Modern computer science and IGA

IPP, Garching, Germany
July 7, 2017

A. Ratnani Cime 2017 - Cetraro

Acknowledgements: Colleagues and collaborators

B. Dingfelderz, E. Franck!, M. Gajaz, H. Guillard3,
K. Kormann?, J. Lakhlili2, A. Loyer3, C. Manni*, M. Mazza?,
B. Nkonga®, S. Serra-Capizzano®, E. Sonnendriicker?,
H. Speleers*, T-M. Tran’, X. Wang?
llnria Nancy Grand Est and IRMA Strasbourg, France
2Max—PIanck—Institut fur Plasmaphysik, Garching, Germany
3Inria Sophia-Antipolis, France
4University of Rome Tor Vergata, Rome, ltaly
5University of Nice, France
6University of Insubria, Como, Italy
7EPFL Lausanne, Switzerland
"]p 8Max—PIanck—Institut fiir Plasmaphysik, Greifswald, Germany 2 /40

A. Ratnani Cime 2017 - Cetraro

Outline

Context and introduction to Plasma Physics

® Modern architectures of supercomputers

m Applications
- Compatible B-Splines Finite Elements
- Multigrid (GLT)

| |

Modern computer science (for mathematicians)

- Language Theory and Compilers
- Language Theory and GLT

A. Ratnani Cime 2017 - Cetraro

Context and introduction to Plasma
Physics

Cime 2017 - Cetraro

R R R R RRRRRERERRERERRREEEE==S=————————
Fusion energy and Plasma Physics

Fusion DT: At sufficiently high energies, deuterium and tritium can
fuse to Helium. A neutron and 17.6 MeV of free energy are released.
At those energies, atoms are ionized forming a plasma.

Deuterium Helium
+
¢ \ - ~++‘v
é e~
+ / \ Energy
Tzu‘m Neutron

(left) The sun is a fusion reactor, (right) Fusion nuclear reaction

IPp

%/ 40

A. Ratnani Cime 2017 - Cetraro

Magnetic Confinement Fusion Devices

Tokamaks

(left) ITER machine (Cadarache, France)
(right) example of particles trajectory inside the Tokamak.

IPp

/40

A. Ratnani Cime 2017 - Cetraro

Magnetic Confinement Fusion Devices

Stellarators

(left) W7X (Greifswald, Germany)
(right) mesh example (Courtesy from F. Hindenlang)

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Introduction to Plasma Physics

Plasmas are a collection of charged particles.

Fourth state of matter along with solid, liquid and gas.

Dominant force applied on particles is electromagnetic force.

Microscopic (n-body) model consists in equations of motion of
single particles in electromagnetic field.

dx dvy q
i [— Sl B 1
o Vi, o~ (E(t, xk) + vk X B(t, xk)) (1)

® Too many particles for numerical simulations.

Statistical physics derives more tractable kinetic equations
(Boltzmann or Vlasov) from these.

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Introduction to Plasma Physics

The Vlasov-Maxwell system

IPp

Let s denotes particles species (electron, ion, impurities, .. .)
The Plasma is governed by the coupling of Vlasov-Maxwell system

ofs dfs dfs
54— a——f—E(E-f— XB) ™ =0 (2)

p:qu/fs(t,x,v)dv, J :qu/fs(t,X,V)VdV (3)

oE oB
FT + curlB = pgJ, a5 +caurlE=0 (4)

dvE=L, dvB=0 (5)
€o

m Taking the moments leads to a fluid description of the Plasma.

8 /40

A. Ratnani Cime 2017 - Cetraro

Modern architectures of
supercomputers

Cime 2017 - Cetraro

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

BowmmrwET1

2/600,000,000
00,060,060
100,000,000 -
— e shows rasstr
[=] B oot
S omom g ey
E -
=]
8 1,000,000 —_
£ -
-
100,000 -
S =
.
10,000 =% am
LR =
.
2304
r T T T 1
171 1330 1730 2000 2011

Date of introduction

A. Ratnani Cime 2017 - Cetraro

==
Common Processors

Processor Launched Number of Cores Freq.

E3-1500 v6 (Mobile, 7th generation) 2017-Q1 2-4 2.1-3.0 Ghz
Xeon D-1500 (formerly Broadwell) 2016-Q1 8-10 1.6-2.4 Ghz
E3-1200 v5 (Desktop, 6th generation) 2015-Q4 2-8 1.5-2.2 Ghz
Xeon E5-2600 v3 (formerly Haxwell) 2015-Q3 4 2-2.8 Ghz

Table : Some Intel processors

Processor L2 cache Number of Cores Freq.

