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From continuous to discrete

A continuous infinite-dimensional problem (PDEs, IEs etc) is
transformed, via a suitable numerical approximation, into a linear
(nonlinear) system of algebraic equations

» Structure inherited from the continuous counterpart
> Large dimensions (e.g. 107, p > 10)

» Spectral features described via a proper Symbol

Goal: solving the resulting linear system by Optimal Methods
(operation count to obtain the solution of the same order of the
matrix-vector multiplication)

Goal: understanding the spectral properties of the resulting matrices
(Weyl formulas:from discrete to continuous; information for Engineers)



From continuous to discrete

| Linear PDE/IE Lu = g|

4

’ Linear Numerical Method L,u, = g,

» dim(L,) — o0 as n — o0

» {L,} has an asymptotic spectral distribution described by a
spectral /sv symbol

’ GLT sequences = a tool for computing spectral/sv symbols ‘

’ GLT sequences

a tool for designing fast numer. methods‘

‘ {L,} is usually a GLT sequence




In the discrete case

» Large dimensions imply that direct solvers (Gaussian Elimination
etc.) have to be avoided

> lterative solvers: A) operation count per iteration of the same order
of the matrix-vector multiplication B) the method is Optimal if the
number of iterations < c(e), with € desired precision.

Requirement B) depends on the spectrum of the involved matrices: it
depends especially on the possibility of approximating the coefficient
matrix in the ill-conditioned subspaces (i.e. associated to the
eigenvectors with small eigenvalues).
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For large classes of matrices coming from continuous problems, the
knowledge of the spectrum is often compactly represented in a
function, called the symbol.



The GLT components I: Toeplitz sequences

Let f € L}([—m,n]) with Fourier coefficients

1 & .
— | f(0)e7ds, jeZ

DY

fo faa o o fa
£ :
To(f) = :
£
fn—l fl fO
2 -1
-1
Tn(2 —2cos(d)) =
=1
-1 2

Its eigenvalues are a sampling of 2 — 2 cos(6).




The GLT components Il: diagonal sampling matrices

Let a: [0,1] - C

The eigenvalues of D,(a) are clearly the samplings of a(x).



The GLT algebra: Toeplitz + Diagonal

GLT sequences = The algebra of matrix sequences containing {D,(a)}, a
Riemann integrable, {T,(f)}, f Lebesgue integrable, {X,} zero
distributed sequences.

As an example (not academicall)
> A, = Dp(a1) To(f) + Ta(R) X, + Yo, with {X,}, {Y,} zero
distributed sequences
» {A,} has singular values approximated by an equispaced sampling of
(. 0)], ¥(x,0) = a1(x)h(0)
» If {A,} is quasi-Hermitian, then {A,} has eigenvalues approximated
by an equispaced sampling of (x, 6)



The GLT idea: Toeplitz + Diagonal

/

Lo(u)=— (a(x)ul> [rod with variable section].

d —a
Kn = —% 3
—ap
—dn dn
1
Tn(2 —2cos(8)), Dn(a) = diag(a(jh)), h= .
n+1
Then

K, = Dn(a)Ta(2—2cos(0)) + E,, ||En|| — 0,

Y(x,0) = a(x)(2 —2cos(h)).

The eigenvalues of K, are a sampling of 1(x,6): this is a GLT result.
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Figure: a(x) = 2+ cos(3x), n = 400.The error on each eigenvalue is of order

n~!: can we do better?



