f X8}

where () # B C [0, 1]? simply connected with C2-boundary and bounded
curvature, and f; € C?(R?) with supp f; € [0,1]2 and ||fi||c2 <1, i =0,1.




Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions £2(R?) is defined by

EAR?) ={fe > (R®): f=f+f X8}

where () # B C [0, 1]? simply connected with C2-boundary and bounded
curvature, and f; € C?(R?) with supp f; € [0,1]2 and ||fi||c2 <1, i =0,1.

i

Theorem (Donoho; 2001):
Let (1x)x € L%(R?). Allowing only polynomial depth search, we have the
following optimal behavior for f € £2(R?):

|f = fylla < N"' as N — oc.




Review of 2-D Wavelets

Definition (1D): Let ¢ € L?(R) be a scaling function and ¥ € L%(R) be a
wavelet. Then the associated wavelet system is defined by
{o(x —m):meZ}U{22y2x—m):j>0,me L}




Review of 2-D Wavelets

Definition (1D): Let ¢ € L?(R) be a scaling function and ¥ € L%(R) be a
wavelet. Then the associated wavelet system is defined by
{o(x —m):meZ}U{22y2x—m):j>0,me L}

Definition (2D): A wavelet system is defined by

{6W(x —m):me 72} u {2y (2x —m):j>0,meZ?i=4,23},

where @b(l)(X) = o(a)v(x),

oW(x) = 6(x1)o(x) and vP(x) = v(x1)s(x).
WOR) = wa)ele).

Theorem: Wavelets provide optimally sparse approximations for functions
f € L?(R?), which are C? apart from point singularities:

If — fullo < N°2, N — .




Wavelet Decomposition: JPEG2000




Wavelet Decomposition: JPEG2000

Original

25% Compression



What can Wavelets do?

Problem:

Isotropic structure of wavelets:
- 2 0 .
{2J¢(< 0 o )x— m):jeZ,meZ?, e l?R?).
For f € £2(R?), wavelets only achieve

If —fullax N2, N — oo.

&




What can Wavelets do?

Problem:
Isotropic structure of wavelets:
- 20 ,
{zw<0 y)x—myje&mezﬂ,weLmW)
For f € £2(R?), wavelets only achieve

If —fullax N2, N — oo.

Non-Exhaustive List of Approaches: gjﬁ ﬁ
Ridgelets (Candés and Donoho; 1999)
Curvelets (Candeés and Donoho; 2002)
Contourlets (Do and Vetterli; 2002)

Bandlets (LePennec and Mallat; 2003)
Shearlets (K and Labate; 2006)




(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ~ length?’):

Orientation via shearing;:

1 k
Sk—<0 1), keZ.




(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ~ length?’):

Definition (K, Labate; 2006): }
The (cone—adapted)Ndiscrete shearlet system SH(®,1,1) generated by
¢ € L2(R?) and 1,9 € L%(R?) is the union of

{¢(- — m):me 73}, e
{23j/4¢(5kA21' -—m):j >0kl < [2j/2-|,m € Z2}, 7 il
{294 (Si Ay - —m) 1 j > 0, |k| < [2/%],m e 2%}

The associated shearlet transform will be denoted by SH.



Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let ¢, 1,1 € L2(R?) be compactly supported, and let ¥, 1) satisfy certain

decay condition. Then SH(¢, v, 1)) provides an optimally sparse
approximation of f € £2(R?), i.e.,

If — fulle < N (log N)2  as N — cc. ~




Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let ¢, 1,1 € L2(R?) be compactly supported, and let 0, 1?) satisfy certain
decay condition. Then SH(¢, v, 1)) provides an optimally sparse
approximation of f € £2(R?), i.e.,

If — fulle < N (log N)2  as N — cc. ~

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):
Matlab (K, Lim, Reisenhofer; 2013)
Julia (Loarca; 2017)
Python (Look; 2018)
Tensorflow (K, Loarca; 2019)




Function Approximation in a Nutshell

Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
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Definition: The error of best N-term approximation of some f € C is
given by
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Universality of Shallow Neural Networks

Remark: Assume g is a polynomial of degree q. Then o( Wx + b) is also a
polynomial of degree g, hence ® is also a polynomial of degree < L - gq.
Hence in this case C(RY) cannot be well approximated.




Universality of Shallow Neural Networks

Remark: Assume g is a polynomial of degree q. Then o( Wx + b) is also a
polynomial of degree g, hence ® is also a polynomial of degree < L - gq.
Hence in this case C(RY) cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, ¢ : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, b € R, wy € RY with
N

If— ZakQ(<Wk7 ) = bi)||eo < €.

k=1

Every continuous function on a compact set can be arbitrarily well
approximated with a neural network with one single hidden layer.




