CIME-EMS Summer School in Applied Mathematics

Splines and PDEs: Recent Advances
from Approximation Theory to Structured Numerical Linear Algebra

July 3 - July 7, 2017 - Cetraro

Efficient Formation of isogeometric matrices

Giancarlo Sangalli

joint work with Mattia Tani and Francesco Calabro

July 7, 2017

k-method is the high-order isogeometric method

k-method is the high-order isogeometric method

hp-FEM k-method
C° p-degree CP~! p-degree

FEss
T

The k-method vs C° hp-FEM

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom

——k-method
- - -hp-FEM
Approximation of u(z) = 297 — 2.

The mesh is geometrically graded and the
spline degree p is proportional to the number
| of elements for IGA. Mesh-size and degrees
~ are optimally selected for hp-FEM.

Error is |u — up| g1 < Cexp (—=bV'N) in both
cases, with larger b for IGA

[Buffa, Sangalli, and Schwab, 2014]

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom

The role of continuity in RBVMS modeling of turbulence
[Akkerman, Bazilevs, Calo, Hughes, and Hulshoff, 2008]

“We compared turbulent channel flow results using C° and
C'-continuous quadratic discretizations. Using a C'-continuous
quadratic basis yields more accurate mean flow and fluctuating
quantities than C%-continuous quadratic basis functions. We conclude
that smooth NURBS basis functions have advantages over C%-continuous
finite elements in turbulent flow calculations.”

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom
@ structure-preserving

(b) Divergence of the velocity computed with the TH discretization

“Div-conforming”

k-method

: [Buffa, de Falco, and Sangalli,
2011]

(¢) Divergence of the velocity computed with the RT discretization

DA

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom
@ structure-preserving

Isogeometric Div-conforming B-splines for the Unsteady NS Eq.'s
[Evans and Hughes, 2013]

“... As incompressibility is satisfied pointwise, these
semi-discretizations replicate the geometric structure of the unsteady
Navier-Stokes equations and admit discrete balance laws for momentum,
angular momentum, energy, vorticity, enstrophy, and helicity.... by
combining the spectral-like properties of B-splines with the preservation
of the geometric structure of the unsteady NS equations, our
semi-discretization procedure may become a useful tool for both
engineering analysis and the mathematical study of the unsteady NS

b2

equations.

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom
@ structure-preserving
@ improves the approximation of the spectrum

0.6
—IGA, p=2
0.5 | ——GA, p=3
—— IGA, p=4
FEM, p=2
0.4 FEM, p= p
= FEM, p=4
=c -==-p=1
5" oar P
<l
- A
0.1F N
: IGA (k—-method)
. lp
o T |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
n/N = normalized mode

[Cottrell, Reali, Bazilevs, and Hughes, 2006; Hughes, Reali, and Sangalli, 2008]

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom
@ structure-preserving
@ improves the approximation of the spectrum

The k-method vs C° hp-FEM

higher accuracy per degree of freedom
structure-preserving
improves the approximation of the spectrum

°
°
°
@ but the computational cost per d.o.f. is higher in the k-method

The k-method vs C° hp-FEM

higher accuracy per degree of freedom
structure-preserving
improves the approximation of the spectrum

°
°
°
@ but the computational cost per d.o.f. is higher in the k-method

However in complex isogeometric simulation, e.g. VMS turbulence
[Bazilevs, Calo, Cottrell, Hughes, Reali, and Scovazzi, 2007]

“We found quadratic NURBS to give very significant accuracy
advantages over linear elements. ... Cubics, on the other hand, increased
cost considerably ... These remarks need to be qualified by the fact that
our implementation of higher-order elements is not yet optimized in
any way.”

The k-method vs C° hp-FEM

@ higher accuracy per degree of freedom

@ structure-preserving

@ improves the approximation of the spectrum

@ but the computational cost per d.o.f. is higher in the k-method

“The cost of continuity...” [Collier, Pardo, Dalcin, Paszynski, and Calo, 2012]

“However this advantage comes at a cost which is not seen until
looking in detail at the algorithms used to solve the resulting linear
systems. In this case, we have shown that direct solvers require orders of
magnitude more time and memory as continuity increases.”

v

“Isogeometric Collocation: Cost Comparison with Galerkin Methods"
[Schillinger, Evans, Reali, Scott, and Hughes, 2013]

