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Approximation problem

How to approximate a function which is defined on the surface of some
object, say . . .
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Approximation problem

• Given: manifold ω ⊂ Rd

• without boundary, compact, smooth
• codimension 1
• arbitrary topology

• Given: function f : ω → R
• smooth
• Sobolev class W n

p (ω)

• Sought: approximation s : ω → R
• accurate, ‖f − s‖ = O(hn)
• smooth, C k

• finite-dimensional space
• simple concept, easy implementation
• fast evaluation
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Approaches

• piecewise linear
• flexible, standard in Computer Graphics
• C 0, low approximation order

• intrinsic functions
• explicitly known only for elementary geometry
• otherwise comlicated

• chart-based methods
• blending artifacts

• piecewise parametrization (subdivision, G-splines)
• non-trivial quadrature
• limited smoothness

• radial basis functions in ambient space
• yes, but . . .

• alternative: ambient B-spline method (ABM)
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Basic idea

Define function space on ω by restricting functions in ambient space Rd to
ω. In particular, if S is a spline of order n on Rd , then

s := S|ω

is a smooth function on ω.

Benefits:

• standard splines, independent of ω

• higher order smoothness

• adaptive refinement

Challenges:

• stability

• approximation order
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Scattered data approximation

• data sites x1, . . . , xN ∈ Rn

• corresponding function values f1, . . . , fN ∈ R
• sought: approximation f such that f (xi ) ≈ fi

• try spline: f (x) =
∑M

k=1 bk(x)ck

• (overdetermined) linear system
...

· · · bk(yi ) · · ·
...


 c1

...
cM

 =


f1

...

fN



Ambient B-Splines 6



Scattered data approximation

• data sites x1, . . . , xN ∈ Rn

• corresponding function values f1, . . . , fN ∈ R
• sought: approximation f such that f (xi ) ≈ fi

• try spline: f (x) =
∑M

k=1 bk(x)ck

• (overdetermined) linear system

BC = F

Ambient B-Splines 6



Scattered data approximation

• data sites x1, . . . , xN ∈ Rn

• corresponding function values f1, . . . , fN ∈ R
• sought: approximation f such that f (xi ) ≈ fi

• try spline: f (x) =
∑M

k=1 bk(x)ck

• (overdetermined) linear system

BC = F

• solve normal equation

(BTB)C = ATF

Ambient B-Splines 6



Scattered data approximation

• data sites x1, . . . , xN ∈ Rn

• corresponding function values f1, . . . , fN ∈ R
• sought: approximation f such that f (xi ) ≈ fi

• try spline: f (x) =
∑M

k=1 bk(x)ck

• (overdetermined) linear system

BC = F

• solve normal equation

(BTB)C = ATF

Ambient B-Splines 6



Lack of stability

Condition number of Gramian matrix of TP Bernstein basis
on [0, 1]2:

n 2 3 4

cond 8e0 1e2 1e3

Ambient B-Splines 7



Lack of stability

Condition number of Gramian matrix of TP Bernstein basis
restricted to curve ω, e.g., graph of ln(1 + x), 0 ≤ x ≤ 1:

n 2 3 4

cond 1e06 1e20 3e32
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Extension

In order to use B-splines in a neighborhood

Ω ⊃ ω

of ω, we need to extend the given function,

f : ω → R
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of ω, we need to extend the given function,
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Ambient B-Spline approximation method

• Given (scattered) data on manifold ω.

• Define sufficiently thin tube Ω ⊃ ω.

• Extend data to Ω.

ω
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Ambient B-Spline approximation method

manifold ω ambient space Rd

f

ω
Ω
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Ambient B-Spline approximation method

manifold ω ambient space Rd

f F = Ef
extension

S = PF

approx.

s = RS
restriction

ambient

method

ω
Ω

The ambient method: s = RPEf
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Extension

Given f : ω → R, it is not difficult to construct an extension F : Ω→ R,
provided that Ω is small enough:

• constant in normal direction

F (x + tn) = f (x), x ∈ ω

Ambient B-Splines 11



Extension

Given f : ω → R, it is not difficult to construct an extension F : Ω→ R,
provided that Ω is small enough:

• constant in normal direction

F (x + tn) = f (x), x ∈ ω

• orthogonal flow, if ω = ϕ−1(0) is given as a levelset

F (ψ(x , t)) = f (x), ∂tψ =
∇ϕ
|∇ϕ|

, ψ(x , 0) = ψ(x)

Ambient B-Splines 11



Ambient B-Spline approximation method

Properties:

• based on standard tensor product B-splines

• arbitrary smoothness for free

• no problem with extraordinary points

• higher dimension, but comparable number of control points

• approximation order?
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Approximation order

Theorem (Odathuparambil, R. ’15)

Let Eψ be the extension operator based on some transversal flow ψ. For
f ∈W n

p (ω), the approximation error ∆ = RPEψf − f is bounded by

‖∆‖Wm
p (ω) ≤ c hn−m‖f ‖W n

p (ω)
, m < n,

where c depends on ψ.

Proof is based on:

• approximation properties of P

• Friedrichs’ inequality

• Markov inequality

• Faà di Bruno formula

Ambient B-Splines 13



Example: The geoid

The geoid is the equipotential surface of gravitational field corresponding
to the mean-ocean surface.
Model currently used EGM2008:

• spherical harmonics up to degree 2190 and order 2159,

• more than 4 million coefficients.
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Example: The geoid

Using ambient B-spline approximation method:

• drastically improves evaluation time,

• reduces number of coefficients (hierarchical B-splines).