Idea of Proof

For d > 1, ¢ continuous, o : R — R TFAE:

span{o((w,x) — b) : w € RY, b € R} is dense C(K,R).
o is not a polynomial.

Now: (ii)= (i) for d =1 and a smooth activation function p.
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o(hx — xo) = o(—xp) as h — 0.
Linear functions can be arbitrarily well approximated:

o((M+ h)x — x0) — o(x — xo)
h

—x0'(Ax—xp) for h—0

—x-0(-x), ash\—0.




Idea of Proof

For d > 1, ¢ continuous, o : R — R TFAE:

span{o({w, x) — b) : w € R4, b € R} is dense C(K,R).
o is not a polynomial.

Now: (ii)= (i) for d =1 and a smooth activation function p.
Since ¢ is not a polynomial, there exists one xg € R with
01 (—x0) # 0 for all k.
Constant functions can be arbitrarily well approximated:
o(hx — xo) = o(—xp) as h — 0.
Linear functions can be arbitrarily well approximated:

o((M+ h)x — x0) — o(x — xo)
h

—x0'(Ax—xp) for h—0

—x-0(-x), ash\—0.

~ Any polynomial can be well approximated, then use Stone-WeierstraB3
~> Finally, extend to d arbitrary.




Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, o : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, by € Rywy € RY with

N
1f = ake((wi ) = bi)llo < e
k=1
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Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, o : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, by € Rywy € RY with

N
1f = ake((wi ) = bi)llo < e
k=1

Corollary:
In this situation, we obtain

g@PPIox _,
for increasing complexity of the neural networks.
Approximation accuracy <> Complexity of approximating network?

What about even optimality? .
LM




Lower Bounds for Approximation

Classical Approach:

VC Dimension




Lower Bounds for Approximation

Classical Approach:

VC Dimension

Towards Optimal Complexity:

How well can functions be approximated by neural networks with few
non-zero weights?
Can we derive a lower bound on the necessary number of weights?
Can we construct neural networks which attain this bound?

Are neural networks as good approximators as wavelets and shearlets?




Measure for Complexity of Function Class

Intuitive Definition:

The optimal exponent v*(C) is a measure of complexity of the function
class C:

“The optimal exponent describes the dependence of the code length for
encoding the function class on the required approximation quality.”

Theorem:
For C C L?(R9), the optimal N—term approximation rate is given by




Rate Distortion Theory

Definition:
Let d € N,Q € RY and C C L?(Q). For any / € N

E'={E:c—{0,1}}
is called the set of binary encoders of length | and
D' ={D:{0,1} = [?(Q)}

is called the set of binary decoders of length I.
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Rate Distortion Theory

Definition:
Let d € N,Q € RY and C C L?(Q). For any / € N

E'={E:c—{0,1}}
is called the set of binary encoders of length | and
D' ={D:{0,1} = [?(Q)}

is called the set of binary decoders of length I.
A pair (E, D) € &' x D' achieves distortion ¢ > 0 over C, if

sup ||ID(E(f)) — f|l;2 <e.
feC

For € > 0, the minimal code length L(=,C) is
L(e,C) = min{/ € N: 3(E,D) € &' x D' : sup||D(E(f)) — f|| 2 < €}.
feC

The optimal exponent v*(C) is

Y (C):=inf{y eR: L(e,C) = O(g7)}.




A Fundamental Lower Bound

Theorem (Bdlcskei, Grohs, K, and Petersen; 2017):
Let d €N, o: R — R, and let C C [2(RY). Assume that

Learn : (0, 1) X C — .Fa C(Learn(e, C))

satisfies

sup||f — Learn(e, f)||2 <e.
feC

Then, for all v < 4*(C), there is no C > 0 with

sup C(Learn(e,f)) < Ce 7 for all e > 0. 4+ = .
feC




A Fundamental Lower Bound

Theorem (Bdlcskei, Grohs, K, and Petersen; 2017):
Let d €N, o: R — R, and let C C [2(RY). Assume that

Learn : (0, 1) X C — .Fa C(Learn(e, C))

satisfies

sup||f — Learn(e, f)||2 <e.
feC

Then, for all v < 4*(C), there is no C > 0 with

sup C(Learn(e,f)) < Ce 7 for all e > 0. 4+ = .
feC

What happens for v = v*(C)?




Optimally Sparse Deep Neural Networks




DNNs and Representation Systems, |

Observation: Assume a system (¢;)ie; C L?(RY) satisfies:

For each i € I, there exists a neural network ®; with at most C > 0
edges such that ¢; = ;.