“.. the total time for the formation and assembly of the global stiffness
matrix of a given size takes ... almost two minutes for FEM and almost
1.5 hours in IGA (Galerkin)”

v

Fast formation/assembly of the system matrix

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

@ d-dimensional scalar Poisson

The model problem

-V . KVu
u

inQCRY d=2,3
0 in 00

@ d-dimensional scalar Poisson

e single patch parametrization (multi-patch through DD)

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

@ d-dimensional scalar Poisson

e single patch parametrization (multi-patch through DD)

The model problem

-V .-KYVu =

u

f inQCR?Y d=2,3
0 in 00

@ d-dimensional scalar Poisson

e single patch parametrization (multi-patch through DD)
@ tensor-product patches

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

@ d-dimensional scalar Poisson
e single patch parametrization (multi-patch through DD)
@ tensor-product patches

e focus on k-method: CP~! (arbitrary continuity is the same)

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

d-dimensional scalar Poisson
single patch parametrization (multi-patch through DD)
tensor-product patches

focus on k-method: CP~! (arbitrary continuity is the same)

isogeometric (spline) space denoted by 85_1 with total dimension
Npor = n¢, with n > p, and Ng_ ~ Npor

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

d-dimensional scalar Poisson
single patch parametrization (multi-patch through DD)
tensor-product patches

focus on k-method: CP~! (arbitrary continuity is the same)

isogeometric (spline) space denoted by 55_1 with total dimension
Npor = n¢, with n > p, and Ng_ ~ Npor

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

d-dimensional scalar Poisson

single patch parametrization (multi-patch through DD)
tensor-product patches

focus on k-method: CP~! (arbitrary continuity is the same)
isogeometric (spline) space denoted by 85_1 with total dimension
Npor = n¢, with n > p, and Ng_ ~ Npor

non-uniform knot vector

The model problem

—-V-KVu = f inQCR?Y d=2,3
u = 0 in 00

d-dimensional scalar Poisson

single patch parametrization (multi-patch through DD)
tensor-product patches

focus on k-method: CP~! (arbitrary continuity is the same)
isogeometric (spline) space denoted by 85_1 with total dimension
Npor = n¢, with n > p, and Ng_ ~ Npor

non-uniform knot vector

focus on Galerkin method

Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.

Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.

e the optimal computational cost is: O(Nporp?) FLOPs

Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.

e the optimal computational cost is: O(Nporp?) FLOPs

@ with element-wise assembling loop and element-wise standard
Gaussian quadrature (SGQ): each elemental stiffness matrix has
dimension (p + 1)? x (p + 1) = O(p??) and each entry is
calculated by quadrature on (p + 1)¢ = O(p?) Gauss points.
Total cost is O(NgLp3?) that is O(Nporp®®).

Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.
e the optimal computational cost is: O(Nporp?) FLOPs

@ with element-wise assembling loop and element-wise standard
Gaussian quadrature (SGQ): each elemental stiffness matrix has
dimension (p + 1)? x (p + 1) = O(p??) and each entry is
calculated by quadrature on (p + 1)¢ = O(p?) Gauss points.
Total cost is O(NgLp3?) that is O(Nporp®®).

@ The standard way to reduce the cost is to reduce the number of
quadrature points, for example by reduced Gaussian [Adam, Hughes,
Bouabdallah, Zarroug, and Maitournam, 2015; Schillinger, Hossain, and Hughes, 2014;
Hillman, Chen, and Bazilevs, 2015]) or generalised Gaussian quadrature
(GGQ) [Hughes, Reali, and Sangalli, 2010; Bremer, Gimbutas, and Rokhlin, 2010;
Cheng, Rokhlin, and Yarvin, 1999; Ma, Rokhlin, and Wandzura, 1996] .

Isogeometric Galerkin matrices: element-wise quadrature

Au=f

o The storage cost for A is O(Nporp?) non-zero entries.
e the optimal computational cost is: O(Nporp?) FLOPs

@ with element-wise assembling loop and element-wise standard
Gaussian quadrature (SGQ): each elemental stiffness matrix has
dimension (p + 1)? x (p + 1) = O(p?>?) and each entry is
calculated by quadrature on (p + 1)¢ = O(p?) Gauss points.
Total cost is O(NgLp3?) that is O(Nporp®®).

@ The standard way to reduce the cost is to reduce the number of
quadrature points, for example by reduced Gaussian [Adam, Hughes,
Bouabdallah, Zarroug, and Maitournam, 2015; Schillinger, Hossain, and Hughes, 2014;
Hillman, Chen, and Bazilevs, 2015]) or generalised Gaussian quadrature
(GGQ) [Hughes, Reali, and Sangalli, 2010; Bremer, Gimbutas, and Rokhlin, 2010;
Cheng, Rokhlin, and Yarvin, 1999; Ma, Rokhlin, and Wandzura, 1996] .

