
High-Dimensional Approximation in AI
Lecture 1: Expressivity of Deep Neural Networks

Gitta Kutyniok (LMU Munich)

also

University of Tromsø & DLR – German Aerospace Center

CIME School on High-Dimensional Approximation
Cetraro, Italy, September 22 –27, 2024

Fourth Industrial Revolution by Artificial Intelligence

Radical Change of our Society in its Full Breadth!

Fourth Industrial Revolution by Artificial Intelligence

Radical Change of our Society in its Full Breadth!

Impact on Mathematical Problem Settings

Some Examples:

▶ Inverse Probleme/Imaging Science (2012–)
; Denoising
; Edge Detection
; Inpainting
; Classification
; Superresolution
; Limited-Angle Computed Tomography
; ...

▶ Numerical Analysis of Partial Differential Equations (2017–)
; Black-Scholes PDE
; Allen-Cahn PDE
; Parametric PDEs
; ...

Impact on Mathematical Problem Settings

Some Examples:

▶ Inverse Probleme/Imaging Science (2012–)
; Denoising
; Edge Detection
; Inpainting
; Classification
; Superresolution
; Limited-Angle Computed Tomography
; ...

▶ Numerical Analysis of Partial Differential Equations (2017–)
; Black-Scholes PDE
; Allen-Cahn PDE
; Parametric PDEs
; ...

Artificial Intelligence = Alchemy?

Problem with Reliability

Current major problem worldwide:
Lack of reliability of AI technology!

Problem with Reliability

Current major problem worldwide:
Lack of reliability of AI technology!

Missing Mathematical Foundation

Role of Mathematics

Two Key Challenges for Mathematics:

Mathematics for Artificial Intelligence!

▶ Can we derive a deep mathematical understanding of deep learning?

▶ How can we make deep learning more robust?

▶ ...

Artificial Intelligence for Mathematics!

▶ How can we use deep learning to improve imaging science?

▶ Can we develop superior PDE solvers via deep learning?

▶ ...

Delving Deeper into Artificial Intelligence...

First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):

▶ Develop an algorithmic approach to learning.

▶ Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!

Artificial Neurons

Artificial Neurons

Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R
and activation function ϱ : R → R is defined as the function f : Rn → R
given by

f (x1, ..., xn) = ϱ

(
n∑

i=1

xiwi − b

)
= ϱ(⟨x ,w⟩ − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

▶ Heaviside function ϱ(x) =

{
1, x > 0,

0, x ≤ 0.

▶ Sigmoid function ϱ(x) = 1
1+e−x .

▶ Rectifiable Linear Unit (ReLU) ϱ(x) = max{0, x}.

Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R
and activation function ϱ : R → R is defined as the function f : Rn → R
given by

f (x1, ..., xn) = ϱ

(
n∑

i=1

xiwi − b

)
= ϱ(⟨x ,w⟩ − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

▶ Heaviside function ϱ(x) =

{
1, x > 0,

0, x ≤ 0.

▶ Sigmoid function ϱ(x) = 1
1+e−x .

▶ Rectifiable Linear Unit (ReLU) ϱ(x) = max{0, x}.

Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

Φ : R3 → R2, Φ(x) = W (2)ϱ(W (1)x + b(1)) + b(2).

W (1) =

 w
(1)
11 w

(1)
12 0

0 0 w
(1)
23

0 0 w
(1)
33



W (2) =

(
w

(2)
11 w

(2)
12 0

0 0 w
(2)
23

)

x1 x2 x3

w
(1)
11

w
(1)
12

w
(1)
23

w
(1)
33

w
(2)
11 w

(2)
12 w

(2)
23

b
(1)
1 b

(1)
2 b

(1)
3

b
(2)
1 b

(2)
2

Distinction: Architecture and Realization

Problem: Different architectures can lead to the same function!

Example: Let

W (1) =

(
IdRN0

−IdRN0

)
, b(1) = b(2) = 0, W (2) = (IdRN0 ,−IdRN0).

Then, for all x ∈ RN0 ,

Φ(x) = W (2)ReLU(W (1)x + b(1)) + b(2) = ReLU(x)− ReLU(−x) = x .

Solution: We distinguish
between architecture and realization of neural networks!

Distinction: Architecture and Realization

Problem: Different architectures can lead to the same function!

Example: Let

W (1) =

(
IdRN0

−IdRN0

)
, b(1) = b(2) = 0, W (2) = (IdRN0 ,−IdRN0).

Then, for all x ∈ RN0 ,

Φ(x) = W (2)ReLU(W (1)x + b(1)) + b(2) = ReLU(x)− ReLU(−x) = x .

Solution: We distinguish
between architecture and realization of neural networks!

Definition of a Deep Neural Network, Part 1

Definition:
A fully connected feedforward neural network is given by its architecture

a = (N, ϱ),

where L ∈ N, N ∈ NL+1, and ϱ : R → R.
We refer to

▶ ϱ as the activation function,

▶ L as the number of layers, and

▶ N0, NL, and Nℓ, ℓ ∈ [L− 1], as the number of neurons in the input,
output, and ℓ-th hidden layer, respectively.

We denote the number of parameters by

P(N) :=
L∑

ℓ=1

NℓNℓ−1 + Nℓ

Definition of a Deep Neural Network, Illustration

Deep neural network with architecture a = ((3, 4, 6, 1), ϱ):

Definition of a Deep Neural Network, Part 2

Definition (continued):
We define the corresponding realization function Φa : RN0 ×RP(N) → RNL ,
which satisfies for every input x ∈ RN0 and parameters

θ = (θ(ℓ))Lℓ=1 = ((W (ℓ), b(ℓ)))Lℓ=1 ∈
L

×
ℓ=1

(RNℓ×Nℓ−1 × RNℓ) ∼= RP(N)

that Φa(x , θ) = Φ(L)(x , θ), where

Φ(1)(x , θ) = W (1)x + b(1),

Φ̄(ℓ)(x , θ) = ϱ
(
Φ(ℓ)(x , θ)

)
, ℓ ∈ [L− 1], and

Φ(ℓ+1)(x , θ) = W (ℓ+1)Φ̄(ℓ)(x , θ) + b(ℓ+1), ℓ ∈ [L− 1].

