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The space C−1(I )

I Let I be a finite interval (open, half open, closed) and
f : I → R. If

I f is bounded
I f is continuous except at a finite number of points, where the

value is obtained by taking the limit either from the left or the
right,

then f is said to be piecewise continuous on I . We denote
the space of these functions by C−1(I ).

I For any function f ∈ C−1([a, b]) we write f : [a+, b−]→ R to
mean that f (a) := f (a+) and f (b) := f (b−). With the
notation f ∈ C r ([a+, b−]) we mean that f has continuous
derivatives up to order r on (a, b), and their limits
limx→a

x>a
D j f (x), limx→b

x<b
D j f (x), j = 0, . . . , r exist and are

bounded.



The Lq spaces

For 1 ≤ q ≤ ∞ and I := [a, b] the Lq-spaces are defined by

Lq(I ) :=
{
f : I → R, f is measurable on I and ‖f ‖Lq(I ) <∞

}
,
(1)

where the Lq-norms are given by

‖f ‖L∞(I ) := ess sup
x∈I
|f (x)| (2)

‖f ‖Lq(I ) :=
( ∫ b

a
|f (x)|q dx

)1/q
, 1 ≤ q <∞. (3)

Note that

I If f ∈ C−1(I ) then ‖f ‖L∞(I ) = supx∈I |f (x)|
I if I is closed and f ∈ C (I ) then ‖f ‖L∞(I ) = maxx∈I |f (x)|.



Hölder inequalities

The Hölder inequalities for integrals and sums are given by∫ b

a
|f (x)g(x)|dx ≤ ‖f ‖Lq(I )‖g‖Lq′ (I ),

n∑
j=1

|xj yj | ≤ ‖x‖q ‖y‖q′ ,

where q, q′ are integers so that

1

q
+

1

q′
= 1, 1 ≤ q ≤ ∞.

In particular, q′ =∞ if q = 1 and q′ = 2 if q = 2.



1D Sobolev spaces

I For I a finite interval, r ∈ N0 and 1 ≤ q ≤ ∞ the
one-dimensional Sobolev spaces are given by

W r
q (I ) =

{
f : I → R : f ∈ C r−1(I ), Dr f ∈ Lq(I )

}
. (4)

I The Sobolev spaces are complete normed spaces with norm

‖f ‖2
W r

q (I ) :=
r∑

j=0

‖D j f ‖2
Lq(I ), (5)

called the Sobolev norm. It is an inner product norm for
q = 2.



Taylor approximation

The Taylor polynomial of degree p at the point a to a function
f ∈W p+1

∞ ([a, b]) is defined by

Ta,pf (x) :=

p∑
j=0

(x − a)j

j!
D j f (a), (6)

and its approximation error can be expressed in integral form as

f (x)− Ta,pf (x) =
1

p!

∫ b

a
(x − y)p+D

p+1f (y) dy , x ∈ [a, b], (7)

where (x − y)p+ := max((x − y)p, 0).



Taylor approximation error

By differentiating the integral form of the Taylor approximation
error we find for 0 ≤ r ≤ p

|Dr (f − Ta,pf )(x)| =
1

(p − r)!

∫ b

a
(x − y)p−r+ Dp+1f (y) dy .

Using the Hölder inequality and taking Lq norms we obtain

Theorem
Let f ∈W p+1

∞ ([a, b]) with 1 ≤ q ≤ ∞, Then, for any x ∈ [a, b]
and 0 ≤ r ≤ p,

‖Dr (f − Ta,pf )‖Lq([a,b]) ≤
(b − a)p+1−r

(p − r)!
‖Dp+1f ‖Lq([a,b]). (8)



What is a quasi-interpolant?



Quasi-interpolants

In general, a spline approximating a function f can be written in
terms of B-splines as

Qf (x) :=
n∑

j=1

λj f Bj ,p,ξ(x), x ∈ [a, b] := [a, b], (9)

for suitable coefficients λj f . The spline will be referred to as a
quasi-interpolant to f whenever it provides a reasonable
approximation to f .



Remarks

I Both interpolation and least squares are examples of
quasi-interpolation methods. They are global methods since
we have to solve an n by n system of linear equations to find
the coefficients λj f . It follows that the value of the spline (9)
at a point depends on all the data.

I Here we focus on local and linear methods, i.e., methods
where each λj is a linear functional only depending on the
values of f “near” the support of Bj ,p,ξ. This implies that the
value of the spline approximation Qf at a point depends only
on the data in a local neighborhood of the point.



Notation and preliminaries

We assume throughout that ξ is a (p + 1)-open knot sequence.

