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How accurate is IGA vs FEA?

Let us discuss a 1D toy problem...
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1D toy problem
Find u such that

—U'(x)=1f(x), xe(0,1) u(0)=u(1)=0

Toy problem in variational form
Find u, € Vj, such that

1 1
| eh0vit = [ oo, e vy
0 0

® V, = S{ = span{B’}

@ h = mesh size of the knot vector =

@ p = degree

@ = = knot vector with interior multiplicity p — k
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1D toy problem
Find u such that

—U'(x)=1f(x), xe(0,1) u(0)=u(1)=0

Toy problem in variational form
Find u, € Vj, such that

1 1
| eh0vit = [ oo, e vy
0 0

® V, = S{ = span{B’}

@ h = mesh size of the knot vector =

@ p = degree

@ = = knot vector with interior multiplicity p — k  ~» CX regularity.
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Examples of V), for p=2 and 5 Bézier elements:

1 1
0.9 0.9
08 08
07 07
06 06
05 05
0.4 04
03 03
02 0.2
0.1 0.1

0 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1

==10,0,.2,.2,.4,.4,.6,.6,.8,6.8,1,1] ==1[0,0,.2, 4,.6,.8,1,1]
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Examples of V), for p=2 and 5 Bézier elements:

1 1
09 0.9
08 08
02 0.2
0.1 0.1

[ 01 02 03 04 05 06 0.7 08 09 1 0 0.1 0.2 03 0.4 05 0.6 07 08 09 1
==10,0,.2,.2,.4,.4,6,.6,.8,.81,1] ==10,0,.2, .4,.6,.8,1,1]

FEM k-method
splines with C° continuity splines with CP~ continuity

u]
]
I
ul
it
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Examples of V), for p=2 and 5 Bézier elements:

1 1
09 0.9
08 08
02 0.2
0.1 0.1

[ 0.1 02 03 04 05 06 0.7 08 09 1 0 0.1 0.2 03 0.4 05 0.6 07 08 09 1
==10,0,.2,.2,.4,.4,6,.6,.8,.81,1] ==10,0,.2, .4,.6,.8,1,1]

FEM k-method
splines with C? continuity splines with CP~ continuity

Observe: more d.o.f’s for lower continuity
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Toy problem: variational formulation
Find up € V}, such that

/1 up(x) vp(x)dx = /1 f(x) va(x)dx, Vvy € Vp
0 0
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Toy problem: variational formulation
Find up € V}, such that

/1 up(x) vp(x)dx = /1 f(x) va(x)dx, Vvy € Vp
0 0

Introducing the B-spline basis {Bf}:

Toy problem: linear system
Find un(x) = 3=, 4B (x) such that

Xj: [/01(B]P)/(x)(Bf)/(x)dx] [u]] :/01 f(x) BP(x)dx, Vi=1,..., dim(Vj).

A
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Toy problem: variational formulation
Find up € V}, such that

/1 up(x) vp(x)dx = /1 f(x) va(x)dx, Vvy € Vp
0 0

Introducing the B-spline basis {Bf}:

Toy problem: linear system
Find un(x) = 3=, 4B (x) such that

XI: [/01(B]P)I(X)(B,P)/(x)dx] [u]] :/01 f(x) BP(x)dx, Vi=1,..., dim(Vj).

Aij

The compact support of B-splines means A is sparse...
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Sparsity pattern of A for p=2 and 10 Bézier elements:
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Left: CO vs right: C'.
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Sparsity pattern of A for p=2 and 19 d.o.f’s:

10
nz=71

Left: C® with h = 1/10 vs right: C' with h ~ 1/20.

G. Sangalli (UNIPV)
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Sparsity pattern of A for p=2 and 19 d.o.f’s:

nz=71
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Left: C® with h = 1/10 vs right: C' with h ~ 1/20.

Observe: the left linear system has same bandwidth and is more
sparse, but it is also associated to a coarser mesh.
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Sparsity pattern of A for p=2 and 19 d.o.f’s:

nz=71

Left: C® with h = 1/10 vs right: C' with h ~ 1/20.

Observe: the left linear system has same bandwidth and is more
sparse, but it is also associated to a coarser mesh.

How do they compare in terms of accuracy?

G. Sangalli (UNIPV)
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1D accuracy test (u = sin(7x))

10°
T, s
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"""" p=2, CP~'
e
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107 107° 1072 107 10°
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1D accuracy test (u = sin(7x))

Iu—uhll_”/lulH1

10
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1D accuracy test (u = sin(7x))

—p=1, c®
—p=2, c?
——p=3, C°
—p=4,C°
"""" p=2, CP~'
p=3, C*~’
o p=a, CP N

N

Higher accuracy per degree-of-freedom for k-method (CP~1 splines)
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1D accuracy estimates

The previous plots show the known behaviour [Schumaker, 2007]

lu = tnllr < C(p, KYNTP|u o+

The role of the degree p and the regularity k is more difficult to study.

