High-Dimensional Approximation in Al

Lecture 2: Al, High-Dimensional PDEs, and
a Look into the Future

Gitta Kutyniok (LMU Munich)

also

University of Tromsg & DLR — German Aerospace Center

CIME School on High-Dimensional Approximation
Cetraro, ltaly, September 22 27, 2024

MATH Bavarian Al Chair for
4 Mathematical Foundations
LUDWIG- AI of Artificial Intelligence
MAXIMILIANS-
I_Ivlu UNIVERSITAT
MUNCHEN

Partial Differential Equations

Some Facts about PDE Solvers:
Precise physical models exist.
The discretization process is very well understood.

Often optimal solvers are available.
A rich bouquet of highly sophisticated solvers are developed:

Finite-element methods
Wavelet-based approaches

Partial Differential Equations

Some Facts about PDE Solvers:
Precise physical models exist.
The discretization process is very well understood.

Often optimal solvers are available.
A rich bouquet of highly sophisticated solvers are developed:

Finite-element methods
Wavelet-based approaches

Why do we need deep neural networks?

Partial Differential Equations

Some Facts about PDE Solvers:
Precise physical models exist.
The discretization process is very well understood.

Often optimal solvers are available.
A rich bouquet of highly sophisticated solvers are developed:

Finite-element methods
Wavelet-based approaches

Why do we need deep neural networks?

~> Deep neural networks can beat the curse of dimensionality in high
dimensional problems!

Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:
Approximate the solution v of a PDE

L(u)="f
by a neural network @, i.e., determine
L(P) ~ f.

Key ldeas:
Sampling of points in the spatial domain

Incorporate PDE in the loss functions

Incomplete List of Contributions:
[Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano,

Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Raissi, Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], .

LM

Let’s Now Enter the World of Parametric PDEs

Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of
science and engineering.

Some Exemplary Problem Classes:
Complex design problems
Inverse problems
Optimization tasks

Uncertainty quantification

The number of parameters can be
finite (physical properties such as domain geometry, ...)

infinite (modeling of random stochastic diffusion field, ...)

Parametric Map:

Y3y — u, €M suchthat L(uy,y)="1,.

Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form
by (uy,v) =f,(v), forallyey, veH,
where
Y C RP (p large) is the compact parameter set,
H is a Hilbert space,

b,: H x H — R is a symmetric, uniformally coercive, and uniformally
continuous bilinear form,

f, € H* is the uniformly bounded, parameter-dependent right-hand
side,

uy, € H is the solution.

We assume the solution manifold

SV):={uy :y eV}
to be compact in H.

Multi-Query Situation

Many applications require solving the parametric PDE multiple times for
different parameters:
RPOYoy=(,...,yp) = u €M
Examples:
Design optimization

Optimal control

Routine analysis
Uncertainty quantification

Inverse problems

Multi-Query Situation

Many applications require solving the parametric PDE multiple times for
different parameters:
RPOYoy=(,...,yp) = u €M
Examples:
Design optimization

Optimal control

Routine analysis
Uncertainty quantification

Inverse problems

Curse of Dimensionality:

Computational cost often much too high!

High-Fidelity Approximations

Galerkin Approach: Instead of by (uy,v) = f,(v), we solve
by, <u}l,’, v) = f,(v) for all v € U,
where U" C H with D := dim (U") < oo is the high-fidelity discretization

and u}',' € U" is the solution.

Cea’s Lemma: u}’,’ is (up to a constant) a best approximation of u, by

elements in U".

High-Fidelity Approximations

Galerkin Approach: Instead of by (uy,v) = f,(v), we solve
by, <u}l,’, v) = f,(v) for all v € U,

where U" C H with D := dim (U") < oo is the high-fidelity discretization
and u}',' € U" is the solution.

Cea’s Lemma: u"

v is (up to a constant) a best approximation of u, by

elements in U".

Galerkin Solution: Let (<,0,-),D:1 be a basis for U". Then u;’ satisfies
b 1
u}/,7 = Z(UC)HO/ with u)’Z = (BI;) f}',’ e RP,
i=1

where B)’} = (b, (goj-,cp,-))ll.?j:l and f;’ = (f, (go,-))?:l.

What about Deep Neural Networks?

Parametric Map:

Yoy — ug € RP such that b, (u}’,’, v) = f,(v) Vv € U".

Can a Neural Network Approximate the Parametric Map?

What about Deep Neural Networks?

Parametric Map:

Yoy — uB € RP such that b, (u}’,’, v) = f,(v) Vv € U".
Can a Neural Network Approximate the Parametric Map?

Advantages:
After training, extremely rapid computation of the map.

Flexible, universal approach.
Questions: Let € > 0.
Does there exist a neural network ¢ such that
HCD—u?H <e forallye)?

How does the complexity of ® depend on p and D?
How do neural networks perform numerically on this task?

