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@ higher accuracy per degree of freedom

——k-method
- - -hp-FEM
Approximation of u(z) = 297 — 2.

The mesh is geometrically graded and the
spline degree p is proportional to the number
| of elements for IGA. Mesh-size and degrees
~ are optimally selected for hp-FEM.

Error is |u — up| g1 < Cexp (—=bV'N) in both
cases, with larger b for IGA

[Buffa, Sangalli, and Schwab, 2014]




The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom

The role of continuity in RBVMS modeling of turbulence
[Akkerman, Bazilevs, Calo, Hughes, and Hulshoff, 2008]

“We compared turbulent channel flow results using C° and
C'-continuous quadratic discretizations. Using a C'-continuous
quadratic basis yields more accurate mean flow and fluctuating
quantities than C%-continuous quadratic basis functions. We conclude
that smooth NURBS basis functions have advantages over C%-continuous
finite elements in turbulent flow calculations.”




The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom
@ structure-preserving

(b) Divergence of the velocity computed with the TH discretization

“Div-conforming”

k-method

: [Buffa, de Falco, and Sangalli,
2011]

(¢) Divergence of the velocity computed with the RT discretization

DA



The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom
@ structure-preserving

Isogeometric Div-conforming B-splines for the Unsteady NS Eq.'s
[Evans and Hughes, 2013]

“... As incompressibility is satisfied pointwise, these
semi-discretizations replicate the geometric structure of the unsteady
Navier-Stokes equations and admit discrete balance laws for momentum,
angular momentum, energy, vorticity, enstrophy, and helicity.... by
combining the spectral-like properties of B-splines with the preservation
of the geometric structure of the unsteady NS equations, our
semi-discretization procedure may become a useful tool for both
engineering analysis and the mathematical study of the unsteady NS

b2

equations.
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@ higher accuracy per degree of freedom
@ structure-preserving
@ improves the approximation of the spectrum
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[Cottrell, Reali, Bazilevs, and Hughes, 2006; Hughes, Reali, and Sangalli, 2008]
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higher accuracy per degree of freedom
structure-preserving
improves the approximation of the spectrum

°
°
°
@ but the computational cost per d.o.f. is higher in the k-method

However in complex isogeometric simulation, e.g. VMS turbulence
[Bazilevs, Calo, Cottrell, Hughes, Reali, and Scovazzi, 2007]

“We found quadratic NURBS to give very significant accuracy
advantages over linear elements. ... Cubics, on the other hand, increased
cost considerably ... These remarks need to be qualified by the fact that
our implementation of higher-order elements is not yet optimized in
any way.”




The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom

@ structure-preserving

@ improves the approximation of the spectrum

@ but the computational cost per d.o.f. is higher in the k-method

“The cost of continuity...” [Collier, Pardo, Dalcin, Paszynski, and Calo, 2012]

“However this advantage comes at a cost which is not seen until
looking in detail at the algorithms used to solve the resulting linear
systems. In this case, we have shown that direct solvers require orders of
magnitude more time and memory as continuity increases.”

v

“Isogeometric Collocation: Cost Comparison with Galerkin Methods"
[Schillinger, Evans, Reali, Scott, and Hughes, 2013]

“.. the total time for the formation and assembly of the global stiffness
matrix of a given size takes ... almost two minutes for FEM and almost
1.5 hours in IGA (Galerkin)”

v




Fast formation/assembly of the system matrix
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The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

d-dimensional scalar Poisson

single patch parametrization (multi-patch through DD)
tensor-product patches

focus on k-method: CP~! (arbitrary continuity is the same)
isogeometric (spline) space denoted by 85_1 with total dimension
Npor = n¢, with n > p, and Ng_ ~ Npor

non-uniform knot vector

focus on Galerkin method



Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.



Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.

e the optimal computational cost is: O(Nporp?) FLOPs



Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.

e the optimal computational cost is: O(Nporp?) FLOPs

@ with element-wise assembling loop and element-wise standard
Gaussian quadrature (SGQ): each elemental stiffness matrix has
dimension (p + 1)? x (p + 1) = O(p??) and each entry is
calculated by quadrature on (p + 1)¢ = O(p?) Gauss points.
Total cost is O(NgLp3?) that is O(Nporp®®).



Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.
e the optimal computational cost is: O(Nporp?) FLOPs

@ with element-wise assembling loop and element-wise standard
Gaussian quadrature (SGQ): each elemental stiffness matrix has
dimension (p + 1)? x (p + 1) = O(p??) and each entry is
calculated by quadrature on (p + 1)¢ = O(p?) Gauss points.
Total cost is O(NgLp3?) that is O(Nporp®®).