We refer to

▶ W (ℓ) ∈ RNℓ×Nℓ−1 and b(ℓ) ∈ RNℓ as the weight matrices and bias
vectors, and to

▶ Φ̄(ℓ) and Φ(ℓ) as the activations and pre-activations of the
Nℓ neurons in the ℓ-th layer.

Definition of a Deep Neural Network, Part 2

Definition (continued):
We define the corresponding realization function Φa : RN0 ×RP(N) → RNL ,
which satisfies for every input x ∈ RN0 and parameters

θ = (θ(ℓ))Lℓ=1 = ((W (ℓ), b(ℓ)))Lℓ=1 ∈
L

×
ℓ=1

(RNℓ×Nℓ−1 × RNℓ) ∼= RP(N)

that Φa(x , θ) = Φ(L)(x , θ), where

Φ(1)(x , θ) = W (1)x + b(1),

Φ̄(ℓ)(x , θ) = ϱ
(
Φ(ℓ)(x , θ)

)
, ℓ ∈ [L− 1], and

Φ(ℓ+1)(x , θ) = W (ℓ+1)Φ̄(ℓ)(x , θ) + b(ℓ+1), ℓ ∈ [L− 1].

We refer to

▶ W (ℓ) ∈ RNℓ×Nℓ−1 and b(ℓ) ∈ RNℓ as the weight matrices and bias
vectors, and to

▶ Φ̄(ℓ) and Φ(ℓ) as the activations and pre-activations of the
Nℓ neurons in the ℓ-th layer.

Definition of a Deep Neural Network, Illustration

Deep neural network with architecture a = ((3, 4, 6, 1), ϱ):

Training of Deep Neural Networks

High-Level Set Up:

▶ Samples (xi , f (xi))
m̃
i=1 of a function

such as f : M → {1, 2, . . . ,K}.
; Training- and test data set.

▶ Select an architecture a = (N, ϱ) of a
deep neural network.

Sometimes selected entries of the matrices (W (ℓ))Lℓ=1,

i.e., weights, are set to zero at this point.

▶ Learn the weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 and the bias vectors
b(ℓ) ∈ RNℓ by

min
θ

m∑
i=1

L(Φa(xi , θ), f (xi)) + λP(θ)

yielding the network Φa.
This is often done by stochastic gradient descent.

Goal: Φa(·, θ) ≈ f

Training of Deep Neural Networks

High-Level Set Up:

▶ Samples (xi , f (xi))
m̃
i=1 of a function

such as f : M → {1, 2, . . . ,K}.
; Training- and test data set.

▶ Select an architecture a = (N, ϱ) of a
deep neural network.

Sometimes selected entries of the matrices (W (ℓ))Lℓ=1,

i.e., weights, are set to zero at this point.

▶ Learn the weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 and the bias vectors
b(ℓ) ∈ RNℓ by

min
θ

m∑
i=1

L(Φa(xi , θ), f (xi)) + λP(θ)

yielding the network Φa.
This is often done by stochastic gradient descent.

Goal: Φa(·, θ) ≈ f

Training of Deep Neural Networks

High-Level Set Up:

▶ Samples (xi , f (xi))
m̃
i=1 of a function

such as f : M → {1, 2, . . . ,K}.
; Training- and test data set.

▶ Select an architecture a = (N, ϱ) of a
deep neural network.

Sometimes selected entries of the matrices (W (ℓ))Lℓ=1,

i.e., weights, are set to zero at this point.

▶ Learn the weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 and the bias vectors
b(ℓ) ∈ RNℓ by

min
θ

m∑
i=1

L(Φa(xi , θ), f (xi)) + λP(θ)

yielding the network Φa.
This is often done by stochastic gradient descent.

Goal: Φa(·, θ) ≈ f

Training of Deep Neural Networks

High-Level Set Up:

▶ Samples (xi , f (xi))
m̃
i=1 of a function

such as f : M → {1, 2, . . . ,K}.
; Training- and test data set.

▶ Select an architecture a = (N, ϱ) of a
deep neural network.

Sometimes selected entries of the matrices (W (ℓ))Lℓ=1,

i.e., weights, are set to zero at this point.

▶ Learn the weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 and the bias vectors
b(ℓ) ∈ RNℓ by

min
θ

m∑
i=1

L(Φa(xi , θ), f (xi)) + λP(θ)

yielding the network Φa.
This is often done by stochastic gradient descent.

Goal: Φa(·, θ) ≈ f

Mathematics for Artificial Intelligence

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ What is the role of depth?
▶ Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?
▶ Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...

Mathematics for Artificial Intelligence

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ What is the role of depth?
▶ Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?
▶ Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...

Mathematics for Artificial Intelligence

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ What is the role of depth?
▶ Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?
▶ Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...

Mathematics for Artificial Intelligence

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ What is the role of depth?
▶ Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?
▶ Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...

Mathematics for Artificial Intelligence

▶ Expressivity: (Lecture 1)
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ What is the role of depth?
▶ Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?
▶ Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...

Artificial Intelligence for Mathematics

▶ Inverse Problems:
▶ How do we optimally combine deep learning with model-based

approaches?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

▶ Partial Differential Equations:
▶ Why do neural networks perform well in very high-dimensional

environments?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Numerical Mathematics, Partial Differential Equations, ...

Lecture 10: Potential, Limitations, and Future Directions

Artificial Intelligence for Mathematics

▶ Inverse Problems:
▶ How do we optimally combine deep learning with model-based

approaches?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

▶ Partial Differential Equations:
▶ Why do neural networks perform well in very high-dimensional

environments?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Numerical Mathematics, Partial Differential Equations, ...

Lecture 10: Potential, Limitations, and Future Directions

Artificial Intelligence for Mathematics

▶ Inverse Problems:
▶ How do we optimally combine deep learning with model-based

approaches?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

▶ Partial Differential Equations: (Lecture 2)
▶ Why do neural networks perform well in very high-dimensional

environments?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Numerical Mathematics, Partial Differential Equations, ...

