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Sketch of Contents

> Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
solutions

Control problems constrained by elliptic and parabolic PDEs
Numerical approximations of solutions on uniform and non-uniform/adaptive grids
Concepts of multiscale methods and adaptivity; convergence proofs and complexity estimates

Realization of these concepts by B-spline-wavelets
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Fast solvers: multilevel preconditioning; implementation issues

Literature: see References in notes_kunoth.pdf
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Part 1V: Adaptive Wavelet Methods for Control Problems Constrained by Elliptic PDEs

In this part: adaptive (a-posteriori) discretizations
Loop: SOLVE — ESTIMATE — REFINE — SOLVE ... until target acccuracy reached

» Introduction: uniform and adaptive approximations
> Tracking type control problem constrained by elliptic PDE in wavelet coordinates
» Inexact gradient methods: convergence

» Complexity estimates

Literature:
[CDD1] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations—Convergence rates, Math. Comp., 70 (2001), pp. 27-75.

[CDD2] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods // — Beyond the elliptic
case, Found. Comput. Math., 2 (2002), pp. 203-245.

[DK] W. Dahmen, A. Kunoth, Adaptive wavelet methods for linear-quadratic elliptic control
problems: Convergence rates, SIAM J. Control Optim., 43 (5) (2005), pp. 1640-1675.

[De] R. DeVore, Nonlinear approximation, Acta Numerica, 7 (1998), 51-150.
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Introduction: Uniform versus Adaptive Approximations

Recall: A-priori estimates for finite elements (or B-splines/generators in multiresolution analysis)

Quality measure:  Approximation in L>(§2) norm Iy = yally@) < €
A—priori error estimates: Q C R? dimV, =N~ h~¢ uniform grid
ly =wnll S P lyllase yh € Vi 0<s<p+1
— Iy =yl < N7 |y |l s (@)

N degrees of freedom <— maximal achievable accuracy O(N’“’ 1)’/d)
Approximation rate determined by
(i) (piecewiese polynomials of degree p ~+) approximation order p + 1 of Vj,
(ii) space dimension d
(iii) amount of smoothness of y in L, measured in H° norm
For approximation in H'(2) norm (energy norm for elliptic PDE) with one order less:
ly =yl S N=E=D 9y s
Problem: one needs to know s to prescribe accuracy € = N—(=1/d
In addition: if y & H°(Q) for some s > 1 (or only valid for s > 1 with small s),
estimates cannot be used (or are not useful)
Idea in this case: use non-uniform grid to approximate y and achieve same rate

~ adaptive (or nonlinear) approximation of y
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Example: Uniform Versus Adaptive Approximations [De]

Consider problem to approximate function on Q = (0, 1) by piecewise constants on grid

O=xg<x1 < ---<xy=1 Qj =[x, xj41) and approximation in Lo (£2) norm
Case 1: f Lipschitz-continuous on [0, 1]
approximation fy(x) := f(xn,—1) for all x € [xn—1, Xn)
— 1A = Gl = 1760 = 0l = | [ £ (2 de] < Bl ey 1m0
Xn—1
with grid spacing h, 1= |x, — Xa—1

1, 1 . .
= |If = fullieo@ < I 1 Nl Lo (@) for hn = m (uniform grid)

Case 2: assume ||f'|| ;@) =1
X
define non-decreasing function ¢(x) := / [f'(t)]dt = ¢(0)=0and ¢(1) =1
consider now partition 0 = xp < x3 < - -+ < xy = 1 such that
Xn 1
[ 1 @lde = o) — o) = 3
Xn—1 N
= for x € [Xp—1,Xn]:

IF(x) = fOm-1)l =

/XX ' (t) dt

n—1

X , Xn 1
<[ rores [T rwld= g

n—1 n—1
1., .
= |If = fullieo@ < NHf ll;@  (grid adapted to f)

Angela Kunoth — Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs



Example: Uniform Versus Adaptive Approximations [De]

Result:
fe Wl (Le() (casel): o 9] = k
oo . J N J N
= inf If = Sllioo@ < N Flwig

S piecewise constant

fe WHLi(Q)) (case2): choose Q; such that/ |f'(t)|dt = N71Hf'\|,_1(n)

Qi

= inf I = Slleao@ < N Fluwa, @

S piecewise constant

This means:
convergence rate of same order N ™! for rougher function just satisfying 11|y @) < oo than for
function f’ € Lo (Q) by adapting grid to f