Then we can construct a network ¢ with O(M) edges with




DNNs and Representation Systems, |l

Corollary: Assume a system (g;)ic; C L*(RY) satisfies:

For each i € I, there exists a neural network ®; with at most C > 0
edges such that ¢; = ;.

There exists C > 0 such that, for all f € C C L?(RY), there exists
Ing C I with y
IF= > cieill < Em2/7 @,
i€ly

Then every f € C can be approximated up to an error of € by a neural
network with only O(e=7"(©)) edges.
Sketch of Proof:

There exists a network ® with O(M) edges with & =5 ., ci¢p;.

Set e = CM~1/7"(€) and solve for the number of edges M, yielding

M = 07" (),




DNNs and Representation Systems, |l

Corollary: Assume a system (¢;)ic/ C L2(RY) satisfies:

For each i € I, there exists a neural network ®; with at most C > 0
edges such that ¢; = ;.

There exists C > 0 such that, for all f € C C [2(RY), there exists
Iy C I with

If =" cipill < EM2O,

i€y

Then every f € C can be approximated up to an error of € by a neural
network with only O(e=7"(©)) edges.

Recall: If a neural network stems from a fixed learning procedure Learn,
then, for all v < «*(C), there does not exist C > 0 such that

sup C(Learn(e, f)) < Ce™” for all e > 0.
fec




General Approach:

Determine a class of functions C C L?(RR?).

Determine an associated representation system with the following
properties:

The elements of this system can be realized by a neural network with
controlled number of edges.

This system provides optimally sparse approximations for C.
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~» Cartoon-like functions!
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properties:

~» Shearlets!
The elements of this system can be realized by a neural network with
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General Approach:
Determine a class of functions C C L?(RR?).
~» Cartoon-like functions!
Determine an associated representation system with the following
properties:

~» Shearlets!
The elements of this system can be realized by a neural network with

controlled number of edges.
~» Still to be analyzed!
This system provides optimally sparse approximations for C.

~» This has been proven!

%~




Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; '17):
Assume activation function o(x) = max{x,0} (ReLUs).

Define t

t(x) == o(x) — o(x = 1) — o(x = 2) + o(x —3). . .

~+ t can be constructed with a 2 layer network.

Observe that .
d(x1,x2) = o(t(x1) + t(x2) — 1) D

yields a 2D bump function.
Summing up shifted versions of ¢ yields a function ¢ with vanishing

moments.
~») can be realized by a 3 layer neural network.




Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; '17):
Assume activation function o(x) = max{x,0} (ReLUs).

Define t

t(x) == o(x) — o(x = 1) — o(x = 2) + o(x = 3). ./ .

~+ t can be constructed with a 2 layer network.

Observe that .
d(x1,x2) = o(t(x1) + t(x2) — 1) D

yields a 2D bump function.
Summing up shifted versions of ¢ yields a function ¢ with vanishing

moments.
~»1) can be realized by a 3 layer neural network.

This cannot yield differentiable functions 1!




Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; '17):
Assume activation function g(x) = max{x, 0} (ReLUs).
Define t

t(x) == o(x) —o(x = 1) — o(x = 2) + o(x —3). .

~» t can be constructed with a 2 layer network.

Observe that ‘
P(xa,x2) == o(t(x1) + t(x2) — 1) D

yields a 2D bump function.
Summing up shifted versions of ¢ yields a function  with vanishing

moments.
~»1) can be realized by a 3 layer neural network.

Our Construction: Use a smoothed version of a RelLU.
~» Leads to appropriate shearlet generators! .
LM




Optimal Approximation

Theorem (Bdlcskei, Grohs, K, and Petersen; 2017): Let g be an
admissible smooth activation function, and let € > 0. Then there exist
C. > 0 such that, for all f € £2(R?) and N € N, we can construct a
neural network ® with 4 layers and complexity C(®) = O(N) satisfying

|f — ¢”L2(]R2) < CEN_:H_E.

This is the optimal rate; hence the first bound is sharp!




Optimal Approximation

Theorem (Bdlcskei, Grohs, K, and Petersen; 2017): Let g be an
admissible smooth activation function, and let € > 0. Then there exist
C. > 0 such that, for all f € £2(R?) and N € N, we can construct a
neural network ® with 4 layers and complexity C(®) = O(N) satisfying

|f — ¢HL2(]R2) < CEN_H_E.

This is the optimal rate; hence the first bound is sharp!

Function classes which are optimal representable by shearlets, etc.
are also optimally approximated
by memory-efficient neural networks with a parallel architecture!