Lecture 2: Limitations and Next Generation AI

Expressivity

High-Dimensional Approximation in the AI World

The Approximation Error

Key Questions:

▶ What is the expressive power of a given architecture?

▶ What effect has the depth of a neural network in this respect?

▶ What is the complexity of the approximating neural network?

▶ What are suitable function spaces to consider?

Definition:
The complexity of a deep neural network with architecture a = (N, ϱ),
weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 , 1 ≤ ℓ ≤ L, and bias vectors b(ℓ) ∈ RNℓ ,
1 ≤ ℓ ≤ L, is defined by

C (Φa) :=
L∑

ℓ=1

(
∥W (ℓ)∥0 + ∥b(ℓ)∥0

)
.

The Approximation Error

Key Questions:

▶ What is the expressive power of a given architecture?

▶ What effect has the depth of a neural network in this respect?

▶ What is the complexity of the approximating neural network?

▶ What are suitable function spaces to consider?

Definition:
The complexity of a deep neural network with architecture a = (N, ϱ),
weight matrices W (ℓ) ∈ RNℓ×Nℓ−1 , 1 ≤ ℓ ≤ L, and bias vectors b(ℓ) ∈ RNℓ ,
1 ≤ ℓ ≤ L, is defined by

C (Φa) :=
L∑

ℓ=1

(
∥W (ℓ)∥0 + ∥b(ℓ)∥0

)
.

Revisiting Approximation Theory

Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd) and (φi)i∈I ⊆ L2(Rd). Measure the suitability of
(φi)i∈I for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f ∈ C is
given by

∥f − fN∥2 := inf
IN⊂I ,#IN=N,(ci)i∈IN

∥f −
∑
i∈IN

ciφi∥2.

The largest γ > 0 such that

sup
f ∈C

∥f − fN∥2 = O(N−γ) as N → ∞

determines the optimal (sparse) approximation rate of C by (φi)i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity

Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd) and (φi)i∈I ⊆ L2(Rd). Measure the suitability of
(φi)i∈I for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f ∈ C is
given by

∥f − fN∥2 := inf
IN⊂I ,#IN=N,(ci)i∈IN

∥f −
∑
i∈IN

ciφi∥2.

The largest γ > 0 such that

sup
f ∈C

∥f − fN∥2 = O(N−γ) as N → ∞

determines the optimal (sparse) approximation rate of C by (φi)i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity

Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where ∅ ≠ B ⊂ [0, 1]2 simply connected with C 2-boundary and bounded
curvature, and fi ∈ C 2(R2) with supp fi ⊆ [0, 1]2 and ∥fi∥C2 ≤ 1, i = 0, 1.

Theorem (Donoho; 2001):
Let (ψλ)λ ⊆ L2(R2). Allowing only polynomial depth search, we have the
following optimal behavior for f ∈ E2(R2):

∥f − fN∥2 ≍ N−1 as N → ∞.

Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where ∅ ≠ B ⊂ [0, 1]2 simply connected with C 2-boundary and bounded
curvature, and fi ∈ C 2(R2) with supp fi ⊆ [0, 1]2 and ∥fi∥C2 ≤ 1, i = 0, 1.

Theorem (Donoho; 2001):
Let (ψλ)λ ⊆ L2(R2). Allowing only polynomial depth search, we have the
following optimal behavior for f ∈ E2(R2):

∥f − fN∥2 ≍ N−1 as N → ∞.

Review of 2-D Wavelets

Definition (1D): Let ϕ ∈ L2(R) be a scaling function and ψ ∈ L2(R) be a
wavelet. Then the associated wavelet system is defined by

{ϕ(x −m) : m ∈ Z} ∪ {2j/2 ψ(2jx −m) : j ≥ 0,m ∈ Z}.

Definition (2D): A wavelet system is defined by

{ϕ(1)(x −m) : m ∈ Z2} ∪ {2jψ(i)(2jx −m) : j ≥ 0,m ∈ Z2, i = 1, 2, 3},

where ψ(1)(x) = ϕ(x1)ψ(x2),

ϕ(1)(x) = ϕ(x1)ϕ(x2) and ψ(2)(x) = ψ(x1)ϕ(x2),

ψ(3)(x) = ψ(x1)ψ(x2).

Theorem: Wavelets provide optimally sparse approximations for functions
f ∈ L2(R2), which are C 2 apart from point singularities:

∥f − fN∥2 ≍ N− 1
2 , N → ∞.

Review of 2-D Wavelets

Definition (1D): Let ϕ ∈ L2(R) be a scaling function and ψ ∈ L2(R) be a
wavelet. Then the associated wavelet system is defined by

{ϕ(x −m) : m ∈ Z} ∪ {2j/2 ψ(2jx −m) : j ≥ 0,m ∈ Z}.

Definition (2D): A wavelet system is defined by

{ϕ(1)(x −m) : m ∈ Z2} ∪ {2jψ(i)(2jx −m) : j ≥ 0,m ∈ Z2, i = 1, 2, 3},

where ψ(1)(x) = ϕ(x1)ψ(x2),

ϕ(1)(x) = ϕ(x1)ϕ(x2) and ψ(2)(x) = ψ(x1)ϕ(x2),

ψ(3)(x) = ψ(x1)ψ(x2).

Theorem: Wavelets provide optimally sparse approximations for functions
f ∈ L2(R2), which are C 2 apart from point singularities:

∥f − fN∥2 ≍ N− 1
2 , N → ∞.

Wavelet Decomposition: JPEG2000

Wavelet Decomposition: JPEG2000

Original

25% Compression 5% Compression

What can Wavelets do?

Problem:

▶ Isotropic structure of wavelets:

{2jψ(
(

2j 0
0 2j

)
x −m) : j ∈ Z,m ∈ Z2}, ψ ∈ L2(R2).

▶ For f ∈ E2(R2), wavelets only achieve

∥f − fN∥2 ≍ N− 1
2 , N → ∞.

