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A simple stretch test

Neo–Hokean material. E = 1.0, ν = 0.3
Symmetry conditions considered.
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A simple stretch test
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compressible + nearly incompressible test
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compressible + nearly incompressible test
19800 elements, 22542 nodes→ 67626 dofs
Symmetry conditions imposed
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compressible + nearly incompressible test

36 elements (4× 1× 9),

{
p = 2→ 567 nodes, 1701 dofs
p = 3→ 1296 nodes, 3888 dofs

Each layer is a different NURBS patch
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comp. + nearly incomp. test: FEM vs IGA mesh

19800 elements
67626 dofs

36 elements

p = 2→ 1701 dofs
p = 3→ 3888 dofs
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Materials and numerical methods

(compressimble) Steel:
E = 210 GPa, ν = 0.3

Isotropic elasticity formulation used.

(nearly-incompressible) Rubber:
C10 = 1 MPa, K = 1000 MPa (E = 5.996 MPa, ν = 0.499)

For FEM:
I Neo–Hokean with plain Galerkin formulation→ solution locks
I Mooney–Rivlin (three field: displacement+pressure+volume ratio)

implemented with “selective-reduced integration”→ suitable for
incompressible materials.

For IGA: Neo–Hokean with plain Galerkin formulation.
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comp. + nearly incomp. test, phase 1
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comp. + nearly incomp. test. IGA p = 2, phase 1

Deformation looks good, but solution is locked
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comp. + nearly incomp. test K/c10 = 3000. Phase 1
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comp. + nearly incomp. test. Phase 2
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comp. + nearly incomp. test. Phase 3
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Stress oscillations for IGA p = 3

Oscillations appear in σvol = 1
3 tr(σ) 1

1
3 tr(σ) plotted
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comp. + nearly incomp. test. Stress for IGA p = 3

K/c10 = 3000

The scale is the same, the oscillations increase with K/c10
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comp. + nearly incomp. Stress for IGA p = 3

4× 2× 2
elements / layer

4× 4× 4
elements / layer

4× 8× 8
elements / layer
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Linear elasticity model problem

Strong form problem

∇ · σ + f = 0 in Ω

u = ū on ΓD

σ · n = t on ΓN

Isotropic linear elasticity

σ = 2µ ε+ λ∇ · u 1
ε = ∇su

λ =
ν E

(1 + ν) (1− 2 ν)

µ =
E

2 (1 + ν)

ν → 1/2, λ→∞

Weak form: find u ∈ (H1(Ω))3 with u = ū on ΓD and such that

, ∀w ∈ (H1
ΓD

(Ω))3
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Classical benchmark: plate with a hole
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Standard formulation

Plain Galerkin (displacement) formulation

a (w , u) =

∫
Ω

2µ∇sw : ∇sudΩ +

∫
Ω
λ∇ ·w ∇ · u dΩ

Stress oscillations and locking
Symmetric 3

Sparse 3

Definite positive 3
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Exact vs plain formulation for ν = 0.49999
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Possible solution: B̄ projection technique

projection technique

a (w , u) =

∫
Ω

2µ∇sw : ∇sudΩ +

∫
Ω
λπ (∇ ·w) π (∇ · u) dΩ

π(φ)(x) =
∑

i

B̃i(x) ci(φ) ∈ "coarser space"
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Possible solution: B̄ projection technique

projection technique

a (w , u) =

∫
Ω

2µ∇sw : ∇sudΩ +

∫
Ω
λπ (∇ ·w) π (∇ · u) dΩ

π(φ)(x) =
∑

i

B̃i(x) ci(φ) ∈ "coarser space"

