CIME-EMS Summer School “Splines and PDEs", 2017

Adaptive Multiscale Methods for the Numerical Treatment of
Systems of PDEs

Angela Kunoth

Universitat zu Koln, Germany

Sketch of Contents

> Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
solutions

Control problems constrained by elliptic and parabolic PDEs
Numerical approximations of solutions on uniform and non-uniform/adaptive grids
Concepts of multiscale methods and adaptivity; convergence proofs and complexity estimates

Realization of these concepts by B-spline-wavelets
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Fast solvers: multilevel preconditioning; implementation issues

Literature: see References in notes_kunoth.pdf
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Part 11l: Control Problems Constrained by Elliptic PDEs

Optimization problems with PDEs:

Tracking type control problems constrained by PDE, e.g. flow control
Topology optimization

Shape optimization

Variables: state, control, adjoint (or co-)state

vyvyVvyyvyy

Additional inequality constraints on control and/or state

In the following main subjects:

> Tracking type control problem constrained by elliptic (or parabolic) PDE
~» system of coupled PDEs

Variables: state, control, adjoint (or co-)state
In this part: discretizations on uniform grids

Efficient solution schemes based on wavelets

vvyyvYyy

Convergence and optimal complexity

Literature:

[BK] C. Burstedde, A. Kunoth, Fast iterative solution of elliptic control problems in wavelet
discretization, Journal of Computational and Applied Mathematics 196 (2006), 299-319.

Angela Kunoth — Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs



Optimization Problems: First Order Necessary Conditions

Constrained minimization problem

inf Ty, u) J:YxU—-R y,u,Q Hilbert spaces
(y, ) ey xu
subject to K(y,u) =0 K:YxU—Q control u € U, statey € Y

Assumption on K: for given u € U, there exists unique state y €

Solution approach: compute zeroes of first order Fréchet derivatives of Lagrangian functional

L(y,u,p):=T(y,u) + (K(y,u),p)o'x o L:YXUXQ—R costate/adjoint p € Q
Ly(y,u,p) Ty(y,u) + (Ky(y,u): P)orx o

~ 0L(y,u,p) = | Luly,u,p) | =0 = Tulysu) + (Kuy,u), P)orxg | =0
'Cp(z> u, P) }C(y’ )

Special case: J quadratic in y, u IC linear in y, u
= necessary conditions for optimality are sufficient

~> linear (Karush-Kuhn-Tucker (KKT) or saddle point) system

Ly Lw K y * T
Lo Lu Ki)|u]=g <“l;‘ %><(y’")>=g —: Gq=g¢g
K, K, 0 p P
(€C*q,r) = (q,Cr)
A, B linear, continuous; A invertible on ker B; im B = Q" => G boundedly invertible
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Control problems constrained by elliptic Neumann problem

Linear—Quadratic Elliptic Control Problems: Neumann Problem with Distributed Control

Given y., f, w >0

minimize J(y, u)

subjectto — Ay +y

9y
an

1

= 3y = v ey + S0y

—f4+u InQCRY (€]
=0 on 00

A HY(Q) = (HY(Q))

0 < s < 1 smoothness parameter for state y
0 < t smoothness parameter for control u

weak formulation employing (Av, w) := [((Vv - Vw + vw)dx

nontrivial solution for y, # A™Lf

minimize J(y, u)

subject to Ay

= 3y =y Bacsigy + S0y
(2)

=f4+u
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Wavelet Methods for Elliptic Control Problems — Modelling Norms in Cost Functional

Discretization of (continuous) control problem in (infinite) wavelet coordinates
>

» Modelling: Cost functional with Sobolev norms ~ weighted sequence norms
» Numerical Analysis: Optimal preconditioning

> (in next part) Numerical Solution by Adaptive Scheme: Linear elliptic PDE as constraints
Iterative scheme — A—posteriori error estimates — convergence
— convergence rate and optimal complexity estimates
regularity theory in Besov spaces — wavelet—best N—term approximation

Standard Discretizations

Elliptic PDE: A: Y — Y’ isomorphism ~» (finite—dimensional) discretization ~+ iterative solvers,
efficient preconditioners

(@ control problem: Evaluation of fractional Sobolev norms ?