Opteron 6386 SE 16 MB 16 2.8-3.5 Ghz
Athlon X4 880K (Desktop) 4 MB 4 4.0-4.2 Ghz
Athlon X2 450K (Desktop) 1 MB 2 3.5-3.9 Ghz

Table : Some AMD processors

A. Ratnani Cime 2017 - Cetraro

Top 500

Performance Development

10 EFlop/s
1 EFlop/s
100 PFlop/s
10 PFlop/s
1 PFlop/s

100 TFlop/s

» -
Akasa at

10 TFlop/s

Performance

1 TFlopls ® a .
.
100 GFlop/s . -
10 GFlop/s -
1 GFlop/s w"
e
100 MFlop/s
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Lists

"]p —8—Sum ——#1 —=— #500

A. Ratnani Cime 2017 - Cetraro

Top 500 Family system share evolution

Aceelerator/CP Family System Share Accelerator/CP Family System Share Accelerator/CP Family System Share
@ 1BM Cell @ Nvidia Fermi @ Nidia Kepler
@ Niidia Fermi ® BM Cel ® Nvidia Pascal
Clearspeed ATI Radeon Iniel Xeon PFi
@ Intel Xeon Phi @ Nvidia Fermi
@ Hybrid
@ PEZV-ST
@ ATl Radeon

Figure : From left to right: 2010, 2012, 2017

A. Ratnani Cime 2017 - Cetraro

Walls of modern supercomputers

® Programming wall
m writing parallel codes is time-consuming
= Memory wall
- Latency of the memory is decreasing very slowly
- Concurence: number of cores per memory module is increasing
- Technological advances on memory are very slow
= Portability wall
m CPUs, GPUs, Mics
- Portability is mandatory
= Power wall
- Dissipated power ~ w3 (freq.)
- Dissipated power per cm? is limited by the cooling system
- Power costs are expensive (critical for Exascales)

A. Ratnani Cime 2017 - Cetraro

Walls of modern supercomputers

m The computing power of supercomputers is doubling every year
(faster than Moores Law, but electrical consumption is also
increasing).

® The number of cores is increasing rapidly (massively parallel (IBM
Blue Gene Q) and many-cores architectures (Intel Xeon Phi)).

= Emergence of heterogeneous accelerated architectures (standard
processors coupled with GPU).

® Machine architecture is becoming more complex and the number
of layers increasing (processors/cores, memory access, network and
1/0O).

m Memory per core has been stagnating and is beginning to decrease.

m Performance per core is stagnating and is much lower on some
machines than on a simple laptop (IBM Blue Gene).

® Throughput towards the disk and memory is increasing more slowly
than the computing power.

14
Ipp A. Ratnani Cime 2017 - Cetraro /40

Memory wall

= On-chip (in opposition to off-chip) caches are faster, but very small

size
® Large caches have delays

- Hardware to check longer addresses in cache

- Associativity (needed for more general set of data in cache)
= Even worse between Cores or Nodes (and depends on the topology)

Local
RAM

Memory Controller I

L3

| 12

L2

Lz

L2 |

123008
2100-0INA

CPU 3

CPU 2

CPU1

CPU O

Cime 2017 - Cetraro

A. Ratnani

Amdahl's Law

® Amdahl’s Law predicts the theoretical maximum speedup obtained
by parallelizing a code ideally, for a given problem with a fixed size:
Ts 1

»(P) = Ti(P) ~ 44 @)

with Sp the speedup, T is the execution time of the sequential
code (monoprocessor), T”(P) the execution time of the ideally
parallelized code on P cores and « the non-parallelizable part of
the application.

m Regardless of the number of cores, the speedup is always less than
the inverse of the percentage represented by the purely sequential
fraction.

A. Ratnani Cime 2017 - Cetraro

Amdahl's Law

%20 500
8| — —
o 400
60 ideal speedup
300
g 50 s
3 3
8 8
&40 &
200
30
2 100
10 S
100 200 300 400 0 o 100 200 300 400 500
number of cores number of cores

A. Ratnani Cime 2017 - Cetraro

Gustafson-Barsis Law

m The Gustafson-Barsis Law predicts the theoretical maximum

il 3

speedup obtained by parallelizing a code ideally for a problem of

constant size per core, and supposing that the execution time of
the sequential fraction does not increase with the overall problem
size:

Sp(P) =a+ P(1—un)

with Sp the speedup, P number of cores and « the
non-parallelizable part of the application.

