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How accurate is IGA vs FEA?

Let us discuss a 1D toy problem...
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1D toy problem

Find u such that

−u′′(x) = f (x), x ∈ (0,1) u(0) = u(1) = 0

Toy problem in variational form
Find uh ∈ Vh such that

∫ 1

0
u′h(x) v ′h(x) =

∫ 1

0
f (x) vh(x), ∀vh ∈ Vh

Vh = Sp
k = span{Bp

i }
h = mesh size of the knot vector Ξ

p = degree
Ξ = knot vector with interior multiplicity p − k  Ck regularity.
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Examples of Vh for p=2 and 5 Bézier elements:
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Ξ = [0, 0, .2, .2, .4, .4, .6, .6, .8, .8, 1, 1] Ξ = [0, 0, .2, .4, .6, .8, 1, 1]

FEM k -method

splines with C0 continuity splines with Cp−1 continuity

Observe: more d.o.f’s for lower continuity
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Toy problem: variational formulation
Find uh ∈ Vh such that

∫ 1

0
u′h(x) v ′h(x)dx =

∫ 1

0
f (x) vh(x)dx , ∀vh ∈ Vh

Introducing the B-spline basis {Bp
i }:

Toy problem: linear system

Find uh(x) =
∑

j ujB
p
j (x) such that

∑
j

[∫ 1

0
(Bp

j )′(x) (Bp
i )′(x)dx

]
︸ ︷︷ ︸

Ai,j

[
uj
]

=

∫ 1

0
f (x) Bp

i (x)dx , ∀i = 1, . . . , dim(Vh).

The compact support of B-splines means A is sparse...
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Sparsity pattern of A for p=2 and 10 Bézier elements:
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Left: C0 vs right: C1.
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Sparsity pattern of A for p=2 and 19 d.o.f.’s:
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Left: C0 with h = 1/10 vs right: C1 with h ≈ 1/20.

Observe: the left linear system has same bandwidth and is more
sparse, but it is also associated to a coarser mesh.

How do they compare in terms of accuracy?
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1D accuracy test (u = sin(πx))
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1D accuracy test (u = sin(πx))

102

10−8

10−7

10−6

N

| u
 −

 u
h | H

1 / 
| u

 | H
1

 

 

p=1, C0

p=2, C0

p=3, C0

p=4, C0

p=2, Cp−1

p=3, Cp−1

p=4, Cp−1

Higher accuracy per degree-of-freedom for k -method (Cp−1 splines)
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1D accuracy estimates
The previous plots show the known behaviour [Schumaker, 2007]

‖u − uh‖H1 ≤ C(p, k)N−p|u|Hp+1

The role of the degree p and the regularity k is more difficult to study.

There is numerical evidence that Cp−1 splines are an optimal
approximating space:

N-width [Evans, Bazilevs, Babuška, and Hughes, 2009]

exponential convergence [Buffa, Sangalli, and Schwab, 2014]

spectrum convergence [Hughes, Reali, and Sangalli, 2008]
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Cp−1 splines are an optimal approximating space

� N-width [Evans, Bazilevs, Babuška, and Hughes, 2009]

exponential convergence [Buffa, Sangalli, and Schwab, 2014]

spectrum convergence [Hughes, Reali, and Sangalli, 2008] and S.
Serra-Capizzano Lectures...

Cp−1 splines: ‖u − uh‖L2 ≤ CN−s|u|Hs

best N-dim. space: ‖u − uh‖L2 ≤ CoptN−s|u|Hs
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Combined local h-refinement and degree elevation allows “exponential” accuracy:
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Cp−1 splines are an optimal approximating space

N-width [Evans, Bazilevs, Babuška, and Hughes, 2009]

exponential convergence [Buffa, Sangalli, and Schwab, 2014]

� spectrum convergence [Hughes, Reali, and Sangalli, 2008] and S.
Serra-Capizzano Lectures...