Element-wise Gauss vs weighted quadrature (WQ)

Consider the mass matrix
M = {ms;} = { | 0B Bi(©) dc}
[0,1]4

Gauss Quadrature (GQ) (or Generalized GQ)

ij ~ Q%%eB;Bj) ZwGQ Bi(z$9)B;(z5?)

weighted quadrature (WQ)

mag = [o(€) By(Q) (Bal@)d) ~ 2] (cBy) = 3wl el) By ())
q

Element-wise Gauss vs weighted quadrature (WQ)

Consider the mass matrix
M = {ms;} = { | 0B Bi(©) dc}
[0,1]4

Gauss Quadrature (GQ) (or Generalized GQ)

ij ~ Q%%eB;Bj) ZwGQ Bi(z$9)B;(z5?)

weighted quadrature (WQ)

mij = /Q e(¢) Bj(¢) (Bi(¢)d¢) m 0 %(eBj) = > _w le(xy Q) B (zy Q)
q

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

| et Bl Bitcrae
[0,1]¢

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

/[0 y ¢(€) B (€) (Bi(Q)dC) = 91" Ue() Bj() = Y wq.ic(aq) Bj(aq)

q

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QZVQ, and in particular the weights wg ;,
depend on z.

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

10 B0) (Bilic) = 2l e = S waican) By

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QZVQ, and in particular the weights wg ;,
depend on z.

e The function c(-) Bj(-) plays the role the integrand function.

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

/[0 y ¢(€) B (€) (Bi(Q)dC) = 91 %c() Bj() = Y wqc(aq) Bj(aq)
7 q

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QENQ, and in particular the weights wg ;,
depend on z.

e The function c(-) B;(-) plays the role the integrand function.

@ The quadrature points x4 are selected:

» a-priori (they do not depend on %) as suitable interpolation points,
» looking for the best ones, and dependents on ¢: — 4 ;

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

/[0 y ¢(€) B (€) (Bi(Q)dC) = 97 %c() Bj() = Y wqc(aq) Bj(2q)
7 q

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QENQ, and in particular the weights wg ;,
depend on z.

e The function c(-) B;(-) plays the role the integrand function.

@ The quadrature points x4 are selected:

» a-priori (they do not depend on %) as suitable interpolation points,
» looking for the best ones, and dependents on ¢: — 4 ;

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

/[0 y ¢(€) B (€) (Bi(Q)dC) = 97 %c() Bj() = Y wqc(aq) Bj(2q)
7 q

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QZVQ, and in particular the weights wg ;,
depend on z.

e The function c(-) B;(-) plays the role the integrand function.

@ The quadrature points x4 are selected:

» a-priori (they do not depend on %) as suitable interpolation points,
» looking for the best ones, and dependents on 2: — x4 ;

Each matrix row is computed independently: “embarrassingly parallel”J

Weighted Quadrature (WQ) for the mass matrix

We want to approximate the (¢,) entry of the mass matrix:

/[0 y ¢(€) B (€) (Bi(Q)dC) = 97 %c() Bj() = Y wqc(aq) Bj(2q)
7 q

e We incorporate the test function B;(¢) into the integral measure;
thus the quadrature rule QZVQ, and in particular the weights wg ;,
depend on 4.

The function c(-) B;(+) plays the role the integrand function.

The quadrature points x4 are selected:

» a-priori (they do not depend on %) as suitable interpolation points,
» looking for the best ones, and dependents on 2: — x4 ;

How to select the quadrature points €47 how many?

e How to compute the weights wg ; relative to B;?

Weighted Quadrature

Exactness conditions:

QM UB0) = [B BOA Vi

Weighted Quadrature

Exactness conditions:

Qo) = [BOBQK Vs

o For each given ¢, the exactness requirements are imposed on the
. . p
trial function space Spfl.

Weighted Quadrature

Exactness conditions:

Qo) = [BOBQK Vs

o For each given ¢, the exactness requirements are imposed on the
. . p
trial function space Spfl.

e If ¢ is constant, then QQ}VQ(C(-)BJ'(-)) =M = Mj ;.

Weighted Quadrature

Exactness conditions:

Ao, ()) = / Bi(¢) B;(Q)d¢ Vi

[0,1]¢

o For each given ¢, the exactness requirements are imposed on the
. . p
trial function space Spfl.

e If ¢ is constant, then QQ}VQ(C(-)BJ'(-)) =M = Mj ;.