Local B-Spline method (order 3, 1e6 coefficients):
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Example: The geoid
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Example: The geoid

approximation error for h = 1
10Rearth
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Example: The geoid, adaptive refinement

error for hmin = 1
160Rearth and ∼ 750.000 B-splines
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Example: The geoid, adaptive refinement
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Surface reconstruction

reparametrize
over sphere−−−−−−−−−→

approximate
coordinate
functions−−−−−−−−−→

smooth
representation−−−−−−−−−−−−→

C 4−bunny

Ambient B-Splines 19



Surface reconstruction

reparametrize
over sphere−−−−−−−−−→

approximate
coordinate
functions−−−−−−−−−→

smooth
representation−−−−−−−−−−−−→

C 4−bunny

Ambient B-Splines 19



Surface reconstruction

Approximation with h = 0.2 and ∼ 2000 B-Splines.
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Surface reconstruction

Adaptive approximation with hmin = 0.02 and ∼ 6000 B-Splines.
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Surface reconstruction

Benefits:

• simple construction

• arbitrary smoothness

• adaptive refinement

• no extraordinary vertices

Challenges:

• How to find a good parametrization?

• How to build an interactive modeling tool?

• How to model sharp creases?
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Intrinsic PDEs on manifolds

Intrinsic model equations:

• elliptic
∆ωu + cu = f , c < 0

• parabolic
ut = −∆ωu

Applications:

• Computer Graphics (parametrization, segmentation)

• Fluid Dynamics

• Biology/Medicine

• Meteorology

• . . .
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Intrinsic PDEs on manifolds

• Piecewise linear FE approximation (Wardetzki ’07).

• Embedding methods for parabolic PDEs (Bertalmio et. al. ’01, Ruuth
and Merriman ’08). The Laplace-Beltrami operator is computed by

∆ωu = ∆Enu

instead of

∆ωu =
div
(√

detGG−1∇u
)

√
detG

.

• Embedding method for elliptic PDEs (Dziuk and Elliott ’13).
Problem: Loss of elipticity.

• New: Ambient B-spline approximation of extended elliptic PDE.
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Intrinsic PDEs on manifolds

Caution: Let u be a solution of the intrinsic PDE

∆ωu + cu = f .

Consider the extensions U := Enu and F := Enf in normal direction.

Then

∆U + cU = F on ω

but

∆U + cU 6= F on Ω.
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New approach

Can we define an elliptic operator L such that

LEu = E∆ωu ?

Then, we would have

∆ωu + cu = f

E (∆ωu + cu) = Ef

LEu + cEu = Ef

LU + cU = F
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New approach

Theorem (Odathuparambil, R. ’14)

Let d be the signed distance function of ω. Define

• the matrix

Q := (Id−dH)−1, H := ∇2d .

• the differential operator

LU := ∆QU :=
∑
i ,j

Qi ,j(∇Q∇U)i ,j .

Then L is uniformly elliptic in a vicinity of ω and satisfies

LEnu = En∆ωu

In particular,

∆ωu + cu = f ⇒ LU + cU = F , ∇U · ∇d = 0.
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New approach for general levelsets

• ω = ϕ−1(0) is given as a levelset.

• General second order differential operator on ω

L0 := A0 ∗ ∇2u + B0 ∗ ∇u :=
∑
i ,j

A0
i ,j∂i ,ju +

∑
i

B0
i ∂iu

• Sought: Extension

L := A ∗ ∇2U + B ∗ ∇U

to ambient space along the orthogonal flow ψ such that

LU = LEψu = EψL
0u.

• Challenge: Find a formula for the functions
A = A(X ),B = B(X ),X ∈ Ω.
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New approach for general levelsets

Theorem (Odathuparambil, R. 15)

Consider the system of ODEs

Ã′ = |∇ϕ|−1(ÃH + HÃ), H := ∇2ϕ

B̃ ′ = |∇ϕ|−1(HB̃ + Ã ∗ ∂H)

with initial conditions Ã(0) := A0, B̃(0) := B0 and define

A(ψ(x , t)) := Ã(t), B(ψ(x , t)) := B̃(t).

Then the operator L, as defined above, is uniformly elliptic in a vicinity of
ω if so is L0, and satisfies

LU = EψL
0u

In particular,

L0u = f ⇔ LU = F , ∇U · ∇ϕ = 0.
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New approach for general levelsets

• If the boundary ∂Ω is given by levelsets, the problem

LU = F , ∇U · ∇ϕ = 0

is equivalent to an elliptic PDE with Neumann boundary conditions,

LU = F , ∇U · ∇ϕ = 0 on ∂Ω.

• Meshing required.
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New approach for general levelsets

• If the boundary of Ω is not given by levelsets, the problem

LU = F , ∇U · ∇ϕ = 0

is still well posed. In particular, Ω can be defined as a union of boxes
covering ω.

• No meshing required!
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Current work

• Implementation and practical tests

• Ambient smoothing splines (L. Maier)

• Manifolds with boundary

• Error estimates

• . . .

Thanks for your attention!
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