There is numerical evidence that C°~" splines are an optimal
approximating space:

@ N-width [Evans, Bazilevs, Babugka, and Hughes, 2009]

@ exponential convergence [Buffa, Sangalli, and Schwab, 2014]
() spectrum convergence [Hughes, Reali, and Sangalli, 2008]
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CP~ splines are an optimal approximating space

2" N-width [Evans, Bazilevs, Babuska, and Hughes, 2009]
@ exponential convergence [Buffa, Sangalli, and Schwab, 2014]
@ spectrum convergence [Hughes, Reali, and Sangalli, 2008] and S.
Serra-Capizzano Lectures...

CP~1 splines: U — upl|;2 < CN~S|u|ys
best N-dim. space: |[u — up||;2 < CoptN~5|u|ps

(<]
Q
o
0= NYWANON®OD
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CP~ splines are an optimal approximating space

@ N-width [Evans, Bazilevs, Babuska, and Hughes, 2009]

5" exponential convergence [Buffa, Sangalli, and Schwab, 2014]

@ spectrum convergence [Hughes, Reali, and Sangalli, 2008] and S.
Serra-Capizzano Lectures...

Combined local h-refinement and degree elevation allows “exponential” accuracy:

——k-method
- - -hp-FEM

u(x) = x%7 — x

1 2

7 8 9
N 1/2
G. Sangalli (UNIPV) Splines and PDEs: Recent Advances
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CP~1 splines are an optimal approximating space

@ N-width [Evans, Bazilevs, Babuska, and Hughes, 2009]
(*] exponential convergence [Buffa, Sangalli, and Schwab, 2014]

5" spectrum convergence [Hughes, Reali, and Sangalli, 2008] and S.
Serra-Capizzano Lectures...

Find the eigenfunctions u, # 0 and frequencies w, > 0 such that
—U"(x) =wlu(x), xe(0,1) wu0)=u(1)=0
Find the discrete eigenfunctions u, , € Vj, and wp p > 0 such that
1 1
/0 Up p(X) Vh(x) = wg’h/o Un.h(X) Vh(X), Yvp e Vy

We are interested in |wp p — wnl|/wh ...
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CP~ splines are an optimal approximating space

@ N-width [Evans, Bazilevs, Babuska, and Hughes, 2009]
(*] exponential convergence [Buffa, Sangalli, and Schwab, 2014]

IZ" gpectrum convergence [Hughes, Reali, and Sangalli, 2008] and S.
Serra-Capizzano Lectures...

osf | ——C"p=2
— ' pes
A
c° p=2
C°% p=3
C° p=4
ot

—u"(x) = w2u(x)

1 1
/ / 2
/ UphVh = wn,h/ Un,h Vh, YVh
0 0

CP" (k-method) |

—”"

L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n/N = normalized mode
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CP~' splines approximation properties
@ N-width:
CP—1 splines optimally approximate low-order Sobolev spaces

@ exponential convergence:
CP~1 splines approximate well singular functions

@ spectrum convergence:
CP-1 splines approximate well high frequency modes
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CP~' splines approximation properties
@ N-width:
CP—1 splines optimally approximate low-order Sobolev spaces

@ exponential convergence:
CP~1 splines approximate well singular functions

@ spectrum convergence:
CP-1 splines approximate well high frequency modes

CP~1 splines approximate well “smooth” and “non-smooth” functions! J
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Extension to multi-D
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Multivariate B-splines

Univariate B-splines

SP = space of B-splines of degree p and regularity CX, upto k = p — 1

Multivariate B-splines
B-splines are generalized by tensor products on a d-dimensional
parametric patch [0,1]9. E.g., ford = 3
SP1P2Ps .— QP ) GP2 ) SPs.
same for NURBS...
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Multivariate B-splines

Univariate B-splines

SP = space of B-splines of degree p and regularity CX, upto k = p — 1

Multivariate B-splines

B-splines are generalized by tensor products on a d-dimensional
parametric patch [0,1]9. E.g., ford = 3

SP1:P2:Ps .— GP1 ) SP2 ) GPs3

F(§) = 2 GiMi(€)
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IGA on a NURBS-mapped geometry

Q is described by a CAD parametrisation F € SP(Q) x SP(Q)
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IGA on a NURBS-mapped geometry

R

¢ : Q2 — R is an “approximate solution” of the PDE
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IGA on a NURBS-mapped geometry

e

R

¢ : Q — R is an isogeometric functionif g = ¢ oF € Sf(ﬁ)
[Cottrell, Hughes, and Bazilevs, 2009]
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IGA on a NURBS-mapped geometry

Isogeometric space
V= {qS:Q—>Rsuchthatg:¢oFeSf(ﬁ)}
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IGA on a NURBS-mapped geometry

R

[ g } parametrizes of ¥ = {(x, y, o(x,y)) : (x,y) € Q}
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single patch vs. multipatch geometry

@ single patch:

@ multi-patch:

Courtesy by [Cottrell, Reali, Bazilevs, and Hughes, 2006]
G. Sangalli (UNIPV)
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Multipatch domains: the framework
In CADs, geometries are described by mappings of several patches.