B̄-method [Elguedj, Bazilevs, Calo, and Hughes, 2008]

u ∈ Sp × Sp × Sp and π(·) ∈ Sp−1
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Possible solution: B̄ projection technique

projection technique

a (w , u) =

∫
Ω

2µ∇sw : ∇sudΩ +

∫
Ω
λπ (∇ ·w) π (∇ · u) dΩ

π(φ)(x) =
∑

i

B̃i(x) ci(φ) ∈ "coarser space"

ci(φ) = M̃
−1
ij

∫
Ω

Ñj(x)φ(x)dΩ
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Possible solution: B̄ projection technique

projection technique

a (w , u) =

∫
Ω

2µ∇sw : ∇sudΩ +

∫
Ω
λπ (∇ ·w) π (∇ · u) dΩ

π(φ)(x) =
∑

i

B̃i(x) ci(φ) ∈ "coarser space"

Unlocked solution 3

Symmetric 3

full matrix
Definite positive 3
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mesh refinement in our next tests
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B̄ for ν = 0.4
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B̄ for ν = 0.49999
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Cook Membrane
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Cook Membrane ν = 0.49999
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Cook Membrane ν = 0.4
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Projection formulation as a mixed formulation

projection technique

∫
Ω

2µ∇sw : ∇su +

∫
Ω
λπ (∇ · w) π (∇ · u) =

∫
Ω

w · f , ∀w

Mixed formulation (for the unknowns u and p)

∫
Ω

2µ∇sw : ∇su +

∫
Ω
∇ ·w ℘ =

∫
Ω

w · f , ∀w∫
Ω

(∇ · u) q − λ−1
∫

Ω
℘q = 0, ∀q

where the second equation states λπ(∇ · u) = ℘

B̄ method: u,w ∈ Sp
p−1 × S

p
p−1 × S

p
p−1 and ℘,q ∈ Sp−1

p−2 .
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Well-posedness of mixed formulation

Ladyzenskaya-Babuška-Brezzi (LBB) inf-sup condition

The discrete displacement space Vh ⊂ (H1
ΓD

(Ω))2 and the discrete pres-
sure space Qh ⊂ L2(Ω) have to fulfill

inf
q∈Qh

sup
v∈Vh

∫
Ω∇ · v q dΩ

‖q‖L2‖v‖(H1)2
≥ Cis > 0 (uniformly w.r.t. h).

The inf-sup condition above holds if “locally” and “on average” there
are more knot lines of the displacement field than knot lines of the pres-
sure field, roughly speaking... [Bressan and Sangalli, 2013] quick proof
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Well-posedness of u component only

However “some elements... are definitely known not to satisfy the
well-known LBB stability condition but nevertheless are favored and
widely utilized in engineering applications, the prime example being
the mean dilatation, bilinear quadrilateral element Q1/P0” [Elguedj,

Bazilevs, Calo, and Hughes, 2008]

Pitkäranta-Stenberg weak LBB inf-sup stability
[Pitkäranta and Stenberg, 1984]

“The analysis of the Q1/P0 element relies on a weak BB-type stability
condition...”
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A special case for the mixed formulation

u ∈

℘ ∈

Q1/P0 method

u ∈

℘ ∈

B̄ method

u ∈

℘ ∈

¯̄B method
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Macroelement projection πM for ν = 0.49999
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Macroelement projection πM for ν = 0.4
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Macroelement projection πM : sparsity
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Cook Membrane ν = 0.49999

2 4 8 16 32

2

3

4

5

6

7

8

C
or

ne
rd

is
pl

ac
em

en
t[

m
m

]
S1

0 S2
1 S3

2 BS1
0/S

0
−1 BS2

1/S
1
0

BS3
2/S

2
1 BS1

0/S
0
−1 BS2

1/S
1
−1 BS3

2/S
2
−1

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances July 3 - July 7, 2017 36 / 40



Cook Membrane ν = 0.49999
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Cook Membrane ν = 0.4
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Cook Membrane ν = 0.4
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Cook Membrane σxx for ν = 0.49999 p = 3

Standard formulation Discontinuous proj. B
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Cook Membrane σyy for ν = 0.49999 p = 3

Standard formulation Discontinuous proj. B
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