I Ij := [ξj , ξj+p+1], the support of Bj ,p,ξ

I If x ∈ [ξm, ξm+1) then by the local support property

Qf (x) =
n∑

j=1

λj f Bj ,p,ξ(x) =
m∑

j=m−p
λj f Bj ,p,ξ(x), (10)

therefore, by nonnegativity and partition of unity

|Qf (x)| ≤ max
m−p≤j≤m

|λj f |. (11)

I

Jm :=
m⋃

j=m−p
Ij = [ξm−p, ξm+p+1], p + 1 ≤ m ≤ n



Length of knot intervals

I hj ,p,ξ := maxj≤k≤j+p ξk+1 − ξk is the largest length of a knot
interval in Ij = [ξj , ξj+p+1]

I hm,ξ is the largest length of a knot interval in
Jm = [ξm−p, ξm+p+1]

I hξ := maxp+1≤j≤n ξj+1 − ξj the largest length of a knot
interval in [a, b]



A class of bounded local linear quasi-interpolants on
[a, b] := [ξp+1, ξn+1]

1. locality: each λj : C−1([a, b])→ R is a linear functional with
support on Ij , i.e., λj f = 0 for any f ∈ C−1([a, b]) which
vanishes on Ij .

2. Reproduces P` for some ` with 0 ≤ ` ≤ p:

Qg(x) = g(x) for all x ∈ [a, b] and all g in P`,

3. Bounded linear functionals: There is a constant CQ such
that for j = 1, . . . , n and all f ∈ C−1(Ij) we have

|λj f | ≤ CQh
−1/q
j ,p,ξ ‖f ‖Lq(Ij ) (12)

for some q, 1 ≤ q ≤ ∞.



Local and global approximation

Theorem
Let

I Q be a bounded local linear quasi-interpolant,

I f ∈W `+1
q (Jm) some m with ξm < ξm+1.

Then,

‖f −Qf ‖Lq([ξm,ξm+1]) ≤
(2p + 1)`+1

`!
(1 + CQ)h`+1

m,ξ‖D
`+1f ‖Lq(Jm).

(13)
Moreover, if f ∈W `+1

q ([a, b]) then

‖f −Qf ‖Lq([a,b]) ≤
(2p + 1)`+1+1/q

`!
(1 + CQ)h`+1

ξ ‖D`+1f ‖Lq([a,b]),

(14)



Proof Local approximation
Suppose x ∈ [ξm, ξm+1). Then by (11) and (12)

|Qf (x)| ≤ CQ max
m−p≤j≤m

h
−1/q
j,p,ξ ‖f ‖Lq(Ij ) ≤ CQ(ξm+1 − ξm)−1/q‖f ‖Lq(Jm).

Taking Lq-norm we find

‖Qf ‖Lq([ξm,ξm+1]) ≤ CQ‖f ‖Lq(Jm). (15)

Since Q reproduces any polynomial g ∈ P` and Q is linear we have

f −Qf = f − g +Qg −Qf = (f − g) +Q(f − g).

Taking norms, using the triangle inequality and (15)

‖f −Qf ‖Lq([ξm,ξm+1]) ≤ ‖f − g‖Lq([ξm,ξm+1]) + ‖Q(f − g)‖Lq([ξm,ξm+1])

≤ (1 + CQ)‖f − g‖Lq(Jm).

Let us now choose g := Tξm−p,`f , where Tξm−p,`f is the Taylor polynomial
of degree ` using a = ξm−p. By the error term for Taylor approximation

‖f −Qf ‖Lq([ξm,ξm+1]) ≤ (1 + CQ)
(ξm+p+1 − ξm−p)l+1

l!
‖D`+1f ‖Lq(Jm).

Since ξm+p+1 − ξm−p ≤ (2p + 1)hm,ξ we obtain the local bound.

Summing the qth power of local estimates we obtain the global one.



Example; the Schoenberg operator

Vp,ξf (x) :=
n∑

j=1

f
(ξj+1 + · · ·+ ξj+p

p

)
Bj ,p,ξ(x), (16)

This is a local linear quasi-interpolant with ` = 1. It is bounded in
the L∞-norm with CQ = 1. The local and global approximation
Theorem implies for any f ∈W 2

∞([a, b]),

‖f − Vp,ξf ‖L∞([a,b]) ≤ 2(2p + 1)2h2
ξ‖D2f ‖L∞([a,b]). (17)

The Schoenberg operator preserves positivity, monotonicity and
convexity.



Spline reproduction

The next proposition gives a sufficient condition for a
quasi-interpolant to reproduce the whole spline space.