Which messages? Very short answers

a.1) GLT sequences are a subspace of sequences of matrices
{An}, A, of size d, (dk < dky1)
a.2) Each GLT sequence {A,} has a symbol 1

a.3) The singular values of a GLT sequence with symbol ¢ are
approximately described by equispaced sampling of |¢|

a.4) The spectrum of a (quasi Hermitian) GLT sequence with
symbol 1 are approximately described by equispaced
sampling of v

a.5) The GLT sequences are stable under elementary
operations and the symbol is obtained via the same
elementary operations



The GLT glasses: a variable-coefficient-operative version of
the Local Fourier Analysis

b.1) Local methods (including FDs, FEs, IgA, FVs, VEMs) for
approximating PDEs, IEs lead to GLT sequences, possibly
after proper permutations

b.2) No limitations on variable coefficients and on domains
(grids should have some structure at least asymptotically)

b.3) Information on the symbol leads to information on
ill-conditioning, on the size of the ill-conditioned
subspaces, on the nature of the ill-conditioned subspaces
(low frequencies, high frequencies etc)

The GLT glasses.....



The GLT glasses: a variable-coefficient-operative version of
the Local Fourier Analysis

The GLT glasses.....

c.1) We exploit the symbol for understanding the reason of
difficulties of known techniques, w.r.t. finess parameters,
problem parameters, approximation parameters

c.2) We exploit the symbol for designing new iterative solvers,
new preconditioners or smoothers or prolongation
operators, aiming at optimality and robustness.



Main items

Symbol for matrix sequences

1. Toeplitz, Diagonal structures and symbol

2. Approximation of Differential Operators

3. The GLT algebra and the notion of symbol
Examples + (preconditioning, multigrid)

4. FEM of degree p in d dimensions

5. Approximation Q2Q1 of the Linear Elasticity

6. IgA of degree p in d dimensions

7. FDEs and symbol approach



Collaborators

Ahmad, Al Aidarous, Barbarino, Beckermann, Benedusi, Bertaccini,
Bianchi, Bottcher, R. Chan, Di Benedetto, Donatelli, Dorostkar,
Dumbser, Durastante, Ekstrom, Fiorentino, Franck, Furci, Garoni, Golub,
Golinskii, Krause, Hughes, Kuijlaars, Manni, Mazza, Molteni, Neytcheva,
Pelosi, Pennati, Ratnani, Reali, Semplice, Sesana, Sonnendriicker,
Speleers, Tablino Possio, Tavelli, Tilli, Tyrtyshnikov, Zuazua.

» In blue consolidated collaborations on the themes of the talk;

> In green just started collaborations (with the goal of variable-coeff.
vector PDEs).

I
Elasticity, Navier-Stokes, MHD, ...



Spectral Distribution: the qualitative idea

» Mp,(C) complex matrices of order m,

» {An} A, e My, (C), dn < dpy1,

> 1) measurable on D C R&, g > 1,

> 1) being M;(C)-valued, s > 1,

» 0 < p{D} < oo, pu{-} can be the Lebesgue measure,

{An} ~A (d)a D)

Informal meaning: s = 1. If ¢ is continuous, then a suitable ordering of
the eigenvalues {\;j(A,)}, in correspondence with a equispaced gridding
on D, reconstructs approximately the surface t — 9(t).

Informal meaning: s > 1. If ¢ is continuous, then a suitable ordering of
the eigenvalues {)\;(A,)}, in correspondence with a equispaced gridding
on D, reconstructs approximately s surfaces, t — X\;j(¢(t)), j=1,...,s.



Spectral Distribution: the definition

F € Gy (continuous with compact support):

YA (F, A, = din > FN (AN

Definition
We write {A,} ~x (¥, D) if VF € G

I|m YA(F, A {D}/trace P(t))) d

Moreover, we write {A,} ~, (1, D) replacing \j(A,) by oj(A,) (singular
values) in X,(F,A,) in place of X5(F,A,) and replacing ¢ (t) by [¢(t)]
in the integral. 1If s > 1 then |y(t)| = (" (£)y(t))">.



Comparison IgA-FEM (and furthermore the case of
intermediate regularity): C° -FEM— s = p¢,
CP~! =lgA— s =1, CK —interm. regularity

— s = (p— k)9 (figure by A. Reali)
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Toeplitz sequences generated by a symbol:
{T.(F)} ~x (F lg) if F=F

> s,d positive integers, i> = —1;

» f € LY(ly, Ms(C)), Iy = (—m, ), j € 27,

> f = ﬁ [, f(s)e™ ds, f; € Ms(C).

