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Sketch of Contents

> Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
solutions

Control problems constrained by elliptic and parabolic PDEs
Numerical approximations of solutions on uniform and non-uniform/adaptive grids
Concepts of multiscale methods and adaptivity; convergence proofs and complexity estimates

Realization of these concepts by B-spline-wavelets
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Fast solvers: multilevel preconditioning; implementation issues

Literature: see References in notes_kunoth.pdf
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Part V: Adaptive Wavelet Methods for Control Problems Constrained by Parabolic PDEs

Loop: SOLVE — ESTIMATE — REFINE — SOLVE ... until target acccuracy reached

> Tracking type control problem constrained by parabolic PDE in wavelet coordinates
» Full weak space-time formulation of a single parabolic PDE
> Inexact gradient methods: convergence

» Complexity estimates

Literature:
[CDD1] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations—Convergence rates, Math. Comp., 70 (2001), pp. 27-75.

[CDD2] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods I/ — Beyond the elliptic
case, Found. Comput. Math., 2 (2002), pp. 203-245.

[GK] M.D. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for optimal control
problems constrained by parabolic evolution equations, SIAM J. Contr. Optim., 49(3) (2011)
pp. 1150-1170.
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Optimization Problems: First Order Necessary Conditions

Constrained minimization problem

inf Ty, u) J:YxU—-R y,u,Q Hilbert spaces
(y, ) ey xu
subject to K(y,u) =0 K:YxU—Q control u € U, statey € Y

Assumption on K: for given u € U, there exists unique state y €

Solution approach: compute zeroes of first order Fréchet derivatives of Lagrangian functional

L(y,u,p):=T(y,u)+ (K(y,u),p)o'x o L:YXUXQ—R costate/adjoint p € Q
Ly(y,u,p) Ty(y,u) + (Ky(y,u),P)orx o

~  0L(y,u,p) = | Luly,u,p) | =0 = Tulysu) + (Kuly,u), P)orxg | =0
'Cp(z> u, P) }C(y’ )

Special case: J quadratic in y, u IC linear in y, u
= necessary conditions for optimality are sufficient

~> linear (Karush-Kuhn-Tucker (KKT) or saddle point) system

Ly  Lw K Yy * T
Lo Lu Ki)|u]=g <é %><(y’")>=g —: Gq=g¢g
K, K, 0 p P
(€C*q,r) == (q,Cr)
A, B linear, continuous; A invertible on ker B; im B = Q' => G boundedly invertible
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Optimal Control Problem Constrained by a Parabolic PDE with Distributed Control

Given y.(t,-) f w>0 end time T > 0 initial condition yg

T T
minimize  J(y,u) = /0 Iyt ) = vt )2 de + ﬂ/o llue, )13, ot

subject to  y'(t) + A(t)y(t) = f(t)+ u(t) ae. t€ (0, T)=:1 (PDE)
y(0) =y
y = %y y = y(t, x) state u = u(t, x) control

Y = H}(Q) state space  Z = Y = H}(f) observation space U = Y’ = H~}() control space

Alt) 1 Y = Y (A(t)v(t, ), w(t,)) == /y; [Vv(t,x) - Vw(t,x) + v(t, x)w(t, x)] dx QCRY

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y

PDE-constrained control problem ~»> requires repeated solution of PDE constraint

Y +ARy() = f(t)+ u(t)
y(0) = »
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)
Y () +AR) y(t) = f(t)+ u(t) ae tel
y(0) = »
wR™u(t)+p(t) = 0 ae tel
PO +ADTRE = R(u(t) () ae tel
p(T) = 0

Riesz operator R defined by (v, Rw)y v/ := (v, w)y for all v,w € Y

Obstructions for numerical solution:

e convential time discretizations: time-marching methods
~>  need storage of y(t;), u(t;), p(t;) for all discrete times 0 =ty,..., T =ty

e in each time step: solve elliptic PDE ~» large linear system of equations
~» iterative solver ~» need preconditioning in (conjugate) gradient method

e singularities in data/domain: adaptive (FE) mesh(es) for y(t;), u(t;), p(t;) for all t;
one mesh for all variables, refinement/coarsening ? [Meidner, Vexler 07], ...

