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Distance to a spline space

For f ∈ Lq([a, b]) we define

distq(f , Sp,ξ) := inf
s∈Sp,ξ

‖f − s‖Lq([a,b]), 1 ≤ q ≤ ∞. (1)

We are also interested in estimates for the distance between
derivatives of f and derivative spline spaces.

I For a given f ∈W r
q ([a, b]) with 1 ≤ q ≤ ∞ and 0 ≤ r ≤ p,

we define

distq(Dr f ,DrSp,ξ) := inf
s∈Sp,ξ

‖Dr (f − s)‖Lq([a,b]), (2)

where D = D+.



Main theorem

We will derive the following upper bound for distq(Dr f ,DrSp,ξ).

Theorem
For any 0 ≤ r ≤ ` ≤ p and f ∈W `+1

q ([a, b]) with 1 ≤ q ≤ ∞ we
have

distq(Dr f ,DrSp,ξ) ≤ K (hξ)`+1−r‖D`+1f ‖Lq([a,b]),

where hξ := maxp+1≤j≤n(ξj+1 − ξj) and K is a constant depending
only on p.

For ` = p the upper bound behaves like (hξ)p+1−r for sufficiently
smooth f .



Main approximation theorem

The distance result will be shown by explicitly constructing a
suitable spline quasi-interpolant sp which achieves this order of
approximation for all r .

Theorem
Let f ∈W `+1

q ([a, b]) with 1 ≤ q ≤ ∞ and 0 ≤ ` ≤ p. Then, there
exists sp ∈ Sp,ξ such that

‖Dr (f − sp)‖Lq([a,b]) ≤ Kh`+1−r
ξ ‖D`+1f ‖Lq([a,b]), 0 ≤ r ≤ `, (3)

where hξ := maxp+1≤j≤n(ξj+1 − ξj) and K is a constant depending
only on p.



The Quasi-interpolant
Let [ξmj , ξmj+1] be a knot interval of largest length in [ξj , ξj+p+1]
for any j = 1, . . . , n and hj ,p,ξ := ξmj+1 − ξmj > 0. Define

Qp,ξf (x) :=
n∑

j=1

Lj ,p,ξf Bj ,p,ξ(x), (4)

where

Lj,p,ξf :=
1

hj,p,ξ

∫ ξmj +1

ξmj

( p∑
i=0

αj,iϕj,i (x)
)
f (x)dx , ϕj,i (x) :=

(x − ξmj

hj,p,ξ

)i
(5)

and the coefficients αj ,i , i = 0, . . . , p are such that

Lj ,p,ξϕj ,i = cj ,i ,j , i = 0, . . . , p, (6)

where

ϕj ,i (x) =

mj∑
k=mj−p

cj ,i ,kBk,p,ξ(x), x ∈ [ξmj , ξmj+1), i = 0, . . . , p.

(7)



Qp,ξ is a projector

Lemma
The above spline approximation is well defined and reproduces
polynomials, i.e., for any polynomial g ∈ Pp we have

Qp,ξg(x) = g(x), x ∈ [a, b]. (8)

Moreover, it is a projector onto the spline space Sp,ξ, i.e., for any
spline s ∈ Sp,ξ we have

Qp,ξs(x) = s(x), x ∈ [a, b], (9)

and, in particular,

s(x) =
n∑

j=1

(Lj ,p,ξs)Bj ,p,ξ(x), x ∈ [a, b]. (10)



Proof Qp,ξ is a projector

By the degree of reproduction and spline projection propositions it follows
that Qp,ξ is a projection onto the spline space provided it is well defined,
i.e., we can find αj,i such that (6) holds . For this we find

Lj,p,ξϕj,r =
1

hj,p,ξ

∫ ξmj +1

ξmj

( p∑
i=0

αj,iϕj,i (x)
)
ϕj,r (x)dx =

p∑
i=0

αj,iHi+1,r+1,

where

Hi+1,r+1 =
1

hj,p,ξ

∫ ξmj +1

ξmj

ϕj,i+r (x)dx =
1

i + r + 1
, i , r = 0, . . . , p.

It follows that the coefficients αj,i are given by the solution of the linear
system

Hαj = c j , (11)

where αj := (αj,0, . . . , αj,p)T , c j := (cj,0,j , . . . , cj,p,j)
T , and

H ∈ R(p+1)×(p+1) is the well known Hilbert matrix which is

nonsingular.



The linear functionals are bounded

Lemma
For p ≥ 0 and 1 ≤ q ≤ ∞ we have for any f ∈ Lq([ξmj , ξmj+1]),

|Lj ,p,ξf | ≤ CQh
−1/q
j ,p,ξ ‖f ‖Lq([ξmj

,ξmj+1]), j = 1, . . . , n, (12)

where CQ is a constant depending only on p.



