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Context and introduction to Plasma
Physics
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Fusion energy and Plasma Physics

Fusion DT: At sufficiently high energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6 MeV of free energy are released.
At those energies, atoms are ionized forming a plasma.

(left) The sun is a fusion reactor, (right) Fusion nuclear reaction
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Magnetic Confinement Fusion Devices
Tokamaks

(left) ITER machine (Cadarache, France)
(right) example of particles trajectory inside the Tokamak.
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Magnetic Confinement Fusion Devices
Stellarators

(left) W7X (Greifswald, Germany)
(right) mesh example (Courtesy from F. Hindenlang)
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Introduction to Plasma Physics

� Plasmas are a collection of charged particles.

� Fourth state of matter along with solid, liquid and gas.

� Dominant force applied on particles is electromagnetic force.

� Microscopic (n-body) model consists in equations of motion of
single particles in electromagnetic field.

dxk
dt

= vk ,
dvk
dt

=
q

m
(E(t, xk) + vk ×B(t, xk)) (1)

� Too many particles for numerical simulations.

� Statistical physics derives more tractable kinetic equations
(Boltzmann or Vlasov) from these.
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Introduction to Plasma Physics
The Vlasov-Maxwell system

Let s denotes particles species (electron, ion, impurities, . . . )
The Plasma is governed by the coupling of Vlasov-Maxwell system

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v×B) · ∂fs
∂v

= 0 (2)

ρ = ∑
s

qs

∫
fs(t, x, v)dv, J = ∑

s

qs

∫
fs(t, x, v)vdv (3)

∂E

∂t
+ curlB = µ0J,

∂B

∂t
+ curlE = 0 (4)

divE =
ρ

ε0
, divB = 0 (5)

à Taking the moments leads to a fluid description of the Plasma.
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Modern architectures of
supercomputers
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Moore’s Law

A. Ratnani Cime 2017 - Cetraro 10/40

10/40



Common Processors

Processor Launched Number of Cores Freq.
E3-1500 v6 (Mobile, 7th generation) 2017-Q1 2-4 2.1-3.0 Ghz
Xeon D-1500 (formerly Broadwell) 2016-Q1 8-10 1.6-2.4 Ghz
E3-1200 v5 (Desktop, 6th generation) 2015-Q4 2-8 1.5-2.2 Ghz
Xeon E5-2600 v3 (formerly Haxwell) 2015-Q3 4 2-2.8 Ghz

Table : Some Intel processors

Processor L2 cache Number of Cores Freq.
Opteron 6386 SE 16 MB 16 2.8-3.5 Ghz
Athlon X4 880K (Desktop) 4 MB 4 4.0-4.2 Ghz
Athlon X2 450K (Desktop) 1 MB 2 3.5-3.9 Ghz

Table : Some AMD processors
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Top 500
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Top 500 Family system share evolution

Figure : From left to right: 2010, 2012, 2017
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Walls of modern supercomputers

� Programming wall

à writing parallel codes is time-consuming

� Memory wall

- Latency of the memory is decreasing very slowly
- Concurence: number of cores per memory module is increasing
- Technological advances on memory are very slow

� Portability wall

à CPUs, GPUs, Mics
à Portability is mandatory

� Power wall

- Dissipated power ∼ ω3 (freq.)
- Dissipated power per cm2 is limited by the cooling system
- Power costs are expensive (critical for Exascales)
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Walls of modern supercomputers

� The computing power of supercomputers is doubling every year
(faster than Moores Law, but electrical consumption is also
increasing).

� The number of cores is increasing rapidly (massively parallel (IBM
Blue Gene Q) and many-cores architectures (Intel Xeon Phi)).

� Emergence of heterogeneous accelerated architectures (standard
processors coupled with GPU).

� Machine architecture is becoming more complex and the number
of layers increasing (processors/cores, memory access, network and
I/O).

� Memory per core has been stagnating and is beginning to decrease.

� Performance per core is stagnating and is much lower on some
machines than on a simple laptop (IBM Blue Gene).

� Throughput towards the disk and memory is increasing more slowly
than the computing power.
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Memory wall
� On-chip (in opposition to off-chip) caches are faster, but very small

size
� Large caches have delays

- Hardware to check longer addresses in cache
- Associativity (needed for more general set of data in cache)

� Even worse between Cores or Nodes (and depends on the topology)
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Amdahl’s Law

� Amdahl’s Law predicts the theoretical maximum speedup obtained
by parallelizing a code ideally, for a given problem with a fixed size:

Sp(P) =
Ts

T‖(P)
=

1

α + (1−α)
P

with Sp the speedup, T is the execution time of the sequential
code (monoprocessor), T‖(P) the execution time of the ideally
parallelized code on P cores and α the non-parallelizable part of
the application.