New Paradigm
(I) mapping property for A: Y — Y’
(1) transformation into equivalent oco—dimensional well-posed ¢, problem
(111) restriction to uniform grids: CG method for control with inner iterations to update state

~> set up control problem in wavelet coordinates
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Building Blocks: (Biorthogonal) Wavelets

H Hilbert space on domain Q C RY with || - ||u H’ dual space for H with (-, -)

Vi={Yr: A€} CH Wavelets I (infinite) index set
(NE) W Riesz basis for H

vEH v =vV .= Z(VM/;)\)TPA such that  [|v|ln ~ [Jv[[s,m
A€l

IAl

(L) Locality diam (supp ¢x) ~ 27 || resolution

Y centered around 2- Mg

dis ~
(CP) Vanishing moments (v,¥y) < 2~ MG +m) ||v(’")|\Loo(supp py) for some m

[Dahmen, Kunoth, Urban '99] [Dahmen, Schneider '99], [Kunoth, Sahner '06] [Harbrecht, Schneider '00]
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Modelling in Wavelet Coordinates: Norms in Cost Functional

Sy, u) = 3lly = vellfp—sigy +

Example: min J(y, u) subject to {

Representer in wavelet coordinates

(without Riesz operators for ||v||%

Iy,@) = 31D (y —y)I* +
~ min J(y, 1) subject to Ay = f +ii

Sl

_y// + y
dy
dn

$IDa®

0<s<1,0<t

=14+u in (0,1) v« =0 w=1
-0 at 0,1

1/2
~IRY v and -l -l =1 lley):
0<s<1,0<t

Top o —
Aoy —

state y
— s=1 Ly
—  s=09  HL/10
—  s=1/2 H/2
— s=0 Hl

aY/U0n8.gnp
aY/U10n8.gnp
aY/U2n8.gnp
aY/U1n8.gnp
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Representer for Control Problem in Wavelet Coordinates

Minimize
Iy, 0) = 3IRY*D (v —y)I? + £IIR/*D 6P 0<s<10<¢ (3)

subject to
Ay =f+ i (4)
A : ¢, — £ automorphism 1= 1 lley

Necessary (and Sufficient Conditions) for Optimality

Lagr(y,u,p) = J(y,u) + (p, Ay — (f+ D~ "u)) and SLagr =0 ~

Ay = f+ D tu
A'p = —D °RzD°(y—y.) (5) = Qu=g (6)
wRyu = D 'p
Q : ¢, — £, automorphism
Q := D!AT'DT°R;D*AT'D! + wRy symmetric positive definite
where
g =D 'AT"DR;D5(y. — ATf)

Q should not be realized by setting up and inverting A explicitly !

Condensed form (6) useful for deriving a convergent numerical scheme — but realization done
through extended form (5)

Recall: on uniform grids, stiffness matrix A should not be explicitly set up in wavelet basis ~ use
fast wavelet transform instead
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A Nested Iteration-Inexact CG (NIICG) Algorithm

In this chapter from now on: uniform grids with highest grid level J (amount of unknowns here
shortly N) and jy coarsest level of resolution;
consider coupled system (5) and condensed system (6)

A Basic Conjugate Gradient (CG) Method

Consider linear system

Mg =2z M € RN symmetric positive definite, cm||v|]| < |[Mv|| < Cullv], veR",

]
with given right hand side z € R, || - || := || - lley(a ), constants 0 < cm < Cum < o0;
denote residual using an approximation § to q for (7) by REs () := Mg — z
Idea: employ a basic conjugate gradient (CG) method that iteratively computes approximate
solution qk to (7) with given initial vector qg and given tolerance € > 0 such that
IMax — z|| = ||Res (qk) < &, (8)

where K is number of iterations
(later: e specified depending on discretization tolerance for (7)