Proof that the linear functionals are bounded
Since 0 ≤ x−ξmj

hj,p,ξ
≤ 1 for x ∈ [ξmj , ξmj+1], we get

|Lj,p,ξf | = | 1

hj,p,ξ

∫ ξmj +1

ξmj

( p∑
i=0

αj,iϕj,i (x)
)
f (x)dx |

≤ (p + 1)h−1
j,p,ξ‖αj‖∞ ‖f ‖L1([ξmj

,ξmj +1])

≤ (p + 1)h−1
j,p,ξ‖H

−1‖∞‖c j‖∞‖f ‖L1([ξmj
,ξmj +1]).

We have c j := (cj,0,j , . . . , cj,p,j)
T and

|cj,i,j | =
i !

p!

∣∣∣∣Dp−iψj,p,ξ(ξmj )

hij,p,ξ

∣∣∣∣ ≤ (ξj+p+1 − ξj
hj,p,ξ

)i

≤ (p+1)i , i = 0, . . . , p.

This gives

|Lj,p,ξf | ≤ CQh
−1
j,p,ξ‖f ‖L1([ξmj

,ξmj +1]), CQ := ‖H−1‖∞(p + 1)p+1,

where CQ only depends on p. By the Hölder inequality for integrals we
arrive at (12).



Bounding derivatives of B-splines

From partition of unity and nonnegativity:

Bj ,p,ξ(x) ≤ 1, x ∈ R.

If x ∈ [ξm, ξm+1) with j ≤ m ≤ j + p then it follows from the
differentiation formula

D+Bj ,p,ξ(x) = p

(
Bj ,p−1,ξ(x)

ξj+p − ξj
−

Bj+1,p−1,ξ(x)

ξj+p+1 − ξj+1

)
that

|D+Bj ,p,ξ(x)| ≤ 2p

ξm+1 − ξm
.



More generally using the differentiation formula for B-splines we
can prove

Proposition

The r-th derivative of the B-spline Bj ,p,ξ for 0 ≤ r ≤ p can be
bounded as follows. For any x ∈ [ξm, ξm+1) with j ≤ m ≤ j + p we
have

|DrBj ,p,ξ(x)| ≤ 2r
p!

(p − r)!

p∏
k=p−r+1

1

∆m,k
, (13)

where

∆m,k := min
m−k+1≤i≤m

ξi+k − ξi , k = 1, . . . , p. (14)

For r = 0, 1 the right-hand side becomes the upper bound we had
on the previous slide

I r = 0: right-hand side = 1

I r = 1: right-hand side 2p
ξm+1−ξm .



Qp,ξf ; bound for derivatives

Lemma
For 0 ≤ r ≤ p and 1 ≤ q ≤ ∞ we have for any
f ∈ Lq([ξm−p, ξm+p+1]) with p + 1 ≤ m ≤ n,

‖Dr (Qp,ξf )‖Lq([ξm,ξm+1]) ≤ C

( p∏
k=p−r+1

1

∆m,k

)
‖f ‖Lq(Jm),

where Jm := [ξm−p, ξm+p+1] and

∆m,k := min
m−k+1≤i≤m

ξi+k − ξi , k = 1, . . . , p,

and C is a constant depending only on p.



Proof Qp,ξf ; bound for derivatives

For x ∈ [ξm, ξm+1),

|Dr (Qp,ξf )(x)| =

∣∣∣∣ m∑
j=m−p

Lj,p,ξ(f )DrBj,p,ξ(x)

∣∣∣∣
≤ max

m−p≤j≤m
|DrBj,p,ξ(x)|

m∑
j=m−p

|Lj,p,ξ(f )|

≤ (p + 1) max
m−p≤j≤m

|DrBj,p,ξ(x)| max
m−p≤j≤m

(ξm+1 − ξm)−1/q‖f ‖Lq(Jm).

This follows since [ξm, ξm+1] ⊂ [ξj , ξj+p+1] and hj ,p,ξ is the length
of the largest knot interval in [ξj , ξj+p+1] so we have
ξm+1 − ξm ≤ hj ,p,ξ for j = m − p, . . . ,m.
Replacing |DrBj ,p,ξ(x)| by an upper bound and taking the Lq-norm
complete the proof.



The quasi-interpolant Qp,ξf can be used to obtain an upper bound
for the distance between a given function f and the spline space
Sp,ξ for p ≥ 0, n > p + 1 and ξ := {ξj}n+p+1

j=1 . We start by giving
a local and global upper bound for (the derivatives of) the
difference between f and Qp,ξf .