Find the eigenfunctions un 6= 0 and frequencies ωn > 0 such that

−u′′(x) = ω2
nu(x), x ∈ (0,1) u(0) = u(1) = 0

Find the discrete eigenfunctions un,h ∈ Vh and ωn,h > 0 such that

∫ 1

0
u′n,h(x) v ′h(x) = ω2

n,h

∫ 1

0
un,h(x) vh(x), ∀vh ∈ Vh

We are interested in |ωn,h − ωn|/ωn ...
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Cp−1 splines are an optimal approximating space

N-width [Evans, Bazilevs, Babuška, and Hughes, 2009]
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Cp−1 splines approximation properties

N-width:
Cp−1 splines optimally approximate low-order Sobolev spaces
exponential convergence:
Cp−1 splines approximate well singular functions
spectrum convergence:
Cp−1 splines approximate well high frequency modes

Cp−1 splines approximate well “smooth” and “non-smooth” functions!
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Extension to multi-D
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Multivariate B-splines

Univariate B-splines

Sp = space of B-splines of degree p and regularity Ck , up to k = p− 1

Multivariate B-splines
B-splines are generalized by tensor products on a d-dimensional
parametric patch [0,1]d . E.g., for d = 3

Sp1,p2,p3 := Sp1 ⊗ Sp2 ⊗ Sp3 .

same for NURBS...

F(ξ) =
∑

i CiNi(ξ)

F
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IGA on a NURBS-mapped geometry

F

⌦⌦̂

Ω is described by a CAD parametrisation F ∈ Sp
r (Ω̂)× Sp

r (Ω̂)
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IGA on a NURBS-mapped geometry

F

⌦⌦̂

R

�

φ : Ω→ R is an “approximate solution” of the PDE
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IGA on a NURBS-mapped geometry

F

⌦⌦̂

R

g �

φ : Ω→ R is an isogeometric function if g = φ ◦ F ∈ Sp
r (Ω̂)

[Cottrell, Hughes, and Bazilevs, 2009]
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IGA on a NURBS-mapped geometry

F

⌦⌦̂

R

g �

Isogeometric space

V =
{
φ : Ω→ R such that g = φ ◦ F ∈ Sp

r (Ω̂)
}
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IGA on a NURBS-mapped geometry

F

⌦⌦̂

R

g �

[
F
g

]
parametrizes of Σ = {(x , y , φ(x , y)) : (x , y) ∈ Ω}
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single patch vs. multipatch geometry

single patch:

multi-patch:

Courtesy by [Cottrell, Reali, Bazilevs, and Hughes, 2006]
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Multipatch domains: the framework
In CADs, geometries are described by mappings of several patches.

0 1

1

Ω

Ω

Ω

1

2

3

F

F

F3

2

1

C0 gluing (easy for conforming meshes)
C1 gluing (challenge at extraordinary vertices)
weak (C0, C1, ...) gluing
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Multipatch domains: C0 conforming case

C0 conforming meshes just requires identification of control points and
control variables
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Multipatch: C1 isogeometric spaces

Left: C1 parametrization (possibly with few exceptions) [Nguyen,

Karciauskas, and Peters, 2014; D. Toshniwal, H. Speleers, T.J.R. Hughes Hughes, 2017]

...
Right: (only) C0 parametrization [Kapl, Buchegger, Bercovier, and Jüttler,

2016; Collin, Sangalli, and Takacs, 2015] ...
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Isogeometric spaces on multipach geometries

...

F1

F2

FN

⌦̂

⌦̂

⌦̂

Can we construct C1 isogeometric spaces on the geometry
above?
How do they perform in term of approximation properties? [Collin,

Sangalli, and Takacs, 2015] [Bercovier and Matskewich, 2014] [Kapl, Vitrih, Jüttler, and

Birner, 2015]
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L-shape parametrization

F(L) : [−1,0]× [0,1] = Ω̂(L) → Ω(L),

F(R) : [0,1]× [0,1] = Ω̂(R) → Ω(R),

Γ = {F(0, v) ≡ F(L)(0, v) ≡ F(R)(0, v), v ∈ [0,1]}

F(L)

F(R)

⌦(R)

⌦(L)

b⌦(L) b⌦(R)

u

v

�
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C1 isogeometric functions
Given φ : Ω→ R, let g(S) = φ ◦ F(S) ∈ Sp

r (Ω̂(S)), S ∈ {L,R}, and
[

F(L)

g(L)

]
: Ω̂(L) → Σ(L),

[
F(R)

g(R)

]
: Ω̂(R) → Σ(R) (*)

φ ∈ C1(Ω)⇔ the graph parametrization (*) is G1


F(L)

g(L)