Non-Exhaustive List of Approaches:

▶ Ridgelets (Candès and Donoho; 1999)

▶ Curvelets (Candès and Donoho; 2002)

▶ Contourlets (Do and Vetterli; 2002)

▶ Bandlets (LePennec and Mallat; 2003)

▶ Shearlets (K and Labate; 2006)

What can Wavelets do?

Problem:

▶ Isotropic structure of wavelets:

{2jψ(
(

2j 0
0 2j

)
x −m) : j ∈ Z,m ∈ Z2}, ψ ∈ L2(R2).

▶ For f ∈ E2(R2), wavelets only achieve

∥f − fN∥2 ≍ N− 1
2 , N → ∞.

Non-Exhaustive List of Approaches:

▶ Ridgelets (Candès and Donoho; 1999)

▶ Curvelets (Candès and Donoho; 2002)

▶ Contourlets (Do and Vetterli; 2002)

▶ Bandlets (LePennec and Mallat; 2003)

▶ Shearlets (K and Labate; 2006)

(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(ϕ, ψ, ψ̃) generated by
ϕ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{ϕ(· −m) : m ∈ Z2},

{23j/4ψ(SkA2j · −m) : j ≥ 0, |k | ≤ ⌈2j/2⌉,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −m) : j ≥ 0, |k | ≤ ⌈2j/2⌉,m ∈ Z2}.

The associated shearlet transform will be denoted by SH.

(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(ϕ, ψ, ψ̃) generated by
ϕ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{ϕ(· −m) : m ∈ Z2},

{23j/4ψ(SkA2j · −m) : j ≥ 0, |k | ≤ ⌈2j/2⌉,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −m) : j ≥ 0, |k | ≤ ⌈2j/2⌉,m ∈ Z2}.

The associated shearlet transform will be denoted by SH.

Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let ϕ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(ϕ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

∥f − fN∥2 ≲ N−1(logN)
3
2 as N → ∞.

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

▶ Matlab (K, Lim, Reisenhofer; 2013)

▶ Julia (Loarca; 2017)

▶ Python (Look; 2018)

▶ Tensorflow (K, Loarca; 2019)

Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let ϕ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(ϕ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

∥f − fN∥2 ≲ N−1(logN)
3
2 as N → ∞.

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

▶ Matlab (K, Lim, Reisenhofer; 2013)

▶ Julia (Loarca; 2017)

▶ Python (Look; 2018)

▶ Tensorflow (K, Loarca; 2019)

Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd) and (φi)i∈I ⊆ L2(Rd). Measure the suitability of
(φi)i∈I for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f ∈ C is
given by

∥f − fN∥2 := inf
IN⊂I ,#IN=N,(ci)i∈IN

∥f −
∑
i∈IN

ciφi∥2.

The largest γ > 0 such that

sup
f ∈C

∥f − fN∥2 = O(N−γ) as N → ∞

determines the optimal (sparse) approximation rate of C by (φi)i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity

Universality of Deep Neural Networks

Universality of Shallow Neural Networks

Remark: Assume ϱ is a polynomial of degree q. Then ϱ(Wx + b) is also a
polynomial of degree q, hence Φ is also a polynomial of degree ≤ L · q.
Hence in this case C (Rd) cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Every continuous function on a compact set can be arbitrarily well
approximated with a neural network with one single hidden layer.

Universality of Shallow Neural Networks

Remark: Assume ϱ is a polynomial of degree q. Then ϱ(Wx + b) is also a
polynomial of degree q, hence Φ is also a polynomial of degree ≤ L · q.
Hence in this case C (Rd) cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Every continuous function on a compact set can be arbitrarily well
approximated with a neural network with one single hidden layer.

Idea of Proof

▶ For d ≥ 1, ϱ continuous, ϱ : R → R TFAE:

(i) span{ϱ(⟨w , x⟩ − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) ϱ is not a polynomial.

▶ Now: (ii)⇒ (i) for d = 1 and a smooth activation function ϱ.

▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k.

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.

Idea of Proof

▶ For d ≥ 1, ϱ continuous, ϱ : R → R TFAE:

(i) span{ϱ(⟨w , x⟩ − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) ϱ is not a polynomial.

▶ Now: (ii)⇒ (i) for d = 1 and a smooth activation function ϱ.

▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k .

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.

Idea of Proof

▶ For d ≥ 1, ϱ continuous, ϱ : R → R TFAE:

(i) span{ϱ(⟨w , x⟩ − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) ϱ is not a polynomial.

▶ Now: (ii)⇒ (i) for d = 1 and a smooth activation function ϱ.

▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k .

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.

Idea of Proof

▶ For d ≥ 1, ϱ continuous, ϱ : R → R TFAE:

(i) span{ϱ(⟨w , x⟩ − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) ϱ is not a polynomial.

▶ Now: (ii)⇒ (i) for d = 1 and a smooth activation function ϱ.

▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k .

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.

Idea of Proof

▶ For d ≥ 1, ϱ continuous, ϱ : R → R TFAE:

(i) span{ϱ(⟨w , x⟩ − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) ϱ is not a polynomial.

▶ Now: (ii)⇒ (i) for d = 1 and a smooth activation function ϱ.

▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k .

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Corollary:
In this situation, we obtain

εapprox → 0

for increasing complexity of the neural networks.

Approximation accuracy ↔ Complexity of approximating network?

What about even optimality?

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Corollary:
In this situation, we obtain

εapprox → 0

for increasing complexity of the neural networks.

Approximation accuracy ↔ Complexity of approximating network?

What about even optimality?

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Corollary:
In this situation, we obtain

εapprox → 0

for increasing complexity of the neural networks.

Approximation accuracy ↔ Complexity of approximating network?

What about even optimality?

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Corollary:
In this situation, we obtain

εapprox → 0

for increasing complexity of the neural networks.

Approximation accuracy ↔ Complexity of approximating network?

What about even optimality?

Lower Bounds for Approximation

Classical Approach:

▶ VC Dimension

Towards Optimal Complexity:
▶ How well can functions be approximated by neural networks with few

non-zero weights?
▶ Can we derive a lower bound on the necessary number of weights?
▶ Can we construct neural networks which attain this bound?