This law is more optimistic than Amdahls because it shows that
the theoretical speedup increases with the size of the problem
being studied.

A. Ratnani Cime 2017 - Cetraro

Consequences

Consequences for the applications
® |t is necessary to exploit a large number of relatively slow cores.

® Tendancy for individual core memory to decrease: Necessity to not
waste memory.

m Higher level of parallelism continually needed for the efficient usage
of modern architectures (regarding both computing power and
memory size).

m The 1/0 also becoming an increasingly current problem.
Consequences for the developers

m The time has ended when you only needed to wait a while to obtain
better performance (i.e. stagnation of computing power per core).

® Increased necessity to understand the hardware architecture.

= More and more difficult to develop codes on your own (need for
experts in HPC as well as multi-disciplinary teams).

IPp 18 /40

A. Ratnani Cime 2017 - Cetraro

R R R R RRRRRERERRERERRREEEE==S=————————
Programming methods and languages

= MP|

OpenMP

OpenACC

m Task based parallelism (for example starpu)

Alternative solutions
= TBB (restricted to Inel compilers and C++)
= DSL (Chapel, Terra, Liszt ...)

A. Ratnani Cime 2017 - Cetraro

Applications

Cime 2017 - Cetraro

Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.

Examples
® Pros

+ facilitates fast conversion among sparse formats
B matrix_coo + permits duplicate entries (see example)
m matrix_bnd + very fast conversion to and from CSR/CSC

) formats

® matrix_csr + very fast conversion of kronecker linear
B matrix_csc operators
= matrix_cds = Cons

- arithmetic operations

- slicing

A. Ratnani Cime 2017 - Cetraro

Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

® matrix_coo = Pros

® matrix_bnd + memory consumption
B matrix_csr + band solvers
= Cons

- works only for 1d

® matrix_csc

® matrix_cds

A. Ratnani Cime 2017 - Cetraro

Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.

Examples

= Pros

+ efficient arithmetic operations CSR + CSR,

B matrix_coo CSR * CSR, etc

® matrix_bnd + efficient row slicing
B matrix_csr + fast matrix vector products
= Cons

® matrix_csc o ' _

- slow column slicing operations (consider CSC)

- changes to the sparsity structure are expensive
(consider LIL or DOK)

® matrix_cds

IPp 21/40

A. Ratnani Cime 2017 - Cetraro

Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.
Examples

= Pros

B matrix_coo - . .
+ efficient column slicing, column-oriented

= matrix_bnd operations
® matrix_csr + suited for some direct solvers
= Cons

B matrix_csc
- slow row slicing, expensive changes to the

n i i
matrix_cds sparsity structure

A. Ratnani Cime 2017 - Cetraro

Sparse Matrices

A Matrix is a Linear Operator, it provides the dot subroutine.
However, a matrix has a specific internal data structure (depending
on its format) that is used to fill-in the matrix or appropriate for some
linear solvers.

Examples

= Pros

+ efficient banded matrices with bandwidth that is

® matrix_coo .
fairly constant from row to row

® matrix_bnd + can be extended to multi-dimensional case

B matrix_csr + !eads to the stencil format when the bandwidth
. is constant

® matrix_csc + well balancing for distributed memory

® matrix_cds m Cons

- (block) structured grid

A. Ratnani Cime 2017 - Cetraro

Compatible B-Splines Finite Elements

Domain Decomposition

1 2 30 0 50 6 0 5 10 3

Figure : Metis (left) and tensor (right) partitioning.

Which one is the best? why?

IPP /40

A. Ratnani Cime 2017 - Cetraro

Compatible B-Splines Finite Elements
The 2D case

Assembly Time for H(div.2) - Spline of degree 3 Speedup for Hidiv, () - Mesh : 128"
10
9%
10! s
200} / //
7
H N / Y
8 E
2 10 § 10 /
£ @
100, /
10
5
10‘7 0 ' 2 3 50 100 150 00 50 0
10 10 10 10

Cores

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Compatible B-Splines Finite Elements

The 3D case
Assembly Time for Hidiv,0) - Spline of degree 2
ty =2.255 4y =2.755
8
E|w 24 64
;
50 100 150 200 250

Cores

Statistics: Quadratic Splines on a grid

323

23101440 non zeros for H(curl)
98/304 dofs for H(curl)
13'860864 non zeros for H(div)
98304 dofs for H(div)

A. Ratnani

Cime 2017 - Cetraro

POMS: Parallel and robust Multigrid for B-Splines

Motivations and goals

a Parallel MG+GLT (blackbox) solver using distributed memory
MPI and shared memory OpenMP and OpenACC.