@ The standard way to reduce the cost is to reduce the number of
quadrature points, for example by reduced Gaussian [Adam, Hughes,
Bouabdallah, Zarroug, and Maitournam, 2015; Schillinger, Hossain, and Hughes, 2014;
Hillman, Chen, and Bazilevs, 2015] ) or generalised Gaussian quadrature
(GGQ) [Hughes, Reali, and Sangalli, 2010; Bremer, Gimbutas, and Rokhlin, 2010;
Cheng, Rokhlin, and Yarvin, 1999; Ma, Rokhlin, and Wandzura, 1996] .



Isogeometric Galerkin matrices: element-wise quadrature

Au=f
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Consider the mass matrix
M = {ms;} = { | 0B Bi(©) dc}
[0,1]4

Gauss Quadrature (GQ) (or Generalized GQ)

ij ~ Q%%eB;Bj) ZwGQ Bi(z$9)B;(z5?)

weighted quadrature (WQ)

mij = /Q e(¢) Bj(¢) (Bi(¢)d¢) m 0 %(eBj) = > _w le(xy Q) B (zy Q)
q
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We want to approximate the (¢, ) entry of the mass matrix:
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7 q

e We incorporate the test function B;(¢) into the integral measure;
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Each matrix row is computed independently: “embarrassingly parallel”J




Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢, ) entry of the mass matrix:

/[0 y ¢(€) B (€) (Bi(Q)dC) = 97 %c() Bj() = Y wqc(aq) Bj(2q)
7 q

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QZVQ, and in particular the weights wg ;,
depend on 4.

The function c(-) B;(+) plays the role the integrand function.

The quadrature points x4 are selected:

» a-priori (they do not depend on %) as suitable interpolation points,
» looking for the best ones, and dependents on 2: — x4 ;

How to select the quadrature points €47 how many?

e How to compute the weights wg ; relative to B;?
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Weighted Quadrature

Exactness conditions:

Ao, ()) = / Bi(¢) B;(Q)d¢ Vi

[0,1]¢

o For each given ¢, the exactness requirements are imposed on the
. . p
trial function space Spfl.

e If ¢ is constant, then QQ}VQ(C(-)BJ'(-)) =M = Mj ;.

@ For non-constant ¢, the new mass matrix is nonsymmetric in
general (1 j # 1My ;).

@ optimal accuracy follows from

wQ
Jio e cwuon — >0 (cw)
sup 0.1 L < ChP ewl o

Uh:Zi v; B; ||/UhHL2 bent
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Choice of quadrature points (d = 1)
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The support of a function B; far from the boundary spans p + 1
elements and intersects the support of 2p + 1 functions B;.
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Choice of quadrature points (d = 1)

#{zq | 74 € int(supp(B;))} > #{j | supp(B;) Nsupp(B;)}

The support of a function B; far from the boundary spans p + 1
elements and intersects the support of 2p 4 1 functions B;.

We take:
o Internal elements: 2 points (extremes and mid-points)

e Boundary elements: p + 1 points (equally spaced).

The total number of quadrature points is &~ 2n, indep. of p.
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Weights and points (d > 1)
Let 2 = (il,’ig), _] = (jl,jg). Then

QVYB / By( )d¢
:/ Bi, (¢1) Bj, (G1) dG / Bi,(¢2) Bj,(C2) d¢2
0

= <Z Wqy iy 1 Bjy (mth )) (Z Way,i5,2 Bj (x%))

a a2
We define the points x4 and the weights wq ; by tensor product:
W
Qi Q(f()) = (Qi1,1 @ Qi272) (f()) = Z Wqy ,ir,1 Wys,iz,2 f(l'ql,ﬂqu)

q1,92

@ computing cost for quadrature formulae for d > 1 is negligible.

@ The total number of quadrature points is ~ 2¢NpoF.



Convergence plot
Thick quarter of ring domain.
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Using sum-factorization approach and matrix-tensor products.

for ¢ = 1,...,NDQ|:
€ = {e(xq)}q € R+’
for [ =1,...,d
B := {B;(z4)}i1a e R@p+1)x(2p+1)
e := '™ x; (B x diag{wg,}q) € RCpHY!
end
mi,.. = ng) c R@p+1)?

end

v
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Assembly time (2 = [0, 1]3, Ng_ = 40?)