@ For non-constant ¢, the new mass matrix is nonsymmetric in
general (1 j # 1My ;).

@ optimal accuracy follows from

wQ
Jio e cwuon — >0 (cw)
sup 0.1 L < ChP ewl o

Uh:Zi v; B; ||/UhHL2 bent

Computation of weights (d = 1)
We impose that

if x4 ¢ int(supp(B;)) = wq; =0

Computation of weights (d = 1)
We impose that
if x4 ¢ int(supp(B;)) = wq; =0

For a given i = 1,...,n, the exactness requirements read:

1
quﬂ;Bj (xq) = /0 B;(¢)B;(¢) d¢ V j s.t. supp(B;) Nsupp(B;)
p .

Computation of weights (d = 1)
We impose that
if x4 ¢ int(supp(B;)) = wq; =0

For a given i = 1,...,n, the exactness requirements read:
1
quﬂ;Bj (xq) = / B;(¢)B;(¢) d¢ V j s.t. supp(B;) Nsupp(B;)
Jo
q

o This is a linear system with unknowns {w;}, and coefficient

matrix {Bj(zq)};,

Computation of weights (d = 1)
We impose that
if z, ¢ int(supp(B;)) = wq; =0

For a given ¢ = 1,...,n, the exactness requirements read:
1
> weiBj (xg) = / Bi(¢)B;(¢)d¢ ¥ j s.t. supp(B;) Nsupp(B;)
0
q

o This is a linear system with unknowns {w,}, and coefficient
matrix {Bj(zq)}; ,

@ The system is solvable if and only if the points z, satisfy the
Schoenberg-Whitney theorem’ assumption, i.e., we can associate
to each Bj(-) a unique x4 such that Bj(z4) # 0. Then we need:

#{zq | 24 € int(supp(B;))} > #{j | supp(B;) Nsupp(B;)}

Computation of weights (d = 1)
We impose that
if z, ¢ int(supp(B;)) = wq; =0

For a given ¢ = 1,...,n, the exactness requirements read:
1
> weiBj (xg) = / Bi(¢)B;(¢)d¢ ¥ j s.t. supp(B;) Nsupp(B;)
0
q

o This is a linear system with unknowns {w,}, and coefficient
matrix {Bj(zq)}; ,

@ The system is solvable if and only if the points z, satisfy the
Schoenberg-Whitney theorem’ assumption, i.e., we can associate
to each Bj(-) a unique x4 such that Bj(z4) # 0. Then we need:

#{zq | 24 € int(supp(B;))} > #{j | supp(B;) Nsupp(B;)}

Choice of quadrature points (d = 1)

#{zq | 24 € int(supp(Bi))} = # {j | supp(B;) Nsupp(B;)}
The support of a function B; far from the boundary spans p + 1
elements and intersects the support of 2p + 1 functions B;.

Choice of quadrature points (d = 1)

#{zq | xq € int(supp(Bi))} > # {j | supp(Bi) Nsupp(B;)}
The support of a function B; far from the boundary spans p + 1
elements and intersects the support of 2p + 1 functions B;.

We take:

e Internal elements: 2 points (extremes and mid-points)

Choice of quadrature points (d = 1)

#{zq | xq € int(supp(Bi))} > #{j | supp(B;) Nsupp(B;)}
The support of a function B; far from the boundary spans p + 1
elements and intersects the support of 2p + 1 functions B;.

We take:
e Internal elements: 2 points (extremes and mid-points)

e Boundary elements: p 4 1 points (equally spaced).

Choice of quadrature points (d = 1)

#{zq | 74 € int(supp(B;))} > #{j | supp(B;) Nsupp(B;)}

The support of a function B; far from the boundary spans p + 1
elements and intersects the support of 2p 4 1 functions B;.

We take:
o Internal elements: 2 points (extremes and mid-points)

e Boundary elements: p + 1 points (equally spaced).

The total number of quadrature points is &~ 2n, indep. of p.