For d =1 the matrix T,(f) has size ns:

fo f1 - fig
(=] " |
- ffl
fo-1 i fy

For d > 1 we have a recoursive formula.



Toeplitz sequences generated by a symbol:
{TA(F)} ~a (f, Ig) if f=F*
For d > 1, the d-level Toeplitz matrix T,(f) has order Ns, N =[] n;,

n=(ny,...,nq), and takes the form
To T-1 -+ Tip
Tn(f) — 7.—1 .. . . ’
: T,
To—1 -+ Ti To

T; being (d — 1)-level Toeplitz matrix. If ® denotes the Kronecker

product

()= > U, M=sio ohef,
lil<n—1

with (JI)s: =1 if s —t = r and 0 otherwise.



FEM: of degree p on a d dimensional domain
We consider the Laplacian over [0,1]? and we denote by Aff’) the degree
p FEM matrix on quadrilaterals.

» There exists a permutation matrix [1 such that
NAPNT = T,(f);
» f is defined over Iy = (—,7)¢ and Hermitian matrix-valued with

size p? (any comment is redundant!);

> hence, the eigs of Ag,p) are divided into pd branches (of the same
cardinality), each of them represented by a different real-valued
eigenvalue of f: A\(f) < ... < Ao

> the spreading of the spectrum, measured by the ratio

max(Aye)
max (A1),

depends on the choice of the basis (Lagrange, integrated Legendre,
Bernstein etc); not that of [M{P] 1A%,



lgA: of degree p on a d dimensional domain

We consider the Laplacian over [0,1]? and we denote by AP) the
spline-degree p IgA matrix.

>

>

It holds AP ~ T,,(f) so that {AP)} ~y (£, 14), Iy = (=, 7)<
f is defined over Iy = (77r,7r)d, is scalar-valued, nonnegative with a
unique zero at zero (as in the FD case: it is somehow the revenge of

the smoothness);

the function f tends exponentially to zero as p in every point of the
type 0 = (61,...,04) for which §; = 7 for some j;

the latter property induces a bad conditioning in the high frequency
subspace, growing exponentially with p and which is not expected
for a differential problem: the knowledge of the symbol is an
essential guide for finding the right preconditioner.



Comparison IgA-FEM (and furthermore the case of
intermediate regularity): the picture has a clear
interpretation as the revenge of the smoothness
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lgA, degree p, d dimensions: spectral distribution and
classical multigrid

Theorem | n?2AlPl ~ T,(f,)| and hence | {n?2AP1}, ~, (£, Iy)

fp has the expected zero of order 2 at zero, positive elsewhere but it
collapses to zero exponentially with p at the boundaries of Iy = (—m,7)9.

n p=1 p=3 p=>5
16 0.16 0.64 0.96
28 0.17 0.64 0.96
40 0.18 0.64 0.96
52 0.18 0.65 0.96
n p=2 p=4 p==6
17 0.27 0.88 0.99
29 0.27 0.88 0.99
41 0.29 0.88 0.99
53 0.30 0.88 0.99

Table: spectral radius: standard twogrid, 2D, relaxed GS as smoother

= denotes equality up to matrix-sequences with zero symbol.



lgA, degree p, d dimensions: structured PCG/PGMRES
and multigrid (const. coeff.... but the technique is equally
effective for var. coeff. and singular mappings)

We consider the system nALp]u =b coming from the IgA
approximation of
—Au=1 in(0,1)3
{ u=0 on 9(0,1)3

For the solution: V-cycle and W-cycle multigrid

n p=1 n p=3 n p=>5

16 | 10 7 14 | 7 6 12 | 8 8
32 | 11 7 30 | 8 6 28 | 8 7
64 | 12 7 62 | 9 6 60 | 9 6
n p=2 n p=4 n p==6

