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Finite Element Exterior Calculus

u = −K∇p div u = g

+ boundary conditions

Problems which reveal a geometric structure that needs to be
preserved at the discrete level to obtain spurious free
discretizations
Math literature: Finite Element Exterior Calculus (FEEC) ...
started around 2000 and has involved many scientists
[Arnold, Boffi, Bossavit, Buffa, Costabel, Christiansen, Demkovicz, Dauge, Falk, Hiptmair, Winther .... ]

Edge and Face elements, Mimetic Finite Differences, Finite
Volumes methods, Virtual elements...
Conjugate results from differential geometry, functional analysis
and numerical analysis.
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Finite element “compatible” vector fields

Λ0
h Λ1

h
Λ2

h Λ3
h

Q1,1,1

 Q0,1,1

Q1,0,1

Q1,1,0

  Q1,0,0

Q0,1,0

Q0,0,1

 Q0,0,0

These are the Whitney forms:

R −−−−→ Λ0
h

∇−−−−→ Λ1
h

curl−−−−→ Λ2
h

div−−−−→ Λ3
h −−−−→ 0

#V #E #F #T
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Isogeometric “compatible” vector fields
Λ0

h Λ1
h

Λ2
h Λ3

h

Q1,1,1

 Q0,1,1

Q1,0,1

Q1,1,0

  Q1,0,0

Q0,1,0

Q0,0,1

 Q0,0,0

Degree elevation and knot insertion on the unit cube Ω̂:

R −−−−→ S0
h

∇−−−−→ S1
h

curl−−−−→ S2
h

div−−−−→ S3
h −−−−→ 0
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Isogeometric “compatible” vector fields
Λ0

h Λ1
h

Λ2
h Λ3

h

Q1,1,1

 Q0,1,1

Q1,0,1

Q1,1,0

  Q1,0,0

Q0,1,0

Q0,0,1

 Q0,0,0

Degree elevation and knot insertion on the unit cube Ω̂:

R −−−−→ S0
h

∇−−−−→ S1
h

curl−−−−→ S2
h

div−−−−→ S3
h −−−−→ 0

S3
h = Sp−1,p−1,p−1

The diagram is exact: Im(∇) = Ker( curl ), Im( curl ) = Ker( div )
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Isogeometric “compatible” vector fields
Λ0

h Λ1
h

Λ2
h Λ3

h

Q1,1,1
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With splines you have smooth and compatible vector spaces!
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Λ0

h Λ1
h

Λ2
h Λ3

h
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Degree elevation and knot insertion on the unit cube Ω̂:
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∇−−−−→ S1
h

curl−−−−→ S2
h

div−−−−→ S3
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S3
h = Sp−1,p−1,p−1

Can be extended to AS Tsplines [Buffa, Sangalli, Vazquez, JCP, 2010]
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Representing d.o.f.s on mapped geometries

Left: dof location (blue dots) of isogeometric zero-forms.
Right: dof location (red arrows) of isogeometric one-forms
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application to the Stokes Navier-Stokes equation
[Buffa, de Falco, Sangalli, 2010] [Evans, Hughes, 2010-2013]

Stokes: −∆u +∇p = f, div (u) = 0

seek for a uh ∈ Λ2
h such that div (uh) = 0 !

Extended to steady/unsteady Navier-Stokes by [Evans, Hughes, 2010-2013]

I Structure preserving discretization of Navier-Stokes equations
I Extremely stable w.r.t the Reynold number!
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Stokes: −∆u +∇p = f, div (u) = 0

seek for a uh ∈ Λ2
h such that div (uh) = 0 !

Extended to steady/unsteady Navier-Stokes by [Evans, Hughes, 2010-2013]

I Structure preserving discretization of Navier-Stokes equations
I Extremely stable w.r.t the Reynold number!

∇ · (u⊗ u)− ν∆u +∇p = f in Ω = (0,1)2

div u = 0 in Ω
u = 0 in Γ = ∂Ω.

with weakly imposed non-leaking boundary conditions
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Stokes: −∆u +∇p = f, div (u) = 0

seek for a uh ∈ Λ2
h such that div (uh) = 0 !

Extended to steady/unsteady Navier-Stokes by [Evans, Hughes, 2010-2013]

I Structure preserving discretization of Navier-Stokes equations
I Extremely stable w.r.t the Reynold number!