Weights and points (d > 1)
Let 2 = (il,iQ), _7 = (jl,jz). Then

aVe(B;()) = / Bi(¢) B;(¢) dc

Q

1 1
= / B;,(¢1) Bj, (1) dG / Bi,(C2) By, (C2) dCa
0 0

= <Z Wqy iy 1 Bjy (xth)) (Z Way,i5,2 Bj (x%))

q1 q2

Weights and points (d > 1)
Let 2 = (il,iQ), _7 = (jl,jg). Then

aVe(B;()) = / Bi(¢) B;(¢) dc

Q

1 1
= / B;,(¢1) Bj, (1) dG / Bi,(C2) By, (C2) dCa
0 0

= <Z Wqy iy 1 Bjy (qu)) (Z Way,i5,2 Bj (x%))

a a2
We define the points x4 and the weights wq ; by tensor product:
W
Qi Q(f()) = (Qh,l @ Qi272) (f()) = Z Wqy ,ir,1 Wys,iz,2 f(xthvxlh)

q1,92

Weights and points (d > 1)
Let 2 = (il,iQ), _7 = (jl,jg). Then

aVe(B;()) = / Bi(¢) B;(¢) dc

Q

1 1
= / B;,(¢1) Bj, (1) dG / Bi,(C2) By, (C2) dCa
0 0

= <Z Wqy iy 1 Bjy (xth)) (Z Way,i5,2 Bj (x%))

q1 q2

We define the points x4 and the weights wq ; by tensor product:

Q'\LNQ(f()) = (Qihl ® Qi272) (f()) = Z Wqy ,ir,1 Wys,iz,2 f(quyﬂij)

q1,92

@ computing cost for quadrature formulae for d > 1 is negligible.

Weights and points (d > 1)
Let 2 = (il,’ig), _] = (jl,jg). Then

QVYB / By()d¢
:/ Bi, (¢1) Bj, (G1) dG / Bi,(¢2) Bj,(C2) d¢2
0

= <Z Wqy iy 1 Bjy (mth)) (Z Way,i5,2 Bj (x%))

a a2
We define the points x4 and the weights wq ; by tensor product:
W
Qi Q(f()) = (Qi1,1 @ Qi272) (f()) = Z Wqy ,ir,1 Wys,iz,2 f(l'ql,ﬂqu)

q1,92

@ computing cost for quadrature formulae for d > 1 is negligible.

@ The total number of quadrature points is ~ 2¢NpoF.

Convergence plot
Thick quarter of ring domain.

10'4’ e, |
-
g 10—6 L
(]
o~
—
10—8 L
=#=SGS, p=5
—=o-\WQ, p=5

Number of elements Nel

Assembly algorithm for the mass matrix

Using sum-factorization approach and matrix-tensor products.

Assembly algorithm for the mass matrix

Using sum-factorization approach and matrix-tensor products.

for ¢ = 1,...,NDQ|:
€ = {e(xq)}q € R+’
for [=1,...,d
B := {B;(z4)}i1a e R@p+1)x(2p+1)
e := '™ x; (B x diag{wg,}q) € RCpHY!
end
mi,.. = ng) c R@p+1)?

end

v

Assembly algorithm for the mass matrix

Using sum-factorization approach and matrix-tensor products.

for 7 = 1, aNDOF
0% i= {c(zq)}q € ROPHV!
for [=1,...,d
BOD = {B;(@q)}iva € RizHDxtapt)
ngl) _ Cil_l) X (B("l) x diag{wg,i}q) c R@p+1)?
end
- e "
end

@ The inner loop is repeated Npofr and perform O(p) (BLAS level 3)
operations to compute O(p?) results: total O(Nporp?™!) FLOPS

Assembly algorithm for the mass matrix

Using sum-factorization approach and matrix-tensor products.

for ¢ = 1, ,NDQF
2 = Jellenl :Ca
for [=1,...,d
B@ = {B;(z¢)}j.a e R@p+1)x(2p+1)
e =Y x; (B@) x diag{wqi}y) e RerHD*
end
mi,.. = ng) c R@p+1)?
end

@ The inner loop is repeated Npofr and perform O(p) (BLAS level 3)
operations to compute O(p?) results: total O(Nporp?™!) FLOPS

@ The sparse matrix memory operations (allocation and write) are
O(Nporp?) and dominate in practice.

Assembly algorithm for the mass matrix

Using sum-factorization approach and matrix-tensor products.

for 7 = 1, ,NDQF
0% i= {c(zq)}q € ROPHV!
for [=1,...,d
BOD = {B; (@) iva € RizHDxtapt)
ngl) — Cil_l) X (B(il) x diag{wg,i}q) c R@p+1)?
end
.. = {9 R
end

@ The inner loop is repeated Npofr and perform O(p) (BLAS level 3)
operations to compute O(p?) results: total O(Nporp?™!) FLOPS

@ The sparse matrix memory operations (allocation and write) are
O(Nporp?) and dominate in practice.

Assembly time (2 = [0, 1]3, Ng_ = 40?)

