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The word Spline

Figure: A physical spline with ducks.

I Physical spline: a flexible beam with minimal potential energy.

I Kept in place using ”ducks”.

I Nonlinear spline: minimal integrated square curvature

I Holladay 1957. Rediscover minimal norm property of cubic
splines. (known to Euler).



What is a spline?

I Variational approach.. It is not a spline unless it minimizes
something (for a long time the French view)

I Constructive approach1. A spline is a linear combination of
B-splines (Carl de Boor).

I Constructive approach2. Any piecewise polynomial is a
spline (Larry Schumaker).

I Constructive approach3. Any piecewise analytic function is
a spline (Even Mehlum).

I Constructive approach4. Any piecewise sufficiently smooth
function is a spline.

I will only talk about piecewise polynomials.



The variational approach

Ahlberg Nilson, Walsh, 1967 P-J Laurent, 1972



The constructive approach



Linear combinations of B-splines



Knot sequence

Suppose for integers n > p ≥ 0 that a knot sequence

ξ := {ξi}n+p+1
i=1 = {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}, n ∈ N, p ∈ N0,

is given. This knot sequence allows us to define a set of n
B-splines of degree p, namely

{B1,p,ξ, . . . ,Bn,p,ξ}. (1)



The spline space

We consider the space

Sp,ξ :=

{
s : [ξp+1, ξn+1]→ R : s =

n∑
j=1

cjBj ,p,ξ, cj ∈ R
}
. (2)

This is the space of splines over the basic interval

[a, b] := [ξp+1, ξn+1].



Open knot sequence

A knot sequence ξ = (ξj)
n+p+1
j=1 is called (p + 1)-open if

I ξj+p+1 > ξj , j = 1, . . . , n

I ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1.

Unless said otherwise ξ is an (p + 1)-open knot sequences. This is
no restriction and we have∫ b

a
Bj ,p,ξ(x)dx =

ξj+p+1 − ξj
p + 1

, j = 1, . . . , n.



The right endpoint

I We consider B-splines on a closed interval

[a, b] := [ξp+1, ξn+1].

In order to avoid the asymmetry at the right endpoint we
define the B-splines to be left continuous at the right
endpoint, i.e., its value at b = ξn+1 is obtained by taking
limits from the left:

Bj ,p,ξ(b) := lim
x→b
x<b

Bj ,p,ξ(x), j = 1, . . . , n. (3)



Properties

From the properties of B-splines, we immediately conclude the following
properties of the spline s =

∑n
j=1 cjBj,p,ξ.

I Smoothness.
“smoothness + multiplicity= degree”

I Local support.

n∑
j=1

cjBj,p,ξ(x) =
m∑

j=m−p

cjBj,p,ξ(x), x ∈ [ξm, ξm+1), p+1 ≤ m ≤ n.

(4)

I Linear independence. The spline space Sp,ξ is a vector space of
dimension n.

I differentiation.

s ∈ Sp,ξ =⇒ D+s ∈ D+Sp,ξ := Sp−1,ξ1
, ξ1 = (ξj)

n+p
j=2



Two evaluation algorithms

(can easily be extended to compute derivatives)



Computing nonzero cubic B-splines, Bj ,3,τ
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Figure: A triangular algorithm for computation of all the nonzero cubic
B-splines at x ∈ [τµ, τµ+1).



de Boor algorithm. Compute s(x) =
∑n

j=1 cj ,0Bj ,3,τ (x)

Figure: A triangular algorithm for computing the value of a cubic spline
with B-spline coefficients c at x ∈ [τµ, τµ+1).



Piecewise polynomials

Let ∆ be a sequence of distinct real numbers,

∆ := {η0 < η1 < · · · < η`+1}.

The elements in ∆ are called break points. Moreover, let
r := (r1, . . . , r`) be a vector of integers such that −1 ≤ ri ≤ p for
i = 1, . . . , `. The space Sr

p(∆) of piecewise polynomials of degree
p with smoothness r over the partition ∆ is defined by

Sr
p(∆) :=

{
s : [η0, η`+1]→ R : s ∈ Pp([ηi , ηi+1)), i = 0, . . . , `,

s ∈ C ri (ηi ), i = 1, . . . , `
}
.

(5)
This space is denoted by Srp(∆) when r = r1 = · · · = r`.



Piecewise polynomials and B-splines

The next theorem shows that the set of B-splines in (??) defined
over a specific knot sequence ξ forms a basis for Sr

p(∆).

Theorem (Curry–Schoenberg)

The piecewise polynomial space Sr
p(∆) is characterized in terms of

B-splines by
Sr
p(∆) = Sp,ξ,

where the knot sequence ξ := {ξi}n+p+1
i=1 with n := dim(Sp,ξ) is

constructed such that

ξ1 ≤ · · · ≤ ξp+1 := η0, η`+1 =: ξn+1 ≤ · · · ≤ ξn+p+1,

and

ξp+2, . . . , ξn :=

p−r1︷ ︸︸ ︷
η1, . . . , η1, . . . ,

p−r`︷ ︸︸ ︷
η`, . . . , η` .