�


F(R)

g(R)

�

⌃(R)

⌃(L)
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G1 graph condition
φ ∈ C1(Ω)⇔ the tangent planes formed by
[

DuF(L)(0, v)
Dug(L)(0, v)

]
,

[
Dv F(0, v)
Dv g(0, v)

]
and

[
DuF(R)(0, v)
Dug(R)(0, v)

]
,

[
Dv F(0, v)
Dv g(0, v)

]

do coincide:


F(L)

g(L)

�


F(R)

g(R)

�u

v


DuF

(R)

Dug(R)

�


DuF

(L)

Dug(L)

�


DvF
Dvg

�
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G1 graph condition
φ ∈ C1(Ω) ⇔ ∃α(L), α(R), β : [0,1]→ R, s.t. α(L)(v)α(R)(v) < 0 and

α(L)(v)

[
DuF(L)(0, v)

Dug(L)(0, v)

]
+ α(R)(v)

[
DuF(R)(0, v)

Dug(R)(0, v)

]
+ β(v)

[
Dv F(0, v)
Dv g(0, v)

]
=

[
0
0

]
.

(α(L)(v), α(R)(v), β(v) are determined up to a common multiple γ(v)).


F(L)

g(L)

�


F(R)

g(R)

�u

v


DuF

(R)

Dug(R)

�


DuF

(L)

Dug(L)

�


DvF
Dvg

�
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=

[
0
0

]
.

(α(L)(v), α(R)(v), β(v) are determined up to a common multiple γ(v)).

Steps of the isogeometric method

the geometry parametrizations F(L),F(R) are first given
α(L), α(R), β are determined by F(L),F(R):

α(L)(v)DuF(L)(0, v) + α(R)(v)DuF(R)(0, v) + β(v)Dv F(0, v) = 0.

the C1 isogeometric space is given by the condition on g(L),g(R):

α(L)(v)Dug(L)(0, v) + α(R)(v)Dug(R)(0, v) + β(v)Dv g(0, v) = 0
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About α(L), α(R), β in the G1 condition

Given F(L), F(R), then (see [?Bercovier and Matskewich, 2014] )

α(L)(v) = γ(v) det
[

DuF(R)(0, v) Dv F(R)(0, v)
]
,

α(R)(v) = −γ(v) det
[

DuF(L)(0, v) Dv F(L)(0, v)
]
,

β(v) = γ(v) det
[

DuF(L)(0, v) DuF(R)(0, v)
]
.

Moreover it holds

β(v) = −(α(R)(v)β(R)(v) + α(L)(v)β(L)(v)),

where

β(S)(v) =
DuF(S)(0, v) · Dv F(S)(0, v)

‖Dv F(S)(0, v)‖2 , S ∈ {L,R}.
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An example of C1-locking: when g(S) ∈ Sp
p−1(Ω̂(S))

For any gluing data α(S) and β(S), when g(S) ∈ Sp
p−1(Ω̂(S))

h-convergence fails in general at the interface:

Dug(L) ∈ (Sp−1
p−2 [−1,0]⊗ Sp

p−1[0,1])

Dv g(L) ∈ (Sp
p−1[−1,0]⊗ Sp−1

p−2 [0,1])

Dug(R) ∈ (Sp−1
p−2 [0,1]⊗ Sp

p−1[0,1])

Dv g(R) ∈ (Sp
p−1[0,1]⊗ Sp−1

p−2 [0,1])

Since the C1-condition is

α(L)(v)Dug(L)(0, v)︸ ︷︷ ︸
∈Sp

p−1

+ α(R)(v)Dug(R)(0, v)︸ ︷︷ ︸
∈Sp

p−1

+ β(v)Dv g(0, v)︸ ︷︷ ︸
∈Sp−1

p−2

= 0,

then Dv g(0, v) ∈ Sp−1
p−1 , i.e., g(0, v) is a global p-degree polynomial!
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AS G1 parametrization
Definition (Analysis-suitable G1 geometry parametrization)

The parametrizations F(L) and F(R) are Analysis-Suitable (AS) G1 at Γ
if there exist α(L), α(R), β(L), β(R) linear functions such that ∀v ∈ [0,1],

α(L)(v)DuF(L)(0, v) + α(R)(v)DuF(R)(0, v) + β(v)Dv F(0, v) = 0,

where β(v) = −(α(R)(v)β(R)(v) + α(L)(v)β(L)(v)).