Fy

Q,

@ CY gluing (easy for conforming meshes)
@ C' gluing (challenge at extraordinary vertices)
@ weak (C, C', ...) gluing
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Multipatch domains: C° conforming case

CO conforming meshes just requires identification of control points and
control variables

G. Sangalli (UNIPV)
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Multipatch: C' isogeometric spaces

@ Left: C' parametrization (possibly with few exceptions) [Nguyen,
Karciauskas, and Peters, 2014; D. Toshniwal, H. Speleers, T.J.R. Hughes Hughes, 2017]

@ Right: (only) C° parametrization [Kapl, Buchegger, Bercovier, and Jiittler,
2016; Collin, Sangalli, and Takacs, 2015] ...
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Multipatch: C' isogeometric spaces

@ Left: C' parametrization (possibly with few exceptions) [Nguyen,
Karciauskas, and Peters, 2014; D. Toshniwal, H. Speleers, T.J.R. Hughes Hughes, 2017]

@ Right: (only) C° parametrization [Kapl, Buchegger, Bercovier, and Jiittler,
2016; Collin, Sangalli, and Takacs, 2015] ...
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Isogeometric spaces on multipach geometries
F,

o}
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Isogeometric spaces on multipach geometries
F,

o}
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Isogeometric spaces on multipach geometries
F,

o}

@ Can we construct C' isogeometric spaces on the geometry
above?
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Isogeometric spaces on multipach geometries
F,

o)

@ Can we construct C' isogeometric spaces on the geometry
above?

@ How do they perform in term of approximation properties? [Collin,

Sangalli, and Takacs, 2015] [Bercovier and Matskewich, 2014] [Kapl, Vitrih, Juttler, and
Birner, 2015]
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L-shape parametrization
FO: [-1,0] x [0,1] = ﬁ(L) — b,
FR) 2 10,1] x [0,1] = Q) — A,
r={F0,v)=Fb(0,v) = F(R)(O, v),v e [0,1]}

)

v/—\
\ F

)

) )
QR

FR)
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L-shape parametrization

FO . [-1,0] x [0,1] = ﬁ(L) — ),
FR) 2 10,1] x [0,1] = Q) — A,
M ={F(0,v)=Fb(0,v) = F(R)(O, v),v € [0,1]}

)

W--_-____-_-___-_
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C' isogeometric functions ~
Given ¢ : Q — R, let g8 = ¢ o F(S) € SP(Q(9), S e {L, R}, and

FO 71 ~ FR) 7 .
[ Lo } Al w0 [ ol ] A, w(A) “)
¢ € C'(Q) & the graph parametrization (*) is G' J

{

F(L) ]
g
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G' graph condition
¢ € C'(Q) « the tangent planes formed by

[ D,FV(0,v) ] [ D,F(0,v) ] g [ gFﬁggg v ] [ D,F(0,v) ]
’ b9 (0,v) |’

D,g™M(0,v) D,g(0,v)

do coincide:
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G' graph condition
e C'(Q) = o), aP 5:10,1] = R, s.t. aD(v)alA(v) < 0 and

| o |- Bgmen |+ Baen | -[o]

(D (v), oA (v), B(v) are determined up to a common multiple v(v)).
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G' graph condition
e C'(Q) = o), aP 5:10,1] = R, s.t. aD(v)alA(v) < 0 and

| o |- Bgmen |+ Baen | -[o]

(D (v), oA (v), B(v) are determined up to a common multiple v(v)).

Steps of the isogeometric method
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G’ graph condition
e C(Q) & Fab, oA 5:]0,1] = R, s.t. aD(v)alF(v) < 0 and

0] geia |+ [ Bgmian [+ Bgen |- [o]

(D (v), oA (v), B(v) are determined up to a common multiple v(v)).

Steps of the isogeometric method
@ the geometry parametrizations F(1) F(R) are first given
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G’ graph condition
e C(Q) & Fab, oA 5:]0,1] = R, s.t. aD(v)alF(v) < 0 and

0] geia |+ [ Bgmian [+ Bgen |- [o]

(aB(v), aM(v), B(v) are determined up to a common multiple v(v)).

Steps of the isogeometric method

e the geometry parametrizations F(1), F(F) are first given
o oY), oM, 3 are determined by F(1), F(A):

oW (V) DFL(0, v) + o B (v)DFR(0, v) + B(v)D,F(0, v) = 0.
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G’ graph condition
e C(Q) & Fab, oA 5:]0,1] = R, s.t. aD(v)alF(v) < 0 and

s 25581 - 53] o 3583

(aB(v), aM(v), B(v) are determined up to a common multiple v(v)).

Steps of the isogeometric method

e the geometry parametrizations F(1), F(F) are first given
o oY), oM, 3 are determined by F(1), F(A):

oW (V) DFL(0, v) + a P (v)D,FA(0, v) + B(v)D,F(0, v) = 0.