Proposition

Suppose

I Qf :=
∑n

j=1 λj f Bj ,p,ξ is a linear quasi-interpolant

I Q reproduces Pp,ξ

I each linear functional λj is supported on one knot interval

Then
Qs(x) = s(x), s ∈ Sp,ξ, x ∈ [a, b), (18)

In other words Q is a projector onto the spline space Sp,ξ.



Proof Spline reproduction

Since QBi ,p,ξ =
∑n

j=1(λjBi ,p,ξ)Bj ,p,ξ it suffices to show that
λj(Bi ,p,ξ) = δi ,j , i , j = 1, . . . , n.
Let j with 1 ≤ j ≤ n be fixed and consider an interval [ξm, ξm+1)

I If i /∈ {m − p, . . . ,m} the local support property implies
λj(Bi ,p,ξ) = 0.

I Suppose i ∈ {m − p, . . . ,m}.
Since Bi ,p,ξ ∈ Pp on one knot interval, we have

Bi,p,ξ(x) = Q(Bi,p,ξ)(x) =
m∑

k=m−p

λk(Bi,p,ξ)Bk,p,ξ(x), x ∈ [ξm, ξm+1).

This implies λk(Bi ,p,ξ) = δk,i k = m − p, . . . ,m.
In particular, it holds for k = i .



Example; A bounded quadratic spline projector
Let p = 2 and let ξ be a 3-open knot sequence. We consider the
operator Q2,ξf (x) :=

∑n
j=1 λj f Bj ,2,ξ(x), where

λj f := −1

2
f (ξj+1) + 2f

(ξj+2 + ξj+1)

2

)
− 1

2
f (ξj+2).

Clearly |λj f | ≤ 3‖f ‖L∞([ξj+1,ξj+2]) for any f ∈ C−1([a, b]), and since

Q2,ξ1 =
n∑

j=1

Bj ,2,ξ(x) = 1,

Q2,ξx =
n∑

j=1

ξj+1 + ξj+2

2
Bj ,2,ξ(x) = x ,

Q2,ξx
2 =

n∑
j=1

ξj+1ξj+2Bj ,2,ξ(x) = x2,

it follows that Q2,ξ reproduces P2. It is a projector onto the spline
space S2,ξ since λj has support on one knot interval. For any
f ∈W 3

∞([a, b]), the L∞ error is O(h3
ξ).



Quadratic splines are well conditioned

s =
n∑

j=1

cjBj ,2,ξ ∈ Sp,ξ =⇒ cj = Q2,ξs.

This shows that each cj can be at most 3 times as large as
‖s‖L∞([a,b]) independently of ξ.



Degree of reproduction

The following proposition can be used to find the degree ` of
polynomials reproduced by a linear quasi-interpolant.

Proposition

Let
{ϕj ,0, . . . , ϕj ,`}, j = 1, . . . , n, 0 ≤ ` ≤ p (19)

be n sets of basis functions for polynomials in P` and let

ϕj ,r =
n∑

m=1

cj ,r ,mBm,p,ξ (20)

be their B-spline representations. The linear quasi-interpolant (9)
reproduces P` provided the corresponding linear functionals satisfy

λj(ϕj ,r ) = cj ,r ,j , j = 1, . . . , n, r = 0, . . . , `. (21)



Proof Degree of reproduction
Any g ∈ P` can be written both in terms of the B-splines and the ϕ’s, say

g =
n∑

m=1

bmBm,p,ξ =
∑̀
r=0

bj,rϕj,r , j = 1, . . . , n. (22)

By (20) and (22) for j = 1, . . . , n,

g =
∑̀
r=0

bj,r

( n∑
m=1

cj,r,mBm,p,ξ

)
=

n∑
m=1

(∑̀
r=0

bj,r cj,r,m

)
Bm,p,ξ =

n∑
m=1

bmBm,p,ξ.

By linear independence of the B-splines and choosing i = m we obtain

bm =
∑̀
r=0

bm,r cm,r,m. (23)

Similarly, for Qg using (22) with j = m,

Qg :=
n∑

m=1

λm(g)Bm,p,ξ =
n∑

m=1

λm

(∑̀
r=0

bm,rϕm,r

)
Bm,p,ξ.

From the linearity of λm and (21), (23) and finally (22) again we obtain

Qg =
n∑

m=1

∑̀
r=0

bm,rλm(ϕm,r )Bm,p,ξ =
n∑

m=1

∑̀
r=0

bm,r cm,r,mBm,p,ξ =
n∑

m=1

bmBm,p,ξ = g .