Examples:
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Non-AS-G1 vs. AS-G1 convergence

Approximation of “exact solution” by S3
1 isogeometric functions.
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Dual basis [Lyche, Manni, Speleers, 2017]

Given a 1D knot vector [ξ1, . . . , ξn+p+1] there exists a stable dual basis
{
λ[ξi , . . . , ξi+p+1](·)

}
i=1,...,n to the spline basis

{
B[ξi , . . . , ξi+p+1]

}
i=1,...,n

that is

λ[ξi , . . . , ξi+p+1]︸ ︷︷ ︸
λi,p

(B[ξj , . . . , ξj+p+1]︸ ︷︷ ︸
Bj,p

)

≡
∫
λ[ξi , . . . , ξi+p+1]B[ξj , . . . , ξj+p+1] = δij

The existence of a stable dual basis guarantees:
linear independence of the B-spline basis
existence of a projection operator (quasi-interpolant) with optimal
approximation properties w.r.t. h.
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A spline projection operator [Lyche, Manni, Speleers, 2017]

Qp,Ξ : L2([0,1])→ Sp(Ξ), Qp,Ξ(f ) =
n∑

j=1

λj,p(f )Bj,p,
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A spline projection operator [Lyche, Manni, Speleers, 2017]

Qp,Ξ : L2([0,1])→ Sp(Ξ), Qp,Ξ(f ) =
n∑

j=1

λj,p(f )Bj,p,

�i,p(f) = Li,p,⌅ :=
1

h

Z ⇠mi+1

⇠mi

(
X

j

↵j�j,i)f
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A spline projection operator

Qp,Ξ preserves splines, that is Qp,Ξ(f ) = f , ∀f ∈ Sp(Ξ).

Stability holds:

|λj,p(f )| ≤ C(ξj+p+1 − ξj)
−1/2‖f‖L2(ξj ,ξj+p+1),

where the constant C depends on the polynomial degree p with
the upperbound
For any non empty knot span Ii = (ζi , ζi+1) it holds

‖Qp,Ξ(f )‖L2(Ii ) ≤ C‖f‖L2 (̃Ii )
,

where the constant C depends only upon the degree p, and Ĩi is
the support extension.
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A spline projection operator with BC

The operator Qp,Ξ can be modified in order to match boundary
conditions. We can define, for all f ∈ C0([0,1]):

Q̃p,Ξ(f ) =
n∑

j=1

λ̃j,p(f )Bj,p with

λ̃1,p(f ) = f (0) , λ̃n,p(f ) = f (1) , λ̃j,p(f ) = λj,p(f ), j = 2, . . . ,n − 1.

L2 stability stated for Qp,Ξ cannot be valid for Q̃p,Ξ, but:
For any non empty knot span Ii = (ζi , ζi+1) it holds

‖Q̃p,Ξ(f )‖L2(Ii ) ≤ C
(
‖f‖L2 (̃Ii )

+ h̃i |f |H1 (̃Ii )

)

|Q̃p,Ξ(f )|H1(Ii ) ≤ C‖f‖H1 (̃Ii )
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Bound on the projection error in Sobolev spaces
Spline approximation in standard Sobolev spaces
∃C depending only on p (and the local mesh ratio) such that for all
r , s ∈ N, 0 ≤ r ≤ s ≤ p + 1, and all f ∈ Hs(I)

|f −Qp,Ξ(f )|H r (Ii ) ≤ C(h̃i)
s−r |f |Hs (̃Ii )

∀i = 1, . . . ,N − 1.

Let q be any polynomial of degree p living on [0,1]. Noting that, since
q ∈ Sp(Ξ), it holds Qp,Ξ(q) = q and using stabily

‖f −Qp,Ξ(f )‖L2(Ii ) ≤ ‖f − q‖L2(Ii ) + ‖Qp,Ξ(q − f )‖L2(Ii ) ≤ C‖f − q‖L2 (̃Ii )
.