@ the C' isogeometric space is given by the condition on g(t), g(f):

oD (v)Dyg(0,v) + ! (v)Dug™M(0, v) + 5(v)Dyg(0,v) = 0

v
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About b, o(F) 5 in the G' condition

Given FO), F(R) then (see [?Bercovier and Matskewich, 2014] )

aD(v) =y(v)det[ D,FA0,v) DFA(©O,v) ],
aP(v) = —y(v)det [ D,FO(0,v) D,FD(0,v) ],
B(v) = ~y(v)det[ D,FD(0,v) D,FF(0,v) ].

Moreover it holds

B(v) = (P ()R (v) + oD (v) 8D (v)),
where

DUF(S)(O7 V) : DvF(S)(O7 V)

(S) _
=T RS0 e

Se{L R}
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An example of C'-locking: when g(®) € S, Q)

For any gluing data o(%) and 5(5), when g(®) € 5, Q)
h-convergence fails in general at the interface:

Dug™) € (S5731-1,0] @ S5, [0,1])

Dvg € (80_4[-1,01® 8P~3[0,1])
R e (85310,11@ 8 4[0,1])

Dvg ) e (SE_,[0, 1] ® 85~][0,1])

Since the C'-condition is
oD (v)Dug®(0,v) + P (v)Dyg™(0, v) + B(v)Dvg(0, v) = 0,
—_———— —_————— —_——

P P —1
65p71 ESp71 ESS—Z

then D,g(0,v) € SS 11 i.e., g(0,v) is a global p-degree polynomial!
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AS G' parametrization

Definition (Analysis-suitable G' geometry parametrization)

The parametrizations F(Y) and F(f) are Analysis-Suitable (AS) G' at I
if there exist oD, oA, (1) 3(R) Jinear functions such that Vv € [0, 1],

B (v)DFD(0, v) + oA (v)D,FR(0, v) + B(v)D,F(0, v) = 0,

where B(v) = —(aA(v)BA(v) + oBD(v)sB)(v)).

Examples:
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AS G' parametrization
Definition (Analysis-suitable G' geometry parametrization)

The parametrizations F(Y) and F(f) are Analysis-Suitable (AS) G' at I
if there exist oD, oA, (1) 3(R) Jinear functions such that Vv € [0, 1],

B (v)DFD(0, v) + oA (v)D,FR(0, v) + B(v)D,F(0, v) = 0,

where B(v) = —(aA(v)BA(v) + oBD(v)sB)(v)).

Examples:

AN |
e
e e NN
e NN

[T 11

I
T
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Non-AS-G' vs. AS-G' convergence

(4t

Exact solution

@ Initial W AS G' ¥ Ref. h'2 A Ref. h*

T o010
00002}, [
t oo
0.00001},
b el

Log(L2-error)

w0}
ot

/
, | ot

0.00003 e /| o100 \'—\,\_‘

~_ _ | —

1 2 3 O g

~_l/ o
sV Level L

Abs. error initial parametr. Abs. error AS-G! parametr. Convergence rates

Approximation of “exact solution” by S? isogeometric functions.
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Dual baSiS [Lyche, Manni, Speleers, 2017]

Given a 1D knot vector [£1,. .., &nypt1] there exists a stable dual basis

{A&is- -, Eivpr1] () } 1y ., to the spline basis {B[g,....&ivprl}iy

that is

)‘[giv o a£i+p+1](B[§j7 cee ’§j+p+1]/)

~~

Aip Bip

- / Méir- - Eirpr1BIGs - Eipit] = 6
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Dual baSiS [Lyche, Manni, Speleers, 2017]
Given a 1D knot vector [&1,. .., £q1p11] there exists a stable dual basis
{)\[gl'a v 7§i+p+1](')},‘:17._.,n to the Spllne basis {B[gla v :fi+p+1]}i:1,.._,n

that is

)\[‘fiv o aéH—P-l—'l](B[gja cee 7§j+p+1])

~~

Aip Bip

- / Méir- - Eirpr1BIGs - Eipit] = 6

The existence of a stable dual basis guarantees:
@ linear independence of the B-spline basis

@ existence of a projection operator (quasi-interpolant) with optimal
approximation properties w.r.t. h.
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A spline projection operator

Q= L3([0,1]) = Sp(2),  Qp=(f) =D _ Np(H)Bjp.
Jj=1

G. Sangalli (UNIPV)

Splines and PDEs: Recent Advances



A spline projection operator [iyche, Manni, Speleers, 2017]

Q= L2([0,1]) = Sp(3),  Qpz(f) =D Nip(Bip,
j=1

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances
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A spline projection operator
@ O, = preserves splines, thatis Q,=(f) = f, Vf e Sp(Z).
@ Stability holds:

‘)‘j,P(f)‘ < C(§I+P—|—1 - fj)q/2”fHL2(§j,5j+p+1)’

where the constant C depends on the polynomial degree p with
the upperbound

@ For any non empty knot span /; = (¢j, j+1) it holds
190=(Nllizy < Clifl 2y

where the constant C depends only upon the degree p, and 7, is
the support extension.
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A spline projection operator with BC

The operator Q) = can be modified in order to match boundary
conditions. We can define, for all f € C°([0, 1]):

Jj=1

Mp(f) = £(0), Anp(F) = (1), Nip(F) = Nip(F), j=2....,n—1.