Deep Learning Approaches to (Parametric) PDEs

Solving PDEs with Neural Networks:
Lagaris, Likas, Fotiadis; 1998
E, Yu; 2017
Sirignano, Spiliopoulos; 2017
Han, Jentzen, E; 2017
Berner, Grohs, Jentzen; 2018
Regazzoni, Dedeé, Quarteroni; 2019
Reisinger, Zhang; 2019

Deep Learning Approaches to (Parametric) PDEs

Solving PDEs with Neural Networks:
Lagaris, Likas, Fotiadis; 1998
E, Yu; 2017
Sirignano, Spiliopoulos; 2017
Han, Jentzen, E; 2017
Berner, Grohs, Jentzen; 2018
Regazzoni, Dedeé, Quarteroni; 2019
Reisinger, Zhang; 2019

Solving Parametric PDEs with Neural Networks:

K. Lee, K. Carlberg; 2018
Learn a parametrization of S(Y) represented by neural networks.

J.S. Hesthaven, S. Ubbiali; 2018
Find reduced basis and then train neural networks to predict coefficients of
solution in that basis.
Schwab, Zech; 2018

Assume that there is a reduced basis of polynomial chaos functions. Thes.
and the coefficients can be efficiently represented by neural networks.

Approximation of the Parametric Map

by Deep Neural Networks

What about Deep Neural Networks?

Parametric Map:

Yoy — uB € RP such that b, (u}’,’, v) = f,(v) Vv € U".
Can a Neural Network Approximate the Parametric Map?

Advantages:
After training, extremely rapid computation of the map.

Flexible, universal approach.
Questions: Let € > 0.
Does there exist a RelL U neural network ® such that
HCD—u?H <e forallye)?

How does the complexity of ® depend on p and D?
How do neural networks perform numerically on this task?

Reduced Basis Method: Key |deas

High-Fidelity Discretization:

Key ldea:

Offline (slow): Online (fast):
Compute snap shots Compute solutions for new parame

Reduced Basis Method: Details

Assumption: For all € > €g, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup inf [y — Wl <

~> Optimality through Kolmogorov N-width!

Reduced Basis Method: Details

Assumption: For all € > €g, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup inf [y — Wl <

~> Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

o . ¢ d(e)
Let U™ := span ()15 with ()7 = (X2, Vi)

i=1"

Reduced Basis Method: Details

Assumption: For all € > €g, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup influy — wly

~> Optimality through Kolmogorov N-width!

Transfer to Reduced BasiS'
Let U™ := span ()15 with ()7 = (X2, Vi)
Set Brb = (b (%,d):))d(e)l _ VTBhV c Rd(e)xd(e).
Set fP = (£, ()2 = VTl e R,

d(e)
i=1"

Reduced Basis Method: Details

Assumption: For all € > €g, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup influy — wly

~> Optimality through Kolmogorov N-width!

Transfer to Reduced BasiS'
Let U™ := span ()15 with ()7 = (X2, Vi)
Set Brb = (b (%,d):))d(e)l _ VTBhV c Rd(e)xd(e).
Set fP = (£, ()2 = VTl e R,

d(e)
i=1"

Galerkin Solution: (sup,cy [|uy, — u}”[4 < Ce)

rb __
Uy =

Reduced Basis Method: Details

Assumption: For all € > €g, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup influy — wly

~> Optimality through Kolmogorov N-width!

Transfer to Reduced BasiS'
Let U™ := span ()15 with ()7 = (X2, Vi)
Set Brb = (b (%,d):))d(e)l _ VTBhV c Rd(e)xd(e).
Set fP = (£, ()2 = VTl e R,

d(e)
i=1"

Galerkin Solution: (sup,cy [|uy, — u}”[4 < Ce)
d(e)

CEDCHRTE

i=1

Reduced Basis Method: Details

Assumption: For all € > €g, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup influy — wly

~> Optimality through Kolmogorov N-width!

Transfer to Reduced BasiS'
Let U™ := span ()15 with ()7 = (X2, Vi)
Set Brb = (b (%,d):))d(e)l _ VTBhV c Rd(e)xd(e).
Set fP = (£, ()2 = VTl e R,

d(e)
i=1"

Galerkin Solution: (sup,cy [|uy, — u}”[4 < Ce)

d(e)

D
u}r,b = Z (u;b>l_1/1,- = z (Vu;b)j Q=

i=1 j=1

Reduced Basis Method: Details

Assumption: For all € > ¢p, there exists U™ C H,
d(€) == dim (U™) < D such that

sup inf |lu, —wl|l, <e
sup influy — wly

~> Optimality through Kolmogorov N-width!

Transfer to Reduced BasiS'
Let U™ := span ()15 with ()7 = (X2, Vi)
Set Brb = (b (%,d):))d(e)l _ VTBhV c Rd(e)xd(e).
Set fP = (£, ()2 = VTl e R,

d(e)
i=1"

Galerkin Solution: (sup,cy [|uy, — u}”[4 < Ce)

d(e)

u =3 () wi = ZD: (Vu?) ¢ = ZD: (v(B) v TE

i=1 j=1 j=1

o

Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

For all € > 0, there exists d(¢) < D, V € RP*9() sych that for all
y € Y there exists BI € RY(9*d() with

IV(B}") VT —ub| <e

There exist ReLU neural networks 8 and &f of size
O(poly(p)d(€)?polylog(e€)) such that, for all y € ,

[®B —BlP[[<e and [&f —f° <e.