The term above is bounded by polynomial approximation, leading to
the bound for r = 0. By inverse estimates:

|f −Qp,Ξ(f )|H r (Ii ) ≤ |f − q|H r (Ii ) + |Qp,Ξ(q − f )|H r (Ii )

≤ |f − q|H r (Ii ) + Ch−r
i ‖Qp,Ξ(q − f )‖L2(Ii )

≤ |f − q|H r (Ii ) + Ch−r
i ‖f − q‖L2 (̃Ii )

.
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Bent Sobolev spaces
Given q ∈ N the piecewise polynomial space

Pq(Ξ) = {v ∈ L2(I) : v |Ii is a q-deg. pol., ∀i = 1, . . . ,N−1, Ii = (ζi , ζi+1)}.
Define the bent Sobolev space (depends on the knot vector Ξ):

Hs(I) =

{
f ∈ L2(I) such that f |Ii ∈ Hs(Ii) ∀ i = 1, . . . ,N − 1, and

Dk
−f (ζi) = Dk

+f (ζi), ∀k ≤ min{s − 1, ki}, ∀i = 2, . . . ,N − 1,

}

‖f‖2Hs(I) =
s∑

j=0

|f |2Hj (I) , |f |2Hj (I) =
N−1∑

i=1

|f |2H j (Ii )
∀j = 0,1, . . . , s,

Given an integer s such that 0 ≤ s ≤ p, we define the space

S̃s,p(Ξ) = Ps(Ξ) ∩ Sp(Ξ).

Sp(Ξ) = S̃p,p(Ξ), and, for any s < p, S̃s,p(Ξ) is still a spline space but
associated to a knot vector different from Ξ. Moreover

Sp(Ξ) = Pp(Ξ) ∩Hp(I).
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a link between bent and standard Sobolev spaces

Let s ∈ N, s ≤ p + 1. There exists a projector Γ : Hs(I)→ S̃s−1,p(Ξ)
such that f − Γ(f ) ∈ Hs(I). If s ≥ 2, Γ(f )(ζ1) = Γ(f )(ζN) = 0.

Assume s = p + 1, and construct Γ : Hp+1(I)→ Sp(Ξ). We need

Dk
+(f − Γ(f ))(ζi) = Dk

−(f − Γ(f ))(ζi), ∀i = 2, . . . ,N − 1, k = 0,1, . . . ,p.

Then we need Dk
+(Γ(f ))(ζi)− Dk

−(Γ(f ))(ζi) = Dk
+(f )(ζi)− Dk

−(f )(ζi) for
all i = 2, . . . ,N − 1 and k = ki + 1, . . . ,p. Let ϕk

i : I → R be defined as

Sp(Ξ) 3 ϕk
i (x) =

(
max{0, x − ζi}

)k ∀ x ∈ I.

We then have and define

Dl
−ϕ

k
i (ζi) = 0 , Dl

+ϕ
k
i (ζi) = k ! δlk ,

Γ(f )(x) =
N−1∑

i=2

p∑

q=ki +1

Dq
+f (ζi)− Dq

−f (ζi)

q!
ϕq

i (x), .
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Bound on the projection error in bent Sobolev spaces
Spline approximation in bent Sobolev spaces
[Beirão da Veiga, Cho , Sangalli, 2014]

∃C, only dependent on p (and the local mesh ratio) such that for all
r , s ∈ B, 0 ≤ r ≤ s ≤ p + 1, and all f ∈ Hs(I)

|f −Qp,Ξ(f )|H r (Ii ) ≤ C(h̃i)
s−r |f |Hs (̃Ii )

∀i = 1, . . . ,N − 1.

Γ(f ) ∈ S̃s−1,p(Ξ) ⊂ Sp(Ξ)⇒ f −Qp,Ξ(f ) = (f − Γ(f ))−Qp,Ξ(f − Γ(f )).
Since (f − Γ(f )) ∈ Hs(I), we apply the classical error bound

|f −Qp,Ξ(f )|H r (Ii ) = |f − Γ(f )−Qp,Ξ(f − Γ(f ))|H r (Ii )

≤ C(h̃i)
s−r |f − Γ(f )|Hs (̃Ii )

= C(h̃i)
s−r
√√√√
∑

Ij ⊂̃Ii

|f − Γ(f )|2Hs(Ij )

= C(h̃i)
s−r
√√√√
∑

Ij ⊂̃Ii

|f |2Hs(Ij )
= C(h̃i)

s−r |f |Hs (̃Ii )
.
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Approximation of isogeometric spaces
From the univariate spline projector Qp,Ξ, we tensorize and construct
Πp,Ξ, then define ΠVh : L2(Ω)→ Vh

ΠVh f =
Πp,Ξ(W (f ◦ F))

W
◦ F−1 f ∈ L2(Ω).