L2 stability stated for Qp, = cannot be valid for O, =, but:
For any non empty knot span /; = ({j, ¢j1) it holds

19 =( 2y < CUIFl 2y + Pilflinry)

1Q0=(Nliqy < Cllflingy

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances July 3 - July 7, 2017
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Bound on the projection error in Sobolev spaces
Spline approximation in standard Sobolev spaces

3C depending only on p (and the local mesh ratio) such that for all
r,seN,0<r<s<p+1,andall f € H3(/)

|f = Qp=(Nlwry < CN)*Mflpeqy Vi=1,...,N—=1.

Let g be any polynomial of degree p living on [0, 1]. Noting that, since
q € Sp(=), it holds 9, =(g) = q and using stabily

1f = Qoz(Dlezy < IIf = allzgy + 1Qp.z(q — D2y < CIIf — CIHL2(7,.)-

The term above is bounded by polynomial approximation, leading to
the bound for r = 0.
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Bound on the projection error in Sobolev spaces
Spline approximation in standard Sobolev spaces

3C depending only on p (and the local mesh ratio) such that for all
r,seN,0<r<s<p+1,andall f € H3(/)

|f — Qp= ()|Hr/)<C( i)5 r]f\Hs(, Vi=1,...,N—1.

Let g be any polynomial of degree p living on [0, 1]. Noting that, since
q € Sp(=), it holds 9, =(g) = q and using stabily

1f = Qoz(Dlezy < IIf = allzgy + 1Qp.z(q — D2y < CIIf — CIHL2(7,.)-

The term above is bounded by polynomial approximation, leading to
the bound for r = 0. By inverse estimates:

|f — Qp=(Olrrry < If = alrray + 19p2(9 — Ol
<I[f—=qlnruy + Ch/_rHQp,E(q - f)HLZ(I/)
<If = qlwry + Ch T IIF = qll 2y
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Bent Sobolev spaces
Given q € N the piecewise polynomial space
Pg(Z) = {v € L3(I) : v|, is a g-deg. pol., Vi=1,...,N—1,1; = (¢, (1)}
Define the bent Sobolev space (depends on the knot vector =):
2 (1) = {fe L2(1) such that f|, € HS([)Vi=1,...,N—1, and }
DXf(¢) = DEF(G), Yk <min{s —1,k},Vi=2,...,N—1,
s N—1
1By = D 1H350y - By = D 1Ry Yi=0.1,....5,
j=0 i=1
Given an integer s such that 0 < s < p, we define the space
Ssp(2) = Ps(Z) N Sp(3).

Sp(=) = Sp p(Z), and, for any s < p, Ss p(=) is still a spline space but
associated to a knot vector different from =. Moreover

Sp(2) = Pp(Z) N HP()).

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances
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a link between bent and standard Sobolev spaces

Let s € N, s < p+ 1. There exists a projector ' : H3(/) — §s_1,p(E)
such that f — I'(f) € HS(I). If s > 2, T(f)(¢1) =T(f)(Cn) =

Assume s = p + 1, and construct I' : HP*'1(1) — Sp(Z). We need
DY(f=T(N)(¢) = DE(F=T(H)(¢), Vi=2,....N=1,k=0,1,....p.

Then we need D (I'(f))(¢i) — DX(T(F))(¢i) = DE(F)(¢i) — DE(F)(&) for
alli=2,....,N—1and k =k +1,...,p. Let ¢¥ : | — R be defined as

Sp(2) 2 Pk (x) = (max{0,x — ¢})*  vxel

We then have and define

() =0,  DLoK(G) =K ok,
& DI qu ,

-y s D EDEAG) ey
i=2 q=k;+1
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Bound on the projection error in bent Sobolev spaces

Spline approximation in bent Sobolev spaces
[Beirdo da Veiga, Cho , Sangalli, 2014]

3C, only dependent on p (and the local mesh ratio) such that for all
r,seB,0<r<s<p+1,andall f € H5(/)

I = Qo=(Mlrrgy < CN)* MMy, Vi=1,...,N=1.

[(f) € Ss-1,0(5) € Sp(2) = = Qp=(1) = (f T (F)) = Qp=(f — (7).
Since (f — I'(f)) € H3(/), we apply the classical error bound

\f = Qp=(Nlnry = If = T(F) = Qp=(f = T(F)I1r(sy

Ll

(A" | S 1y = CT fle iy
/C/

Splines and PDEs: Recent Advances

< C(R)*If ~ T(Nlyg = CRY* 'sz ()2
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Approximation of isogeometric spaces

From the univariate spline projector Q, =, we tensorize and construct

Mp =, then define My, : L2(Q) — Vj,

Mp=(W(foF))

My f= W

o F~1 fel?Q).