Then there exists a ReLU neural network & of size O(d(¢)3polylog(e)+
D + poly(p)d(€)?polylog(e)) such that

|®—ull|<e forallye.

Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):

Let (1/),-);]:(61) denote the reduced basis. We assume in addition the
following:

There exist ReLU neural networks (®;) 9 of size O(polylog(€))
such that ||®; — ¥j||ly <eforall i=1,..., d(e).

Then there exists a ReLU neural network & of size O(d(¢)3polylog(e)+
poly(p)d(€)?polylog(€)) such that

[—uylly <e forall y € Y.

Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):

Let (1/),-);]:(61) denote the reduced basis. We assume in addition the
following:

There exist ReLU neural networks (®;) 9 of size O(polylog(€))
such that ||®; — ¥j||ly <eforall i=1,..., d(e).

Then there exists a ReLU neural network & of size O(d(¢)3polylog(e)+
poly(p)d(€)?polylog(€)) such that

[—uylly <e forall y € Y.
Remark: The hypotheses are fulfilled, for example, by

Diffusion equations,

Linear elasticity equations.

Key Idea of the Proof

Main Task: Approximate V(B}") "'V} by a ReLU neural network and
control its size!

Key Idea of the Proof

Main Task: Approximate V(B}") "'V} by a ReLU neural network and
control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):

For g(x) := min{2x,2 — 2x} and gs := g o...og (s times), we have
n
x? = lim x — &s(x)

n—00 22s
s=1

for all x € [0,1].

Key Idea of the Proof

Main Task: Approximate V(B}") "'V} by a ReLU neural network and
control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x,2 — 2x} and gs := g o...og (s times), we have

n
2 gs(X)
x“= lim x —
n—00 22s
s=1

Also, g can be represented by a neural network due to

for all x € [0,1].

g(x) = 20(x) — 4o(x — %) +20(x —2) forall x € [0,1].

Key Idea of the Proof

Main Task: Approximate V(B}") "'V} by a ReLU neural network and
control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x,2 — 2x} and gs := g o...og (s times), we have
x2= lim x — &s(x)

n—00 22s
s=1

for all x € [0,1].

Also, g can be represented by a neural network due to
g(x) = 20(x) — 4o(x — %) +20(x —2) forall x € [0,1].
Moreover,
xz=1/4((x +2)? — (x — 2)?) forall x,z e R.

= Scalar multiplication on [~1,1]? can be e-approximated by a
neural network of size O(log,(1/€)).

LM

Key Idea of the Proof

Step 2 (Multiplication):
A matrix multiplication of two matrices of size d x d can be performed by
d3 scalar multiplications.

= Matrix multiplication can be e-approximated by a neural network of
size O(d(e)logy(1/¢€)).

Key Idea of the Proof

Step 2 (Multiplication):

A matrix multiplication of two matrices of size d x d can be performed by
d3 scalar multiplications.

= Matrix multiplication can be e-approximated by a neural network of
size O(d(e)logy(1/¢€)).

Step 3 (Inversion):
Neural networks can approximate matrix polynomials.

Neural networks can the inversion operator A — A~! using
m
D> A — (Idgs —A)T as m — oo,
s=0

= Matrix inversion can be e-approximated by a neural network of size
O(d(€)3logd(1/€)) for a constant q > 0.

Key ldea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):
Now use the assumptions on B;b and f;b.

= Themapy — (B;b)_lf;b can be e-approximated by a neural
network ®™ of size O(d(e)* logJ(1/€) + poly(p)d(e)?loga(1/e)).

Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):
Now use the assumptions on B;b and f}r,b.
= Themapy — (B;b)_lf;b can be e-approximated by a neural
network ®™ of size O(d(e)* logJ(1/€) + poly(p)d(e)?loga(1/e)).
For Theorem 1:

Now use the assumption that every element from the reduced basis
can be approximately represented in the high-fidelity basis.
Consider then V o ¢™.

= The discrete parametric map can be e-approximated by a neural
network of size O(d(e€)3logd(1/€) + d(e)D + poly(p)d(e)? logd(1/¢)).

Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):
Now use the assumptions on B;b and f}r,b.
= Themapy — (B;b)_lf;b can be e-approximated by a neural
network ®™ of size O(d(¢€)3 logd(1/€) + poly(p)d(€)? logd(1/e)).
For Theorem 1:

Now use the assumption that every element from the reduced basis
can be approximately represented in the high-fidelity basis.

Consider then V o P,
= The discrete parametric map can be e-approximated by a neural
network of size O(d(e€)3logd(1/€) + d(e)D + poly(p)d(e)? logd(1/¢)).
For Theorem 2:

Now use the assumption that neural networks can approximate each
element of the reduced basis.