15| 9 8 13| 7 6 11| 9 9
31| 8 7 29 | 8 6 27 | 8 6
63 | 9 7 61 | 9 6 59 | 10 6

Table: number of iterations: 3D with structured PCG/PGMRES



lgA, degree p, d dimensions: structured PCG/PGMRES
and multigrid

We consider the system nAPlu = b coming from the IgA
approximation of

~Au=1 in(0,1)
u=20 on 9(0,1)3

Only one (!) new ingredient in our fast V-cycle

vV v v Y

Standard restriction and prolongation operator;

Standard smoother (GS) at coarse grids;

V-cycle with PCG/PGMRES as smoother only at the finest grid;
Preconditioner chosen by using the information contained in the
symbol;

The preconditioner has a very cheap tensor-banded structure (Tani's
talk)



Variable coefficients: symbol of the IgA matrix-sequences
associated to a full elliptic Pb (a GLT sequence)
Full elliptic problem:

~V-KVu+B-Vut+yu=Ff onQcCR?
u=20 on 00

IgA approximation: take a geometry map G:[0,1] = Q to transfer
the problem from Q to [0,1]%; on [0,1]¢ use again splines of deg. p.

APl — resulting IgA approximation matrix

Theorem {n?=2A1} sequence of matrices in the GLT super-algebra

{n?2 AP}~y 1(| det(Jg(x1, - - - xa)) | KG (X1 - - -y Xd) © Hp(B1, -+ ., 04))17

Ke = (Jg) *K(G)(Jg)~ ", Jg = Jacobian matrix of G

Hp, = symmetric d x d matrix whose (i, j) entry represents the ‘formula’

used to approximate 82/8x,-8xj



The symbol: Toeplitz and GLT through an example

Minimalistic example

Assume
—(kot) +v' = gi(x),
u — pv = g(x),

Discretize on a square mesh of stepsize h using bilinear FEM basis
functions:

s 2

B —pM



The symbol: Toeplitz and GLT through an example

Minimalistic example, cont.: the arising matrices



The symbol: Toeplitz and GLT through an example

Minimalistic example, cont.: matrices and symbols

K = ko Ta(2—2cos(d)), B = hT,(1-e"),
BT = hT,(1-e ), M = ET,2+cos(9)).

_ S p 1
Te—1 o [P _
S=pM+B"'K "B, {h2} ,\(3(2—|—cos(9))—|—’i0,( 7r,7r)).

Below ko = 0.4 and ko = 1: if Ko = a(x) the formula of the symbol (a
bivariate function in (x,0)) is formally exactly the same!
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A Concrete Example: Q2Q1 approximation of the Linear
Elasticity

Elasticity - as a part of the ‘rebound’ analysis in the Glacial Isostatic
Adjustment (GIA) models, Donation KAW 2013.0341, Knut & Alice
Wallenberg Foundation, in collaboration with the Royal Swedish
Academy of Sciences



Elasticity Pb: some simplifications
To enable fully incompressible models, i.e. A = co, we write

=V - (2ue(u)) = V(u-Vpy) —puVp =finQ
,uV-u—”;p =0inQ

> po is the pre-stress,
> p= %V - u is the kinematic pressure.

L T

L




Q2Q1 for the Elasticity Pb: two-by-two block structure
(Stokes, NS, Cahn-Hilliard, PDE constrained opt. etc)

We use the stable pair of spaces Q2-Q1; we obtain a block structure A
with a block factorization

A= [All A12} _ [An 0} {/1 AlllAlz}
A1 A Ay Sal |0 h '

Sa=Ax — AnA An.

Several possible preconditioners. One option is

[Dn 0
o=l d

-1
D11 ~ A11, or D11 ~ All and S = S_A

To be computationally efficient, in the majority of the cases, the Schur
complement must be approximated.