® main ingredient for other solvers
- Curl-Curl, Div-Div, Alfven operator, ...
- Auxiliary spaces preconditioning

|

Hybrid version MPI+OpenMP in progress (first runs on Marconi)
still in progress

POMS is supported by Eurofusion and HLST.

A. Ratnani Cime 2017 - Cetraro

POMS: Parallel and robust Multigrid for B-Splines

Marconi: HPC infrastructure

= Marconi-Al
- CPU 2x Intel Xeon E5-2697 v4 ©2.3GHz, 18 cores
- # Cores 54432
Nodes 1512
- Memory per node 128GB
= Marconi-A2
- CPU 1x Intel KNL Xeon Phi7250 ©1.4Ghz, 68 cores
- # Cores 244800

Nodes 3600
- Memory per node 96GB

ws Marconi is classified in Top500 list:

- Marconi-Al rank 46 in June 2016
- Marconi-A2 rank 12 in November 2016.

A. Ratnani Cime 2017 - Cetraro

POMS: Parallel and robust Multigrid for B-Splines

Numerical results: Setting

1. Pure MPI runs with the number of MPI tasks up to 36 (for
Broadwell) or 68 for KNL.

2. Pure OpenMP with the number of threads up to 36 (for
Broadwell) or 68 for KNL.

3. Hybrid MPI+OpenMP runs with a fixed 4 MPI tasks.

A. Ratnani Cime 2017 - Cetraro

POMS: Parallel and robust Multigrid for B-Splines

Numerical results: Preliminary results in 1D

NX = 8192, p = 10, Jacobi relax., V(2,2),ypm =60

0.3 ;
E% :8 MPI
OpenMP
0.25 \ Hybrid-4
\\\ —$ knl-mpi
?\ —{+ knl-omp
02k \31} = knl-hybrid-4| -
T |
E o015+ SOVK
o N \ }&\ N ﬁzs{
= N\ AN 7
011 | XL 2{3{
0.058\ \G\\ o RIS ¥ — N oK
o _ 9 @—Qg_,@;:;@—aﬂ
B ~0=-@=
0 ‘
10° 10’ 102

Number of Cores

Figure : Strong scaling runs for pure MPI, pure OpenMP and hybrid
Broadwel 26 /40

le Marconi node, using
Cime 2017 - Cetraro

"]p PI+0penMP (with fixed 4 MPI) on a sing

A. Ratnani

POMS: Parallel and robust Multigrid for B-Splines

Numerical results: Preliminary results in 1D

; NX=8192, p=10, Jacobi relax., V(2,2), knl (4 MPI tasks/17 threads) .
T T T T T 10

10

-e— PMUMS at coarsest grid
* 5 PCG iterations at coarsest grid

Number of MG iterations

102 I I I I I 100

26

/ 40

Cime 2017 - Cetraro

Modern computer science (for
mathematicians)

or how to make coding GREAT
again?

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Pattern design for parallel computations

Linear Operators

Linear Operators are objects that provide only a generic dot method.
L:x—y=1L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.

Examples

® |inear_operator_kron

® |inear_operator_block
. . L=A1®A, AIQ@A®A;3
m linear_operator_expansion
m linear_operator_custom

m linear_operator_derivative

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Pattern design for parallel computations

Linear Operators

Linear Operators are objects that provide only a generic dot method.
L:x—y=1L(x)

A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.

Examples

® |inear_operator_kron
® |inear_operator_block A o Aim
m linear_operator_expansion
m linear_operator_custom

m linear_operator_derivative

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Pattern design for parallel computations

Linear Operators

Linear Operators are objects that provide only a generic dot method.
L:x—y=1L(x)
A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.
Examples

® |inear_operator_kron

.l

linear_operator_block [— ZﬂékAk

® |inear_operator_expansion K

m linear_operator_custom

m linear_operator_derivative

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Pattern design for parallel computations

Linear Operators

Linear Operators are objects that provide only a generic dot method.
L:x—y=1L(x)

A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.