Scheme CG below contains routine

APPLY (1, M, di) (9):
for M = A, A7 is simply matrix—vector multiplication Mdy;
otherwise, it approximately computes Mdy up to tolerance 7, = 7, (¢) depending on &
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A Basic Conjugate Gradient (CG) Method

CG[e,q0, M, z] — qx (10)
(1) SET dg :=z — Mqg AND rg := —do. LET k = 0.
(11) WHILE ||rg]| > €
(re) "
my = APPLY (nk(e), M, di g —_—
(nk(e) ) (o)
qk+1 = qx + akdg (g%} = rg+agmg
T
Yik+1) Vit1
Br = % i1 = —rigr + Bidy
(I
k:=k+1
(1) SET K :=k — 1.
Note: Routine CG computes residual up to stopping criterion ¢;
error in solution is multiplied by [[M~}| = ¢t ~
error: [lg — ak || = [[M~}(z — Mak)[| < M7 [REs (ak)|| < £y’ (11)

Next: design routine CG for condensed system (6) involving

AppLY for M replaced by Q ( = D fA~ "D *RzD°A D~ + wRy) (symmetric positive
definite)

and right hand side z replaced by g ( = DA~ "D °RzD*(y, — A"'f))
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Approximate Right Hand Sides
Approximate computation of g by applying interior cg iterations up to stopping criterion (:
Rus[C, A, f,y.] — g¢ (12)
(1) CG[zc c2c2 ¢,0,A,f] > g1
(1) CG[:2¢,0,AT, —D*RzD (g1 — y.)] — &2
() g¢ =D 'gy.

Note: tolerances used within the two conjugate gradient methods depend on constants ca, C, G
from mapping property of A, bounds C of diagonal operators D™, D! and bounds G, for L,
Riesz operator.

Note also: the additional factor ca(CCy) ™2 in stopping criterion in step (1) in comparison to step
(11) is in general smaller than one

~> primal system needs to be solved more accurately than adjoint system in step (11)

Proposition
The result g¢ of RES[(, A, f, y.] satisfies upon completion

llgc —gll < <. (13)

Proof: See step by step definition of different right hand sides and employ bounds on operators. O
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AppLY for Q

For computation of approximation m,, to matrix—vector product Qd, employ this routine which
needs in last step an appropriate approximation for g (with Dal =D%, D;l =D"°)

AppLy [, Q,d] — m,, (14)
—1
(1) OG5t gm0 F+Dyd] —y,

(1) CG[27,0,AT, —D;'RzD; (y,, — y:)] = by
() my, =g, /3 +wRyd — Dljlpn.

Note: tolerances differ only slightly from those the routine Rus, although the ratio between the
tolerances in step (1) and (11) is the same, namely, ca(CCy) ™2 (reason can be seen in proof of
following result)

Proposition The result m,, of APPLY [7, Q, d] satisfies
[lm, — Qd|| < n. (15)

Proof: Confirm that choice of the stopping criteria in steps (1) and (11) indeed yields (15):
Denote by yq exact solution of primal equation in (5) with d in place of u on right hand side, and
by pa exact solution of adjoint equation in (5) with y4 on the right hand side

~+ step (111) and Qu — g = wRyu — D™ 'p combined with error bounds on Riesz operators and
diagonal matrices yield

m, —Qd|| = |lg,/s —g+wRud —D;'p, —(Qd —g)]
< I+ |lwRyd — D, 'py — (wRyd — Dy 'pa) ||
< in+ Cllpa — pyll (16)
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AppLY for Q

(Continuation of proof)

For p exact solution of adjoint equation with y,, on right hand side, we have

A —T-1 —1
Pa —Pp=—A" "Dz RzD; (ya —yy) (17)

~> by mapping property of A and by error bounds on Riesz operators and diagonal matrices we

have
2 2
G 1

-p|l < -yl < =—=n, 18
llpa — Bl < . lya — ynll < 3" (18)

where last estimate follows by the choice of the threshold in step (I).
Combining (16) and (18) together with (13) and stopping criterion in step (11) ~»
lm; — Qd]| 31+ C(llpa — Bl + 1B — Pyl