= The continuous parametric map can be e-approximated by a
network of size O(d(€)>logd(1/€) + poly(p)d(e)? logd(1/e)).

Numerical Experiments

Practical Learning Problems: A Different World?

Approximation-Theoretical Explanation for a Practical Learning Problem:

Tightness of the upper bounds

Optimization and sampling prevent approximation theoretical effect from
materializing

Asymptotic estimates

Goal:

We aim to analyze the approximation-theoretical effect of the architecture

on the overall performance of the learning problem in practice!

Numerical Results

(Geist, Petersen, Raslan, Schneider, K; 2020)

Problem with Comparability of Tests:
Effect of the sampling procedure
Effect of the optimization procedure

Quantification of the intrinsic complexity

Numerical Results

(Geist, Petersen, Raslan, Schneider, K; 2020)

Problem with Comparability of Tests:
Effect of the sampling procedure
Effect of the optimization procedure
Quantification of the intrinsic complexity

Our Set-up:
Keeping the architecture fixed
Analyzing the convergence behavior a posteriori
Establishing independence of sample generation

Design of semi-ordered test-cases

Numerical Results

(Geist, Petersen, Raslan, Schneider, K; 2020)

Problem with Comparability of Tests:
Effect of the sampling procedure
Effect of the optimization procedure
Quantification of the intrinsic complexity

Our Set-up:
Keeping the architecture fixed
Analyzing the convergence behavior a posteriori
Establishing independence of sample generation
Design of semi-ordered test-cases

Hypotheses:
The performance does not suffer from the curse of dimensionality.

The performance is very sensitive to parametrization.

Learning is effcient also for non-affinely parametrized problems.

Related Approaches

Numerical Study of Deep Learning for Parametric PDEs:

Hesthaven and Ubbiali; 2018

Train neural networks to predict coefficients of solution in a precomputed
reduced basis

Tripathy and Bilionis; 2018

Solution of the parametric PDE is learned at point evaluations in fixed
spatial coordinates

Dal Santo, Deparis, and Pegolotti; 2019
Solution of the parametric PDE is learned in a precomputed reduced basis

Study of the Relation of Approximation-Theoretical Findings and Practise:

Bolcskei, Grohs, K, and Petersen; 2019
Reproduction of approximation rates of optimally memory-efficient NNs

Fokina and Oseledets; 2019
Reproduction of certain exponential convergence rates of NNs

Adcock and Dexter; 2020 M
Numerical study of visibility of approximation theoretic results in pr

Parametric Diffusion Equation:
We will consider the following parametric diffusion equation:

~V - (ay(x) - Vuy(x)) = f(x), on Q2=(0,1)>, ulon=0,

where f € [2(Q2) and a, € L>°(Q) is a diffusion coefficient depending on a
parameter y €).

Parametric Map:
We learn a discretization of the map R” > Y > y — u,, where p € N, for various
choices of parametrizations

RPDY 3y a,.
What We Vary...
Type of parametrization

Dimension of parameter space

Complexity of hyper-parameters

Parametric Diffusion Equation

Parametric Diffusion Equation:
—V-(a(x) - Vuy(x)) = f(x), onQ=(0,1)%, uloa =0,
where

acA={a,: yeY}CL®(Q) and f(x)=20+10x; — 5.

Affine Parametrization: For fixed functions (a;)?_, C L>(Q),

P
Az{ay:ao—i-Zy;a,-:y 1637}
i=1

Trigonometric polynomials

Chessboard partition

Cookies with fixed radii
Non-Affine Parametrization:

Cookies with variable radii

Clipped polynomials

Further Set-Up

Finite Element Space:

Q = [0, 1]? with 101 x 101 equidistant grid points

Fixed Neural Network:
(p,300,...,300,10201) with L = 11 layers
Activation function: 0.2-LReLU.

Fixed Training Procedure:
Training set: 20000 i.i.d. parameter samples

Neural network: Initialized according to a normal distribution with mean 0
and standard deviation 0.1

Loss function: Relative error on the finite-element discretization of H

Optimization: Batch gradient descent

Dimension:

Various dimensions of the parameter set up to 91.

Numerical Experiments, |

Trigonometric Polynomials:

A®(p,0) = {/HrZy, 1+a,):y€37=[0,1]"}7

for some fixed shift p > 0, scaling coefficient o € R, and

a;j(x) = sin ({%J 7TX1> sin ({%-‘ 7TX2> , fori=1,...,p

Numerical Results:

Mean relative test error

10t
Parameter dimension p

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.

Numerical Experiments, |l

Chessboard Partition: Let p = s for some s € N. Then

P
AP(pp) =+ yiko : y eV =[0,17¢,
i=1

where (€;)7_, forms a s x s chessboard partition of (0,1)% and x> 0 is a fixed
shift.

Numerical Results:

2

Mean relative error

Mean relative test error

1072

10t 0 5000 10000 15000 20000 25000 30000 35000 40000
Parameter dimension p Epochs

p=25

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.