à Regardless of the number of cores, the speedup is always less than
the inverse of the percentage represented by the purely sequential
fraction.
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Amdahl’s Law

A. Ratnani Cime 2017 - Cetraro 16/40

16/40



Gustafson-Barsis Law

� The Gustafson-Barsis Law predicts the theoretical maximum
speedup obtained by parallelizing a code ideally for a problem of
constant size per core, and supposing that the execution time of
the sequential fraction does not increase with the overall problem
size:

Sp(P) = α + P(1− α)

with Sp the speedup, P number of cores and α the
non-parallelizable part of the application.

à This law is more optimistic than Amdahls because it shows that
the theoretical speedup increases with the size of the problem
being studied.
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Consequences

Consequences for the applications

� It is necessary to exploit a large number of relatively slow cores.

� Tendancy for individual core memory to decrease: Necessity to not
waste memory.

� Higher level of parallelism continually needed for the efficient usage
of modern architectures (regarding both computing power and
memory size).

� The I/O also becoming an increasingly current problem.

Consequences for the developers

� The time has ended when you only needed to wait a while to obtain
better performance (i.e. stagnation of computing power per core).

� Increased necessity to understand the hardware architecture.

� More and more difficult to develop codes on your own (need for
experts in HPC as well as multi-disciplinary teams).
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Programming methods and languages

� MPI

� OpenMP

� OpenACC

� Task based parallelism (for example starpu)

Alternative solutions

� TBB (restricted to Inel compilers and C++)

� DSL (Chapel, Terra, Liszt . . . )
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Applications
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Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

� matrix coo

� matrix bnd

� matrix csr

� matrix csc

� matrix cds

� Pros

+ facilitates fast conversion among sparse formats
+ permits duplicate entries (see example)
+ very fast conversion to and from CSR/CSC

formats
+ very fast conversion of kronecker linear

operators

� Cons

- arithmetic operations
- slicing
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Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

� matrix coo

� matrix bnd

� matrix csr

� matrix csc

� matrix cds

� Pros

+ memory consumption
+ band solvers

� Cons

- works only for 1d
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Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

� matrix coo

� matrix bnd

� matrix csr

� matrix csc

� matrix cds

� Pros

+ efficient arithmetic operations CSR + CSR,
CSR * CSR, etc.

+ efficient row slicing
+ fast matrix vector products

� Cons

- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive

(consider LIL or DOK)
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Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

� matrix coo

� matrix bnd

� matrix csr

� matrix csc

� matrix cds

� Pros

+ efficient column slicing, column-oriented
operations

+ suited for some direct solvers

� Cons

- slow row slicing, expensive changes to the
sparsity structure
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Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

� matrix coo

� matrix bnd

� matrix csr

� matrix csc

� matrix cds

� Pros

+ efficient banded matrices with bandwidth that is
fairly constant from row to row

+ can be extended to multi-dimensional case
+ leads to the stencil format when the bandwidth

is constant
+ well balancing for distributed memory

� Cons

- (block) structured grid
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Compatible B-Splines Finite Elements
Domain Decomposition

Figure : Metis (left) and tensor (right) partitioning.

Which one is the best? why?
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Compatible B-Splines Finite Elements
The 2D case
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Compatible B-Splines Finite Elements
The 3D case

Statistics: Quadratic Splines on a grid
323:

� 23′101′440 non zeros for H(curl)

� 98′304 dofs for H(curl)

� 13′860′864 non zeros for H(div )

� 98′304 dofs for H(div )
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POMS: Parallel and robust Multigrid for B-Splines
Motivations and goals

� a Parallel MG+GLT (blackbox) solver using distributed memory
MPI and shared memory OpenMP and OpenACC.

� main ingredient for other solvers

- Curl-Curl, Div-Div, Alfven operator, . . .
- Auxiliary spaces preconditioning

� Hybrid version MPI+OpenMP in progress (first runs on Marconi)
still in progress

� POMS is supported by Eurofusion and HLST.
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POMS: Parallel and robust Multigrid for B-Splines
Marconi: HPC infrastructure

� Marconi-A1

- CPU 2x Intel Xeon E5-2697 v4 @2.3GHz, 18 cores
- # Cores 54432
- # Nodes 1512
- Memory per node 128GB

� Marconi-A2

- CPU 1x Intel KNL Xeon Phi7250 @1.4Ghz, 68 cores
- # Cores 244800
- # Nodes 3600
- Memory per node 96GB

à Marconi is classified in Top500 list:

- Marconi-A1 rank 46 in June 2016
- Marconi-A2 rank 12 in November 2016.
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POMS: Parallel and robust Multigrid for B-Splines
Numerical results: Setting