convergence ? complexity 77

Solution Ansatz here: full weak space-time form of parabolic PDE constraint
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Variational Space-Time Form for a Single Parabolic Evolution PDE

[Ladyshenskaya et al 1967], [Wloka '82], [Dautray, Lions '92], [Schwab, Stevenson '09], [Chegini, Stevenson '11], [Stapel '11] ...
’
y'() + A(t) y(1)

y(0) = »

(PDE) f(t) ae tel

solution space: Lebesgue-Bochner space I := (La(1) @ Y) N (H}() @ Y') — C°(1) ® La(Q)
with norm ”WH§1 = \|w||z2(,)®y + HW’H?-ﬂ(/)@V'
test space: Q= (L(I)®Y) x Lx(Q) with norm HVHZQ = ‘|V1||%2(1)®y + |‘V2||f2(n)

bilinear form b(+,-) : Y x Q - R
b(w, (v1, v2)) := // [(w'(t, ), va(t, ) + (ARwW(t, ), (e, )] dt + (w(0, ), va) =: (Bw, v)

right hand side
(f,v) := /(f(t, ), va(t, ) dt + (yo, v2)
1

(PDE) ~»given f € Q', findy € V: By

Existence and uniqueness of solution:

Theorem [[Bwl|lgr ~ [lw|ly  forallwe Q mapping property (MP)

Formulations with 1/2 time derivatives on R: [Fontes "99], [Larsson, Schwab '15]
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Reformulation of PDE-Constrained Optimal Control Problem

minimize Ily,u) = 3y —vllfmey + %Hu”iz“)@y/
subject to By = f+Eu (PDE) B:Y — Q' satisfies (MP)
E:=(d,0): LINSY — Q

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

Ly, u,p):=J(y,u) + (p,By — f — Eu)
Riesz operator (v, RW)(L2(1)®Y)><(L2(/)®Y/) = (v, W)L2(1)®y

B*p = R(y«—vy)
SL=0 ~ wR™u E*p
By = f+4+Eu

~» saddle point operator

R 0 B*
(Gq, §) = < 0 wR™! —E*|aq, f;> i A= diag(R,wR™!); B := (B, —E)
B —E 0
y symmetric, continuous, boundedly invertible on X := )Y XU X Q
—> unique solution [ v | =: g of system of PDEs (SPP)
p

Formulations with 1/2 time derivatives: [Langer, Wolfmayr '13], [Kunoth, Mollet '15, in revision]
Angela Kunoth — Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs



Building Blocks: (Biorthogonal Spline—) Wavelets

H Hilbert space on domain Q C RY with || - ||u H’ dual space for H with (-, -)

Vi={Yr: A€} CH Wavelets T (infinite) index set
(NE) W Riesz basis for H

vEH: v =TV o= % (v ) s such that  |lv{ly ~ [lvi[e,()
Net

(L) Locality diam (supp ¢y) ~ 2712 |A] resolution

Y centered around 2 Mg

dis -
(CP) Vanishing moments (v,y) < 2~ MG+ ||v('")||Loo(supp py) forsome

[Dahmen, Kunoth, Urban '99] [Dahmen, Schneider '99], [Kunoth, Sahner '06] [Harbrecht, Schneider '00]
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Paradigm of Adaptive Wavelet Method for One Stationary PDE

[Cohen, Dahmen, DeVore '01/'02]

(i) Well-posed variational problem: given f € Q' B:Y — Q' findy €Y such that

‘ (MP) 1Bw|lgr ~ [lw]ly  forallw e Y mapping property ‘

(i) WY, W< wavelet bases for ), O :

[ (NE) W7V ly ~ wl,  forallw = (wa)sei € £s |

Bw = (¥, Bw))xer  f:= (%Y, ))rer

Theorem By=f <= By=1f well-posedin £, (B:ty — £r)