Numerical Experiments, Il

Cookies with Variable Radii: For s € N and every i = 1,... s, we are given
disks €;, , with centers ((2k +1)/(2s), (2¢ —1)/(2s)), where i = ks + £ for
uniquely determined k € {0,...s — 1} and £ € {1,...,s} and radius y; .2 /(2s):

P
AV (pp) =+ yiXe, ,tyeY=[01]x[0509°
i=1

Numerical Results:

05
—— fixed, p=10"* — Training
~—e— variable, y=10"1 —— Evaluation
—— variable, =104

5 10-t 04

= —

2 g

k] 5}

E %

e} 3

E c 0.2

c 1072 H

3 =

= 01

0.0

10 0 5000 10000 15000 20000 25000 30000 35000 40000
Parameter dimension p Epochs

p=>50and p =10"*
Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.

Interpretation

Hypotheses and Results:
The performance does not suffer from the curse of dimensionality.

True, we never observed an exponential scaling.

Interpretation

Hypotheses and Results:
The performance does not suffer from the curse of dimensionality.

True, we never observed an exponential scaling.

The performance is very sensitive to parametrization.

True, there are strong differences in the performance.
More complex parametrized sets yield higher errors, whereas simpler
sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors.
~» The approximation theoretical intrinsic dimension of the parametric
problem is a main factor in determining the hardness!

Interpretation

Hypotheses and Results:
The performance does not suffer from the curse of dimensionality.
True, we never observed an exponential scaling.
The performance is very sensitive to parametrization.

True, there are strong differences in the performance.

More complex parametrized sets yield higher errors, whereas simpler
sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors.

~» The approximation theoretical intrinsic dimension of the parametric
problem is a main factor in determining the hardness!

Learning is efficient also for non-affinely parametrized problems.

True, there is no fundamental difference of the performance for
non-affinely parametrized problems.

Observation: Despite enormous amounts of money we still have major
robustness problems!

Observation: Despite enormous amounts of money we still have major
robustness problems!

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

Observation: Despite enormous amounts of money we still have major
robustness problems!

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

Something much deeper must be going on...

Towards Reliable and Sustainable Al:

Next Generation Al Computing!

A Serious Problem

A Serious Problem

Computability on Digital Machines/Turing Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

Sofalo]ala]o]=

/ N/

infinitetape ~cells finite alphabet

A Serious Problem

Computability on Digital Machines/Turing Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

~Jolaloa]atailol.

/ N/

infinitetape ~cells finite alphabet

Solution Set of Inverse Problem: For A€ C™N and y € C™ let

V(A,y) = arg min ||x||, such that [|[Ax — y||,2 <e.
xeCN

A Serious Problem

Computability on Digital Machines/Turing Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

machine
\ = readwrite head

~Jolaloa]atailol.

/ N/

infinitetape ~cells finite alphabet

Solution Set of Inverse Problem: For A€ C™N and y € C™ let
V(A y) =arg m(iCnN ||x]| such that ||Ax — yll <e.
x€
Theorem (Boche, Fono, K; 2023):

The problem described by the function W : C™N x C™ — CN for fixed
parameters € € (0,1), N > 2, and m < N, is not computable on a Turing

machine. .
LM

A Serious Problem

Computability on Digital Machines/Turing Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

\ machine I
" readwrite heac

~Jolaloa]atailol.

/ N/

infinitetape ~cells finite alphabet

Solution Set of Inverse Problem: For A€ C™N and y € C™ let

V(A,y) = arg min ||x||, such that [|[Ax — y||,2 <e.
xeCN

Theorem (Boche, Fono, K; 2023):
The problem described by the function W : C™N x C™ — CN for fixed
parameters € € (0,1), N > 2, and m < N, is not computable on a Turing

machine.

~ Interesting work by Hansen at al. on oracle Turing machines!

The Hardware is the Problem!

Remark: There does not exist an algorithm on digital hardware which

yields neural networks ®4 approximating W(A, -) for any given accuracy
and all A e C™N,

General Barrier:

Limits of computability on today's hardware

Reason for problems with non-robustness?

The Hardware is the Problem!

Remark: There does not exist an algorithm on digital hardware which

yields neural networks ®4 approximating W(A, -) for any given accuracy
and all A e C™N,

General Barrier:
Limits of computability on today's hardware

Reason for problems with non-robustness?

Theorem (Boche, Fono, K; 2023):
Fix parameters € € (0,3), N > 2, and m < N. There does not exist a
(Banach-Mazur-)computable function W : C™N x C™ — CN such that

. 1
sup [W(A,y) = V(A y)lle < 7
(Ay)eCmxNxCm

Remark: The statement does not depend on the unboundedness
of the input domain, but holds true on a compact input set.

What now? ... Mathematics Tells Us the Answer!

What now? ... Mathematics Tells Us the Answer!

Theorem (Boche, Fono, K; 2023):
The solution of a finite-dimensional inverse problem is computable (by a
deep neural network) on an analog (Blum-Shub-Smale) machine!

