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k−method
hp−FEM

Approximation of u(x) = x0.7 − x.

The mesh is geometrically graded and the
spline degree p is proportional to the number
of elements for IGA. Mesh-size and degrees
are optimally selected for hp-FEM.

Error is |u− uh|H1 ≤ C exp (−b
√
N) in both

cases, with larger b for IGA

[Buffa, Sangalli, and Schwab, 2014]



The k-method vs C0 hp-FEM
higher accuracy per degree of freedom

structure-preserving
improves the approximation of the spectrum
but the computational cost per d.o.f. is higher in the k-method

The role of continuity in RBVMS modeling of turbulence
[Akkerman, Bazilevs, Calo, Hughes, and Hulshoff, 2008]

“We compared turbulent channel flow results using C0 and
C1-continuous quadratic discretizations. Using a C1-continuous
quadratic basis yields more accurate mean flow and fluctuating
quantities than C0-continuous quadratic basis functions. We conclude
that smooth NURBS basis functions have advantages over C0-continuous
finite elements in turbulent flow calculations.”
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“Div-conforming”
k-method

[Buffa, de Falco, and Sangalli,

2011]



The k-method vs C0 hp-FEM
higher accuracy per degree of freedom
structure-preserving

improves the approximation of the spectrum
but the computational cost per d.o.f. is higher in the k-method

Isogeometric Div-conforming B-splines for the Unsteady NS Eq.’s
[Evans and Hughes, 2013]

“... As incompressibility is satisfied pointwise, these
semi-discretizations replicate the geometric structure of the unsteady
Navier-Stokes equations and admit discrete balance laws for momentum,
angular momentum, energy, vorticity, enstrophy, and helicity.... by
combining the spectral-like properties of B-splines with the preservation
of the geometric structure of the unsteady NS equations, our
semi-discretization procedure may become a useful tool for both
engineering analysis and the mathematical study of the unsteady NS
equations. ”
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higher accuracy per degree of freedom
structure-preserving
improves the approximation of the spectrum

but the computational cost per d.o.f. is higher in the k-method
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[Cottrell, Reali, Bazilevs, and Hughes, 2006; Hughes, Reali, and Sangalli, 2008]
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However in complex isogeometric simulation, e.g. VMS turbulence
[Bazilevs, Calo, Cottrell, Hughes, Reali, and Scovazzi, 2007]

“We found quadratic NURBS to give very significant accuracy
advantages over linear elements. . . . Cubics, on the other hand, increased
cost considerably . . . These remarks need to be qualified by the fact that
our implementation of higher-order elements is not yet optimized in
any way.”



The k-method vs C0 hp-FEM
higher accuracy per degree of freedom
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“The cost of continuity...” [Collier, Pardo, Dalcin, Paszynski, and Calo, 2012]

“However this advantage comes at a cost which is not seen until
looking in detail at the algorithms used to solve the resulting linear
systems. In this case, we have shown that direct solvers require orders of
magnitude more time and memory as continuity increases.”

“Isogeometric Collocation: Cost Comparison with Galerkin Methods”
[Schillinger, Evans, Reali, Scott, and Hughes, 2013]

“.. the total time for the formation and assembly of the global stiffness
matrix of a given size takes ... almost two minutes for FEM and almost
1.5 hours in IGA (Galerkin)”



Fast formation/assembly of the system matrix



The model problem

−∇ ·K∇u = f in Ω ⊆ Rd, d = 2, 3
u = 0 in ∂Ω

d-dimensional scalar Poisson

single patch parametrization (multi-patch through DD)

tensor-product patches

focus on k-method: Cp−1 (arbitrary continuity is the same)

isogeometric (spline) space denoted by Spp−1 with total dimension

NDOF = nd, with n� p, and NEL ≈ NDOF

non-uniform knot vector

focus on Galerkin method
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Isogeometric Galerkin matrices: element-wise quadrature

Au = f

The storage cost for A is O(NDOFp
d) non-zero entries.

the optimal computational cost is: O(NDOFp
d) FLOPs

with element-wise assembling loop and element-wise standard
Gaussian quadrature (SGQ): each elemental stiffness matrix has
dimension (p+ 1)d × (p+ 1)d = O(p2d) and each entry is
calculated by quadrature on (p+ 1)d = O(pd) Gauss points.
Total cost is O(NELp

3d) that is O(NDOFp
3d).