(MP) + (NE) <= IBwlle, ~ [wlle, forallw et

(iii) Practical solution schemes for By = f:
(A) Perturbed Richardson iteration (for symmetric B):
(A1) y"t =y "+ (F=By") n=0,1,2... |y ~ylle, < ply"~yll, p<1
(A.2) Approximate realization: adaptive evaluation of By” in SOLVE [=, B, f] — y.
(A.3) Coarsening (thresholding) of the iterands (for complexity)
(B) Adaptive wavelet Galerkin method and bulk chasing strategy
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Extension to a Single Parabolic Evolution PDE

[Schwab, Stevenson ‘09]
f(t) ae tel
Yo

: . . "(t) + A(t) y(t)
(i) Variational space-time form of (PDE) y ( );\//(O)

solution space: Lebesgue-Bochner space I := (L(I) ® Y) N (H}(I) ® Y')

. 2 2 2
with norm [lw|l3, == [lwll,(hey + ”W,H;.,l(/)@y/

test space Q= L(1;Y) X L(R2) with norm ||v||29 = HV1||2L2(/)®V + HVZ”ZLQ(Q)

bilinear form b(-,-) : ¥ x Q - R
b(y, (v1,v2)) ==

/I[O"(t Yol ) + (A (t, ), vt )] de+ (y(0, ), va) =: (By,v)

right hand side

(F,v) = /l<f(r, it ) de + (o, )

(PDE) ~s given f € @', findy € I: By =f
Theorem (MP) [1Bw|lgr ~ [w]ly forallw ey mapping property
(i) WY, WS wavelet bases for V,Q ~+ By := (¥, By))act  fi=((¥2, Mre

Theorem By=f <= By=f B: ¢, — ¢ and By =f well-posed in #>

(MP) + (NE) = (IBv|le, ~ [lvlle,, VvE&£ B unsymmetric
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Application to PDE-Constrained Optimal Control Problem

Control problem in wavelet coordinates

minimize  J(y,u) = 3 [RY?(y —y.)|* + IR 2u|?

subject to By =f+u B : ¢, — ¢, automorphism 1= 1 lley

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y,u,p) := J(y,u) +(p, By — (f +u))

By = f+u
SL=0~ | wR™'W =p =
B"p = R(y. —v)
R 0 B* Ry.
— 0 whR™' —E = 0 (SPP) Q : {2 — £> automorphism
B —E 0 P f

= B *RB"!4+wR™!

where
= B *(Ry. — RB™'f)
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Complexity Analysis

Based on benchmark:
decay rate s for (wavelet-)best N term approximation A i={velr:|v-wy]| S N7}

Work/accuracy balance of best N term approximation:

Target accuracy ¢ (~ N7%) <+— Work ¢ /¢ (~ N)

Convergence and Complexity

For solution routine (A): (Idealized) iteration (for symmetric B)
vl =y (f — Bv") update via  REs [, B,f,v] =, ~»  SOLVE [¢,B, f] — v.

Theorem [Cohen, Dahmen, DeVore '01/'02]
Vanishing moments (CP) for wavelets =—> B is s*—compressible

= for variational problem satisfying (MP) scheme SOLVE can be designed with properties:

(1) For every target accuracy = > 0 SOLVE produces after finitely many steps
approximate solution v. such that lv—v.| <=

() Exact solution v € A° == suppv., #flops ~ ¢ /° ~ N
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Core Ingredient of SOLVE : Compressible Operators

.. (CP) ~ B is s"—compressible:
= for every s € (0,s™) there exists B; with
- < @2’ nonzero entries per row and column s.th. for j € Ny

IB—B;|| <aj279; Z aj < oo (B ‘close to' sparse matrix)
Jj€ENg

Application of (Non)Linear Operators in Wavelet Bases
Theory: [Dahmen, Schneider, Xu '00], [Cohen, Dahmen, DeVore ‘03] . ..
d = 2, isotropic tensor-product wavelets: [Vorloeper '10]  general d: [Stapel '11], [Mollet, Pabel '12], [Pabel '15]

Input: finitely supported vector v = (v, ),en A C I finite
Output: approximation of Bv with infinite-dimensional operator B : ¢(I) — ¢>(I)