—— Total Time

—=-©-— Product Time
— = — Sparse Time . 4
A
D
o7
O
£
1 i
= 10
100 1 1 1 1 1 1]
2 3 4 5 6 8 9 10

Polynomial degree p

Mass matrix assembly time: WQ vs. Geopdes 3.0
Q= [0,1]3, NgL = 205

10G T T T T T T T

—--6-—-3GQ D
10° F —¥—WQ o 3

2 3 4 5 6 7 8 9 10
Polynomial degree p

SGQ: O(Npor p°%) FLOPS WQ: O(Nnor %1y FLOPS

Weighted Quadrature for the stiffness matrix

big = | VB(O)"e(O) VB;(¢) ¢

d

= o OuB; 03B

a,ﬂz:l /[o,l}dc 5(6) 9aBi(€) 93 B;(¢) d¢
d

~ Y AV (cap()dsB; ()

a,ﬂ:l

Weighted Quadrature for the stiffness matrix

big = | VB(O)"e(O) VB;(¢) ¢

d

= o OuB; 03B

a,ﬂz:l /[o,l}dc 5(6) 9aBi(€) 93 B;(¢) d¢
d

~ Y AV (cap()dsB; ()

a,ﬂ:l

/[0 i €a3(€) 0pB;(C) (0aBi(C) dC) = QY L (cas(-)05B; ()

Weighted Quadrature for the stiffness matrix

big = | VB(OTe(0) VBs(¢) ¢

d

= « 8& i 0 j

a,ﬂz:l /[o,l}dc 5(6) 9aBi(€) 93 B;(¢) d¢
d

~ Y AV (cap()dsB; ()

a,ﬂ:l

/[01]d €a,5(¢) 95B;(C) (0aBi(C) dC) ~ QN 3; (cap(-)05B; ()

Exactness conditions

FOB0) = [0.BiO%BHQdC Vi

[0,1]

Weighted Quadrature for the stiffness matrix

e For d = 2, two of the exactness conditions read:
Af@B0) = [aB©an©
0,1]2

AL@BO) = [aBi©nB i

Weighted Quadrature for the stiffness matrix

e For d = 2, two of the exactness conditions read:

Q77 (01B5())

Q734 (02B; (1))

1 1
| BL@)BL @6 [BB () des
0 0

1 1
/ Bl (1) By, (C1) dGy / Biy (G2) Bl (G2) do
0 0

Weighted Quadrature for the stiffness matrix

e For d = 2, two of the exactness conditions read:
1 1
OV (01B5() = /O B, (¢1)Bj, (Cl)dCl/o Biy (C2) By, (C2) d¢2

Q734 (02B; (1))

1 1
/ Bl (1) By, (C1) dGy / Biy (G2) Bl (G2) do
0 0

o We take 4 univariate WQ rules (per direction).
1
A B0 = [BOBOK 2 B0 = [BB
0

oy / BOB@E A (50 = [BB (Q)de

Weighted Quadrature for the stiffness matrix

e For d = 2, two of the exactness conditions read:
1 1
OV (01B5() = /O B, (¢1)Bj, (Cl)dCl/o Biy (C2) By, (C2) d¢2

Q734 (02B; (1))

1 1
/ Bl (1) By, (C1) dGy / Biy (G2) Bl (G2) do
0 0

o We take 4 univariate WQ rules (per direction).

Q00 (/B Q09 (/B
Q) (B /B Ode 8 (/B

@ These 4 univariate rules are the building blocks we use to define
the rules QZV[% (also for d > 2). For example:

W 1,1 0,0 W 1,0 0,1
%ﬁzﬁﬂ®¢2) Q§2@9®¢J

Convergence plot 1D: W1 norm
Thick quarter of ring domain.

10t

107

Wl error
=
(@]
w

10

1=

—%—SGS, p=5
..°.‘WQ’ p=5

10t
Number of elements N_|

Convergence plot 1D: L? norm
Thick quarter of ring domain.

—%—SGS, p=5
..°.‘WQ’ p=5

10t
Number of elements N_|

A matrix-free implementation

We only want to compute matrix-vector products with the mass matrix
M: o
u— M-u

A matrix-free implementation

We only want to compute matrix-vector products with the mass matrix

M:

u— M-u

Let u = (u1,...,unp,p) € RMPOF. Since DXVQ(-) is a linear functional,
we have

(ﬂu) QWQ Zw“l c(zq) un(zq),
where

€)= u;B;(€)
3

A matrix-free implementation

(ﬂu)l = Z Wiq c(Tq) un(zq), 19| = O(Npor)

qeQ

The Setup

@ Weights and basis spline values for univariate spaces.

o Coefficient values c(zq).