Approximation error (h-refinement) of isogeometric spaces
[Beiréo da Veiga, Cho , Sangalli, 2014]

Given0 <r <s<min(py,...,pq) + 1, there exists a constant C
depending only on p, F, W (and the local mesh ratio) such that

If = v, flliry < ClhR) NIl sy VKG € M,
1f = Ny, fllar@) < Ch*[[f|| s,

for all fin H3(Q).
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Non-tensor-product splines for IGA

Three approaches have emerged in the isogeometric community:

= T-splines [Sederberg, Zheng, Bakenov, and Nasri, 2003; Bazilevs, Calo, Cottrell, Evans,
Hughes, Lipton, Scott, and Sederberg, 2010; Scott, Li, Sederberg, and Hughes, 2012]

» Analysis suitable (AS) T-splines C T-spline [Li, Zheng, Sederberg,
Hughes, and Scott, 2012; Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2013] .

@ locally-refinable (LR) splines [Dokken, Lyche, and Pettersen, 2013]

@ hierarchical splines [Vuong, Giannelli, Jittler, and Simeon, 2011; Giannelli, Jittler,
and Speleers, 2012]

@ subdivision surfaces [Cirak et al.; Nguyen, Karciauskas, Peters; Barendrecht; . . . ]
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Non-tensor-product splines for IGA

Three approaches have emerged in the isogeometric community:

= T-splines [Sederberg, Zheng, Bakenov, and Nasri, 2003; Bazilevs, Calo, Cottrell, Evans,
Hughes, Lipton, Scott, and Sederberg, 2010; Scott, Li, Sederberg, and Hughes, 2012]

» Analysis suitable (AS) T-splines C T-spline [Li, Zheng, Sederberg,
Hughes, and Scott, 2012; Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2013] .

@ locally-refinable (LR) splines [Dokken, Lyche, and Pettersen, 2013]

@ hierarchical splines [Vuong, Giannelli, Jittler, and Simeon, 2011; Giannelli, Jittler,
and Speleers, 2012]

@ subdivision surfaces [Cirak et al.; Nguyen, Karciauskas, Peters; Barendrecht; . . . ]

Tensor product B-splines easily inherit the maths properties from the
univariate B-splines because of the tensor-product construction.
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Non-tensor-product splines for IGA

Three approaches have emerged in the isogeometric community:

= T-splines [Sederberg, Zheng, Bakenov, and Nasri, 2003; Bazilevs, Calo, Cottrell, Evans,
Hughes, Lipton, Scott, and Sederberg, 2010; Scott, Li, Sederberg, and Hughes, 2012]

» Analysis suitable (AS) T-splines C T-spline [Li, Zheng, Sederberg,
Hughes, and Scott, 2012; Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2013] .
@ locally-refinable (LR) splines [Dokken, Lyche, and Pettersen, 2013]
@ hierarchical splines [Vuong, Giannelli, Jittler, and Simeon, 2011; Giannelli, Jittler,
and Speleers, 2012]
@ subdivision surfaces [Cirak et al.; Nguyen, Karciauskas, Peters; Barendrecht; . . . ]

Tensor product B-splines easily inherit the maths properties from the
univariate B-splines because of the tensor-product construction.

Dual-Compatible (DC) B-splines are a set of B-splines without global
tensor-product structure but with a weaker one that still guarantees
some key properties inherited from 1D

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances July 3 - July 7, 2017 38/61



Definition Of PB—SplineS [Sederberg, Zheng, Bakenov, and Nasri, 2003]

Consider a set of multivariate B-splines

@ Ais asetof indices, i.e., A € A <+ Npp is one-to-one,
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Definition Of PB—SplineS [Sederberg, Zheng, Bakenov, and Nasri, 2003]

Consider a set of multivariate B-splines

@ Ais asetof indices, i.e., A € A <+ Npp is one-to-one,
@ the Nap have the structure

Nap(¢) = N[Za1.p,](C1)N[ZA 2,5,](¢2) OF
Nap(¢) = N[Za1,0,](C1)N[ZA2,0,](C2)N[ZA3,p,](¢3)
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Definition Of PB—SplineS [Sederberg, Zheng, Bakenov, and Nasri, 2003]

Consider a set of multivariate B-splines

{NA,pa Ac .A}

@ Ais asetof indices, i.e., A € A <+ Npp is one-to-one,
@ the Nap have the structure

Nap(€) = N[Za1,p,](C1)N[ZA2,5,](¢2) OF

Nap(¢) = N[=a1,0,](C1)N[ZA2,0,](C2) N[ZA 3,051 (C3)

The space spanned is

Sp(A) = span {Nap, A€ A}.

