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Sketch of Contents

I Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
solutions

I Control problems constrained by elliptic and parabolic PDEs

I Numerical approximations of solutions on uniform and non-uniform/adaptive grids

I Concepts of multiscale methods and adaptivity; convergence proofs and complexity estimates

I Realization of these concepts by B-spline-wavelets

I Fast solvers: multilevel preconditioning; implementation issues
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Part II: Wavelet Preconditioning

Problem Setup

Elliptic PDE of order 2 on domain Ω: −∆u = f in Ω, u|∂Ω = 0

Weak operator form: for given f ∈ H−1(Ω), find u ∈ H1
0 (Ω) such that

Au = f in H−1(Ω)

Elliptic operator A defined by 〈Av ,w〉 := a(v ,w) symmetric, continuous

and coercive on H1
0 (Ω): ‖Av‖H−1(Ω) ∼ ‖v‖H1(Ω)

Discretization on uniform grid: Vh ⊂ H r
0 (Ω) dimVh <∞ ; Ah uh = fh (∗)

0 < h < 1 grid size

Target:

Realize discretization error accuracy ε ∼ hp+1 ∼ 2−(p+1)J for grid with spacing h ∼ 2−J

Problem complexity: For h ∼ 2−J a total of N ∼ 2Jd unknowns

Optimal complexity for iterative solver: Minimal amount of work is O(N)
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Multilevel Preconditioner

Asymptotically optimal preconditioner: Ch such that

cond2(ChAh) ∼ 1

and setup and application of Ch in optimal linear complexity O(N)

Schwarz iterative schemes based on subspace corrections

; Multilevel schemes yielding optimal preconditioners:

I Multiplicative schemes ; multigrid methods Brandt, Braess, Bramble, Hackbusch, Zulehner . . .

IgA: Gahalaut, Kraus, Tomar . . .

I Additive schemes ; BPX preconditioner; wavelet discretization
Bramble, Pasciak, Xu, Yserentant, Oswald, Dahmen, Kunoth . . .

Relevant idea from Approximation Theory: Multilevel characterization of function spaces
and norm equivalences

Not optimal are preconditioners based on domain decomposition, overlapping Schwarz, hierarchical
basis preconditioners. . . Beirao da Veiga, Cho, Pavarino. Scacci, Kleiss, Pechstein, Jüttler, Langer . . .
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Multilevel Characterization of Function Spaces

Vh ←→ Vj uniform grid with grid spacing h ∼ 2−j j resolution level

Multiresolution Vj0
⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . .H r

0 (Ω)

closHr (Ω)

(⋃∞
j=j0

Vj

)
= H r

0 (Ω)

Linear orthogonal projectors Qj : H r
0 (Ω)→ Vj s.th. QjQ` = Qj for j ≤ ` ; Qj −Qj−1 projector

Corollary

(S) Φj uniformly stable basis for Vj : ‖c‖`2
∼ ‖cT Φj‖L2(Ω)

(J) Jackson estimate

inf
vj∈Vj

‖v − vj‖L2(Ω) <∼ 2−sj‖v‖Hs (Ω) v ∈ Hs (Ω) 0 < s ≤ δ

(B) Bernstein inequality ‖vj‖Hs (Ω) <∼ 2sj‖vj‖L2(Ω) vj ∈ Vj s < τ

=⇒ Norm equivalence

(NE) ‖v‖2
Hs (Ω) ∼

J∑
j=j0

22sj‖(Qj − Qj−1)v‖2
L2(Ω) v ∈ VJ s ∈ (−σ̃, σ)
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Norm Equivalence for Optimal Preconditioning

Corollary: For H r
0 (Ω) C−1

J := Aj0
Qj0

+
J∑

j=j0

22rj (Qj − Qj−1)

is optimal preconditioner for AJ : VJ → VJ : cond2(C
1/2
J AJC

1/2
J ) ∼ 1 as J →∞

Realization of C−1
J by wavelets:

For any s ∈ (−σ̃, σ):
Explicit representation of difference (Qj − Qj−1)v in terms of wavelet basis together with diagonal

Ds := (2sj )j=j0...J

; Fast Wavelet Preconditioner (FWT) realizes preconditioning in optimal linear complexity
[Jaffard ’92], [Dahmen, Kunoth ’92]

Construction of FWT preconditioner:

