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Model problem {
−∆u + β · ∇u + γu = f on Ω = (0, 1)d

u = 0 on ∂Ω
(1)

where d ≥ 1, f ∈ L2(Ω), β = (β1, . . . , βd) ∈ Rd , γ ≥ 0

Weak form

Find u ∈ H1
0 (Ω) such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω) (2)

where a(u, v) =

∫
Ω

(∇u · ∇v + β · ∇u v + γu v) , F (v) =

∫
Ω

f v

∃! solution u ∈ H1
0 (Ω) to (2), called the weak solution of (1)
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Galerkin method

1 Choose a subspace W ⊂ H1
0 (Ω) with dim W = N <∞

2 Find ũ ∈W such that
a(ũ, v) = F (v) ∀v ∈W (3)

Whatever W , ∃! solution ũ ∈W to (3), which is taken as an approximation to u

Chosen a basis {ϕ1, . . . , ϕN} for W , problem (3) is equivalent to solving the linear system

Au = f

where A = [a(ϕj , ϕi )]Ni,j=1 is the stiffness matrix and f = [F (ϕi )]Ni=1
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In our IgA setting W is chosen as a space of splines

We start with d = 1:

W = W
[p]
n = space of splines of degree p on the uniform mesh i

n
, i = 0, . . . , n,

vanishing at x = 0, 1

basis of W
[p]
n = B-spline basis

For d ≥ 2:

W = W [p]
n ⊗W [p]

n ⊗ · · · ⊗W [p]
n︸ ︷︷ ︸

d copies

= space generated by the tensor-product B-splines vanishing on ∂Ω

A
[p]
n = stiffness matrix resulting from these choices
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Spectral analysis: find out the symbol

U Asymptotic spectral distribution of the sequence of (normalized) IgA matrices

{nd−2A[p]
n }n

⇓

Target: find out the symbol of the IgA matrices (Weyl sense)
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Definition: spectral distribution of a sequence of matrices {Xn} – symbol

Let

{Xn} = sequence of matrices, Xn of size dn →∞
f : D ⊂ Rm → C measurable function, 0 < measure(D) <∞

{Xn} is distributed like f in the sense of the eigenvalues, in symbols {Xn} ∼λ f , if

lim
n→∞

1

dn

dn∑
j=1

F (λj(Xn)) =
1

measure(D)

∫
D

F (f (x))dx ∀F ∈ Cc(C)

f = symbol of {Xn}

Informal meaning of {Xn} ∼λ f

If f is smooth, then the eigenvalues of Xn behave as a uniform sampling of f over D
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Symbol of the sequence of IgA matrices {nd−2A
[p]
n }n (Szegö - type result)

φ[p] = cardinal B-spline of degree p on the uniform knot sequence 0, 1, . . . , p + 1

For p ≥ 1, consider these functions over [−π, π]:

hp−1(θ) = φ[2p−1](p) + 2

p−1∑
k=1

φ[2p−1](p − k) cos(kθ), fp(θ) = (2− 2 cos θ)hp−1(θ)
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If d = 1

Theorem

{n−1A[p]
n }n ∼λ fp

The theorem holds for every d with d − 2 in place of −1 and with

fp : [−π, π]d → R

fp(θ1, . . . , θd) =
d∑

k=1

hp(θ1) · · · hp(θk−1)fp(θk)hp(θk+1) · · · hp(θd)

fp(θ) = (2− 2 cos θ)hp−1(θ)
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Properties of the symbol fp

For d = 1 the symbol is fp(θ) = (2− 2 cos θ)hp−1(θ)

Figure: graph of the normalized symbol fp/Mfp

U lim
θ→0

fp(θ)

θ2
= 1, fp(θ) > 0 for θ 6= 0 ⇒ θ = 0 unique zero of fp with order 2

U setting Mfp = max
θ

fp(θ),
fp(π)

Mfp

≤ fp(π)

fp
(
π
2

) =
1

2p−2
→ 0 exponentially
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The normalized symbol fp/Mfp has a a numerical zero at θ = π for large p!

Besides the canonical zero θ = 0, when p is large the normalized symbol has a
non-canonical numerical zero at θ = π

In the d-variate case, the situation is even worse!