Approximation error (h-refinement) of isogeometric spaces
[Beirão da Veiga, Cho , Sangalli, 2014]

Given 0 ≤ r ≤ s ≤ min (p1, . . . ,pd ) + 1, there exists a constant C
depending only on p,F,W (and the local mesh ratio) such that

‖f − ΠVh f‖H r (Ki) ≤ C(hK̃i
)s−r‖f‖Hs(K̃i)

∀Ki ∈M,

‖f − ΠVh f‖H r (Ω) ≤ Chs−r‖f‖Hs(Ω),

for all f in Hs(Ω).
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Non-tensor-product splines for IGA
Three approaches have emerged in the isogeometric community:

� T-splines [Sederberg, Zheng, Bakenov, and Nasri, 2003; Bazilevs, Calo, Cottrell, Evans,
Hughes, Lipton, Scott, and Sederberg, 2010; Scott, Li, Sederberg, and Hughes, 2012]

I Analysis suitable (AS) T-splines ⊂ T-spline [Li, Zheng, Sederberg,

Hughes, and Scott, 2012; Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2013] .
locally-refinable (LR) splines [Dokken, Lyche, and Pettersen, 2013]

hierarchical splines [Vuong, Giannelli, Jüttler, and Simeon, 2011; Giannelli, Jüttler,

and Speleers, 2012]

subdivision surfaces [Cirak et al.; Nguyen, Karciauskas, Peters; Barendrecht; . . . ]

Tensor product B-splines easily inherit the maths properties from the
univariate B-splines because of the tensor-product construction.

Dual-Compatible (DC) B-splines are a set of B-splines without global
tensor-product structure but with a weaker one that still guarantees
some key properties inherited from 1D
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Tensor product B-splines easily inherit the maths properties from the
univariate B-splines because of the tensor-product construction.

Dual-Compatible (DC) B-splines are a set of B-splines without global
tensor-product structure but with a weaker one that still guarantees
some key properties inherited from 1D
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Definition of PB-splines [Sederberg, Zheng, Bakenov, and Nasri, 2003]

Consider a set of multivariate B-splines
{

NA,p, A ∈ A
}

A is a set of indices, i.e., A ∈ A ↔ NA,p is one-to-one,
the NA,p have the structure

NA,p(ζ) = N[ΞA,1,p1 ](ζ1)N[ΞA,2,p2 ](ζ2) or

NA,p(ζ) = N[ΞA,1,p1 ](ζ1)N[ΞA,2,p2 ](ζ2)N[ΞA,3,p3 ](ζ3)

The space spanned is

Sp(A) = span
{

NA,p, A ∈ A
}
.
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Definition of DC-splines [Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2014]

Overlapping knot vectors
Two local knot vectors Ξ′ = {ξ′1, . . . ξ′p+2} and Ξ′′ = {ξ′′1 , . . . ξ′′p+2}
overlap if formed by p + 2 neighbouring knots of the same knot vector.

For example:
overlapping local knot vector

non-overlapping local knot vector
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Overlapping knot vectors
Two local knot vectors Ξ′ = {ξ′1, . . . ξ′p+2} and Ξ′′ = {ξ′′1 , . . . ξ′′p+2}
overlap if formed by p + 2 neighbouring knots of the same knot vector.

Overlapping and partially-overlapping splines
Two B-splines NA′,p NA′′,p overlap if the local knot vectors ΞA′,`,p`

and
ΞA′′,`,p`

in each direction ` = 1, . . . ,d overlap.

Two B-splines NA′,p NA′′,p partially overlap if, when A′ 6= A′′, there
exists a direction ` such that ΞA′,`,p`

6= ΞA′′,`,p`
and overlap.

