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Distance to a spline space

For f € Lq([a, b]) we define

distg(f,Spe) = SeirSn’E If = slligqapy, 1<g<oo. (1)
P,

We are also interested in estimates for the distance between
derivatives of f and derivative spline spaces.

» For a given f € W([a, b]) with 1 < g <ocoand 0 <r <p,
we define

disty(D'f, D'Spe) := Seirsme ID"(f = S)Ly(ap)y,  (2)
P,

where D = D,.



Main theorem

We will derive the following upper bound for distq(D"f, D"S, ¢).

Theorem
Forany0<r</{<pandfc Wf“([a,b]) with 1 < g < co we
have

disty(D"f,D'Sp¢) < K(hﬁ)”liruD£+1fHLq([a,b])7
where hg := maxpi1<j<n(§j+1 — &) and K is a constant depending

only on p.

For ¢ = p the upper bound behaves like (hg)P™1~" for sufficiently
smooth f.



Main approximation theorem

The distance result will be shown by explicitly constructing a
suitable spline quasi-interpolant s, which achieves this order of
approximation for all r.

Theorem
Let f € W, ([a, b]) with 1 < q < o0 and 0 < ¢ < p. Then, there
exists s, € Sp ¢ such that

1D (F = $p)llLy(tatly < KHE T ID Fll Lyappy, 0 < r <4, (3)

where hg == maxp1<j<n(§j+1 — &) and K is a constant depending
only on p.



The Quasi-interpolant

Let [€m;; Em+1] be a knot interval of largest length in [&), &4 p11]
forany j=1,...,nand h; ¢ :=Em+1 — Em; > 0. Define

Qpif Z‘ijﬁfBJPE( ), (4)
j=1
where
gmj+1 P X — é’m i
Lipef = / (D i) F(x)dx, (%) = ( b *)
J:p& I Em, i—0 U»p-€
(5)
and the coefficients o ;, i = 0,..., p are such that
Ljpepii=Gij 1=0,...,p, (6)
where
m;
SOj,i(X) = Z Cj,i,kBk,p,ﬁ(X)v X € [gmjﬂgmj+1)7 i1=0,...,p.
k=mj—p



Qp.¢ Is a projector

Lemma
The above spline approximation is well defined and reproduces
polynomials, i.e., for any polynomial g € P, we have

Qpeg(x) =g(x), x€la bl (8)

Moreover, it is a projector onto the spline space Sy ¢, i.e., for any
spline s € S, ¢ we have

QP{S(X) = S(X)v X € [aa b]v (9)

and, in particular,

n

s(x) =Y (Ljpes)Bipe(x), x€[a b]. (10)

j=1



Proof Q,¢ is a projector

By the degree of reproduction and spline projection propositions it follows
that Q, ¢ is a projection onto the spline space provided it is well defined,
i.e., we can find «;; such that (6) holds . For this we find

1 Emj+1 P P
Ljpepir= 7/ (> i) @) dx = > ajiHit1 i1,
i=0

hipe Je,, i
where
1 §mj+1 1
Hij1,401 = / Giirr(X)dx = ————, i,r=0,...,p.
5 h Js I r 17 ’ 9 )
P& J Em, +r+
It follows that the coefficients «; ; are given by the solution of the linear
system
Haj = ¢, (11)

where o 1= (q; ajp)’, ¢ =(co ¢.p )T, and

J - 4,00 Qyip) o0 & 4505 =+ 0 Sipd)

H € R(PT)X(PF1) is the well known Hilbert matrix which is

nonsingular. O



The linear functionals are bounded

Lemma
For p >0 and 1 < q < oo we have for any f € Lqg([§m;s Em+1]),

1L pef] < Cahy e NN oy &meatys 4 =1, (12)

where Cg is a constant depending only on p.



Proof that the linear functionals are bounded

» Emy], we get

fm 1
/ Zaj 01 (x)) F(x) dx]
hjp.e =

<(p+1)h pgllajlloo Nl Lyt )
< (p+ Dy ellIH ™ ol lloc I |t -

|'CJP€f| = |

We have ¢; = (¢j0j,.-.,¢p,j)’ and

DP™ "4 p.&(Em)

hJ’P€

< <§J+P+1 5]) S(P"‘l)i, i=0,...,p.

1.,
G ’J| PI hj,p,ﬁ

This gives
1Lpef| < Cohppellflu(ten emat):  Co = IIH Hlso(p + 1)PH,

where Cg only depends on p. By the Holder inequality for integrals we
arrive at (12).

O



Bounding derivatives of B-splines

From partition of unity and nonnegativity:
Bj,p@(x) <1, xeR.

If x € [€m,Emt+1) with j < m < j + p then it follows from the
differentiation formula

B" -1, X B 1,p—1, X
D+Bj7p7§(X) — P< J.P _5( ) _ 'JJr p _5(' )>
5J+p fj £J+P+1 §J+1

that

2p
D, B; X)) < — .
DByl < Emt1—Em



More generally using the differentiation formula for B-splines we
can prove

Proposition

The r-th derivative of the B-spline B , ¢ for 0 < r < p can be
bounded as follows. For any x € [{m,Em+1) withj < m <j+ p we
have

P
p! 1
DBl <2y 1l 7 @
’ k=p—r+1 m,
where
Ak = mileiQngi-}—k =&, k=1,...,p. (14)

For r = 0,1 the right-hand side becomes the upper bound we had
on the previous slide

» r = 0: right-hand side = 1

» r = 1: right-hand 51de e gm



Qpef; bound for derivatives

Lemma
For0<r<pandl<qg< oo we have for any

fe Lq([fm—pafm—&-p—&-l]) withp+1<m<n,

P
) 1
HD(Qp,sf)lhq([sm,fmﬂl)ﬁC( II - p

where Jp = [Em—p, Emtp+1) and

Am,k = min 5,'_,_/(—5,', k = 1,...

m—k+1<i<m

and C is a constant depending only on p.