Generalization to solutions of (systems of) PDEs ? Function to be approximated is unknown

Wish list for method adapted to (systems of) PDEs:
» does not need any a-priori information (i.e., on smoothness of solutions)
> realizes theoretically optimal order under minimal smoothness assumptions

» can be uniformly used for different types of problems

In the following: adaptive methods for control problems constrained by elliptic or parabolic PDEs
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Control problems constrained by elliptic Neumann problem
Linear—Quadratic Elliptic Control Problems: Neumann Problem with Distributed Control

Given y., f, w >0

minimize J(y,0) = 3y —velPaceqy + $10130-

subjectto —Ay+y =f+u inQCcRY

% =0 on 9Q

0 < s < 1 smoothness parameter for state y
0 < t smoothness parameter for control u

A HY(Q) = (HY(Q)) weak formulation employing (Av, w) := [,(Vv - Vw + vw)dx
nontrivial solution for y, # A™Lf

minimize J(y,0) = 3y = yelBaceiqy + S92y

subject to Ay =f+u
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Control problems in (infinite) wavelet coordinates

Neumann problem (1) with distributed control without Riesz operators

Minimize
Jy,i) = 3D (y—yu)|?P+ D2 0<s<1, 0<t
subject to
Ay =f+ i
A : ly — £ automorphism || - || := [ - [[¢,

Necessary (and Sufficient Conditions) for Optimality

Lagr(y,u,p) = J(y,u) + (p, Ay — (f+ D~ "u)) and SLagr =0 ~»

Ay = f+D'u
ATp = —D D (y—y.) 2 = Qu=g (3)
wu = D'p
Q: ¢, — £ automorphism
Q :=D'ATTDZATID T +wl symmetric positive definite
where
g =D 'ATTD ®(y. - A

Q cannot be realized by setting up and inverting A explicitly !

Condensed form (3) useful for deriving a convergent numerical scheme — but realization done
through extended form (2)
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Inexact Gradient Methods: Convergence

Starting point: Convergent iteration for the co-dimensional problem

Iterative solution of (4) Qu=g Q symmetric positive definite
~ utl = u" 4+ a(g — Qu") n=0,1,2,... (5) 0<a,<a<a’
ol < pfu —ull (6) where pi= I aQ] <1

(guaranteed by asumptotically optimal conditioning in wavelet coordinates)

Ideal iteration ~» computable scheme for evaluation of
Qu" =MD A" 'D*AT'D '+ whu" and g

~» Techniques from [CDD1,CDD2] developing adaptive methods for one elliptic PDE applied to

Qu=g

described next ...
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Adaptive Approximate Iterations

Res [n,Q,g,v] = ry DETERMINES FOR GIVEN 17 > 0
A FINITELY SUPPORTED F,, SATISFYING g —Qv—ry|| <n
COARSE [0, w] — wy, DETERMINES FOR GIVEN 77 > 0
A FINITELY SUPPORTED W,, SATISFYING lw—w, | <n

Realization: sort w into nonincreasing order

find smallest k such that sum of k largest coefficients exceeds |w/||?> — n?

Cost: for N = #(supp w):
2N and N for level-wise (binned) sorting (instead of N log N for component-wise sorting)

Main algorithm: # interior iterations is K:=min{: p* Y al+p) < =3
(v relaxation weight ~ p < 1 contraction number in (5), (6))
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Adaptive Approximate Iterations — Main Algorithm
SOLVE [£,Q, g] — u. « relaxation weight ~ p < 1 contraction number
; —1, —1
M j=0 w=0 o= 3¢ (ca Ifl+lly=ID)
(11) Ir e; < =: STOP AND SET u. := o/

OTHERWISE v° := o

(11.1) For n=0,...,K — 1 COMPUTE
REs [0, Q, g, V"] = ¢ (7)
v = ot

(11.2) AppLY COARSE[2¢},vK] — o/t

SET €j41 := 3¢&j
j+1e—=j
co To (11)
Convergence: application of
Theorem [CDD1] Forany e >0
SOLVE [£, Q, 8] — u- terminates after finitely many steps and lu—u. | <e