▶ Are neural networks as good approximators as wavelets and shearlets?

Lower Bounds for Approximation

Classical Approach:

▶ VC Dimension

Towards Optimal Complexity:
▶ How well can functions be approximated by neural networks with few

non-zero weights?
▶ Can we derive a lower bound on the necessary number of weights?
▶ Can we construct neural networks which attain this bound?

▶ Are neural networks as good approximators as wavelets and shearlets?

Measure for Complexity of Function Class

Intuitive Definition:
The optimal exponent γ∗(C) is a measure of complexity of the function
class C:
“The optimal exponent describes the dependence of the code length for
encoding the function class on the required approximation quality.”

Theorem:
For C ⊆ L2(Rd), the optimal N−term approximation rate is given by

N
− 1

γ∗(C) .

Rate Distortion Theory

Definition:
▶ Let d ∈ N,Ω ∈ Rd and C ⊂ L2(Ω). For any l ∈ N

E l = {E : C → {0, 1}l}

is called the set of binary encoders of length l and

Dl = {D : {0, 1}l → L2(Ω)}

is called the set of binary decoders of length l .

▶ A pair (E ,D) ∈ E l ×Dl achieves distortion ε > 0 over C, if

sup
f ∈C

∥D(E (f))− f ∥L2 ≤ ε.

▶ For ε > 0, the minimal code length L(ε, C) is

L(ε, C) = min{l ∈ N : ∃(E ,D) ∈ E l ×Dl : sup
f ∈C

∥D(E (f))− f ∥L2 ≤ ε}.

The optimal exponent γ∗(C) is

γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

Rate Distortion Theory

Definition:
▶ Let d ∈ N,Ω ∈ Rd and C ⊂ L2(Ω). For any l ∈ N

E l = {E : C → {0, 1}l}

is called the set of binary encoders of length l and

Dl = {D : {0, 1}l → L2(Ω)}

is called the set of binary decoders of length l .
▶ A pair (E ,D) ∈ E l ×Dl achieves distortion ε > 0 over C, if

sup
f ∈C

∥D(E (f))− f ∥L2 ≤ ε.

▶ For ε > 0, the minimal code length L(ε, C) is

L(ε, C) = min{l ∈ N : ∃(E ,D) ∈ E l ×Dl : sup
f ∈C

∥D(E (f))− f ∥L2 ≤ ε}.

The optimal exponent γ∗(C) is

γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

Rate Distortion Theory

Definition:
▶ Let d ∈ N,Ω ∈ Rd and C ⊂ L2(Ω). For any l ∈ N

E l = {E : C → {0, 1}l}

is called the set of binary encoders of length l and

Dl = {D : {0, 1}l → L2(Ω)}

is called the set of binary decoders of length l .
▶ A pair (E ,D) ∈ E l ×Dl achieves distortion ε > 0 over C, if

sup
f ∈C

∥D(E (f))− f ∥L2 ≤ ε.

▶ For ε > 0, the minimal code length L(ε, C) is

L(ε, C) = min{l ∈ N : ∃(E ,D) ∈ E l ×Dl : sup
f ∈C

∥D(E (f))− f ∥L2 ≤ ε}.

The optimal exponent γ∗(C) is

γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

A Fundamental Lower Bound

Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let d ∈ N, ϱ : R → R, and let C ⊂ L2(Rd). Assume that

Learn : (0, 1)× C → Fa

satisfies
sup
f ∈C

∥f − Learn(ϵ, f)∥L2 ≤ ϵ.

Then, for all γ < γ∗(C), there is no C > 0 with

sup
f ∈C

C (Learn(ϵ, f)) ≤ Cϵ−γ for all ϵ > 0. ϵ

C(Learn(ϵ, C))

What happens for γ = γ∗(C)?

A Fundamental Lower Bound

Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let d ∈ N, ϱ : R → R, and let C ⊂ L2(Rd). Assume that

Learn : (0, 1)× C → Fa

satisfies
sup
f ∈C

∥f − Learn(ϵ, f)∥L2 ≤ ϵ.

Then, for all γ < γ∗(C), there is no C > 0 with

sup
f ∈C

C (Learn(ϵ, f)) ≤ Cϵ−γ for all ϵ > 0. ϵ

C(Learn(ϵ, C))

What happens for γ = γ∗(C)?

Optimally Sparse Deep Neural Networks

DNNs and Representation Systems, I

Observation: Assume a system (φi)i∈I ⊂ L2(Rd) satisfies:

▶ For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that φi = Φi .

Then we can construct a network Φ with O(M) edges with

Φ =
∑
i∈IM

ciφi , if |IM | = M.

DNNs and Representation Systems, II

Corollary: Assume a system (φi)i∈I ⊂ L2(Rd) satisfies:

▶ For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that φi = Φi .

▶ There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd), there exists
IM ⊂ I with

∥f −
∑
i∈IM

ciφi∥ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ϵ by a neural
network with only O(ϵ−γ∗(C)) edges.

Sketch of Proof:

▶ There exists a network Φ with O(M) edges with Φ =
∑

i∈IM ciφi .

▶ Set ϵ = C̃M−1/γ∗(C) and solve for the number of edges M, yielding

M = O(ϵ−γ∗(C)).

DNNs and Representation Systems, II

Corollary: Assume a system (φi)i∈I ⊂ L2(Rd) satisfies:

▶ For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that φi = Φi .

▶ There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd), there exists
IM ⊂ I with

∥f −
∑
i∈IM

ciφi∥ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ϵ by a neural
network with only O(ϵ−γ∗(C)) edges.

Recall: If a neural network stems from a fixed learning procedure Learn,
then, for all γ < γ∗(C), there does not exist C > 0 such that

sup
f ∈C

C (Learn(ϵ, f)) ≤ Cϵ−γ for all ϵ > 0.

Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
Yes

(2) Determine an associated representation system with the following
properties:
Yes
▶ The elements of this system can be realized by a neural network with

controlled number of edges.
Yes

▶ This system provides optimally sparse approximations for C.
This has been proven!

Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
; Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
Yes
▶ The elements of this system can be realized by a neural network with

controlled number of edges.
Yes

▶ This system provides optimally sparse approximations for C.
This has been proven!

Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
; Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
; Shearlets!
▶ The elements of this system can be realized by a neural network with

controlled number of edges.
Yes

▶ This system provides optimally sparse approximations for C.
This has been proven!

Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
; Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
; Shearlets!
▶ The elements of this system can be realized by a neural network with

controlled number of edges.
Yes

▶ This system provides optimally sparse approximations for C.
; This has been proven!

Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
; Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
; Shearlets!
▶ The elements of this system can be realized by a neural network with

controlled number of edges.
; Still to be analyzed!

▶ This system provides optimally sparse approximations for C.
; This has been proven!

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; ’17):

▶ Assume activation function ϱ(x) = max{x , 0} (ReLUs).

▶ Define
t(x) := ϱ(x)− ϱ(x − 1)− ϱ(x − 2) + ϱ(x − 3).

t

; t can be constructed with a 2 layer network.

▶ Observe that
ϕ(x1, x2) := ϱ(t(x1) + t(x2)− 1)

yields a 2D bump function.
▶ Summing up shifted versions of ϕ yields a function ψ with vanishing

moments.
;ψ can be realized by a 3 layer neural network.

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; ’17):

▶ Assume activation function ϱ(x) = max{x , 0} (ReLUs).

▶ Define
t(x) := ϱ(x)− ϱ(x − 1)− ϱ(x − 2) + ϱ(x − 3).

t

; t can be constructed with a 2 layer network.

▶ Observe that
ϕ(x1, x2) := ϱ(t(x1) + t(x2)− 1)

yields a 2D bump function.
▶ Summing up shifted versions of ϕ yields a function ψ with vanishing

moments.
;ψ can be realized by a 3 layer neural network.

This cannot yield differentiable functions ψ!

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; ’17):

▶ Assume activation function ϱ(x) = max{x , 0} (ReLUs).

▶ Define
t(x) := ϱ(x)− ϱ(x − 1)− ϱ(x − 2) + ϱ(x − 3).

t

; t can be constructed with a 2 layer network.

▶ Observe that
ϕ(x1, x2) := ϱ(t(x1) + t(x2)− 1)

yields a 2D bump function.
▶ Summing up shifted versions of ϕ yields a function ψ with vanishing

moments.
;ψ can be realized by a 3 layer neural network.

Our Construction: Use a smoothed version of a ReLU.
; Leads to appropriate shearlet generators!

Optimal Approximation

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let ϱ be an
admissible smooth activation function, and let ϵ > 0. Then there exist
Cϵ > 0 such that, for all f ∈ E2(R2) and N ∈ N, we can construct a
neural network Φ with 4 layers and complexity C (Φ) = O(N) satisfying

∥f − Φ∥L2(R2) ≤ CϵN
−1+ϵ.

This is the optimal rate; hence the first bound is sharp!

Function classes which are optimal representable by shearlets, etc.

are also optimally approximated

by memory-efficient neural networks with a parallel architecture!

Optimal Approximation

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let ϱ be an
admissible smooth activation function, and let ϵ > 0. Then there exist
Cϵ > 0 such that, for all f ∈ E2(R2) and N ∈ N, we can construct a
neural network Φ with 4 layers and complexity C (Φ) = O(N) satisfying

∥f − Φ∥L2(R2) ≤ CϵN
−1+ϵ.

This is the optimal rate; hence the first bound is sharp!

Function classes which are optimal representable by shearlets, etc.

are also optimally approximated

by memory-efficient neural networks with a parallel architecture!

Some Numerics

Typically weights are learnt by backpropagation. This raises the following
question:

Does this lead to the optimal complexity?

Our setup:

▶ Fixed network topology with ReLUs.

▶ Specific functions to learn.

▶ Learning through SGD.

▶ Analyze the learnt subnetworks.

▶ Analysis of the connection between approximation error and number
of edges.

Numerical Experiments (with ReLUs & Backpropagation)

50 100 150 200 250

50

100

150

200

250

Linear Singularity

10
-5

10
-4

10
-3

10
-2

10
-1

100 200180160140120

Error

of edges
10 20 30 40 50 60

10

20

30

40

50

60

Subnetworks: Ridgelets!

20 40 60 80 100 120

20

40

60

80

100

120

Curvilinear Singularity

10
2 10

3
10
4

10
5

10
-4

10
-3

10
-2

10
-1

Error

of edges Subnetworks: ≈ Shearlets!

Numerical Experiments (with ReLUs & Backpropagation)

50 100 150 200 250

50

100

150

200

250

Linear Singularity

10
-5

10
-4

10
-3

10
-2

10
-1

100 200180160140120

Error

of edges
10 20 30 40 50 60

10

20

30

40

50

60

Subnetworks: Ridgelets!

20 40 60 80 100 120

20

40

60

80

100

120

Curvilinear Singularity

10
2 10

3
10
4

10
5

10
-4

10
-3

10
-2

10
-1

Error

of edges Subnetworks: ≈ Shearlets!

The Role of Depth

ReLU Deep Neural Networks

Our Situation:
We now consider deep neural networks with ReLU activation function
ϱR(x) = max{0, x}.

Properties of ReLU Neural Networks:

(1) A two-layer ReLU neural network with one-dimensional input and
output is a function of the form

Φ(x) :=
n∑

i=1

w
(2)
i ϱR(w

(1)
i x + b

(1)
i) + b(2), x ∈ R,

where w
(1)
i ,w

(2)
i , b

(1)
i , b(2) ∈ R for i ∈ [n].

(2) Φ is a continuous piecewise affine linear function.

The Hat Function

General Observation:
We can write the hat function h : [0, 1] → [0, 1] as a neural network with 2
layers and 2 neurons:

h(x) = 2ϱR(x)− 4ϱR(x − 1
2) =

{
2x , if 0 ≤ x < 1

2 ,

2(1− x), if 1
2 ≤ x ≤ 1.