Multiresolution of solution space H1
0 (Ω) ;

nestedness Vj ⊂ Vj+1 implies existence of matrix Mj,0 such that Φj = MT
j,0 Φj+1

For some complement Wj+1 of Vj in Vj+1, there exists basis called wavelet-basis Ψj

and matrix Mj,1 such that Ψj = MT
j,1 Φj+1

Two-scale transforms: Mj performs a change of bases in the space Vj+1:(Φj

Ψj

)
=
(MT

j,0

MT
j,1

)
Φj+1 =: MT

j Φj+1
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Construction of FWT preconditioner

Two-scale transforms: Mj performs a change of bases in the space Vj+1:(Φj

Ψj

)
=
(MT

j,0

MT
j,1

)
Φj+1 =: MT

j Φj+1

Conversely: there exists Gj such that reconstruction identity holds:

Φj+1 = GT
j

(Φj

Ψj

)
= GT

j,0Φj + GT
j,1Ψj where Gj := M−1

j

Important for efficiency: Mj and Gj uniformly sparse

Example of the structure of the matrices Mj and Gj :

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 191
0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 195

Nonzero pattern of matrices Mj (left) and Gj (right) for boundary-adapted B-splines of order
m = 2 as generators and duals of order m̃ = 4 (providing norm equivalences (NE) for Hs (0, 1) for
s ∈ (−3/2, 3/2))
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Basis Changes

Fix finest resolution level J and repeat function space decomposition ;

for every v ∈ VJ :

single–scale representation v = (cJ )T ΦJ =
∑
k∈∆J

cJ,kφJ,k

multi–scale representation v = (cj0 )T Φj0
+ (dj0 )T Ψj0

+ · · · + (dJ−1)T ΨJ−1

with respect to the multiscale or wavelet basis ΨJ := Φj0
∪

J−1⋃
j=j0

Ψj =:

J−1⋃
j=j0−1

Ψj

Both representations useful ;

Wavelet Transform TJ : `2(∆J )→ `2(∆J ), dJ 7→ cJ dJ := (cj0 , dj0 , . . . , dJ−1)T

; TJ = TJ,J−1 · · ·TJ,j0
where TJ,j :=

(
Mj 0

0 I(#∆J−#∆j+1)

)
∈ R(#∆J )×(#∆J )

Theorem: Mj (and Gj ) uniformly sparse

; TJ (and inverse T−1
J ) can be applied in O(NJ ) arithmetic operations

(optimal complexity)

Fast Wavelet Transform (FWT)

Recall: Fast Fourier Transform (FFT) needs O(NJ log NJ ) arithmetic operations

TJ (and inverse T−1
J ) should not be set up explicitly . . . . . . instead
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Pyramid Scheme for Realizing Fast Wavelet Transform in O(NJ) Operations

TJ : `2(∆J )→ `2(∆J )

TJd
J = cJ

with TJ := TJ,J−1 · · ·TJ,j0
and TJ,j :=

(
Mj 0

0 I(#∆J−#∆j+1)

)
∈ R(#∆J )×(#∆J )

Mj0,0 Mj0+1,0 MJ−1,0

cj0 −→ cj0+1 −→ cj0+2 −→ · · · cJ−1 −→ cJ

Mj0,1 Mj0+1,1 MJ−1,1

↗ ↗ ↗ · · · ↗
dj0 dj0+1 dj0+2 dJ−1

j κ2(TDKU) κ2(TB)

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j κ2(TDKU) κ2(TB)

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00

Computed spectral condition numbers for the Fast Wavelet Transform on [0, 1] for different
constructions of biorthogonal spline-wavelets on the interval [Dahmen, Kunoth, Urban, 1999] and
[Burstedde, Dissertation, 2006]; results taken from [Pabel, Diploma Thesis, 2005]
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Plots of generators Φj and wavelets Ψj

Daubechies D4 generator and wavelet (support [-1,2] and 2 vanishing moments for the wavelet)
[https://www.mathematik.uni-marburg.de/∼waveletsoft/]

0 1

ψ
2,0

ψ
2,1

0 1

ψ
2,2

ψ
2,1

biorthogonal spline-wavelet for m = 2 and m̃ = 4; generated by piecewise linear B-Splines as
primals (providing norm equivalences (NE) for Hs (0, 1) for s ∈ (−3/2, 3/2))
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Preconditioning by Wavelets

Important: on uniform grids, stiffness matrix should not be explicitly set up in wavelet basis;
set-up in wavelet basis leads to matrix with O(NJ log NJ ) entries and exhibits finger band structure