Approximation of the exact Schur compl S4 (case Q1-Q1):
eig(S) in blue vs the GLT symbol gs(61,62) in red




Approximation of the exact Schur compl 5S4 (case Q2-Q1):
eig(S) in blue vs the GLT symbol gs(61,62) in red
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Again on Toeplitz sequences generated by a symbol f
> s, d positive integers, i2 = —1;
> £ e [M(ly, My(C)), Iy = (—m, )¢, j € 2
> fi= ﬁ D f(s)e s ds, f; € Ms(C).

S
(= " |
. . f—l
fo-1 i fy

We have

> {To(F)} ~x (F, 1g) if £ =F%
» {T,(F)} ~5 (f,l4) (no assumption needed).



Sequences of diagonal (uniform) sampling matrices

> Let a(x) be Riemann integrable over (0,1) and let us consider the
(uniform) diagonal sampling matrix of size n

a(h)
Dn(a) _ 3(2/7) ) 7 b 1

It is plain to see that
{Dn(a)} ~r0 (a,), 2=(0,1).

> The result is also immediate for domains Q € R measurable
according to Peano-Jordan (and even for matrix-valued symbols).

» Are we satisfied? ... We have to wait a bit ...



Approximation Theory for matrix-sequences |

Definition [Tilli LAA 98,S. LAA 01](... a suggestion by De Giorgi)
For {A,} con d, < dpt1
{{Bn,m}}m: m € Nis an a.c.s. (approximating class) if

An= Bn,m =+ Rn,m + Nn,mv Vn > Nm, Vm € N,

rank Ry m < dpc(m), |[Noml| < w(m).

The quantities n,, ¢(m) and w(m) are functions of m and

mlinoo w(m) =0, mlinoo c(m)=0.



Approximation Theory for matrix-sequences |l

Theorem [Tilli LAA 98, S. LAA 01-06]
Assuming the following

> {{Bom}}tm meNCN, #N = 0o a.cs. per {A,},
> {Bn,m} ~o (1/1m, D) ({Bn,m} ~X ('l/)m, D)),
> Ym = 1,

we obtain

{An} ~o (¥, D) ({An} ~x (¥, D)).

In the case of eigenvalues every involved matrix-sequence has to be
Hermitian (or the non-Hermitian perturbation has to satisfy a trace norm
condition; trace norm = sum of all singular values).



GLT: Generalized Locally Toeplitz [S. et al, 03-15]

We know a lot on spectral features of either Toeplitz or Diagonal

matrix-sequences: exploiting these ‘two ingredients’, via the a.c.s.,
notion we build up a class of matrix-sequences called Generalized

Locally Toeplitz (GLT):

> the technique relies on the a.c.s. notion (small rank plus small
norm);

> the a.c.s technique is a generalization of that used in Precondtioning
from structured matrices (R.Chan etc)

» the small rank plus small norm idea was used by Tyrtyshnikov for
proving the Szego Theorem;

» small rank plus small norm decompositions are a key ingredient for
Mosaic Rank, Semiseparable, Tensor Trains, H matrices etc;

> the idea of a.c.s. was formalized by Tilli and S., but there was a
'suggestion’ by E. De Giorgi.



GLT: Generalized Locally Toeplitz [S. et al, 03-15]

Toeplitz + Diagonal + a.c.s. notion Generalized Locally Toeplitz
(GLT) matrix-sequences:

» for a Riemann integrable over [0,1] and f being L}(—m, ), we
define LT)"(a, ) = Dm(a) ® Ty/m(f);
> a sequence {A,} is sLT if {{LT/(a,f)}}m is an a.c.s. for {A,}:
in that case a(x)f(9), (x,0) €[0,1] x (—m,7), is the symbol of the
sequence of matrices {A,};
> a sequence {A,} is GLT with respect to the measurable function
K(x,0) if for every € > 0, there exist {AE,J’G)} sequences sLT with
symbol a(j ¢)(x)fj,e(0), Ne > j > 1 such that
> J'.V:EI a(j,e)(x)fij,e)(0) converges a.e. to ¥(x,0);
> {{ZJN;1 AY N, s acs. for {An}.
» a GLT sequence {A,} GLT with respect to the measurable function
(x, 0) has ¥(x, 0) as symbol (extensions for d > 1).