B:Y — Q' ~s expand Bv € Q' in dual wavelet basis for Q" and v in primal wavelet basis for )

By = (Bv) U =" (Bv,va) hx = D (B vt ¥n)) b = D D vu(Bpu, ) 1

Nel Xel  upeA XeEl pen
~>  compute (B}, 1) for given p € A (finite) and all X € T

Compressibility of B:  [(B, ¥a)| < Cpyy  sup 27 7M=IeDyy 1y s g g
pi S NS0 follows from wavelet property (CP)
Essential data structure (for nonlinear operators): tree-type index sets
input v ~ prediction of tree index set based on suppv and properties of B
~» computation of (Bv), after transformation to piecewise polynomials

~»  application of B in optimal linear complexity
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Application of (Non)Linear Operators in Wavelet Bases: Numerical Example
[Mollet, Pabel '12], [Pabel '15]

“Ay+y* = f in Q:=(0,1)2
PDE with nonlinear term y =0 on 9Q
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Convergence and Complexity Analysis for Control Problem

with Parabolic PDE Constraints

Essential ideas: REs for SOLVE [...,Q,...] reduced to REs for SOLVE [...,B,...]

applied to normal equations

and KKT system <— condensed system Qu =g

‘Benchmark’ Theorem control problem with parabolic PDE: [Gunzburger, Kunoth, SICON '11]

For any target accuracy € > 0  SoLvE [e, Q, g] — u. converges in finitely many steps

lu—uf|<e ly—vyl S e lp—pell < e u-,ye,pe finitely supported

uy,peA =
1/s

(#suppu.) + (#suppye) + (#supppe) < e~ /* (lullEs + IS + IpIE)

lucllas + llyellas + llpcllas S llullas + llyllas + lIpllas

#flops ~ g 1/¢
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Numerical Example for One Parabolic PDE

[Chegini, Stevenson '11], [Stapel '11]
Compute y = y(t, x) such that

ye(t, x) — yc(t, x) = g(t) ® (—ﬂz)Sin(ﬂ'X) in I xQ:=(0, 1)2
y(t,0) = y(t,1) = 0 fort >0
y(0,x) =0 for x € (0,1)
and g(t) i= { ) P E 31])

Problem formulation and implementation:
» Modified problem with zero initial conditions ~»
solution space Y = (L»(1) ® HI(Q)) n (H(lo(l) ® Hfl(Q)) and test space Q@ =L (I)®Y
» Inhomogeneous initial data: homogenization of initial conditions ~» modification of r.h.s.
> Implementation based on AWM Toolbox by [Vorloeper '10]

biorthogonal isotropic wavelets of order m = 2, m = 4
> lterative solution by GMRES

Plot of Solution, Refined Grid and Residual Error Reduction
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8526 degrees of freedom Expected rate in H* (isotropic wavelets): 1/2  red: after coarsening
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PDE-Constrained Control Problems: Summary and Extensions

» Control problem constrained by parabolic PDE
Full weak space-time formulation of evolution PDE
~» saddle point system of PDEs coupled globally in time and space
» For smooth solutions: multilevel/wavelet preconditioners + nested iteration
~» numerical solution scheme with optimal complexity

» For non-smooth solutions:
proofs of convergence and optimal complexity based on adaptive wavelets

> Extension to control problems with elliptic or parabolic PDE with stochastic coefficients
[Kunoth, Schwab '13], [Kunoth, Schwab '16]

» Inequality constraints on control and/or state

Beyond Wavelets

» Optimal preconditioning: multilevel and multigrid methods (for normal equations);
fast iterative solvers on (non)uniform grids

(A posteriori) error estimates for PDE constrained control problems: one grid [Liuetal ...etal...]

Convergence theory of adaptive (finite element) method for control problem
with linear elliptic PDE constraints; one mesh for all variables [Kohls, Siebert, Résch '14]

Complexity estimates 7 Optimal complexity ?  Application of PDE operator ?

Convergence theory of adaptive (FE/DG) methods for control problems
constrained by linear evolutionary PDE ?
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