The standard way to reduce the cost is to reduce the number of
quadrature points, for example by reduced Gaussian [Adam, Hughes,

Bouabdallah, Zarroug, and Maitournam, 2015; Schillinger, Hossain, and Hughes, 2014;

Hillman, Chen, and Bazilevs, 2015] ) or generalised Gaussian quadrature
(GGQ) [Hughes, Reali, and Sangalli, 2010; Bremer, Gimbutas, and Rokhlin, 2010;

Cheng, Rokhlin, and Yarvin, 1999; Ma, Rokhlin, and Wandzura, 1996] .
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Element-wise Gauss vs weighted quadrature (WQ)

Consider the mass matrix

M = {mi,j} =

{∫
[0,1]d

c(ζ)Bi(ζ)Bj(ζ) dζ

}

Gauss Quadrature (GQ) (or Generalized GQ)

mi,j ≈ QGQ(cBiBj) =
∑
q

wGQ
q c(xGQ

q )Bi(x
GQ
q )Bj(x

GQ
q )

weighted quadrature (WQ)

mi,j =

∫
Ω
c(ζ)Bj(ζ) (Bi(ζ)dζ) ≈ QWQ

i (cBj) =
∑
q

wWQ
q,i c(x

WQ
q )Bj(xWQ

q )
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Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (i, j) entry of the mass matrix:∫
[0,1]d

c(ζ)Bi(ζ)Bj(ζ)dζ

≈ QWQ
i (c(·)Bj(·)) :=

∑
q

wq,ic(xq)Bj(xq)

We incorporate the test function Bi(ζ) into the integral measure;
thus the quadrature rule QWQ

i , and in particular the weights wq,i,
depend on i.

The function c(·)Bj(·) plays the role the integrand function.

The quadrature points xq are selected:
I a-priori (they do not depend on i) as suitable interpolation points,
I looking for the best ones, and dependents on i: → xq,i

How to select the quadrature points xq? how many?

How to compute the weights wq,i relative to Bi?
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Weighted Quadrature

Exactness conditions:

QWQ
i (Bj(·)) =

∫
[0,1]d

Bi(ζ)Bj(ζ) dζ ∀ j

For each given i, the exactness requirements are imposed on the
trial function space Spp−1.

If c is constant, then QWQ
i (c(·)Bj(·)) =: m̃i,j = mi,j .

For non-constant c, the new mass matrix is nonsymmetric in
general (m̃i,j 6= m̃j,i).

optimal accuracy follows from

sup
vh=

∑
i viBi

∫
[0,1]d cw vh −

∑
i viQ

WQ
i (cw)

‖vh‖L2

≤ Chp+1|cw|Hp+1
bent
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Computation of weights (d = 1)

We impose that

if xq /∈ int(supp(Bi)) =⇒ wq,i = 0

For a given i = 1, . . . , n, the exactness requirements read:

∑
q

wq,iBj (xq) =

∫ 1

0
Bi(ζ)Bj(ζ) dζ ∀ j s.t. supp(Bi) ∩ supp(Bj)

This is a linear system with unknowns {wq,i}q and coefficient
matrix {Bj(xq)}j,q
The system is solvable if and only if the points xq satisfy the
Schoenberg-Whitney theorem’ assumption, i.e., we can associate
to each Bj(·) a unique xq such that Bj(xq) 6= 0. Then we need:
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Weights and points (d > 1)

Let i = (i1, i2), j = (j1, j2). Then

QWQ
i (Bj(·)) =

∫
Ω
Bi(ζ)Bj(ζ) dζ

=

∫ 1

0
Bi1(ζ1)Bj1(ζ1) dζ1

∫ 1

0
Bi2(ζ2)Bj2(ζ2) dζ2

=

(∑
q1

wq1,i1,1Bj1(xq1)

)(∑
q2

wq2,i2,2Bj2(xq2)

)

We define the points xq and the weights wq,i by tensor product:

QWQ
i (f(·)) = (Qi1,1 ⊗Qi2,2) (f(·)) =

∑
q1,q2

wq1,i1,1wq2,i2,2 f(xq1 , xq2)

computing cost for quadrature formulae for d > 1 is negligible.

The total number of quadrature points is ≈ 2dNDOF.
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Convergence plot
Thick quarter of ring domain.



Assembly algorithm for the mass matrix

Using sum-factorization approach and matrix-tensor products.

for i = 1, . . . , NDOF

C(0)
i := {c(xq)}q ∈ R(2p+1)d

for l = 1, . . . , d
B(il) := {B̂j(xq)}jl,ql ∈ R(2p+1)×(2p+1)

C(l)
i := C(l−1)

i ×l
(
B(il) × diag{wq,i}q

)
∈ R(2p+1)d

end
mi,... = C(d)

i ∈ R(2p+1)d

end

The inner loop is repeated NDOF and perform O(p) (BLAS level 3)
operations to compute O(pd) results: total O(NDOFp

d+1) FLOPS

The sparse matrix memory operations (allocation and write) are
O(NDOFp

d) and dominate in practice.
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Assembly time (Ω = [0, 1]3, NEL = 403)
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Mass matrix assembly time: WQ vs. Geopdes 3.0
Ω = [0, 1]3, NEL = 203.