A matrix-free implementation

(Mu) = 3" wiq clwq) unleq), 12l = O(Npor)
¢ qeQ
The Setup

@ Weights and basis spline values for univariate spaces.
Negligible memory and cost.

e Coeflicient values c¢(zq4). O(NpoF) memory.

A matrix-free implementation

(Mu), = 3" wiq clwg) wn(zq), 12l = O(Noor)
¢ qeQ
The Setup

@ Weights and basis spline values for univariate spaces.
Negligible memory and cost.

e Coeflicient values c¢(zq4). O(NpoF) memory.

The Product

Q Given u € RYooF | compute uy(z4) for every g.
@ Compute c(zq) - up(zq) for every gq.

@ Compute), wiq c(zq) un(zq) for every .

A matrix-free implementation

(Mu), = 3" wiq clwg) wn(zq), 12l = O(Noor)
¢ qeQ
The Setup

@ Weights and basis spline values for univariate spaces.
Negligible memory and cost.

e Coeflicient values c¢(zq4). O(NpoF) memory.

The Product
Q Given u € RYooF | compute uy(z4) for every g.
O(Npor p) FLOPS exploiting the tensor structure.
@ Compute c(zq) - up(zq) for every gq.
O(Npor) FLOPS.
@ Compute >, wiq c(zq) un(zq) for every .
O(Npor p) FLOPS exploiting the tensor structure.

A matrix-free implementation

Standard WQ

Matrix-free WQ

Allocated memory O(Npor p?) O(NboF)
Setup cost | O(Npor p?*!) + EV EV
Product cost O(Npor p?) O(Npor p)

EV = Cost of coefficient evaluation on O(Npor) points

A matrix-free implementation

Standard WQ

Matrix-free WQ

Allocated memory O(Npor p?) O(NboF)
Setup cost | O(Npor p?*!) + EV EV
Product cost O(Npor p?) O(Npor p)

EV = Cost of coefficient evaluation on O(Npor) points

@ Analogous for the matrix-free stiffness matrix A.

A matrix-free implementation

Standard WQ Matrix-free WQ
Allocated memory O(Npor p?) O(NboF)
Setup cost | O(Npor p?*!) + EV EV
Product cost O(Npor p?) O(Npor p)

EV = Cost of coefficient evaluation on O(Npor) points

@ Analogous for the matrix-free stiffness matrix A.

@ Can be coupled with a p—robust preconditioner to solve iteratively
the system Az = b ¥ yesterday Mattia Tani talk.

Standard WQ (S-WQ) vs. Matrix-free WQ (MF-WQ)

NgL = 643
Setup Time Product Time
MF-WQ | S-WQ | MF-WQ | S-WQ
p=2 1.28 72.79 0.04 0.05
p=3 1.30 89.06 0.05 0.14
p=4 1.36 112.52 0.05 0.34
p=> 1.58 174.19 0.06 0.58

=

Conclusions

It is possible to form and solve high-order isogeometric Galerkin
k-method is an efficient way, but this is beyond standard FE routines.

o with row-loop and WQ: calculating the matrix entries is faster than
saving it in a sparse matrix (MATLAB sparse)

e with Fast Diagonalization direct solver as preconditioner: CPU time

for the preconditioner setup+application is less than CPU time for
the residual calculation in CG

Current work in Pavia is on:
@ matrix-free approach

o dealing with “bad” geometries (supq £(Jr) > 1).
o develop all this for NS

References

Adam, C., T. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam (2015). Selective
and reduced numerical integrations for NURBS-based isogeometric analysis. Computer
Methods in Applied Mechanics and Engineering 284, 732—761.

Akkerman, I., Y. Bazilevs, V. Calo, T. J. Hughes, and S. Hulshoff (2008). The role of
continuity in residual-based variational multiscale modeling of turbulence.
Computational Mechanics 41(3), 371-378.

Bartels, R. H. and G. W. Stewart (1972). Solution of the matrix equation AX+ XB= C.
Communications of the ACM 15(9), 820-826.

Bazilevs, Y., V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi (2007).
Variational multiscale residual-based turbulence modeling for large eddy simulation of
incompressible flows. Comput. Methods Appl. Mech. Engrg. 197(1-4), 173-201.

Beirao da Veiga, L., D. Cho, L. F. Pavarino, and S. Scacchi (2013). Bddc preconditioners

for isogeometric analysis. Mathematical Models and Methods in Applied Sciences 23(06),
1099-1142.