1. Pure MPI runs with the number of MPI tasks up to 36 (for
Broadwell) or 68 for KNL.

2. Pure OpenMP with the number of threads up to 36 (for
Broadwell) or 68 for KNL.

3. Hybrid MPI+OpenMP runs with a fixed 4 MPI tasks.
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POMS: Parallel and robust Multigrid for B-Splines
Numerical results: Preliminary results in 1D
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POMS: Parallel and robust Multigrid for B-Splines
Numerical results: Preliminary results in 1D
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Modern computer science (for
mathematicians)

or how to make coding GREAT
again?
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Pattern design for parallel computations
Linear Operators

Linear Operators are objects that provide only a generic dot method.
L : x → y = L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.
Examples

� linear operator kron

� linear operator block

� linear operator expansion

� linear operator custom

� linear operator derivative

L = A1 ⊗ A2, A1 ⊗ A2 ⊗ A3
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Pattern design for parallel computations
Linear Operators

Linear Operators are objects that provide only a generic dot method.
L : x → y = L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.
Examples

� linear operator kron

� linear operator block

� linear operator expansion

� linear operator custom

� linear operator derivative

L =

A11 · · · A1m
...

. . .
...

An1 · · · Anm


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Pattern design for parallel computations
Linear Operators

Linear Operators are objects that provide only a generic dot method.
L : x → y = L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.
Examples

� linear operator kron

� linear operator block

� linear operator expansion

� linear operator custom

� linear operator derivative

L = ∑
k

αkAk
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Pattern design for parallel computations
Linear Operators

Linear Operators are objects that provide only a generic dot method.
L : x → y = L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.
Examples

� linear operator kron

� linear operator block

� linear operator expansion

� linear operator custom

� linear operator derivative

The user needs only to
provide a procedure pointer
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Pattern design for parallel computations
Linear Operators

Linear Operators are objects that provide only a generic dot method.
L : x → y = L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.
Examples

� linear operator kron

� linear operator block

� linear operator expansion

� linear operator custom

� linear operator derivative

Jv =
F (u + εv)− F (u)

ε
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What is CLAPP/Django?
Within the CLAPP environment developped at the NMPP, the
Django (framework) allows for solving system of pdes using the Finite
Elements method

- Environment for Component-Based Parallel Programming

- Organized in small libraries

- Merging efficiency with generality

- Written in Fortran 2003 + MPI

- Full control of the OOP cost
àcan be made negligeable through an inlining procedure

- Robustness: more than 400 tests + Continuous Integration +
extensive documentation

- Reliability, well-defined and natural interfaces, variability

- Open systems: the components are heterogenous and will target
different architectures

- Package manager to build, install, update all components
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Welcome to the CLAPP/Django world

Solid foundations based on Category Theory (CT)

- Fortran objects are of two kinds:
� Atoms (Objects)
� Associations (Arrows)

- Allows passing lower level specifications through high level API

- Arrows are designed carefuly by taking into account 3 attributes
(or costs)
� Communication between processors
� Memory consumption
� Arithmetic operations

- A key point of (CT) is diagram commutativity (parallel paths)
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Language Theory and compilers
A brief introduction to Compilers
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Language Theory and compilers
A brief introduction to Compilers
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Formal Language Theory
Definitions

Definition (Alphabet)

An alphabet Σ is a finite nonempty set of symbols. Symbols are
assumed to be indivisible.

Definition (String)

A string over an alphabet Σ is a finite sequence of symbols of Σ.

Definition (Concatenation)

Let x = a1a2 ... an and y = b1b2 ... bm be two strings. The
concatenation of x and y , denoted by xy , is the string
xy := a1a2 ... anb1b2 ... bm.

Definition (Language)

For any alphabet Σ, a language over Σ is a set of strings over Σ. The
members of a language are also called the words of the language.
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Formal Language Theory
Definitions

Definition

The set of all strings over an alphabet Σ is denoted by Σ∗, and the
set of all nonempty strings over Σ is denoted by Σ+. The empty set
of strings is denoted by ∅.

� ε for the empty string, which contains no symbols at all

� ∀x ∈ Σ∗, we have x = εx = xε.
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Formal Language Theory
Grammars

Definition

A grammar G is a quadruple (Σ,V ,S ,P), where:

1. Σ is a finite nonempty set called the terminal alphabet. The
elements of Σ are called the terminals.

2. V is a finite nonempty set disjoint from Σ. The elements of V are
called the nonterminals or variables.

3. S ∈ V is a distinguished nonterminal called the start symbol.

4. P is a finite set of productions (or rules) of the form

α→ β

where α ∈ (Σ ∪ V )∗ V (Σ ∪ V )∗ and β ∈ (Σ ∪ V )∗, i.e. α is a
string of terminals and nonterminals containing at least one
nonterminal and β is a string of terminals and nonterminals.