Table 2: Robustness of 2-D divergence-free B-spline discretizations for increasing Re

Polynomial degree k0 = 1, h = 1/16

Re 0 1 10 100 1000 10000
ku � uhkh 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2

|u � uh|H1(⌦) 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2
ku � uhkL2(⌦) 2.28e-4 2.28e-4 2.28e-4 2.28e-4 2.28e-4 2.28e-4
kp � phkL2(⌦) 3.49e-4 3.49e-4 1.98e-4 1.96e-4 1.96e-4 1.96e-4

Polynomial degree k0 = 2, h = 1/16

Re 0 1 10 100 1000 10000
ku � uhkh 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4

|u � uh|H1(⌦) 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4
ku � uhkL2(⌦) 5.03e-6 5.03e-6 5.03e-6 5.03e-6 5.03e-6 5.03e-6
kp � phkL2(⌦) 1.17e-5 1.17e-5 6.50e-6 6.42e-4 6.42e-6 6.42e-6

Polynomial degree k0 = 3, h = 1/16

Re 0 1 10 100 1000 10000
ku � uhkh 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5

|u � uh|H1(⌦) 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5
ku � uhkL2(⌦) 1.59e-7 1.59e-7 1.59e-7 1.59e-7 1.59e-7 1.59e-7
kp � phkL2(⌦) 3.45e-7 3.45e-7 3.19e-7 3.19e-7 3.19e-7 3.19e-7

Table 3: Instability of conservative 2-D Taylor-Hood discretizations for increasing Re

Q2/Q1 velocity/pressure pair, h = 1/16

Re 0 1 10 100 1000 10000
|u � uh|H1(⌦) 6.78e-4 6.78e-4 7.11e-4 2.26e-3 2.16e-2 2.16e-1
ku � uhkL2(⌦) 6.54e-6 6.54e-6 6.79e-6 1.97e-5 1.86e-4 2.35e-3
kp � phkL2(⌦) 1.96e-4 1.96e-4 1.96e-4 1.96e-4 1.96e-4 1.96e-4

35

Courtesy of J. Evans
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application to the Stokes: spectrum analysis
[Evans, Hughes, 2010-2013]
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application to the Reissner-Mindlin plate bending

Ω ⊂ R2 = midsurface of the plate, t = the tickness
w = deflection, φ = rotation of the normal fibers
f = applied scaled normal load.

Exact formulation:
Find φ ∈ H1

0 (Ω)2,w ∈ H1
0 (Ω) s.t. for all η ∈ H1

0 (Ω)2, v ∈ H1
0 (Ω)

(Cε(φ), ε(η)) + t−2(φ−∇w ,η −∇v) = (f , v)

When t → 0, R-M→ Kirchoff which means: φ = ∇w .

To prevent locking
When discretizing, usually the constraint φ = ∇w needs to be
weakened trough a reduced integration/mixed formulationz
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application to the Reissner-Mindlin plate bending
[Beirao da Veiga, Buffa, Lovadina, Martinelli, Sangalli 2011]

The 2D compatible element is (reasoning in a similar way)...

Sp,p
∇−−−−→ Sp−1,p × Sp,p−1

Φh = Sp−1,p × Sp,p−1 ∩ B.C. , Wh = Sp,p ∩ B.C.

Reissner Mindlin discrete problem:
Find φh ∈ Φh,wh ∈Wh s.t. for all ηh ∈ Φh, vh ∈Wh

(Cε(φh), ε(ηh)) + t−2(φh −∇wh,ηh −∇vh) = (f , vh)

No stabilization, no reduced integration, locking free
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Convergence analysis [Beirao da Veiga, Buffa, Lovadina, Martinelli, Sangalli, 2011]

Let γ = t−2(φ−∇w) and γh = t−2(φh −∇wh) (shear stresses)
then, for regular solutions (and q.u. meshes):

‖φ− φh‖H1 + h−1‖w − wh‖H1 + (t + h)‖γ − γh‖L2 ≤ Chp−1

Solution with boundary layer at curved sides (simply supported BCs),
t = 10−2, p = 3
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Figure 6: Coarsest mesh for the layers-adapted case.
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[4] I. Babuska, and J. Pitkäranta, The plate paradox for hard and soft simple support, Technical Report BN-1082, Inst. for
Phys. Sci. and Tech., Univ. of Maryland (1988).

18

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

1 10 100

h−1

h2

h3

||θ − θh||H1

!

!
!

!
!

!
!

!
||w − wh||H1

"

"
"

"

"

"

"
"

Figure 8: Case 3 (quarter of ring with boundary layers). Layers-adapted mesh. p = 3, t = 10−2. h represents the maximum
element size in the parametric domain.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

0.1

1

1 10 100

h−1

h2

h3

||θ − θh||H1,p=3

!
!

!
!

!
!

!
!

!
||w − wh||H1,p=3

"

"

"

"

"

"

"

""

Figure 9: Case 4 (quarter of ring with boundary conditions for rigid motion test). p = 3, t = 10−2

[5] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli, Isogeometric analysis: approximation,
stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16 (2006), pp. 1031–1090.

[6] L. Beirão da Veiga, A. Buffa, J. Rivas and G. Sangalli, Some estimates for h-k-p refinement in isogeometric analysis,

19

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances July 3 - July 7, 2017 10 / 10