(stiffness matrix in wavelet basis for 1D problem) [Castano ’05]
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Preconditioning with Fast Wavelet Transform

Application to elliptic PDE ;

Theorem: AJ := D−1
J TT

J 〈ΦJ ,AΦJ〉TJ D
−1
J

has uniformly bounded condition numbers independent of J with DJ diagonal matrix

Proof:

Combine mapping property of A: ‖Av‖H−1(Ω) ∼ ‖v‖H1(Ω)

with norm equivalence (NE) for v ∈ VJ ⊂ H1(Ω) in wavelet coordinates v = vT ΨJ

‖v‖H1(Ω) ∼ ‖DJv‖`2
and similarly for dual norm

Stiffness matrix in wavelet coordinates 〈ΨJ ,AΨJ〉 = TT
J 〈ΦJ ,AΦJ〉TJ
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Preconditioning with Fast Wavelet Transform: Condition Numbers

Elliptic PDE:
−∆u + u = f in Ω ⊂ Rd

∂u
∂n = 0 on ∂Ω

−∆ + 1 (−∆ + 1)CK

j 0 1 0 1

3 229 22.3 256 27.1
4 244 23.9 263 27.9
5 255 25.0 289 30.6
6 262 25.7 301 31.9
8 271 26.6 319 33.9

10 276 27.1 330 35.0
12 278 27.3 337 35.8

space dimension d = 1

−∆ + 1 (−∆ + 1)CK

j 0 1 4 5 0 1 3 4

3 519 78.2 76.0 49.5 256 27.8 17.3 9.64
4 627 129 128 124 308 33.4 20.9 11.8
5 646 149 149 147 372 40.4 25.3 14.3
6 664 165 165 165 416 45.1 28.2 16.0
8 681 179 179 179 480 52.1 32.6 18.4

space dimension d = 2

−∆ + 1 (−∆ + 1)CK

j 0 9 0 1 4

3 1103 269 256 28.5 18.3
4 1917 1913 520 57.8 37.1
5 2228 2222 557 62.0 39.8
6 2459 2443 572 63.6 40.9

space dimension d = 3

Uniformly bounded and absolutely small spectral condition numbers cond2(AJ ) [Burstedde ’05]

Additional preconditioning transformation on lowest level using singular value decomposition of
Aj0

: digit at head of each column indicates number of small eigenvalues shifted upward; number 0

corresponds to no additional preconditioning; exact diagonal (diag AJ )−1

Aj0
:= a(Φj0

,Φj0
) = USUT with orthogonal U and diagonal S containing eigenvalues;

replace S by Ŝ with smaller range of eigenvalues and replace Aj0
by Âj0

:= UŜUT (can be
interpreted as transformation of generator basis) [Burstedde ’05, Chapter 4.3.3]
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Ingredients for Efficient Numerical Solution: Nested Iteration

Recall goal: realize discretization error accuracy εJ ∼ h2 ∼ 2−2J for grid with spacing h ∼ 2−J

with minimal amount of work O(N) N ∼ 2Jd unknowns

Theorem:
Starting with coarsest level j0, solve Ajyj = fj on each level j up to discretization error
accuracy εj and prolongate result from level j to next level j + 1 as initial guess

; Optimal preconditioner + nested iteration yields method of
optimal complexity O(NJ )

to reach discretization error accuracy on finest level J

Numerical results in Part III in context of control problems . . .
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Excursion: Wavelets for Image Processing

Wavelets in signal and image processing . . .

• Signal or image: explicitly given object described by N data points

• Goal: data compression without loosing essential information

• Method: single-(fine-)scale ←→ multi-scale representation of object

• Change of representation by Fast Wavelet Transform in O(N) operations (based on locally
supported functions)

; Discard small coefficients in multi-scale representation

; Data compression

• Landmark: Daubechies’ construction of L2(R) orthonormal wavelets with compact support
[1988]
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Image Compression — (Old) Examples

Original (768×768 pixels, 589.824 bytes) JPEG compression (12.9:1, 45.853 bytes)
Wavelet compression: JPEG 2000 (12.9:1, 45.621 bytes) [Brislawn, FBI, Los Alamos Laboratory, 1996]

Original (left), compression 100:1 (MT-WICE (Wavelet Based Image Compression), Mevis, right)
Compression 80:1 (MT-WICE left) JPEG (right)

Angela Kunoth — Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 15