GLT as super-algebra containing {D,(a)}, {T.(f)}, a
Riemann integrable, f belonging to !

> Any linear combination of products (and inverses) involving uniform
sampling diagonal matrix-sequences and Toeplitz sequences is GLT
and has as symbol the function obtained by the same operations on
the symbols...... sequences distributed in the singular value sense as
the zero function are GLT with ¢ = 0.

» Surprisingly enough, we prove formally that any ‘reasonable’
approximation by local methods (Finite Differences, Finite Elements,
IgA etc.) of PDEs leads to GLT sequences, i.e., to matrices that can
be approximated by linear combinations of products involving
uniform sampling diagonal matrix-sequences and Toeplitz sequences.

> A, (from Finite Differences on a convection-diff Pb) is approximated
by D,(a)T,(4 —2cos(61) — 2cos(#2)) and this explains why its eigs
are an approximated uniform sampling of

Y(x,0) = a(x)(4 — 2cos(f1) — 2cos(fa)), x € Q,0 € (—m,m)>.



The GLT symbol: Toeplitz + Diagonal representation

Lo(u)=— (a(x)ul> [rod with variable section].

d1 —ar 0
Kn = 22 ) Tn(e 9) =
.. " . _an .. ..
—a, dp 1 0
, , . . 1
To(e ) = T](e"). Dy(a) = diag(a(ih). h=——

Then

Ko = 2Dy(a) — Dn(a) Ta(€”) = To(e )Dy(a) + En, |Enll — 0,
¥(x,0) 2a(x) — a(x)e’ — e7a(x) + 0 = a(x)(2 — 2 cos(6))

{Kn} ~X (’l/)(X, 9)3 [0) 1] X (771’,7'()) :



The GLT symbol: Toeplitz + Diagonal representation

A (a) =Dy/%(a) To(F)D,y/(a), ¥ = a(x)f(0).

Dp(a) uniform diagonal sampling matrix; the decompositions (both
Dyadic and Toeplitz + Diagonal) available in the multidimensional:

0 ou
ﬁa(u) = — Z 87 (ai’j(x)ax-) =
ij=1""" J
d
2 2
AP ~ Y Da(@)Al), Al = Tu(£))
ij=1



The GLT symbol: Toeplitz + Diagonal representation

Variable coefficients with non equispaced grid with t; = g(jh),
g([0,1]) = [0, 1], diffeomorfism. Setting

P(a,g) =

we have

/

— (3000 ) =rpon sr) AP (2,8) = AP (6(a,8)),

’

— (#(2.8)(x)u") =rpon in BP(6(2,8)) ~ Da(9(3,8)) Ta(f)
¥ = ¢(a,g)(x)f(0)
Using a Geometric Map the Toeplitz + Diagonal representation can be

extended to the multidimensional: used in the IgA, FEM with 'graded’
grids, etc.



Further Technical Insights

% The symbol can be recovered in the IgA Collocation/Galerkin setting
with variable coefficient PDEs, general physical domain, general
geometrical mapping.

s The symbol can be recovered in the FEM setting with variable
coefficient PDEs, general physical domain, general graded griddings.

# Concerning the numerical methods, the dimensionality d is not an
issue and singular mappings are not an issue.

s We are now completing the analysis when the model space is given
by NURBS.



Conclusions

> In the case of constant coefficients PDEs the GLT approach and the
Local Fourier Analysis lead to the same conclusions and to the same
tools.

> The GLT tool has to be considered as an extension of the Local
Fourier Analysis (for variable coefficients, irregular domains etc) and
indeed the symbol analysis via GLT is more general and includes also
integral problems, preconditioning, involved iteration matrices
(PHSS), variable coefficients.

» Future work: Navier-Stokes and other vector problems to be
considered, with the idea of using the spectral information and the
symbol, in order to obtain faster and more robust (preconditioned)
iterative solvers.
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