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances July 3 - July 7, 2017
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Definition Of DC—SplineS [Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2014]
Overlapping knot vectors

Two local knot vectors == {§q,. ..5,@._+2} and =" = {{{,...{p 0}
overlap if formed by p + 2 neighbouring knots of the same knot vector.

For example:
@ overlapping local knot vector

G —— @ —— s m———— )

O o o e o o o ) o e e e e )

@ non-overlapping local knot vector

D= ——— o L b Ll c EEEEr cEEEET 5]
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Definition Of DC—SplineS [Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2014]
Overlapping knot vectors

Two local knot vectors == {gq,. ..5;,_+2} and =" = {{{,...{p 0}
overlap if formed by p + 2 neighbouring knots of the same knot vector.

v

Overlapping and partially-overlapping splines
Two B-splines Na/ p Na~ p overlap if the local knot vectors =as 4 p, and
=ap, in €ach direction £ =1,..., d overlap.

Two B-splines Na/p Na» p partially overlap if, when A’ # A”, there
exists a direction ¢ such that =a/ s p, # =ar¢,p, @nd overlap.

Dual-Compatible (DC) set and space

{Nap, A € A} is a DC set of B-splines if each pair of B-splines in it
partially overlap. Its span Sp(.A) is a DC spline space.
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Example of overlapping B-splines

U =Y = = DaA®
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Example of partially overlapping B-splines

=} =] - £ = DaA®
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Example of not partially overlapping B-splines

U =Y = = DaA®
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Dual baSiS [Schumaker, 2007; Beirao da Veiga, Buffa, Sangalli, and Vazquez, 2014]

Given a 1D knot vector [£1,. .., & p41] there exists a dual basis
{is- -, Eivpr1] ()}, to the spline basis {N[¢. ..., Epral} iy,

thatis A[&, ..., &irpr1](NI - - -, §pr]) = 0j
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Dual baSiS [Schumaker, 2007; Beirao da Veiga, Buffa, Sangalli, and Vazquez, 2014]

Given a 1D knot vector [£1,. .., & p41] there exists a dual basis
{is- -, Eivpr1] ()}, to the spline basis {N[¢. ..., Epral} iy,

thatis A[S, . .., &ivpr1) (NI - - -5 §jiprt]) = 0j.

Dual basis to a dual-compatible (DC) set
Assume that {Nap, A € A} is a DC set. The set {\ap, A € A} where

)\A,p = )‘[EA,1,p1] ®...0 )‘[EA,dvpd]

is a dual basis for {Nap, A € A}.
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Dual baSiS [Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2014]

Dual basis to a dual-compatible (DC) set

The set {\ap, A€ A} where Aap = A[Za1p]®... ® M[Eadp,] isa
dual basis for the DC set {Nap, A € A}.

Consider any Na/p and Aa» p, with A’, A” € A. We then need to show

1 ifA” = A

0 otherwise.

Anrp(Navp) = {

If A” = A", then we have Aa» p(Narp) = 1. )
If A’ £ A", for the partial overlap assumption there is ¢ such that
=aep, # Zar 0 p, @and overlap, then A[=a» ¢ p,](N[=arr,p,]) = 0 and then

d

Aarp(Nap) = [[ A=A 0o ) (NEaep]) = 0.
=1
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Properties of DC-splines: local linear independence
Linear independence [Beirzo da Veiga, Buffa, Sangalli, and Vazquez, 2014]
The B-splines in a DC set {Nap, A € A} are linearly independent. }

Assume

> CaNap =0
AcA

for some coefficients Ca; for any A’ € A, applying Aa’ p we get

Ca = Marp (Z CANA,,p> = 0.

AcA
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Properties of DC-splines: local linear independence
Linear independence [Beirzo da Veiga, Buffa, Sangalli, and Vazquez, 2014]
The B-splines in a DC set {Nap, A € A} are linearly independent.

Assume

> CaNap =0
AcA

for some coefficients Ca; for any A’ € A, applying Aa’ p we get

Ca = Marp (Z CANA,,,,> =0.

AcA

LLI

In a DC set there are at most (p1 + 1) - ... (pg + 1) B-splines that are
non-null in each Bézier element. If the space of polynomials of degree

p is in Sp(.A), the B-splines are locally linearly independent.
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Properties of DC-splines: partition of unity

Partition of unity [Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2014]

The B-splines in a DC set {Nap, A € A} form a partition of the unity, if
the constant function belongs to the space.

Let

AcA

for some coefficients Ca. For any A’ € A, applying Aa/ p we get

CA’ = )\A’,p (Z CANA7P> = 1

AcA
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Approximation properties of DC-splines

L 2—stability of the projector

Given a DC set of B-splines, Mp(f)(¢) = > _ac4 Aap(f)Nap(<) realizes:

Mp(Dllz(q) < Cllfll 2@ YQCQ, Vfe L2(Q).

We use of the notion of support extension Q associated to an element

Qc
Q= [J  supp(Nap),
AcA
supp(NA’p)mQ#(D
and recall positivity and partition of unity property:

Z ‘NA,p(C)‘ <C.