Proof: Bootstrapping argument for convergence analogous to proof of Proposition for Q in Part 1l
for condensed equation (3) but more involved
COARSE is employed only for optimal computational complexity (later)
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Routines for Realization of RES

AppLy [n, A,v] — wy, COMPUTES FOR GIVEN 77 > 0

A FINITELY SUPPORTED W,, SATISFYING AV —w, || <7

Sowve [, A, f+u,¥°, e0] = v,y COMPUTES FOR GIVEN 7) > 0, INITIAL GUESS y° FOR y

WITH ACCURACY &
A FINITELY SUPPORTED Yy, SATISFYING ly —ysll <n

employs

Respr [n, A f+u,y] =y,
(i) Appry [in,A¥] = w,

(i) Coarsg[$n,f] — f,
COARSE[37,u] — u,,

(iii) sET ry :=f, +u, —w,

Sowe [n, AT, —y + y., 8% 0] = py COMPUTES FOR GIVEN 7 > 0
A FINITELY SUPPORTED p,, SATISFYING lp—pyll <
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Realization of RES [p"¢j,...] — (n+ 1)th iterate in (j 4 1)th block in (7)
n = p'ej
Res [7,Q,g,v] =y
(1) 8y :=p"tej(p + an) Oy = CA_I ou+17
) COARSE[46y,yj+1'"] N y{;:rl,n+l,0
) SOLVE [% cAm, A7 f7 uj+1,n7 yj77+1.n+1.0] =y, = yj+1,n+1
(1v) COARSE[£ 8y, p/t1"] — pf 1 7H0
) SO [h AT, =y, 4y B >, i
)

SET ty i= P, — wV
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Complexity Estimates

Main ideas from [CDD1]:

Ideal benchmark: Best (wavelet) N-term approximation
Show that SOLVE realizes asymptotically the work/accuracy balance

of best wavelet N-term approximation v —wp| == min [[v —wl|
#suppw<N

Target accuracy ¢ (~ N7%) <+— Work ¢ /¢ (~ N)

~ classify ‘sparse’ sequences in ¢ whose best N—term approximation decays

at certainrate  A*:={ve b :|v-vy| < N°}
Coarsening Lemma v € A°  and w finitely supported such that |lv —w]| <7
= output w,, of COARSE [47, w] satisfies
#suppw, < n/%, v —w, [l < 5n lwyllas S llvilas
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Convergence and Complexity (for a single Elliptic PDE)
(Idealized) iteration (for symmetric A)

vl =T (F — AVT) update via  REs [, A, f,v] =1, ~»  SOLVE [, A, f] — v.

Theorem [Cohen, Dahmen, DeVore '01/'02]
Vanishing moments (CP) for wavelets = A is s*—compressible

—> for variational problem satisfying (MP) scheme SOLVE can be designed with properties:

(1) For every target accuracy £ > 0 SOLVE produces after finitely many steps
approximate solution v. such that lv—v.| <=

(I1) Exact solution v € A° = suppv., # flops ~ e M NN

Core ingredient of SOLVE : compressible operators (later)
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Convergence and Complexity Analysis for Control Problem with Elliptic PDE

Essential ideas: REs for SOLVE [...,Q,...] reduced to RES for SOLVE [...,A,...]
and KKT system <— condensed system Qu =g
‘Benchmark’ Theorem (for control with elliptic PDE [Dahmen, Kunoth, SICON "05])

For any target accuracy € > 0 Sowve [e,Q, g] — u. converges in finitely many steps

lu—uli<e ly=vill S e llp=pell S e ueye,pe finitely supported
uy,pc A =

— 1 1 1
(#suppu.) + (#suppy.) + (#supppe) < /% (llullfs + YIS + ol

lucllas + llyellas + llpcllas S lullas + llyllas + lIpll.as

H#flops ~ e 1/¢
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Numerical Example for Elliptic Control Problem (2D)

type e = (1,0)
1.69-03
7
6
- -—
5 ==
4 0. 00e+00

2.08e-01

i

0. 00e+00

N 4.34e-03
7 < | _F

6 = i
5

4 0. 00e+00

4

type e = (0,1)

1.69e-03

i target state y.

0. 00e+00

2.08e-01

i

0. 00e+00

4. 34e-03

i

0. 00e+00
[Burstedde '05], [Burstedde, Kunoth '08]

Observation: in wavelet coordinates, each variable obtains its own adaptive “refinement”
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