Besides the canonical zero (θ1, . . . , θd) = (0, . . . , 0), when p is large the normalized
symbol has infinitely many non-canonical numerical zeros located at the π-edge points

{(θ1, . . . , θd) : θj = π for some j}
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Design of fast iterative solvers: use the symbol

From the properties of the symbol:

standard multigrid methods for the IgA matrices, which take care of the actual zero
(θ1, . . . , θd) = (0, . . . , 0), will be optimal, i.e. with convergence rate independent of n

for large p, standard multigrid methods, which do not take care of the numerical
zeros at the π-edge points, will have a bad convergence rate

⇓

multi-iterative idea (S. , Comput. Math. Appl. 1993) to be fully considered for
designing optimal and robust solvers

Target: use carefully the symbol to design fast (optimal and robust) multi-iterative
solvers for the IgA matrices (alternative direction by Sangalli, Tani)
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Standard multigrid methods: symbol interpretation

Standard two-grid methods for solving linear systems with matrix nd−2A
[p]
n involve:

a standard coarse-grid correction with full-weighting projector

a post-smoothing iteration by the standard (relaxed) Gauss-Seidel method

Symbol interpretation

Full-weighting treats properly the unique zero (θ1, . . . , θd) = (0, . . . , 0) of the symbol...
but both full-weighting and Gauss-Seidel ignore the numerical zeros arising for large p
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Standard multigrid methods: two-grid experiments in 2D

... and, indeed, the standard two-grid method is optimal, but not robust...

n p = 1 p = 3 p = 5
16 0.16 0.64 0.96
28 0.17 0.64 0.96
40 0.18 0.64 0.96
52 0.18 0.65 0.96

n p = 2 p = 4 p = 6
17 0.27 0.88 0.99
29 0.27 0.88 0.99
41 0.29 0.88 0.99
53 0.30 0.88 0.99

Table: spectral radius
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Multi-iterative methods: the multi-iterative idea

Multi-iterative idea: keep the full-weighting projector for dealing with the zero
(θ1, . . . , θd) = (0, . . . , 0) and replace the Gauss-Seidel smoother with another

smoother that takes care of the numerical zeros of the symbol
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Multi-iterative methods: PCG or PGMRES as smoother

A suitable smoother is suggested by the symbol fp itself:

take as smoother the PCG or the PGMRES with preconditioner having itself a
symbol sp which “deletes” the numerical zeros of our symbol fp, yielding a

p-independent preconditioned symbol s−1
p fp

In 1D:

fp(θ) = (2− 2 cos θ)hp−1(θ)

⇒ the preconditioned symbol [hp−1(θ)]−1 fp(θ) = 2− 2 cos θ is p-independent
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The idea can be generalized to the d-dimensional setting.

For the smoother PCG / PGMRES use a preconditioner with symbol

sp(θ1, . . . , θd) = hp−1(θ1)hp−1(θ2) · · · hp−1(θd)

Possible choice: Toeplitz matrix generated by sp

Remark

Since the symbol sp of the preconditioner is a separable trigonometric polynomial, a
linear system associated with the preconditioner is easily solvable
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Multi-iterative methods: two-grid experiments in 2D

Here we consider the system
nd−2A[p]

n u = b

coming from the IgA approximation of (1) in the case d = 2, β = 0, γ = 1, f = 1

n p = 1 p = 3 p = 5
40 6 7 6 14 6 54
60 6 7 6 14 6 49
80 5 7 6 13 6 46

100 5 7 6 13 6 44
120 5 7 6 13 6 42

n p = 2 p = 4 p = 6
41 6 8 6 29 6 115
61 6 8 6 27 5 104
81 6 9 6 26 5 97

101 6 9 6 26 5 91
121 6 9 6 25 5 87

Table: number of iterations
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Multi-iterative methods: two-grid experiments in 3D

Here we consider the system
nd−2A[p]

n u = b

coming from the IgA approximation of (1) in the case d = 3, β = 0, γ = 1, f = 1

n p = 1 p = 3 p = 5
14 6 6 8
24 6 6 7
34 6 6 7
44 6 6 6

n p = 2 p = 4 p = 6
15 8 6 7
25 7 6 7
35 7 6 6
45 6 6 6

Table: number of iterations
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Multi-iterative methods: multigrid experiments in 2D