A. Ratnani Cime 2017 - Cetraro 33/40

33/40



Grammar for arithmetic expressions
Backus-Naur form

n ∈ R (numbers)

expr ::= term(+expr | ε) (expressions)

term ::= factor(∗term | ε) (terms)

factor ::= (expr) | n (associativity)

This grammar can be extended easily to handle weak formulations.
à Hint: Add new non-terminal variables
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Formal Language Theory

� the set of alphabets Σ is the set all lowercase letters (ex. a, f, . . . )

� Uppercase letters will denote start symbols

� greec letters will denote any element of the alphabet and are
non-terminal elements

� the set of all (admissible) verbs is denoted V
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Formal Language Theory

ABC ::= (αβγ) | (αββγ) | (ταββγ) (verb form I, II, V)

αβγ ::= αaβγ (subject form I)

αβγ ::= maαβoγ (object form I)

αββγ ::= moαaββoγ (subject form II)

αββγ ::= moαaββaγ (object form II)

ταββγ ::= moτaαaββiγ (subject form V)

ταββγ ::= moτaαaββaγ (object form V)

What (sub)language is this?
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Rules for GLT

Given a weak formulation a(Ni ,Nj ), the following rules are used to
compute the GLT symbol

Ni ::= Ni1 (Ni2 )(Ni3 ) (tensor test function)

Nj ::= Nj1 (Nj2 )(Nj3 ) (tensor trial function)

< expr1 + expr2 >Ω ::= < expr1 >Ω + < expr2 >Ω (associaticity and integration)

< fNr1
i1
(Nr2

i2
)(Nr3

i3
)Ns1

j1
(Ns2

j2
)(Ns3

j3
) >Ω ::= f < Nr1

i1
Ns1
j1

>P1
(< Nr2

i2
Ns2
j2

>P2
)(< Nr3

i3
Ns3
j3

>P3
)

r1, r2, r3, s1, s2, s3 ∈ N (derivative orders)

f ∈ {constants, functions, fields} (user inputs)
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Formal Language for weak formulations
Examples

1 # 2D anisotropic diffusion problem

2 Domain(dim=2,kind=structured) :: Omega

3 Space(domain=Omega,kind=h1) :: V

4 Field(space=V) :: phi

5 Function(x,y) :: f

6 Function(x,y) :: b1

7 Function(x,y) :: b2

8
9 b(v::V) := < f * v >_Omega

10 a(v::V, u::V) := < b1 * b1 * dx(v) * dx(u)

11 + b1 * b2 * dx(v) * dy(u)

12 + b1 * b2 * dy(v) * dx(u)

13 + b2 * b2 * dy(v) * dy(u) >_Omega
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Formal Language for weak formulations
Examples

1 # 2D Vector Poisson

2 Domain(dim=2,kind=structured) :: Omega

3 Space(domain=Omega,kind=h1) :: V

4 Field(space=V) :: phi

5 Field(space=V) :: psi

6 Function(x,y) :: f

7 Function(x,y) :: g

8
9 b1(u::V) := < f * u >_Omega

10 b2(w::V) := < g * w >_Omega

11
12 a11(v::V, u::V) := < dx(v) * dx(u) + dy(v) * dy(u) >_Omega

13 a22(v::V, u::V) := < dx(v) * dx(u) + dy(v) * dy(u) >_Omega

14
15 b((v1,v2)::V) := b1(v1) + b2(v2)

16 a((v1,v2)::V,(u1,u2)::V) := a11(v1,u1) + a22(v2,u2)
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Language Theory for GLT
� Vale is a formal language for Variational formulations

+ available on https://github.com/ratnania/vale
+ 1d, 2d, 3d, scalar and block variables, 1st and 2nd order derivatives
+ provides a backend mecanism. You can link you favorite tool!
+ Code generation of element matrix assembly for Lua and Fortran

à OpenMP in progress
+ uses sympy
- Compatible B-Splines

� GeLaTo is a symbolic library for GLT
+ available on https://github.com/ratnania/GeLaTo
+ GLT theorems are applied by manipulating the AST given by Vale.
+ user-functions, constants
+ Detailed notebooks are available
- mapping and 2nd order derivatives: still in progress

� Based on an Abstract Grammar using
https://github.com/igordejanovic/textX

� Released version by October
� Current work: Python extension to allow for parallel computation
and code generation
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Conclusion and perspectives

� We are living in a new era because of the current architecture
revolution of super-computers

� When designing new numerical schemes, one should take into
account addition constraints

- FLOPS and memory consumption are no longer enough
à data movement is becoming more and more important (and expensive)
à new metrics are being derived in order to take into account data

movement, power consumption, . . .

� a set of libraries has been implemented to offer an automatic
computation of the GLT symbol as well as the numerical
discretization of any system of pdes (restricted to H1

discretization for the moment)

� Solid (abstract) mathematical foundations.

Simplicity does not precede complexity, but follows it.
Alan Perlis (First recipient of the Turing Award)
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