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The space C1(/)

> Let / be a finite interval (open, half open, closed) and
f:l =R If

» f is bounded
» f is continuous except at a finite number of points, where the
value is obtained by taking the limit either from the left or the
right,
then f is said to be piecewise continuous on /. We denote
the space of these functions by C~1(/).

» For any function f € C~1([a, b]) we write f : [a*,b7] = R to
mean that f(a) := f(a+) and f(b) := f(b—). With the
notation f € C"([a*, b”]) we mean that f has continuous
derivatives up to order r on (a, b), and their limits
limx—a DV f(x), limy_p D/f(x), j=0,...,r exist and are

x>a x<b
bounded.



The L, spaces

For 1 < g < oo and | := [a, b] the L,-spaces are defined by

Lg(l):={f: 1 =R, f is measurable on / and 1L,y < 0o},

(1)

where the L,-norms are given by
1#llqry = esssup [ £(x)] ()
1Fllqry = / F()17dx) 9, 1< g <o (3)

Note that
> If f€ CTH(I) then [[fl| L (1) = supxes [F(x)]
» if [ is closed and f € C(/) then |[f||. (/) = maxxes |f(x)].



Holder inequalities

The Holder inequalities for integrals and sums are given by
[ 10010 < 17l

Z 1% yil < 1x[lq [lyllq
j=1

where g, ¢’ are integers so that

1 1
9 q

In particular, ¢ = c ifg=1and ¢ =2 if g =2.



1D Sobolev spaces

» For | a finite interval, r € Ng and 1 < g < 0o the
one-dimensional Sobolev spaces are given by

Wi ={f:1=R:feC ), D'fcly(l)}. (4)

» The Sobolev spaces are complete normed spaces with norm
r .
11y = S IDFI (5)
j=0

called the Sobolev norm. It is an inner product norm for
q=2.



Taylor approximation

The Taylor polynomial of degree p at the point a to a function
f e W2 ([a, b]) is defined by

Zp: X_a)Jfo (a), (6)

Jj=0
and its approximation error can be expressed in integral form as

1 b
00 = Tauf () = o; / (x— y)2DP () dy, x € [a.b], (7)

where (x — y)? = max((x — y)*,0).



Taylor approximation error

By differentiating the integral form of the Taylor approximation
error we find for 0 < r <p

_
(p—r)!

Using the Holder inequality and taking Ly norms we obtain

b
ID(F — TapF)(x)| = / (x — y)2~ D (y) dy.

Theorem
Let f € WE([a, b]) with 1 < g < oo, Then, for any x € [a, b]
and 0 < r < p,

(b— a)Pti=r

rfF — <
ID"(f = TapF)l Ly(ta,bl) < (p—r)!

IDP |l o). (8)



What is a quasi-interpolant?



Quasi-interpolants

In general, a spline approximating a function f can be written in
terms of B-splines as

Of (x) := > Af Bjpe(x), x€[a,b]:=]a,b], (9)
j=1

for suitable coefficients A\;f. The spline will be referred to as a
quasi-interpolant to f whenever it provides a reasonable
approximation to f.



Remarks

» Both interpolation and least squares are examples of
quasi-interpolation methods. They are global methods since
we have to solve an n by n system of linear equations to find
the coefficients \;f. It follows that the value of the spline (9)
at a point depends on all the data.

> Here we focus on local and linear methods, i.e., methods
where each ); is a linear functional only depending on the
values of f “near” the support of B; ,¢. This implies that the
value of the spline approximation Qf at a point depends only
on the data in a local neighborhood of the point.



Notation and preliminaries

We assume throughout that € is a (p + 1)-open knot sequence.

> I;:=[§,&j+p+1]. the support of Bj ;¢
> If x € [{m,&m+1) then by the local support property

Z)\ FBipe(x)= > MNfBjpelx (10)
Jj=1 j=m—p

therefore, by nonnegativity and partition of unity

|OF (x)] < max_ \)\J-f|. (11)

m—p<j<

Im = U Ij = [gm—pv‘gm-HH-l]? p+l<m<n



Length of knot intervals

> hjpe = maxj<i<j+p&kt+1 — &k is the largest length of a knot
interval in [; = [&;, &y py]

> hme is the largest length of a knot interval in
Im = [gmfp7§m+p+l]

> he == maxpy1<j<n§j+1 — & the largest length of a knot
interval in [a, b]



A class of bounded local linear quasi-interpolants on
[37 b] = [§P+17 fn—i—l]

1. locality: each A; : C~Y([a, b]) — R is a linear functional with
support on [j, i.e., \;f =0 for any f € C~1([a, b]) which
vanishes on /;.

2. Reproduces P, for some ¢ with 0 </ < p:
Qg(x) = g(x) for all x € [a, b] and all g in Py,

3. Bounded linear functionals: There is a constant Cg such
that for j=1,...,n and all f € C71(/;) we have

INFI < Coh YN Fllasy (12)

for some g, 1 < g < o0.