—— Total Time
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Mass matrix assembly time: WQ vs. Geopdes 3.0
Q= [0,1]3, NgL = 205

10G T T T T T T T

—--6-—-3GQ D
10° F —¥—WQ o 3

2 3 4 5 6 7 8 9 10
Polynomial degree p

SGQ: O(Npor p°%) FLOPS WQ: O(Nnor %1y FLOPS
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Weighted Quadrature for the stiffness matrix

big = | VB(OTe(0) VBs(¢) ¢

d

= « 8& i 0 j

a,ﬂz:l /[o,l}dc 5(6) 9aBi(€) 93 B;(¢) d¢
d

~ Y AV (cap()dsB; ()

a,ﬂ:l

/[01]d €a,5(¢) 95B;(C) (0aBi(C) dC) ~ QN 3; (cap(-)05B; ()

Exactness conditions

FOB0) = [ 0.BiO%BHQdC Vi

[0,1]




Weighted Quadrature for the stiffness matrix

e For d = 2, two of the exactness conditions read:
Af@B0) = [ aB©an©
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Weighted Quadrature for the stiffness matrix
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Weighted Quadrature for the stiffness matrix

e For d = 2, two of the exactness conditions read:
1 1
OV (01B5() = /O B, (¢1)Bj, (Cl)dCl/o Biy (C2) By, (C2) d¢2

Q734 (02B; (1))

1 1
/ Bl (1) By, (C1) dGy / Biy (G2) Bl (G2) do
0 0

o We take 4 univariate WQ rules (per direction).

Q00 ( /B Q09 ( /B
Q) (B /B Ode 8 ( /B

@ These 4 univariate rules are the building blocks we use to define
the rules QZV[% (also for d > 2). For example:

W 1,1 0,0 W 1,0 0,1
%ﬁzﬁﬂ®¢2) Q§2@9®¢J
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A matrix-free implementation

We only want to compute matrix-vector products with the mass matrix

M:

u— M-u

Let u = (u1,...,unp,p) € RMPOF. Since DXVQ(-) is a linear functional,
we have

(ﬂu) QWQ Zw“l c(zq) un(zq),
where

€)= u;B;(€)
3




A matrix-free implementation

(ﬂu)l = Z Wiq c(Tq) un(zq), 19| = O(Npor)

qeQ

The Setup

@ Weights and basis spline values for univariate spaces.

o Coefficient values c(zq).
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A matrix-free implementation

(Mu), = 3" wiq clwg) wn(zq), 12l = O(Noor)
¢ qeQ
The Setup

@ Weights and basis spline values for univariate spaces.
Negligible memory and cost.

e Coeflicient values c¢(zq4). O(NpoF) memory.

The Product
Q Given u € RYooF | compute uy(z4) for every g.
O(Npor p) FLOPS exploiting the tensor structure.
@ Compute c(zq) - up(zq) for every gq.
O(Npor) FLOPS.
@ Compute >, wiq c(zq) un(zq) for every .
O(Npor p) FLOPS exploiting the tensor structure.
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A matrix-free implementation

Standard WQ Matrix-free WQ
Allocated memory O(Npor p?) O(NboF)
Setup cost | O(Npor p?*!) + EV EV
Product cost O(Npor p?) O(Npor p)

EV = Cost of coefficient evaluation on O(Npor) points

@ Analogous for the matrix-free stiffness matrix A.

@ Can be coupled with a p—robust preconditioner to solve iteratively
the system Az = b ¥ yesterday Mattia Tani talk.



Standard WQ (S-WQ) vs. Matrix-free WQ (MF-WQ)

NgL = 643
Setup Time Product Time
MF-WQ | S-WQ | MF-WQ | S-WQ
p=2 1.28 72.79 0.04 0.05
p=3 1.30 89.06 0.05 0.14
p=4 1.36 112.52 0.05 0.34
p=> 1.58 174.19 0.06 0.58

=




Conclusions

It is possible to form and solve high-order isogeometric Galerkin
k-method is an efficient way, but this is beyond standard FE routines.

o with row-loop and WQ: calculating the matrix entries is faster than
saving it in a sparse matrix (MATLAB sparse)

e with Fast Diagonalization direct solver as preconditioner: CPU time

for the preconditioner setup+application is less than CPU time for
the residual calculation in CG

Current work in Pavia is on:
@ matrix-free approach

o dealing with “bad” geometries (supq £(Jr) > 1).
o develop all this for NS
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