Some Numerics

Typically weights are learnt by backpropagation. This raises the following
question:

Does this lead to the optimal complexity?

Our setup:
Fixed network topology with RelLUs.
Specific functions to learn.
Learning through SGD.

Analyze the learnt subnetworks.

Analysis of the connection between approximation error and number

of edges.




Numerical Experiments (with ReLUs & Backpropagation)

i 5
50 00 150 200 250 100 120 140 160 180 2
Linear Singularity # of edges Subnetworks: Ridgelets!

10 20 20 40 50 60




Numerical Experiments (with ReLUs & Backpropagation)

\\\\\\
120 140 160 180 2 2 % @ s
Linear Singularity # of edges Subnetworks: Ridgelets!
Error
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Curvilinear Singularity # of edges Subnetworks: &~ Shel
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The Role of Depth




RelLU Deep Neural Networks

Our Situation:

We now consider deep neural networks with RelL U activation function
or(x) = max{0, x}.

Properties of ReLU Neural Networks:

A two-layer ReLU neural network with one-dimensional input and
output is a function of the form

o(x) =Y wor(wPx + b))+ b®, xR,
i=1

i

where W(l), WI-(2), b§1)7 b(® € R for i € [n].
® is a continuous piecewise affine linear function.




The Hat Function

General Observation:
We can write the hat function h: [0,1] — [0, 1] as a neural network with 2
layers and 2 neurons:

2x, if0<x< 1,

h(x) = 20r(x) — 4or(x — %) - {2(1 —-x), ifl<x<1
) 2 = —




Telegarsky

Observation by (Telegarsky; 2016):

The n-fold convolution h,(x) := ho---o h produces a sawtooth function
with 27 spikes. In particular, h, admits 2" affine linear pieces with only 2n

many neurons.
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Deep RelLU neural networks are exponentially more efficient

in generating affine linear pieces!




Approximating Smooth Functions

Idea:
Let /, be interpolation of [0,1] > x + g(x) == x — x? on 2" + 1
equidistant points.
I, is a sum of n sawtooth functions:

Each hx = hx_1 o h can be written as a k-fold composition of h.

o M= Ky Ku ¥le Je Yo K~ ¥




Approximating Smooth Functions (Continued)

This leads to efficient approximation by ReLU neural networks of
X = X2,
(x,y) = xy,
localized Taylor polynomials,
smooth functions,
...Sobolev-regular functions.

Theorem (Giihring, K, Petersen; 2020):

Let d, k € N with k > 2, let p € [1,00], s € [0,1], and B € (0,00). Then
there exists a constant ¢ € (0, c0) with the following property: For every
e € (0,3) there exists a neural network architecture a = (N, ) with

P(N) < ce=4/ (k=) jog(1 /)
such that for every function g € W*P((0,1)9) with gllwre(o,1)?) < B it

holds that
9e:£'f(fv) 1940, ) — gllwsr(0,1)¢) < &




Depth-Width Approximation Trade-Off

Theorem (Yarotzky; 2017):
Let d,L € N with L > 2 and let g € C?([0,1]?) be a function which is not
affine linear. Then there exists a constant ¢ € (0, 00) with the following
property: For every € € (0,1) and every ReLU neural network architecture
a=(N,or)=((d,Ny,...,N_1,1), 0r) with L layers and

IN|; < ce—1/(2(L=1))
neurons, then

inf ||®,(-,0) — o > €.
) [®a(,0) — glloo(jo,1y¢y = €




Depth-Width Approximation Trade-Off

Theorem (Yarotzky; 2017):

Let d,L € N with L > 2 and let g € C?([0,1]?) be a function which is not
affine linear. Then there exists a constant ¢ € (0, 00) with the following
property: For every € € (0,1) and every ReLU neural network architecture
a=(N,or)=((d,Ny,...,N_1,1), 0r) with L layers and

N[y < ce1/(2(L=1))

neurons, then

Idea of Proof:
Use the fact that ReLU neural networks are piecewise affine linear.

Show that that the number of pieces that can be generated using an
architecture ((1, Nq,..., Ny _1,1), 0r) scales roughly like Hé:_ll Np.




Alternative Notions of Expressivity




A Different Viewpoint

Instead of the classical approximation framework, alternative notions aim
to relate structural properties of the neural network with the
richness of the set of possibly expressed functions.




A Different Viewpoint

Instead of the classical approximation framework, alternative notions aim
to relate structural properties of the neural network with the
richness of the set of possibly expressed functions.

Early Work (Montufar, Pascanu, Cho, Bengio; 2014):
Consider affine linear regions of a ReLU neural network ®y ,.)(-, ).
Analyze the growth of their number depending on the depth.