Marsden’s identity

The local Marsden identity implies

Theorem
We have

(y − x)p =
n∑

j=1

ψj ,p,ξ(y)Bj ,p,ξ(x), x ∈ [a, b], y ∈ R, (6)

where ψj ,p,ξ(y) := (y − ξj+1) · · · (y − ξj+p) is the polynomial of
degree p that is dual to Bj ,p,ξ.



Shifted monomials as B-splines

Differentiating p − k times with respect to y in

(y − x)p =
n∑

j=1

ψj ,p,ξ(y)Bj ,p,ξ(x)

results in

Corollary
For k = 0, 1, . . . , p we have

(y − x)k

k!
=

n∑
j=1

(
1

p!
Dp−kψj,p,ξ(y)

)
Bj,p,ξ(x), x ∈ [ξp+1, ξn+1], y ∈ R.

(7)



Greville points

(y − ξj+1) · · · (y − ξj+p) = yp − (ξj+1 + · · ·+ ξj+p)yp−1 + · · ·

Taking k = 1 in

(y − x)k

k!
=

n∑
j=1

(
1

p!
Dp−kψj ,p,ξ(y)

)
Bj ,p,ξ(x),

setting y = 0 and simplifying

x =
n∑

j=1

ξ∗j ,p,ξBj ,p,ξ(x), x ∈ [ξp+1, ξn+1], (8)

where

ξ∗j ,p,ξ := ξ∗,1j ,p,ξ =
ξj+1 + · · ·+ ξj+p

p
. (9)

The number ξ∗j ,p,ξ is called a Greville point. It is also known as a
knot average or a node.



Cubic powers

For p = 3 we obtain

1 =
n∑

j=1

Bj ,3,ξ,

x =
n∑

j=1

ξj+1 + ξj+2 + ξj+3

3
Bj ,3,ξ,

x2 =
n∑

j=1

ξj+1ξj+2 + ξj+1ξj+3 + ξj+2ξj+3

3
Bj ,3,ξ,

x3 =
n∑

j=1

ξj+1ξj+2ξj+3 Bj ,3,ξ.



NURBS



NURBS

I NURBS basis function.
Ri ,p,ξ,w (x) :=

wiBi,p,ξ(x)∑n
j=1 wjBj,p,ξ(x)

, wj > 0.

I NURBS basis function properties.
Positivity, Partition of unity, Compact support, Smoothness
related to knot multiplicity

I NURBS curve.
∑n

i=1 c iRi ,p,ξ(t), c i ∈ Rd , d ≥ 2.

I projective transformation of a B-spline curve in Rd+1.(∑n
i=1 c iwiBi ,p,ξ(t),

∑n
i=1 wiBi ,p,ξ(t)

)



NURBS ellipses, (p = 2)

3 120 degree segments, 4 quarter ellipses
ξ := (0, 0, 0, 1, 1, 2, 2, 3, 3, 3) ξ := (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4)

w := (1, 1
2 , 1,

1
2 , 1,

1
2 , 1) w := {1, 1√
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2
, 1, 1√

2
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2
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Surfaces



I Coons patches

I Tensor-product splines

I T-splines, hierarchical splines, LR splines,· · ·
I Multivariate B-splines

I Simplex splines
I Box splines

I Splines on triangulations and simplices



Coons Patch

Hermite interpolation to boundary curves.



Tensor-product splines



I degrees p := (p1, . . . pd).

I knot sequences Ξ := (ξ1, . . . , ξd).

I multi index j := (j1, . . . , jd).

I multi variable x := (x1, . . . , xd).

I Tensor product B-spline
Bj ,p,Ξ(x) := Bj1,p1,ξ1

(x1) · · ·Bjd ,pd ,ξd (xd), x ∈ Rd .

B[0, 1, 2; 0, 1, 2], (d = 2, p1 = p2 = 1)



Quadratic tensor-product B-splines

B[0, 1, 2, 3; 0, 1, 2, 3], B[0, 0, 0, 3; 0, 1, 2, 3],



Tensor-product grids

d = 2, d = 3



Tensor-product Splines

The tensor product of d spline spaces S1, . . . ,Sd of dimensions
n := (n1, . . . , nd) is defined to be the family of all functions of the
form

f (x) :=
∑

1≤j≤n

cjBj ,p,Ξ(x)

:=

n1∑
j1=1

· · ·
nd∑

jd=1

cj1,...,jdBj1,p1,ξ1
(x1) · · ·Bjd ,pd ,ξd (xd),

where the coefficients (cj ) can be any real numbers. This linear
space of functions is denoted S1 ⊗ · · · ⊗ Sd .
This space has dimension n1 · · · nd .



Things not treated

I Uniqueness of spline interpolation.

I Knot insertion. (h-refinement)

I Degree raising. (p-refinement)

I Combined degree raising and knot insertion.
(k-refinement)

I Geometric properties.

I · · · .