Local and global upper bound

Proposition
Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let
f ∈W `+1

q ([ξm−p, ξm+p+1]) with 0 ≤ ` ≤ p and 1 ≤ q ≤ ∞. Then,
for any 0 ≤ r ≤ `,

‖Dr (f−Qp,ξf )‖Lq([ξm,ξm+1]) ≤ Km(ξm+p+1−ξm−p)`+1−r‖D`+1f ‖Lq([ξm−p,ξm+p+1]).

Here,

Km := 1 + C

p∏
k=p−r+1

ξm+p+1 − ξm−p
∆m,k

,

∆m,k := min
m−k+1≤i≤m

ξi+k − ξi , k = 1, . . . , p,

and C is a constant depending only on p.



Proof Local upper bound

Since Qp,ξ reproduces any polynomial in P`

‖Dr (f −Qp,ξf )‖Lq([ξm,ξm+1])

≤ ‖Dr (f − g)‖Lq([ξm,ξm+1]) + ‖DrQp,ξ(f − g)‖Lq([ξm,ξm+1]),

for any g ∈ P`. Let us now set g := Tξm,`f , where Tξm,`f is the Taylor
polynomial of degree `. Then

‖Dr (f − g)‖Lq([ξm,ξm+1]) ≤ (ξm+1 − ξm)`+1−r‖D`+1f ‖Lq([ξm,ξm+1]).

On the other hand, since f − g ∈ C (Jm), it follows from Lemma 6 that

‖DrQp,ξ(f − g)‖Lq([ξm,ξm+1]) ≤ C

( p∏
k=p−r+1

1

∆m,k

)
‖f − g‖Lq([ξm−p,ξm+p+1]),

where C is a constant depending only on p. Combining the above three

inequalities gives the result.



Global upper bound

Proposition

Let f ∈W `+1
q ([a, b]) with 0 ≤ ` ≤ p and 1 ≤ q ≤ ∞. If Qp,ξf is

defined as in (4) then, for any 0 ≤ r ≤ `,

‖Dr (f −Qp,ξf )‖Lq([a,b]) ≤ Kh`+1−r
ξ ‖D`+1f ‖Lq([a,b]), (15)

where hξ := maxp+1≤j≤n(ξj+1 − ξj), and

K := (2p + 1)`+2−r
[

1 + C max
p+1≤m≤n

p∏
k=p−r+1

ξm+p+1 − ξm−p
∆m,k

]
,

∆m,k := min
m−k+1≤i≤m

hi ,k , hi ,k := ξi+k − ξi , k = 1, . . . , p,

and C is a constant depending only on p.



Proof Global upper bound

For q =∞ the result follows immediately from Proposition 7 by
taking into account that ξ can be assumed to be a (p + 1)-open
knot sequence. We now assume 1 ≤ q <∞. Since

max
p+1≤m≤n

(ξm+p+1 − ξm−p) ≤ (2p + 1)hξ,

the result follows from the local error bound in Proposition 7.



Local mesh ration

We know that the ratio
ξm+p+1−ξm−p

∆m,k
is well defined because

∆m,k > 0. For a uniform knot sequence

ξm+p+1 − ξm−p
∆m,k

=
2p + 1

k
.

For a general knot sequence it is related to the local mesh ratio,
i.e., the ratio between the lengths of the largest and smallest knot
intervals in a neighborhood of ξm.



Knot thinning

The expression K in the upper bound in Theorem 8 depends on
the position of the knots for r > 0. However, for any knot
sequence ξ, it is possible to construct a coarser knot sequence ξ]

such that the corresponding K only depends on p. This can be
obtained by a clever thinning process. The idea of thinning out a
knot sequence to get a quasi-uniform sequence is credited to
Sharma and Meir,1966. Since ξ] is a subsequence of ξ, we have
that Sp,ξ] is a subspace of Sp,ξ. In particular, for any
f ∈ L∞([a, b]) the spline approximation

sp := Qp,ξ]f

as defined in (4) belongs to the spline space Sp,ξ. This spline
quasi-interpolant leads to the following important result.



Main approximation theorem

Theorem
Let f ∈W `+1

q ([a, b]) with 1 ≤ q ≤ ∞ and 0 ≤ ` ≤ p. Then, there
exists sp ∈ Sp,ξ such that

‖Dr (f −sp)‖Lq([a,b]) ≤ Kh`+1−r
ξ ‖D`+1f ‖Lq([a,b]), 0 ≤ r ≤ `, (16)

where hξ := maxp+1≤j≤n(ξj+1 − ξj) and

K ≤ (2p + 1)`+2−r [1 + C · 3r (2p + 1)r
]
.

K is a constant depending only on r , p, since C is the constant in
the global upper bound proposition depending only on p.



The constant depends on the degree

Theorem 9 implies Theorem 1. The constant K in Theorem 9 is
independent of the mesh, but grows exponentially with p.
However, this dependency on p can be removed in some cases.