Bercovier, M. and I. Soloveichik (2015). Overlapping non matching meshes domain
decomposition method in isogeometric analysis. arXiv preprint arXiv:1502.03756.

References

Bremer, J., Z. Gimbutas, and V. Rokhlin (2010). A nonlinear optimization procedure for

generalized gaussian quadratures. SIAM Journal on Scientific Computing 32(4),
1761-1788.

Buffa, A., C. de Falco, and G. Sangalli (2011). Isogeometric Analysis: stable elements for
the 2D Stokes equation. Internat. J. Numer. Methods Fluids 65(11-12), 1407-1422.

Buffa, A., H. Harbrecht, A. Kunoth, and G. Sangalli (2013). Bpx-preconditioning for

isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 265,
63-70.

Buffa, A., G. Sangalli, and C. Schwab (2014). Exponential convergence of the hp version of
isogeometric analysis in 1d. In M. Azaiez, H. El Fekih, and J. S. Hesthaven (Eds.),
Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012,
Volume 95 of Lecture Notes in Computational Science and Engineering, pp. 191-203.
Springer.

Cheng, H., V. Rokhlin, and N. Yarvin (1999). Nonlinear optimization, quadrature, and
interpolation. SIAM Journal on Optimization 9(4), 901-923.

Collier, N., D. Pardo, L. Dalcin, M. Paszynski, and V. M. Calo (2012). The cost of
continuity: a study of the performance of isogeometric finite elements using direct
solvers. Comput. Methods Appl. Mech. Engrg. 213/216, 353-361.

References

Cottrell, J. A., A. Reali, Y. Bazilevs, and T. J. R. Hughes (2006). Isogeometric analysis of
structural vibrations. Comput. Methods Appl. Mech. Engrg. 195(41-43), 5257-5296.

da Veiga, L. B., D. Cho, L. F. Pavarino, and S. Scacchi (2012). Overlapping schwarz
methods for isogeometric analysis. STAM Journal on Numerical Analysis 50(3),
1394-1416.

Donatelli, M., C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers (2015). Robust
and optimal multi-iterative techniques for iga galerkin linear systems. Computer
Methods in Applied Mechanics and Engineering 284, 230-264.

Elman, H. C., D. J. Silvester, and A. J. Wathen (2014). Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Oxford University Press
(UK).

Evans, J. A. and T. J. R. Hughes (2013). Isogeometric divergence-conforming B-splines for
the Unsteady Navier-Stokes Equations. J. Comput. Phys. 241, 141 — 167.

Gahalaut, K. P. S., J. K. Kraus, and S. K. Tomar (2013). Multigrid methods for
isogeometric discretization. Computer methods in applied mechanics and
engineering 253, 413-425.

Hillman, M., J. Chen, and Y. Bazilevs (2015). Variationally consistent domain integration

for isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering 284, 521-540.

References

Hofreither, C., S. Takacs, and W. Zulehner (2015). A robust multigrid method for
isogeometric analysis using boundary correction. Technical Report 33, NFN.

Hughes, T., A. Reali, and G. Sangalli (2010). Efficient quadrature for NURBS-based
isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering 199(5), 301-313.

Hughes, T. J. R., A. Reali, and G. Sangalli (2008). Duality and unified analysis of discrete
approximations in structural dynamics and wave propagation: comparison of p-method
finite elements with k-method NURBS. Comput. Methods Appl. Mech.

Engrg. 197(49-50), 4104-4124.

Kleiss, S. K., C. Pechstein, B. Jiittler, and S. Tomar (2012). IETI-Isogeometric Tearing and
Interconnecting. Comput. Methods Appl. Mech. Engrg. 247-248, 201 — 215.

Ma, J., V. Rokhlin, and S. Wandzura (1996). Generalized gaussian quadrature rules for
systems of arbitrary functions. SIAM Journal on Numerical Analysis 33(3), 971-996.

Mantzaflaris, A., B. Jiittler, B. N. Khoromskij, and U. Langer (2017). Low rank tensor
methods in galerkin-based isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering 316, 1062—-1085.

Schillinger, D., J. Evans, A. Reali, M. Scott, and T. Hughes (2013). Isogeometric
collocation: cost comparison with Galerkin methods and extension to adaptive

hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Engrg. 267, 170 —
232.

References

Schillinger, D., S. Hossain, and T. Hughes (2014). Reduced Bézier element quadrature rules
for quadratic and cubic splines in isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering 277, 1-45.

Simoncini, V. (2013). Computational methods for linear matrix equations. to appear on
SIAM Review.