Proof Q,¢f; bound for derivatives

For x € [{m, Emt1),

m

[D"(Qpef)(x

Lj, pE DrBj,pyﬁ(X)

j=m—

< max  [D'Bjpe(x ‘Z L) p.e(f

m—p<j<m immep

<(p+1) max |D* ijs(X)|m max_ (£m+1—£m) Y 1|1y (-

This follows since [m, Emt1] C [€), &j+p+1] and hj p ¢ is the length
of the largest knot interval in [£;, {4 p+1] SO we have

Emt1 — Em < h png"J—m p;...,m.

Replacing |D" Bj,p,ﬁ( x)| by an upper bound and taking the Lg-norm
complete the proof. O



The quasi-interpolant Q, ¢f can be used to obtain an upper bound
for the distance between a given function f and the spline space
Spe forp>0,n>p+1and§:= {fj}}’ifﬂ. We start by giving
a local and global upper bound for (the derivatives of) the
difference between f and Q, ¢f.



Local and global upper bound

Proposition

Suppose £y < Ema1 for some p+1 < m < n, and let

fe W§+1([§m_p,§m+p+1]) with0 < /¢ <pandl<qg<oo. Then,
forany 0 < r </,

ID"(F=Qp )l Lo(tmemel) < Km(Empt1—Em—p) T IDF Il Ly(ten—pmma])-

Here,
e T
K,=1+C H M’
k=p—r+1 m,k

A = min ik — &, k=1,...
m,k m—k+1§i§m§l+k élv ) » Py

and C is a constant depending only on p.



Proof Local upper bound

Since Q, ¢ reproduces any polynomial in P,
||Dr(f - Ql%gf)HLq([fmaferl])
< ID"(F = &)l La(tememead) T 1D Lp.e(F = &)l Lot mia))

for any g € Py. Let us now set g := T¢, (f, where T¢_,f is the Taylor
polynomial of degree £. Then

ID"(f = @)ltg(tmenmal) < Emir = Em) T ID | Lyt )

On the other hand, since f — g € C(Jn), it follows from Lemma 6 that

P
, 1
10" Cp.e(F = &)Ly emal) < C( [ ~- k> 1 = &llatten-pimeniads

k=p—r+1 m

where C is a constant depending only on p. Combining the above three
inequalities gives the result. O



Global upper bound

Proposition
Let f € Wit ([a, b]) with0 < ¢ < pand 1< q<oo. If Qpef is
defined as in (4) then, for any 0 < r </,

ID"(F = Qo e)lLy(ta) < K™Dl Ly(a b (15)

where hg := maxpi1<j<n(§41 — &), and

K:=Q2p+ 1)£+2 "1+ C max H —€m+p+1 Em—p

+1<m<n A
p k=p—r+1 m, k

A = min h; hix =& —&, k=1,...
m,k m—k1<i<m INS) ik §I+k gl? ) » Py

and C is a constant depending only on p.



Proof Global upper bound

For g = oo the result follows immediately from Proposition 7 by
taking into account that £ can be assumed to be a (p + 1)-open
knot sequence. We now assume 1 < g < oco. Since

— <
p+'in§ar31(§n(£m+p+l Sm—p) > (2P + 1)/757

the result follows from the local error bound in Proposition 7. [



Local mesh ration

We know that the ratio 5’"”31% is well defined because
Ap > 0. For a uniform knot sequence

€m+P+1 - gm—p _ 2P +1
Ak k

For a general knot sequence it is related to the local mesh ratio,
i.e., the ratio between the lengths of the largest and smallest knot
intervals in a neighborhood of &,,.



Knot thinning

The expression K in the upper bound in Theorem 8 depends on
the position of the knots for r > 0. However, for any knot
sequence &, it is possible to construct a coarser knot sequence Eﬁ
such that the corresponding K only depends on p. This can be
obtained by a clever thinning process. The idea of thinning out a
knot sequence to get a quasi-uniform sequence is credited to
Sharma and Meir,1966. Since &% is a subsequence of £, we have
that S is a subspace of S, ¢. In particular, for any

fels ([a b]) the spline approximation

Sp = Qpetf

as defined in (4) belongs to the spline space S, ¢. This spline
quasi-interpolant leads to the following important result.



Main approximation theorem

Theorem
Let f € Wf“([a, b]) with1 < g < oo and 0 < ¢ < p. Then, there
exists s, € Sp ¢ such that

1D (F=5p) (o) < KHETTID | yqqay), O < r <L, (16)
where hg := maxpi1<j<n(&41 — &) and
K<(@p+1)*> 1+ C-3(2p+1)].

K is a constant depending only on r, p, since C is the constant in
the global upper bound proposition depending only on p.



The constant depends on the degree

Theorem 9 implies Theorem 1. The constant K in Theorem 9 is
independent of the mesh, but grows exponentially with p.
However, this dependency on p can be removed in some cases.