Here we consider the system
nd−2A[p]

n u = b

coming from the IgA approximation of (1) in the case d = 2, β = 0, γ = 0, f = 1

For the solution: V-cycle and W-cycle multigrid

n p = 1 n p = 3 n p = 5
16 10 7 14 7 6 12 7 7
32 11 7 30 9 6 28 8 6
64 12 7 62 9 6 60 10 6

128 13 7 126 10 6 124 11 6
256 13 7 254 11 6 252 12 6

n p = 2 n p = 4 n p = 6
15 8 6 13 7 6 11 7 7
31 9 6 29 8 6 27 8 6
63 10 6 61 10 6 59 10 6

127 11 6 125 11 6 123 11 6
255 12 7 253 12 6 251 12 6

Table: number of iterations
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Multi-iterative methods: multigrid experiments in 3D

Here we consider the system
nd−2A[p]

n u = b

coming from the IgA approximation of (1) in the case d = 3, β = 0, γ = 0, f = 1

For the solution: V-cycle and W-cycle multigrid

n p = 1 n p = 3 n p = 5
16 10 7 14 7 6 12 8 8
32 11 7 30 8 6 28 8 7
64 12 7 62 9 6 60 9 6

n p = 2 n p = 4 n p = 6
15 9 8 13 7 6 11 9 9
31 8 7 29 8 6 27 8 6
63 9 7 61 9 6 59 10 6

Table: number of iterations

We have obtained optimal and robust multi-iterative multigrid methods
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Further insights: fast multi-iterative solver for IgA matrices in full elliptic problems

We have: fast multi-iterative solver for A
[p]
n = Parametric Laplacian matrix (PL-matrix)

“Parametric”: the considered domain is the hypercube (0, 1)d

“Laplacian”: the considered problem is −∆u = f

What about IgA matrices A[p]
n associted with full elliptic problems over general Ω?

The PL-matrix A
[p]
n is an optimal and robust CG/GMRES preconditioner for A[p]

n
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{
−∇ · K∇u + β · ∇u + γu = f on Ω
u = 0 on ∂Ω

(4)

with Ω being a quarter of annulus:

Ω = {(x , y) ∈ R2 : r 2 < x2 + y 2 < R2, x > 0, y > 0} r = 1 R = 4

and

K(x , y) =

[
(2 + cos x)(1 + y) cos(x + y) sin(x + y)

cos(x + y) sin(x + y) (2 + sin y)(1 + x)

]

β(x , y) =
√

x2 + y 2

 cos x√
x2+y2

sin y√
x2+y2


γ(x , y) = xy

f (x , y) = x cos y + y sin x
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Isogeometric approach:

U take G : Ω̂ := (0, 1)2 → Ω that describes Ω exactly:

G : Ω̂→ Ω G(x̂ , ŷ) = (x , y)

{
x = [r + x̂(R − r)] cos(π

2
ŷ)

y = [r + x̂(R − r)] sin(π
2

ŷ)

U approximate (4) with the Galerkin method:

approximation space: W = (W
[p]
n ⊗W

[p]
n ) ◦ G−1

basis functions: G-deformations of the tensor-product B-splines defined on Ω̂
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A[p]
n = resulting stiffness matrix

n p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
10 29 16 25 18 42 19 72 21 119 22 164 23
20 61 20 42 21 50 22 84 23 140 24 223 25
30 94 22 63 23 60 23 90 24 154 25 240 26
40 128 23 84 24 77 24 95 25 161 26 249 26
50 161 24 106 24 96 25 106 26 168 26 256 27

Table: number of iterations
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Further Technical Insights

U The symbol can be recovered in the IgA Collocation/Galerkin setting with variable
coefficient PDEs, general physical domain, general geometrical mapping

U The symbol can be recovered in the FEM setting with variable coefficient PDEs,
general physical domain, general graded griddings

U Concerning the numerical methods, the dimensionality d is not an issue and singular
mappings are not an issue

U We are now completing the analysis when the model space is given by NURBS
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Conclusions

U The symbol approach is useful for understanding the spectral features of the IgA
matrices and for designing efficient iterative solvers

U The symbol approach is not limited to IgA approximation techniques: it is a general
tool for dealing with all local approximation techniques for PDEs, such as FD
methods, FE methods, collocation methods, etc

U As done in this presentation, we identify two steps in the symbol approach:

find out the symbol for the specific approximation technique under
consideration and study its properties

use the symbol and its properties to design efficient iterative solvers of Krylov,
multigrid, or multi-iterative type
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