Examples

® |inear_operator_kron

® |inear_operator_block The user needs only to

® linear_operator_expansion provide a procedure pointer

® |inear_operator_custom

m linear_operator_derivative

A. Ratnani Cime 2017 - Cetraro

EEEEEEEEEEEEEEEEEERERRlRREEEE——
Pattern design for parallel computations

Linear Operators

Linear Operators are objects that provide only a generic dot method.
L:x—y=1L(x)

A linear operator is defined by its action on arrays. No assumption is
maid on the internal data structure.

Examples

® |inear_operator_kron

® linear_operator_block F(u+ ev) — F(u)

. . Jv =
® |inear_operator_expansion €

® linear_operator_custom

® |inear_operator_derivative

A. Ratnani Cime 2017 - Cetraro

What is CLAPP/Django?
Within the CLAPP environment developped at the NMPP, the
Django (framework) allows for solving system of pdes using the Finite

Elements method

- Environment for Component-Based Parallel Programming
- Organized in small libraries

- Merging efficiency with generality

- Written in Fortran 2003 + MPI

- Full control of the OOP cost
mcan be made negligeable through an inlining procedure

- Robustness: more than 400 tests + Continuous Integration +
extensive documentation

- Reliability, well-defined and natural interfaces, variability

- Open systems: the components are heterogenous and will target
different architectures

- Package manager to build, install, update all components

A. Ratnani Cime 2017 - Cetraro

Welcome to the CLAPP /Django world

Solid foundations based on Category Theory (CT)

- Fortran objects are of two kinds:
o Atoms (Objects)
0 Associations (Arrows)
- Allows passing lower level specifications through high level API

- Arrows are designed carefuly by taking into account 3 attributes
(or costs)

0 Communication between processors
O Memory consumption
0 Arithmetic operations

- A key point of (CT) is diagram commutativity (parallel paths)

A. Ratnani Cime 2017 - Cetraro

Language Theory and compilers

A brief introduction to Compilers

Source text

|

COMPILER

Front-end analysis

Semantic representation

Back-end synthesis

L]
URUNY

~

Executable code

D

Figure 1: Conceptual structure of a compiler

A. Ratnani Cime 2017 - Cetraro

Language Theory and compilers

A brief introduction to Compilers

Lexical analysis Synthax analysis Context handling
Code generation

Intermediate
code (AST)

Interpetation

Figure 2: Conceptual structure of a compiler

A. Ratnani Cime 2017 - Cetraro

Formal Language Theory

Definitions

Definition (Alphabet)

An alphabet X is a finite nonempty set of symbols. Symbols are
assumed to be indivisible.

Definition (String)

A string over an alphabet X is a finite sequence of symbols of X.

Definition (Concatenation)

Let x = ajar...ap and y = b1 by ... by, be two strings. The
concatenation of x and y, denoted by xy, is the string
Xy := ai1az...apbibs ... bp,.

Definition (Language)

For any alphabet X, a language over X is a set of strings over . The
members of a language are also called the words of the language. P

IPp

32
A. Ratnani Cime 2017 - Cetraro /40

R R R R RRRRRERERRERERRREEEE==S=————————
Formal Language Theory

Definitions

Definition

The set of all strings over an alphabet X is denoted by >*, and the
set of all nonempty strings over X is denoted by 7. The empty set
of strings is denoted by @.

m ¢ for the empty string, which contains no symbols at all

B Vx € 2% we have x = ex = xe.

A. Ratnani Cime 2017 - Cetraro

Formal Language Theory

Grammars

A grammar G is a quadruple (X, V, S, P), where:

1. X is a finite nonempty set called the terminal alphabet. The
elements of X are called the terminals.

2. V is a finite nonempty set disjoint from X. The elements of V are
called the nonterminals or variables.

3. S € V is a distinguished nonterminal called the start symbol.
4. P is a finite set of productions (or rules) of the form

x— B

wherea € (ZUV)*V(ZUV) and B€ (ZUV)", ie aisa
string of terminals and nonterminals containing at least one
nonterminal and f is a string of terminals and nonterminals.

33
Ipp A. Ratnani Cime 2017 - Cetraro /a

Grammar for arithmetic expressions

Backus-Naur form

n € R

(numbers)
expr = term(+expr | €) (expressions)
term = factor(xterm | €) (terms)
factor ::= (expr) | n (associativity)

This grammar can be extended easily to handle weak formulations.
w Hint: Add new non-terminal variables

A. Ratnani

Cime 2017 - Cetraro

Formal Language Theory

® the set of alphabets X is the set all lowercase letters (ex. a, f, ...)

m Uppercase letters will denote start symbols

greec letters will denote any element of the alphabet and are
non-terminal elements

the set of all (admissible) verbs is denoted V

A. Ratnani Cime 2017 - Cetraro

Formal Language Theory

ABC == (aBy) | (aBBy) | (TaBB7) (verb form I, 11, V)
afy u= waPy (subject form 1)
aBfy = maafoy (object form 1)
afBy = moaaBBoy (subject form 11)
afBy = moaaBBay (object form 11)
TafBy := motawnaBBiy (subject form V)
Ta BBy ::= motanaPfay (object form V)

What (sub)language is this?