Definition:
Affine linear regions are the connected components of RV \ H, where H is
the set of non-differentiability of the realization ®(y ,.)(-, ).




lllustration of Affine-Linear Regions

Source: Hinz, van de Geer. A Framework for the construction of upper bounds on the number of affine
linear regions of ReLU feed-forward neural networks. IEEE Transactions on Information Theory 65 (2019),
7304-7324




Growth of Number of Affine Linear Regions

Informal Theorem (Hinz, Sara van de Geer; 2019):
“Deep RelLU neural networks can exhibit significantly more regions than
their shallow counterparts.”




Growth of Number of Affine Linear Regions

Informal Theorem (Hinz, Sara van de Geer; 2019):
“Deep RelLU neural networks can exhibit significantly more regions than
their shallow counterparts.”

Intuition of the Effect of Depth:

Through the ReLU each neuron R? 3 x + or((x,w) + b), w € RY, b € R,
splits the space into two affine linear regions separated by the hyperplane

{x e RY: (x,w) + b=0}.

A shallow ReLU neural network ® (4, p.1),0x)(-»¢) with n neurons in the
hidden layer therefore produces a number of regions defined through n
hyperplanes.

One can bound the number of affine linear regions by Zf:o (j)

Deepening neural networks then corresponds to a folding of the input space.




Growth of Number of Affine Linear Regions

Informal Theorem (Hinz, Sara van de Geer; 2019):
“Deep RelLU neural networks can exhibit significantly more regions than
their shallow counterparts.”

Intuition of the Effect of Depth:

Through the ReLU each neuron R? 3 x + or((x,w) + b), w € RY, b € R,
splits the space into two affine linear regions separated by the hyperplane

{x e RY: (x,w) + b=0}.

A shallow ReLU neural network ® (4, p.1),0x)(-»¢) with n neurons in the
hidden layer therefore produces a number of regions defined through n
hyperplanes.

One can bound the number of affine linear regions by Zf:o (j)
Deepening neural networks then corresponds to a folding of the input space.
This leads to an exponential efficiency of deep neural networks .
in generating affine linear regions! LM




Going one Step Further

Idea:
How does the length of a non-constant curve in the input space
changes in expectation through the layers of a neural network?




[llustration

Shape of the trajectory t — (2 . n2)00)(7(t),0) of the output of a
randomly initialized network with 0, 3,10 hidden layers:

Input Curve No hidden layer Three hidden layers Ten hidden layers
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How does the length of a non-constant curve in the input space
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Going one Step Further

Idea:
How does the length of a non-constant curve in the input space
changes in expectation through the layers of a neural network?

Definition (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):
Consider a ReLU network with architecture a = ((No, n,...,n, Ni), 0r)
and depth L € N. Given a non-constant continuous curve 7: [0,1] — RM
in the input space, the length of the trajectory in the ¢-th layer of the
neural network ®,(-, 6) is then given by

Length(®()(7(-),0)), €< [L—1],

where ®()(-, 0) is the activation in the /-th layer.

o
o O 0
o =




Analyzing the Length of the Trajectory

Coarse Argumentation:

Let the parameters ©; of ®, be initialized independently

The entries corresponding to the weight matrices and bias vectors
follow a normal distribution with zero mean and variances 1/n and 1,
respectively.

We can then conclude that
[Length(cb(e (7(:),©1))] =c>0.
Let o € (0, 00).
Consider a second initialization ©,, now with 0/n and 2.
By positive homogeneity of the ReLU, we obtain
o(.,0,) ~ c'®)(. 0,).
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Analyzing the Length of the Trajectory

Coarse Argumentation:

Let the parameters ©; of ®, be initialized independently

The entries corresponding to the weight matrices and bias vectors
follow a normal distribution with zero mean and variances 1/n and 1,
respectively.

We can then conclude that
[Length(cb(e (7(:),©1))] =c>0.
Let o € (0, 00).
Consider a second initialization ©,, now with 0/n and 2.
By positive homogeneity of the ReLU, we obtain
o(.,0,) ~ c'®)(. 0,).

Theorem (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):

We have

E[Length(®“(~(-),0,))] = oc.
The expected trajectory length depends exponentially on the depth!




Some Final Thoughts...




Conclusions

Expressivity:
The goal is to bound the approximation error.
Deep neural networks have a universality property.

Function classes, which are optimal representable by wavelets, shearlets,
etc., are also optimally approximated by memory-efficient neural networks.

Deep RelLU neural networks are exponentially more efficient in generating
affine linear pieces.

There are alternative approaches such as considering the length of the
trajectory.
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