Local and global approximation

Theorem
Let
» Q be a bounded local linear quasi-interpolant,
> £ € Wi (Um) some m with £ < Emy1.
Then,

(2p 4 1)Z+1

1 = QF Ly (femmia]) < 7l

(14 Co) At ID Ly (-
(13)
Moreover, if f € WSt ([a, b]) then

(2p +1)+t+t/a
(i

If = QFllLy(a,pn) < (1+ Co)M D Iy o,

(14)



Proof Local approximation
Suppose x € [€m,Eme1). Then by (11) and (12)

QF()I = Co | max B gy < Colémin — &m) 9 Ly

Taking Lg-norm we find
Q| Lo(gmeman) < Callflliy(n)- (15)
Since Q reproduces any polynomial g € P, and Q is linear we have
Taking norms, using the triangle inequality and (15)
1 = Qf lotem miad) < I = Ellittememeat) + 11Q(F = &)llLqttenenid
< (14 C)IIf — &lliy(um)

Let us now choose g := T¢,_, ¢f, where T¢, __ ,f is the Taylor polynomial
of degree ¢ using a = £n,—p. By the error term for Taylor approximation

gm l_gmf 1
I~ OFllygp oy < (1 + Co) Emot =&l Dy praay,

Since {mypt1 — Em—p < (2p + 1)hm.¢ we obtain the local bound.
Summing the gth power of local estimates we obtain the global one. [



Example; the Schoenberg operator

n

Vol = YA S B, (16)

j=1

This is a local linear quasi-interpolant with £ = 1. It is bounded in
the Loo-norm with Cgo = 1. The local and global approximation
Theorem implies for any f € W2 ([a, b]),

1 = Vogflliagasy < 202p + 12HID* Il qapy.  (17)

The Schoenberg operator preserves positivity, monotonicity and
convexity.



Spline reproduction

The next proposition gives a sufficient condition for a
quasi-interpolant to reproduce the whole spline space.

Proposition

Suppose
> Of = ZJ'-’ZI Aif Bj p¢ is a linear quasi-interpolant
» Q reproduces P, ¢

» each linear functional \; is supported on one knot interval
Then

Qs(x) =s(x), se€Spe, x€]la,b), (18)

In other words Q is a projector onto the spline space S ¢.



Proof Spline reproduction

Since OBipe = > 7_1(\iBipg) Bjpe it suffices to show that
)\j(B,'7p7£) = 5,'71', i,_j = 1, .
Let j with 1 < j < n be fixed and consider an interval [{m, Emt1)
» If i ¢ {m—p,...,m} the local support property implies
Ai(Bipg) = 0.

» Suppose i € {m—p,...,m}.
Since Bipe € Pp on one knot interval, we have

Bipe(x) = QBipe)(x) = D A(Bipe)Brpe(x): X € [€m, Emir)-
k=m—p

This implies \((Bjp¢) =0ki k=m—p,...,m
In particular, it holds for k = i.

O



Example; A bounded quadratic spline projector
Let p =2 and let & be a 3-open knot sequence. We consider the
operator Qo ¢f(x) := > 71 \if Bjoe(x), where

1 , , 1
Nf = —Ef(§j+1) + 2f(§l+2—zgj+1)) - Ef(§j+2)-

Clearly [Ajf] < 3|[fllL(l1.6,.0) for any £ € C7*([a, b]), and since

Q2)£1 = Z BJ)27£(X) = 17

j=1
n
i+1 1+ 2
Qo ex = Z #an,s(@ = X,
j=1
n
Qoex? = ) §1842Bj26(x) = X%,
j=1

it follows that Q5 ¢ reproduces P>. It is a projector onto the spline
space Sy ¢ since A; has support on one knot interval. For any
f € W3 ([a, b]), the Ly error is O(hg).



Quadratic splines are well conditioned

n
s=) cBjag €Spe = G = Qgs.
j=1
This shows that each ¢; can be at most 3 times as large as
15[l oo ([a,6]) independently of &.



Degree of reproduction
The following proposition can be used to find the degree ¢ of

polynomials reproduced by a linear quasi-interpolant.

Proposition
Let
{Soj,()a---vsoj,ﬂ}a ./.:17---,”7 OEESP (19)

be n sets of basis functions for polynomials in P, and let

n
Oir = GrmBmpe (20)
m=1

be their B-spline representations. The linear quasi-interpolant (9)
reproduces Py provided the corresponding linear functionals satisfy

)\j(goj-’,) = GCjrjs j: 1,...,”, r:O,...,E. (21)



Proof Degree of reproduction
Any g € Py can be written both in terms of the B-splines and the ¢'s, say

n 14
g= bmBmpe=> b j=1,...,n (22)
m=1

r=0

By (20) and (22) for j=1,...,n

4 n
g = Z b‘,r ( Z Cj,r,m m,p,€& ) Z (Z b; ,rCJ,r,m> m,p,& — Z bmB m,p,€&

r=0 m=1
By linear independence of the B-splines and choosing i = m we obtain
bm = Z bm,rCm,r,m~ (23)

Similarly, for Qg using (22) with j = m,

n n 4
Qg = Z Am(&)Bm,p,e = Z Am ( Z bm,r‘/’mf) Bmp.e-
m=1 m=1 r=0

From the linearity of A\, and (21), (23) and finally (22) again we obtain

Qg = Z me rAm(@m,r)Bm,p,e = Z Z bm,rCm,r,mBm,p,e = Z bmBm pe = &

m=1 r=0 m=1 r=0
O