Dual-Compatible (DC) set and space
{

NA,p, A ∈ A
}

is a DC set of B-splines if each pair of B-splines in it
partially overlap. Its span Sp(A) is a DC spline space.
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Example of overlapping B-splines
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Example of partially overlapping B-splines
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Example of not partially overlapping B-splines
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Dual basis [Schumaker, 2007; Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2014]

Given a 1D knot vector [ξ1, . . . , ξn+p+1] there exists a dual basis
{
λ[ξi , . . . , ξi+p+1](·)

}
i=1,...,n to the spline basis

{
N[ξi , . . . , ξi+p+1]

}
i=1,...,n

that is λ[ξi , . . . , ξi+p+1](N[ξj , . . . , ξj+p+1]) = δij .

Dual basis to a dual-compatible (DC) set
Assume that

{
NA,p, A ∈ A

}
is a DC set. The set

{
λA,p, A ∈ A

}
where

λA,p = λ[ΞA,1,p1 ]⊗ . . .⊗ λ[ΞA,d ,pd ]

is a dual basis for
{

NA,p, A ∈ A
}

.
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Dual basis [Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2014]

Dual basis to a dual-compatible (DC) set
The set

{
λA,p, A ∈ A

}
where λA,p = λ[ΞA,1,p1 ]⊗ . . .⊗ λ[ΞA,d ,pd ] is a

dual basis for the DC set
{

NA,p, A ∈ A
}

.

Consider any NA′,p and λA′′,p, with A′,A′′ ∈ A. We then need to show

λA′′,p(NA′,p) =

{
1 if A′′ = A′,
0 otherwise.

If A′ = A′′, then we have λA′′,p(NA′,p) = 1.
If A′ 6= A′′, for the partial overlap assumption there is ¯̀such that
ΞA′,`,p`

6= ΞA′′,`,p`
and overlap, then λ[ΞA′′,`,p`

](N[ΞA′,`,p`
]) = 0 and then

λA′′,p(NA′,p) =
d∏

`=1

λ[ΞA′′,`,p`
](N[ΞA′,`,p`

]) = 0.
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Properties of DC-splines: local linear independence
Linear independence [Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2014]

The B-splines in a DC set
{

NA,p, A ∈ A
}

are linearly independent.

Assume ∑

A∈A
CANA,p = 0

for some coefficients CA; for any A′ ∈ A, applying λA′,p we get

CA′ = λA′,p

(∑

A∈A
CANA′,p

)
= 0.

LLI
In a DC set there are at most (p1 + 1) · . . . · (pd + 1) B-splines that are
non-null in each Bézier element. If the space of polynomials of degree
p is in Sp(A), the B-splines are locally linearly independent.
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Properties of DC-splines: partition of unity

Partition of unity [Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2014]

The B-splines in a DC set
{

NA,p, A ∈ A
}

form a partition of the unity, if
the constant function belongs to the space.

Let ∑

A∈A
CANA,p = 1

for some coefficients CA. For any A′ ∈ A, applying λA′,p we get

CA′ = λA′,p

(∑

A∈A
CANA,p

)
= 1.
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Approximation properties of DC-splines

L2–stability of the projector
Given a DC set of B-splines, Πp(f )(ζ) =

∑
A∈A λA,p(f )NA,p(ζ) realizes:

||Πp(f )||L2(Q) ≤ C||f ||L2(Q̃)
∀Q ⊂ Ω, ∀f ∈ L2(Ω).

We use of the notion of support extension Q̃ associated to an element
Q ⊂ Ω:

Q̃ =
⋃

A∈A
supp(NA,p)∩Q 6=∅

supp(NA,p),

and recall positivity and partition of unity property:
∑

A∈A

∣∣∣NA,p(ζ)
∣∣∣ ≤ C.
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L2–stability of the projector
Given a DC set of B-splines, Πp(f )(ζ) =

∑
A∈A λA,p(f )NA,p(ζ) realizes:

||Πp(f )||L2(Q) ≤ C||f ||L2(Q̃)
∀Q ⊂ Ω, ∀f ∈ L2(Ω).