What now? ... Mathematics Tells Us the Answer!

Theorem (Boche, Fono, K; 2023):
The solution of a finite-dimensional inverse problem is computable (by a
deep neural network) on an analog (Blum-Shub-Smale) machine!

Reliability for certain problem settings requires novel hardware!

Possible Future Developments:
Neuromorphic computing
Biocomputing

Quantum computing

...more Computability Problems!

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the

Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

Vision for the Future:

Problem with Enormous Energy Consumption

Landauer's limit
Utilize only digital CPUs
=== |nclude digital GPUs
=== Include new platforms
Include Post-Shannon

2040 2045

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US)
Administration, 2021

MONCHEN

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

Vision for the Future:

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

Vision for the Future:

...more Computability Problems!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

Vision for the Future:

Mathematically Reliable & Energy Efficient Al...by Analog Computing!
[T ¥

~ EcoLogic Computing

Neural Networks for Next Generation Computing

Neuromorphic Computing

Von Neumann architecture Neuromorphic architecture

Neural Network

0110001 ANINER 11
Binary ﬁ Spike Spike

Output Input Output

01011001
Binary
Input

(Neurons and synapses
for both processing
and memory)

Features of neuromorphic hardware:
Closer to the human brain.
Energy efficiency.
Execution speed.
Robustness.

Neuromorphic Computing

Von Neumann architecture Neuromorphic architecture

Neural Network

01011001 0110001 ANINNE bl
Binary Binary ﬁ Spike Spike
Input Output Input Output

(Neurons and synapses
for both processing
and memory)

Features of neuromorphic hardware:
Closer to the human brain.
Energy efficiency.
Execution speed.
Robustness.

~ Suitable neural networks for neuromorphic computing?

First and Second Generation of Artificial Neurons

\ X1 Artificial Neuror‘..."""x,,.
X \ z _ (+1 ifz>0 ~
I el s

Xn Xn

5 e y

First Generation
Perceptron model or Threshold gate

Second Generation
Sigmoid neuron

Some General Remarks:

Both computational models of a neuron are biologically inspired, but
rather crude models.

Both lead to networks, which are Universal Approximators.

Third Generation

Spiking Neuron:
More biologically realistic than the first and second generation.
Fires/generates short electrical pulse known as action-potential or
spike.
Spike or action-potential is the elementary unit of signal transmission.

Electrode

Spike emission

i

Action Potential

Spiking Neural Network

Spike dynamics of neuron ng

Spike emission to
neurons n, and n,

t

Threshold

ki “ Spike
encoding
-

Potential of neuron n;

Time

Input spikes from neurons n, and n,

Spiking Neural Network

Comy ion graph i with a spiking neural network Spike dynamics of neuron ng

- Spike emission to
Q / \ Other neurons n, atnd n,
. \ / | Threshold
i Spike Spike
‘ s 1) ———= > Dog
encoding /) decoding

Potential of neuron n,

@ Cat

Time
Input spikes from neurons n, and n,

Some Remarks:
Asynchronous transmission of information via spikes.
Information is encoded in the timing of individual spikes.
Numerous models for spiking neurons exist; one of those is the

Spike Response Model.

Time is one crucial factor in this model! .
LM

Spiking Neurons under Spike Response Model, |

Definition: A spiking neural network ® is a directed graph (V, E) and
consists of a finite set V of spiking neurons, a subset Vi, C V of input
neurons, and a set E C V' x V of synapses. Each synapse (u,v) € E is

associated with
a synaptic weight wy, > 0,
a synaptic delay d,, > 0,
and a response function g,, : R — R.

Spiking Neurons under Spike Response Model, |

Definition: A spiking neural network ® is a directed graph (V, E) and
consists of a finite set V of spiking neurons, a subset Vi, C V of input
neurons, and a set E C V' x V of synapses. Each synapse (u,v) € E is
associated with

a synaptic weight wy, > 0,

a synaptic delay d,, > 0,

and a response function g,, : R — R.
Each neuron v € V' \ Vj, is associated with

a firing threshold 6, > 0,

and a membrane potential P, : R — R,

Put)= D > waew(t—t)),

(u,v)EE tfeF,

which is given by

with F, = {tf : 1 < f < n for some n € N} being the set of
firing times of neuron u, i.e., times t whenever P,(t) reaches 6,.

Neuronal Response to Input Spikes

Evolution of the membrane potential as a result of incoming spikes:

=== Wyy=1 === Wyy=3 — P, L
—-——— Wy = -2 Wy =—1 oo 2] g
-
-
output neuron L7y
AN g P
-
@ \/ [<nnT
_________ ”/’
- .
- -
PUt) - |
T Tty
input neurons ‘~~~\
T tyy + duy Y
ty, +d, ty, +d, Ss<
a4 oy o * v -

Spiking Neurons under Spike Response Model, Il

Remark: Given that a neuron spikes only once, the state of a neuron v in
a spiking neural network is given as

Put)= D wuwew(t—t), (1)
(u,v)€E

where t, = firing time of presynaptic neuron u.