AcA
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Approximation properties of DC-splines

L >—stability of the projector
Given a DC set of B-splines, Mp(f)(¢) = > _ac4 Aap(f)Nap(<) realizes:

Mp(Dllz(q) < Cllfll 2@ YQCQ, Vfe L2(Q).

Denote by A(¢) the set of A € A such that Nap(¢) > 0, by Qa the
common support of Na p and A p, it follows that

2
Mp > Aap(f)Nap( ) < C max_|Aap(f)|
’AGA(C AcA(C)
1 1
< max |Qal "Il fzq < CIQI I, g
where we have used that VA € A(¢), Q C Qa (and therefore [Q| < |Qa|)
and that Qa C Q. Integrating over Q yields HI‘Ip(f)HLz(Q) < CHfHLZ(Q)
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Approximation properties of DC-splines

L >—stability of the projector
Given a DC set of B-splines, Mp(f)(¢) = > _ac4 Aap(f)Nap(<) realizes:

Mp(Dllz(q) < Cllfll 2@ YQCQ, Vfe L2(Q).

Optimal approximation of the projector

Assume that the space of polynomials of degree p = min{<,<q{p¢} is
included into the space Sp(.A). Then there exists a constant C only
dependent on p such thatfor0 < s < p+ 1

1f = Ma(Nlliz(q) < C(hg)*Iflusmy YQCQ, Vfe H(Q),

where hg is the diameter of Q (smallest d-rectangle containing E)).
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Greville sites for DC-splines

Greville sites

Assume that the linear polynomials belong to the space Sp(.A). Then
we have that

V[EA,LM]
¢=> t | Nap(¢), Y¢eQ,

AcA _
V[=a.0.p4]

where v[=a ¢ p,] denotes the Greville average of =a ¢, , that is, the
average of the p, internal knots of =a ¢ p,,.
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T-splines: p = (3,2) and p = (3, 3)

S -

2 4 o 1 2 3 & 5 & 7 & 9 1 1

7—2 -1 0 1

2 3 4 5

6

7 8 9 1011

Construction of the horizontal and vertical index vector (red crosses),
for some values of p = (py, p2), and for the anchors marked in blue.

G. Sangalli (UNIPV)

Splines and PDEs: Recent Advances

July 3 - July 7, 2017
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AS T-splines

Extensions for degree p; = 2 (horizontal) and p, = 3 (vertical). The
dashed lines represent the face extensions.
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AS T-splines

Extensions for degree p; = 2 (horizontal) and p, = 3 (vertical). The
dashed lines represent the face extensions.

AS < DC [Beirdo da Veiga, Buffa, Sangalli, and Vazquez, 2013]

Given an “admissible” T-mesh, it is AS (analysis-suitable) if and only if
the set of T-spline blending functions is DC (dual-compatible).
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Geometries generated by boolean operations

7 ]-

Unite

-l - &7
Subtract

n - [
Intersect
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Geometries generated by boolean operations

Possible approaches to handle trimmed domains are:
@ multipatch reparametrization (b)

(a)

@ dealing directly with trimmed domain (c)

Void region

(b)
Appl. Mech. Engrg. 198 (2009) 2982-2995.

(©)
Picture from “Isogeometric analysis for trimmed CAD surfaces”, Hyun-Jung Kim, Yu-Deok Seo, Sung-Kie Youn, Comput. Methods
G. Sangalli (UNIPV)
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Trimming
Trimming is a basic operation in CAD.
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Trimming
Trimming is a basic operation in CAD.

Solve in the red part, cutting out the blue part.
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Trimming
Trimming is a basic operation in CAD.

Solve in the red part, cutting out the blue part.
The trimming also “cuts” the basis functions of the method.
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Trimming

@ Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.

G. Sangalli (UNIPV)
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Quadrature on trimmed elements

inactive part Q.

A trimmed element Q¢ = F(Q®) is union of an active part Q%2 and an
G. Sangalli (UNIPV)

[m]
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Quadrature on trimmed elements

s

GE

We can write

G. Sangalli (UNIPV)

Qea — F(ﬁe,a) — F(Ge(Q)) = AI';he(Qr)@.
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Quadrature on trimmed elements

Ge

o = = = E Qe
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Trimming

@ Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.

G. Sangalli (UNIPV)
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Trimming

@ Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.

Reparametrization mesh by IRIT, G. Elber, Technion.
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Trimming

@ Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.

solution
0.000e+00

-156.269

l -30.539

I -45.808
-6.108e+01

Reparametrization mesh by IRIT, G. Elber, Technion.
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Trimming
@ Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.
@ the linear system needs a special rescaling to improve
conditioning

solution
0.000e+00

-16.269

-30.539

I -45.808
-6.108e+01

Reparametrization mesh by IRIT, G. Elber, Technion.
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Trimming

Handling efficiently trimmed 3D volumes is the next big challenge... ]
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