<
<+ C(5en+sen) =n

Note: Effect of applications of M in CG and more general Krylov subspace schemes with respect to
convergence investigated in numerical linear algebra context by e.g. [van den Eshof, Sleijpen 2004];

for system Qu = g: difference between actually computed residual r, in CG [, qo, Q, g] and
RES (ux) = Qug — g can be estimated as

k—1
llre — Res (ue)ll < Co D milau] [ldi]l,

=0
where Cq is upper bound for Q and «;, d; defined in (10) ~ in principle, one could choose
thresholds 1; = n;(¢) for inner iterations APPLY (1;, Q, d;) as n; = (|| [|d; ) !
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A Nested-Iteration-Inexact-Conjugate-Gradient (NIICG) Algorithm

Now combine inexact CG solver (10) for Q with nested iteration:

NIICG [f, yu, J] — u? (19)
(1) INITIALIZATION FOR COARSEST LEVEL j := jo

(1) COMPUTE RIGHT HAND SIDE g0 BY QR DECOMPOSITION
oF A0 usiNG (6)
(2) COMPUTE SOLUTION w0 OF (6) BY QR DECOMPOSITION
oF QO
(1) WHILE j < J

(1) PROLONGATE o/ — u{)“ BY PADDING WITH ZEROS, SET
ji=Jj+1

(2) COMPUTE RIGHT HAND SIDE USING
Rus [v2 ("W Ay ] gl

(3) COMPUTE SOLUTION OF (6) USING
CG 2=V Wl Q,¢] » .

Recall: step (11.3) requires multiple calls of APPLY [7, Q,d], which in turn invokes both
CG [...,A,..]Jaswellas CG [... AT .] in each application

Note: thresholds in steps (11.2) and (11.3) chosen proportional to a-priori error estimate in energy
norm (represented by || - [|¢,) 2=(m=1J for B-spline wavelets of exactness m;

prolongation by padding with zeros since wavelet coefficients correspond to detail coefficients
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A Nested-Iteration-Inexact-Conjugate-Gradient (NIICG) Algorithm

Theorem
Residual Qu — g computed on each level j up to discretization error proportional to 2= (m=1)j and
corresponding solutions are taken as initial guesses for next higher level

=—> NIICG is asymptotically optimal method: it provides the solution u’ up to discretization
error on level J in overall amount of O(N,) arithmetic operations.

Note: Result follows since finite versions of A and Q have uniformly bounded condition numbers;
remainder of argumentation follows as in Part Il by geometric series argument

Numerical Results

J| il #0 | #E  #A  #R | [ROD—YI Ny’ =PI | IRW) v v’ —P@)]]

3 6.86e-03 1.48e-02 1.27e-04 4.38¢-04

4| 17905 5 | 12 5 8 2.29¢-03 7.84e-03 4.77e-05 3.55¢-04

5| 19805 5 | 14 6 9 6.59¢-04 3.94e-03 1.03e-05 2.68e-04

6| 49206 7 | 13 5 9 1.74e-04 1.96e-03 2.86e-06 1.94e-04

733606 7 | 12 5 9 4.55¢-05 9.73¢-04 9.65e-07 1.35e-04

8| 24206 7 | 11 5 10 1.25e-05 4.74e-04 7.59¢-07 8.88e-05

9| 120e06 8 | 11 5 10 4.55¢-06 2.12¢-04 4.33¢-07 5.14e-05
10 | 46807 9 | 10 5 9 3.02¢-06 3.02¢-06 2.91e-07 2.91e-07

Iteration history for two-dimensional distributed control problem with Neumann boundary
conditions, w = 1, Z = HY(Q), U = (H**(Q))’

stopping criterion for outer iteration (relative to || - || corresponding to energy norm) on level j
chosen proportional to 27/

#E: maximum number of inner iterations for primal system, for adjoint system (#A) and design
equation (#R)
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