Spiking Neurons under Spike Response Model, Il

Remark: Given that a neuron spikes only once, the state of a neuron v in
a spiking neural network is given as

P (t Z Wuvguv t_ tu) (1)
(u,v)€E
where t, = firing time of presynaptic neuron u.

Additional Assumption: Assume that the response function ¢ is linear
and satisfies the following condition

c (t) . O, |f t ¢ [duv; duv =+ 6]7
T (b= dw), it € [duy, duy + 6],

where § > 0 is the length of the linear segment of the response function ¢.
Then (1) simplifies to

PV(t) = Z 1{0<t—tu—duv<§} WUV(t =ty — duv)-

(u,v)EE

Spiking Neurons under Spike Response Model, IlI

Assuming ¢ is large or even infinite in some cases, then

tlglfR Pu(t) = }2{@ Z 1{t>tu+duv}WLlV(t —ty — du)
(u,v)€E
= inf W o (t — ty — dyy) = 0.,
teR
(u,v)EE

where o(x) = max{0, x}. Then,

9 + Z(u V)GE ty>ty+duy WUV(tU + dUV)

Z(U V)GE tv>tu+duv

v

Spiking Neurons under Spike Response Model, IlI

Assuming ¢ is large or even infinite in some cases, then
tlglfR Pu(t) = }2{@ Z 1{t>tu+dw}Wuv(t —ty — du)
(u,v)EE

= inf wyyo (t — ty — duy) = 0y,
teR
(u,v)EE

where o(x) = max{0, x}. Then,
9 + Z(u V)GE ty>ty+duy WUV(tU + dUV)

Z(U V)GE tv>tu+duv

v

Proposition (Singh, Fono, K; 2024):
The output firing time is a piecewise linear function of the input firing
time. Under the additional mild assumption it is even continuous.

Classical Neural Networks as Spiking Neural Networks

Main Question:
Can we quantify the advantage of spiking neural networks

over classical neural networks?

Classical Neural Networks as Spiking Neural Networks

Main Question:
Can we quantify the advantage of spiking neural networks

over classical neural networks?

Theorem (Singh, Fono, K; 2024):

Let L,d € N, [a,b]? C RY and let V be a classical Rel.U-neural network of
depth L and width d. Then there exists a spiking neural network ® with
N(®) = N(V) + L(2d + 3) — (2d + 2) and L(P) = 3L — 2 that realizes W
on [a, b]7.

Classical Neural Networks as Spiking Neural Networks

Main Question:
Can we quantify the advantage of spiking neural networks

over classical neural networks?

Theorem (Singh, Fono, K; 2024):

Let L,d € N, [a,b]? C RY and let V be a classical Rel.U-neural network of
depth L and width d. Then there exists a spiking neural network ® with
N(®) = N(V) + L(2d + 3) — (2d + 2) and L(P) = 3L — 2 that realizes W
on [a, b]7.

Main Ingredient of Proof:
The RelLU-activation function can be realized by a 2-layer spiking neural
network on [a, b].

Classical Neural Networks as Spiking Neural Networks

Main Question:
Can we quantify the advantage of spiking neural networks

over classical neural networks?

Theorem (Singh, Fono, K; 2024):

Let L,d € N, [a,b]? C RY and let V be a classical Rel.U-neural network of
depth L and width d. Then there exists a spiking neural network ® with
N(®) = N(V) + L(2d + 3) — (2d + 2) and L(P) = 3L — 2 that realizes W
on [a, b]7.

Main Ingredient of Proof:
The RelLU-activation function can be realized by a 2-layer spiking neural
network on [a, b].

Lemma:
There does not exist a 1-layer spiking neural network that
realizes RelU.

Spiking Neural Networks as Classical Neural Networks

Theorem (Singh, Fono, K; 2024): For d > 2, ¢ := [log,(d + 1)] + 1.
Let ® be a 1-layer spiking neural network with one output neuron v and d
input neurons uy, ..., ug with wy,, € Ry for i € {1,...,d}. Then:
(a) te can be realized by a classical ReLU-neural network W with

L(W) = £ and N(W) € O(¢ - 224°+3d*+d),

(b) te can be realized by a classical ReLU-neural network W with
L(V) € O(d) and N(V¥) € O(89).

Spiking Neural Networks as Classical Neural Networks

Theorem (Singh, Fono, K; 2024): For d > 2, ¢ := [log,(d + 1)] + 1.
Let ® be a 1-layer spiking neural network with one output neuron v and d
input neurons uy, ..., ug with wy,, € Ry for i € {1,...,d}. Then:
(a) te can be realized by a classical ReLU-neural network W with

L(W) = £ and N(W) € O(¢ - 224°+3d*+d),

(b) te can be realized by a classical ReLU-neural network W with
L(V) € O(d) and N(V¥) € O(89).