Telegarsky

Observation by (Telegarsky; 2016):
The n-fold convolution hn(x) := h ◦ · · · ◦ h produces a sawtooth function
with 2n spikes. In particular, hn admits 2n affine linear pieces with only 2n
many neurons.

Deep ReLU neural networks are exponentially more efficient
in generating affine linear pieces!

Approximating Smooth Functions

Idea:
▶ Let In be interpolation of [0, 1] ∋ x 7→ g(x) := x − x2 on 2n + 1

equidistant points.
▶ In is a sum of n sawtooth functions:

In =
n∑

k=1

Ik − Ik−1 =
n∑

k=1

hk
22k
.

▶ Each hk = hk−1 ◦ h can be written as a k-fold composition of h.

0 1
8

2
8

3
8

4
8

5
8

6
8

7
8

1
0

1
32

2
32

3
32

4
32

5
32

6
32

7
32

8
32 g

I1
g I1
I2 I1
g I2
I3 I2

Approximating Smooth Functions (Continued)

This leads to efficient approximation by ReLU neural networks of

▶ x 7→ x2,

▶ (x , y) 7→ xy ,

▶ localized Taylor polynomials,

▶ smooth functions,

▶ ...Sobolev-regular functions.

Theorem (Gühring, K, Petersen; 2020):
Let d , k ∈ N with k ≥ 2, let p ∈ [1,∞], s ∈ [0, 1], and B ∈ (0,∞). Then
there exists a constant c ∈ (0,∞) with the following property: For every
ε ∈ (0, 12) there exists a neural network architecture a = (N, ϱ) with

P(N) ≤ cε−d/(k−s) log(1/ε)

such that for every function g ∈ W k,p((0, 1)d) with ∥g∥W k,p((0,1)d) ≤ B it
holds that

inf
θ∈RP(N)

∥Φa(θ, ·)− g∥W s,p((0,1)d) ≤ ε.

Depth-Width Approximation Trade-Off

Theorem (Yarotzky; 2017):
Let d , L ∈ N with L ≥ 2 and let g ∈ C 2([0, 1]d) be a function which is not
affine linear. Then there exists a constant c ∈ (0,∞) with the following
property: For every ε ∈ (0, 1) and every ReLU neural network architecture
a = (N, ϱR) = ((d ,N1, . . . ,NL−1, 1), ϱR) with L layers and

∥N∥1 ≤ cε−1/(2(L−1))

neurons, then
inf

θ∈RP(N)
∥Φa(·, θ)− g∥L∞([0,1]d) ≥ ε.

Depth-Width Approximation Trade-Off

Theorem (Yarotzky; 2017):
Let d , L ∈ N with L ≥ 2 and let g ∈ C 2([0, 1]d) be a function which is not
affine linear. Then there exists a constant c ∈ (0,∞) with the following
property: For every ε ∈ (0, 1) and every ReLU neural network architecture
a = (N, ϱR) = ((d ,N1, . . . ,NL−1, 1), ϱR) with L layers and

∥N∥1 ≤ cε−1/(2(L−1))

neurons, then
inf

θ∈RP(N)
∥Φa(·, θ)− g∥L∞([0,1]d) ≥ ε.

Idea of Proof:

▶ Use the fact that ReLU neural networks are piecewise affine linear.

▶ Show that that the number of pieces that can be generated using an
architecture ((1,N1, . . . ,NL−1, 1), ϱR) scales roughly like

∏L−1
ℓ=1 Nℓ.

Alternative Notions of Expressivity

A Different Viewpoint

Instead of the classical approximation framework, alternative notions aim
to relate structural properties of the neural network with the

richness of the set of possibly expressed functions.

Early Work (Montúfar, Pascanu, Cho, Bengio; 2014):

▶ Consider affine linear regions of a ReLU neural network Φ(N,ϱR)(·, θ).
▶ Analyze the growth of their number depending on the depth.

Definition:
Affine linear regions are the connected components of RN0 \H, where H is
the set of non-differentiability of the realization Φ(N,ϱR)(·, θ).

A Different Viewpoint

Instead of the classical approximation framework, alternative notions aim
to relate structural properties of the neural network with the

richness of the set of possibly expressed functions.

Early Work (Montúfar, Pascanu, Cho, Bengio; 2014):

▶ Consider affine linear regions of a ReLU neural network Φ(N,ϱR)(·, θ).
▶ Analyze the growth of their number depending on the depth.

Definition:
Affine linear regions are the connected components of RN0 \H, where H is
the set of non-differentiability of the realization Φ(N,ϱR)(·, θ).

Illustration of Affine-Linear Regions

Source: Hinz, van de Geer. A Framework for the construction of upper bounds on the number of affine

linear regions of ReLU feed-forward neural networks. IEEE Transactions on Information Theory 65 (2019),

7304–7324

Growth of Number of Affine Linear Regions

Informal Theorem (Hinz, Sara van de Geer; 2019):
“Deep ReLU neural networks can exhibit significantly more regions than
their shallow counterparts.”

Intuition of the Effect of Depth:

▶ Through the ReLU each neuron Rd ∋ x 7→ ϱR(⟨x ,w⟩+ b), w ∈ Rd , b ∈ R,
splits the space into two affine linear regions separated by the hyperplane

{x ∈ Rd : ⟨x ,w⟩+ b = 0}.

▶ A shallow ReLU neural network Φ((d,n,1),ϱR)(·, θ) with n neurons in the
hidden layer therefore produces a number of regions defined through n
hyperplanes.

▶ One can bound the number of affine linear regions by
∑d

j=0

(
n
j

)
.

▶ Deepening neural networks then corresponds to a folding of the input space.

This leads to an exponential efficiency of deep neural networks
in generating affine linear regions!

Growth of Number of Affine Linear Regions

Informal Theorem (Hinz, Sara van de Geer; 2019):
“Deep ReLU neural networks can exhibit significantly more regions than
their shallow counterparts.”

Intuition of the Effect of Depth:

▶ Through the ReLU each neuron Rd ∋ x 7→ ϱR(⟨x ,w⟩+ b), w ∈ Rd , b ∈ R,
splits the space into two affine linear regions separated by the hyperplane

{x ∈ Rd : ⟨x ,w⟩+ b = 0}.