Denote by A(ζ) the set of A ∈ A such that NA,p(ζ) > 0, by QA the
common support of NA,p and λA,p, it follows that

∣∣Πp(f )(ζ)
∣∣2 =

∣∣∣
∑

A∈A(ζ)

λA,p(f )NA,p(ζ)
∣∣∣
2
≤ C max

A∈A(ζ)

∣∣λA,p(f )
∣∣2

≤ C max
A∈A(ζ)

|QA|−1||f ||2L2(QA) ≤ C|Q|−1||f ||2
L2(Q̃)

,

where we have used that ∀A ∈ A(ζ),Q ⊂ QA (and therefore |Q| ≤ |QA|)
and that QA ⊂ Q̃. Integrating over Q yields ||Πp(f )||2L2(Q)

≤ C||f ||2
L2(Q̃)

.
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Approximation properties of DC-splines

L2–stability of the projector
Given a DC set of B-splines, Πp(f )(ζ) =

∑
A∈A λA,p(f )NA,p(ζ) realizes:

||Πp(f )||L2(Q) ≤ C||f ||L2(Q̃)
∀Q ⊂ Ω, ∀f ∈ L2(Ω).

Optimal approximation of the projector
Assume that the space of polynomials of degree p = min1≤`≤d{p`} is
included into the space Sp(A). Then there exists a constant C only
dependent on p such that for 0 ≤ s ≤ p + 1

||f − Πp(f )||L2(Q) ≤ C(hQ̄)s|f |Hs(Q̄) ∀Q ⊂ Ω, ∀f ∈ Hs(Ω),

where hQ̄ is the diameter of Q̄ (smallest d-rectangle containing Q̃).
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Greville sites for DC-splines

Greville sites
Assume that the linear polynomials belong to the space Sp(A). Then
we have that

ζ =
∑

A∈A




γ[ΞA,1,p1 ]

...
γ[ΞA,d ,pd ]


NA,p(ζ), ∀ζ ∈ Ω,

where γ[ΞA,`,p`
] denotes the Greville average of ΞA,`,p`

, that is, the
average of the p` internal knots of ΞA,`,p`

.
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T-splines: p = (3,2) and p = (3,3)
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Construction of the horizontal and vertical index vector (red crosses),
for some values of p = (p1,p2), and for the anchors marked in blue.
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AS T-splines

Extensions for degree p1 = 2 (horizontal) and p2 = 3 (vertical). The
dashed lines represent the face extensions.

AS⇔ DC [Beirão da Veiga, Buffa, Sangalli, and Vázquez, 2013]

Given an “admissible” T-mesh, it is AS (analysis-suitable) if and only if
the set of T-spline blending functions is DC (dual-compatible).
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Geometries generated by boolean operations
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Geometries generated by boolean operations
Possible approaches to handle trimmed domains are:

multipatch reparametrization (b)
dealing directly with trimmed domain (c)

Picture from “Isogeometric analysis for trimmed CAD surfaces”, Hyun-Jung Kim, Yu-Deok Seo, Sung-Kie Youn, Comput. Methods
Appl. Mech. Engrg. 198 (2009) 2982-2995.
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Trimming
Trimming is a basic operation in CAD.

Solve in the red part, cutting out the blue part.
The trimming also “cuts” the basis functions of the method.
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Trimming

Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.
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Quadrature on trimmed elements

Q

⌦e,a

⌦̂e,a

⌦̂e,i

⌦e,i

F

Ge

A trimmed element Ωe = F(Ω̂e) is union of an active part Ωe,a and an
inactive part Ωe,i .
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Quadrature on trimmed elements

Q

⌦e,a

⌦̂e,a

⌦̂e,i

⌦e,i

F

Ge

We can write

Ωe,a = F(Ω̂e,a) = F(Ge(Q)) = F̃e(Q).
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Quadrature on trimmed elements

Q

⌦e,a

⌦̂e,a

⌦̂e,i

⌦e,i

F

Ge

F̃e

∫
Ωe,a f (x) dx =

∫
Q

(
f ◦ F̃e

)
(ζ) det

(
DF̃e)(ζ) dζ ≈

∑N
q=1 ωq

(
f ◦ F̃e)(ζq) det

(
DF̃e)(ζq)
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Trimming

Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.
the linear system needs a special rescaling to improve
conditioning
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Trimming

Integrals must be accurately computed for “cut” basis functions:
we reparametrize the trimmed elements.
the linear system needs a special rescaling to improve
conditioning

Reparametrization mesh by IRIT, G. Elber, Technion.
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Trimming

Spherical bushing - GUERIN F. - 3/10/2013 6 \ 
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Trimming

G. Sangalli (UNIPV) Splines and PDEs: Recent Advances July 3 - July 7, 2017 60 / 61



Trimming

Handling efficiently trimmed 3D volumes is the next big challenge...
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