A. Ratnani Cime 2017 - Cetraro

Rules for GLT

Given a weak formulation a(Nj;, N;), the following rules are used to

compute the GLT symbol
N; = N (N,)(N) (tensor test function)

N; = N (Ng,)(Ng) (tensor trial function)
< expri + expra >q n= < expri >q + < expr, > (associaticity and integration)
r r. r 5 s S I rn pJs NS r3 pJSs:
< NG (NSYNBING (NFYNG) >0 o= £ < Ng NGt >p, (< NERGE >0, (< NPNE >p;)
r,r,r3, s, 2,3 € N (derivative orders)

f € {constants, functions, fields} (user inputs)

Cime 2017 - Cetraro

A. Ratnani

Formal Language for weak formulations

Examples
1 # 2D anisotropic diffusion problem
2 Domain(dim=2,kind=structured) :: Omega
3 Space(domain=Omega,kind=h1) :: V
4 Field(space=V) :: phi
5 Function(x,y) :: f
6 Function(x,y) :: bl
7 Function(x,y) :: b2
8

9 b(v::V) := < f *x v >_Omega
10 a(v::V, u::V) < bl * bl * dx(v) * dx(u)

11 + bl * b2 * dx(v) * dy(u)
12 + bl * b2 * dy(v) * dx(u)
13 +

b2 * b2 * dy(v) * dy(u) >_Omega

A. Ratnani Cime 2017 - Cetraro

R R R R RRERRRRRREEEE=—S=S—————————
Formal Language for weak formulations

Examples

1 # 2D Vector Poisson

2 Domain(dim=2,kind=structured) :: Omega
3 Space(domain=Omega,kind=h1) :: V

4 Field(space=V) :: phi

5 Field(space=V) :: psi

6 Function(x,y) :: f

7 Function(x,y) :: g

8

9 Dbi(u::V) := < f * u >_Omega
10 b2(w::V) := < g * w >_Omega
11

12 a1i(v::V, u::V)
13 a22(v::V, u::V)

< dx(v) * dx(u) + dy(v) * dy(u) >_Omega
< dx(v) * dx(u) + dy(v) * dy(u) >_Omega

15 b((v1,v2)::V) := bl(vl) + b2(v2)
16 a((vi,v2)::V,(ul,u2)::V) := ali(vi,ul) + a22(v2,u2)

A. Ratnani Cime 2017 - Cetraro

Language Theory for GLT

m Vale is a formal language for Variational formulations

available on https://github.com/ratnania/vale

1d, 2d, 3d, scalar and block variables, 1st and 2nd order derivatives

provides a backend mecanism. You can link you favorite tool!

Code generation of element matrix assembly for Lua and Fortran

m OpenMP in progress

+ uses sympy

- Compatible B-Splines

GelLaTo is a symbolic library for GLT

+ available on https://github.com/ratnania/GelLaTo

+ GLT theorems are applied by manipulating the AST given by Vale.

+ user-functions, constants

+ Detailed notebooks are available

- mapping and 2nd order derivatives: still in progress

Based on an Abstract Grammar using

https://github.com/igordejanovic/textX

Released version by October

Current work: Python extension to allow for parallel computation

IPp and code generation 3
A. Ratnani Cime 2017 - Cetraro 40

++ 4+

Conclusion and perspectives

® We are living in a new era because of the current architecture
revolution of super-computers

® When designing new numerical schemes, one should take into
account addition constraints
- FLOPS and memory consumption are no longer enough
m data movement is becoming more and more important (and expensive)
m new metrics are being derived in order to take into account data

movement, power consumption, ...

® 3 set of libraries has been implemented to offer an automatic
computation of the GLT symbol as well as the numerical
discretization of any system of pdes (restricted to H?
discretization for the moment)

= Solid (abstract) mathematical foundations.

Simplicity does not precede complexity, but follows it.
Alan Perlis (First recipient of the Turing Award)

A. Ratnani Cime 2017 - Cetraro