Polynomial degree p
2 3 4 5 6 7 8 9 10

Ti
m

e 
(s
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106

SGQ
WQ

SGQ: O(NDOF p
3d) FLOPS WQ: O(NDOF p

d+1) FLOPS



Weighted Quadrature for the stiffness matrix

ki,j =

∫
[0,1]d

∇Bi(ζ)T c(ζ)∇Bj(ζ) dζ

=

d∑
α,β=1

∫
[0,1]d

cα,β(ζ) ∂αBi(ζ) ∂βBj(ζ) dζ

≈
d∑

α,β=1

QWQ
α,β,i (cα,β(·)∂βBj (·)) ;

∫
[0,1]d

cα,β(ζ) ∂βBj(ζ) (∂αBi(ζ) dζ) ≈ QWQ
α,β,i (cαβ(·)∂βBj (·))

Exactness conditions

QWQ
α,β,i(∂βBj(·)) =

∫
[0,1]d

∂αBi(ζ) ∂βBj(ζ) dζ ∀ j
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Weighted Quadrature for the stiffness matrix
For d = 2, two of the exactness conditions read:

QWQ
1,1,i(∂1Bj(·)) =

∫
[0,1]2

∂1Bi(ζ) ∂1Bj(ζ) dζ

QWQ
1,2,i(∂2Bj(·)) =

∫
[0,1]2

∂1Bi(ζ) ∂2Bj(ζ) dζ

We take 4 univariate WQ rules (per direction).

Q
(0,0)
i (Bj(·)) =

∫ 1

0

Bi(ζ)Bj(ζ)dζ Q
(1,0)
i (Bj(·)) =

∫ 1

0

B′
i(ζ)Bj(ζ)dζ

Q
(0,1)
i

(
B′

j(·)
)

=

∫ 1

0

Bi(ζ)B
′
j(ζ)dζ Q

(1,1)
i

(
B′

j(·)
)

=

∫ 1

0

B′
i(ζ)B

′
j(ζ)dζ

These 4 univariate rules are the building blocks we use to define
the rules QWQ

α,β,i (also for d > 2). For example:

QWQ
1,1,i = Q

(1,1)
i1
⊗Q

(0,0)
i2

QWQ
1,2,i = Q

(1,0)
i1
⊗Q

(0,1)
i2
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Convergence plot 1D: W 1,∞ norm
Thick quarter of ring domain.



Convergence plot 1D: L2 norm
Thick quarter of ring domain.



A matrix-free implementation

We only want to compute matrix-vector products with the mass matrix
M̃:

u −→ M̃ · u

Let u = (u1, . . . , uNDOF
) ∈ RNDOF . Since QWQ

i (·) is a linear functional,
we have (

M̃u
)
i

= QWQ
i (c(·)uh(·)) =

∑
q

wiq c(xq) uh(xq),

where
uh(ξ) =

∑
j

ujB̂j(ξ)
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A matrix-free implementation(
M̃u

)
i

=
∑
q∈Q

wiq c(xq) uh(xq), |Q| = O(NDOF)

The Setup

Weights and basis spline values for univariate spaces.

Negligible memory and cost.

Coefficient values c(xq).

O(NDOF) memory.

The Product

1 Given u ∈ RNDOF , compute uh(xq) for every q.

O(NDOF p) FLOPS exploiting the tensor structure.

2 Compute c(xq) · uh(xq) for every q.

O(NDOF) FLOPS.

3 Compute
∑
q wiq c(xq) uh(xq) for every i.

O(NDOF p) FLOPS exploiting the tensor structure.
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A matrix-free implementation

Standard WQ Matrix-free WQ

Allocated memory O(NDOF p
d) O(NDOF)

Setup cost O(NDOF p
d+1) + EV EV

Product cost O(NDOF p
d) O(NDOF p)

EV = Cost of coefficient evaluation on O(NDOF) points

Analogous for the matrix-free stiffness matrix A.

Can be coupled with a p−robust preconditioner to solve iteratively
the system Ax = b � yesterday Mattia Tani talk.
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Standard WQ (S-WQ) vs. Matrix-free WQ (MF-WQ)

NEL = 643

Setup Time Product Time

MF-WQ S-WQ MF-WQ S-WQ

p = 2 1.28 72.79 0.04 0.05

p = 3 1.30 89.06 0.05 0.14

p = 4 1.36 112.52 0.05 0.34

p = 5 1.58 174.19 0.06 0.58



Conclusions

It is possible to form and solve high-order isogeometric Galerkin
k-method is an efficient way, but this is beyond standard FE routines.

with row-loop and WQ: calculating the matrix entries is faster than
saving it in a sparse matrix (MATLAB sparse)

with Fast Diagonalization direct solver as preconditioner: CPU time
for the preconditioner setup+application is less than CPU time for
the residual calculation in CG

Current work in Pavia is on:

matrix-free approach

dealing with “bad” geometries (supΩ κ(JF )� 1).

develop all this for NS
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