Main Ingredient of Proof:

Proposition: Let ® be a spiking neural network as above with arbitrary
weights. Then te partitions the input domain into at most 2¢ — 1 linear
regions. The following are equivalent:

The maximal number of linear regions is attained.

All synaptic weights are positive.

Spiking Neural Networks as Classical Neural Networks

Theorem (Singh, Fono, K; 2024): For d > 2, ¢ := [logy(d +1)] + 1.
Let ® be a 1-layer spiking neural network with one output neuron v and d
input neurons uy, ..., ug with w,,, € Ry for i € {1,...,d}. Then:
(a) te can be realized by a classical ReLU-neural network W with

L(W) = £ and N(W) € O(¢ - 224°+3d*+d),

(b) te can be realized by a classical ReLU-neural network W with
L(V) € O(d) and N(V¥) € O(89).

Architecture of Proof:

Thus, te is continuous piecewise linear with 29 — 1 linear regions.

Then apply upper bounds on the size of classical ReLU-neural
networks to realize continuous piecewise linear mappings with a
fixed number of linear regions.

Toy Example

Consider a spiking neuron v with two input units u; and w,. Set 6, = w,,, =
dy,v =1 and d,,, = 2. Then, the firing time of v on the corresponding linear

regions equals

Y%

tu, + 3, if ty, > ty, +2,

A

ty =< ty, + 2, if ty, < t,
Tt + tw) +2, if by < ty, <ty +2.

R1

R3

2

3
ty, 2

tu,

A spiking neuron partitions the input space into 3 different regions.

The output firing time t, is continuous piecewise linear.

Example for Superiority of Spiking Neural Networks

A Special Continuous Piecewise Linear Function:
For a <0 < @ < b, consider the continuous piecewise
linear function f : [a, b] — R given by

F(x) = —%a(—x—e)—%a(—xw) _ —% max(—x—0, 0)—% max(—x+6,0).

Lemma:

A I-layer spiking neural network with 1 output neuron and 2 input
neurons can realize f.

Any classical ReLU-neural network requires at least 2 layers and a
total number of 4 neurons to realize f.

Approximating the Minimum Function

Proposition: Let d € N such that d > 2. Then, there exists a spiking
neural network ® with 1 output neuron v and d input neurons such that

(d —1)0
2dw
with 6 > 0 the threshold of v and w > 0 the weight of each connection.

|D(x1,. .., xg) — min{xq,...,xq} < for all x1,...,xq4 € R,

Approximating the Minimum Function

Proposition: Let d € N such that d > 2. Then, there exists a spiking
neural network ® with 1 output neuron v and d input neurons such that
d—1)6
|D(x1,. .., xg) — min{xq,...,xq} < % for all x1,...,xq4 € R,
with 6 > 0 the threshold of v and w > 0 the weight of each connection.

Idea for Proof: Minimize the time gap between the earliest subset of
neurons that can cause firing and the subset of neurons that actually
induce firing by adjusting the ratio of threshold and weight appropriately.

Approximating the Minimum Function

Proposition: Let d € N such that d > 2. Then, there exists a spiking
neural network ® with 1 output neuron v and d input neurons such that
(d —1)0
2dw
with 6 > 0 the threshold of v and w > 0 the weight of each connection.

|D(x1,. .., xg) — min{xq,...,xq} < for all x1,...,xq4 € R,

Idea for Proof: Minimize the time gap between the earliest subset of
neurons that can cause firing and the subset of neurons that actually
induce firing by adjusting the ratio of threshold and weight appropriately.

Comparison with Classical ReLU-Neural Network:

For any classical ReLU-neural network, irrespective of depth, to
approximate min, each hidden layer must have at least d neurons.

Under certain assumptions on the weights and data distribution, a
classical ReLU-neural network of depth 3 is necessary to efficiently

approximate min. .
LM

Spiking Neural Networks: Next Generation Al Computing

Open Questions:

When and to which extent are spiking neural networks more
expressive than classical neural networks?

What is an optimal training procedure?
Can we quantify generalization abilities (Neuman, Petersen; 2024)?

What is a suitable measure for their energy consumption?

Mathematics of spiking neural networks is a wide open field!

Some Final Thoughts...

Conclusions

Al and High-Dimensional PDEs:

We derive upper bounds on the complexity of ReLU neural networks to
approximate parametric maps.

Those neural networks do not suffer from the curse of dimensionality.
The error on the training set converges always smoothly.

The performance does not suffer from the curse of dimensionality.

Next Generation Al Computing:
Computability:

Problems of continuum nature are computed on digital hardware.
Several key Al problems are not (Turing) computable.
Analog hardware can solve the computability problem.

Spiking Neural Networks:

Spiking neural networks are suitable for neuromorphic chips.
Very few mathematical results exist at present. .
Vision: Next generation Al computing! LM

MATH Bavarian Al Chair for
Mathematical Foundation:
@ HIGHTECH % e onatons /.\ I se

THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.

Related Book:

Grohs and K, eds., _—
Mathematical Aspects of Deep Learning [®
Cambridge University Press, 2022. ¢