▶ A shallow ReLU neural network Φ((d,n,1),ϱR)(·, θ) with n neurons in the
hidden layer therefore produces a number of regions defined through n
hyperplanes.

▶ One can bound the number of affine linear regions by
∑d

j=0

(
n
j

)
.

▶ Deepening neural networks then corresponds to a folding of the input space.

This leads to an exponential efficiency of deep neural networks
in generating affine linear regions!

Growth of Number of Affine Linear Regions

Informal Theorem (Hinz, Sara van de Geer; 2019):
“Deep ReLU neural networks can exhibit significantly more regions than
their shallow counterparts.”

Intuition of the Effect of Depth:

▶ Through the ReLU each neuron Rd ∋ x 7→ ϱR(⟨x ,w⟩+ b), w ∈ Rd , b ∈ R,
splits the space into two affine linear regions separated by the hyperplane

{x ∈ Rd : ⟨x ,w⟩+ b = 0}.

▶ A shallow ReLU neural network Φ((d,n,1),ϱR)(·, θ) with n neurons in the
hidden layer therefore produces a number of regions defined through n
hyperplanes.

▶ One can bound the number of affine linear regions by
∑d

j=0

(
n
j

)
.

▶ Deepening neural networks then corresponds to a folding of the input space.

This leads to an exponential efficiency of deep neural networks
in generating affine linear regions!

Going one Step Further

Idea:
How does the length of a non-constant curve in the input space
changes in expectation through the layers of a neural network?

Illustration

Shape of the trajectory t 7→ Φ((2,n,...,n,2),ϱR)(γ(t), θ) of the output of a
randomly initialized network with 0, 3, 10 hidden layers:

Going one Step Further

Idea:
How does the length of a non-constant curve in the input space
changes in expectation through the layers of a neural network?

Definition (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):
Consider a ReLU network with architecture a = ((N0, n, . . . , n,NL), ϱR)
and depth L ∈ N. Given a non-constant continuous curve γ : [0, 1] → RN0

in the input space, the length of the trajectory in the ℓ-th layer of the
neural network Φa(·, θ) is then given by

Length(Φ̄(ℓ)(γ(·), θ)), ℓ ∈ [L− 1],

where Φ̄(ℓ)(·, θ) is the activation in the ℓ-th layer.

Going one Step Further

Idea:
How does the length of a non-constant curve in the input space
changes in expectation through the layers of a neural network?

Definition (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):
Consider a ReLU network with architecture a = ((N0, n, . . . , n,NL), ϱR)
and depth L ∈ N. Given a non-constant continuous curve γ : [0, 1] → RN0

in the input space, the length of the trajectory in the ℓ-th layer of the
neural network Φa(·, θ) is then given by

Length(Φ̄(ℓ)(γ(·), θ)), ℓ ∈ [L− 1],

where Φ̄(ℓ)(·, θ) is the activation in the ℓ-th layer.

Analyzing the Length of the Trajectory

Coarse Argumentation:

▶ Let the parameters Θ1 of Φa be initialized independently

▶ The entries corresponding to the weight matrices and bias vectors
follow a normal distribution with zero mean and variances 1/n and 1,
respectively.

▶ We can then conclude that

E
[
Length(Φ̄(ℓ)(γ(·),Θ1))

]
= c > 0.

▶ Let σ ∈ (0,∞).

▶ Consider a second initialization Θσ, now with σ2/n and σ2.

▶ By positive homogeneity of the ReLU, we obtain

Φ̄(ℓ)(·,Θσ) ∼ σℓΦ̄(ℓ)(·,Θ1).

Theorem (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):
We have

E
[
Length(Φ̄(ℓ)(γ(·),Θσ))

]
= σℓc .

The expected trajectory length depends exponentially on the depth!

Analyzing the Length of the Trajectory

Coarse Argumentation:

▶ Let the parameters Θ1 of Φa be initialized independently

▶ The entries corresponding to the weight matrices and bias vectors
follow a normal distribution with zero mean and variances 1/n and 1,
respectively.

▶ We can then conclude that

E
[
Length(Φ̄(ℓ)(γ(·),Θ1))

]
= c > 0.

▶ Let σ ∈ (0,∞).

▶ Consider a second initialization Θσ, now with σ2/n and σ2.

▶ By positive homogeneity of the ReLU, we obtain

Φ̄(ℓ)(·,Θσ) ∼ σℓΦ̄(ℓ)(·,Θ1).

Theorem (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):
We have

E
[
Length(Φ̄(ℓ)(γ(·),Θσ))

]
= σℓc .

The expected trajectory length depends exponentially on the depth!

Analyzing the Length of the Trajectory

Coarse Argumentation:

▶ Let the parameters Θ1 of Φa be initialized independently

▶ The entries corresponding to the weight matrices and bias vectors
follow a normal distribution with zero mean and variances 1/n and 1,
respectively.

▶ We can then conclude that

E
[
Length(Φ̄(ℓ)(γ(·),Θ1))

]
= c > 0.

▶ Let σ ∈ (0,∞).

▶ Consider a second initialization Θσ, now with σ2/n and σ2.

▶ By positive homogeneity of the ReLU, we obtain

Φ̄(ℓ)(·,Θσ) ∼ σℓΦ̄(ℓ)(·,Θ1).

Theorem (Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein; 2017):
We have

E
[
Length(Φ̄(ℓ)(γ(·),Θσ))

]
= σℓc .

The expected trajectory length depends exponentially on the depth!

Some Final Thoughts...

Conclusions

Expressivity:

▶ The goal is to bound the approximation error.

▶ Deep neural networks have a universality property.

▶ Function classes, which are optimal representable by wavelets, shearlets,
etc., are also optimally approximated by memory-efficient neural networks.

▶ Deep ReLU neural networks are exponentially more efficient in generating
affine linear pieces.

▶ There are alternative approaches such as considering the length of the
trajectory.

THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.

Related Book:
▶ Grohs and K, eds.,

Mathematical Aspects of Deep Learning
Cambridge University Press, 2022.

