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Sketch of Contents

> Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
solutions

Control problems constrained by elliptic and parabolic PDEs
Numerical approximations of solutions on uniform and non-uniform/adaptive grids
Concepts of multiscale methods and adaptivity; convergence proofs and complexity estimates

Realization of these concepts by B-spline-wavelets
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Fast solvers: multilevel preconditioning; implementation issues

Literature: see References in notes_kunoth.pdf
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Part 1I: Wavelet Preconditioning
Problem Setup

Elliptic PDE of order 2 on domain Q: —Au=f inQ, ulpg =0

Weak operator form: for given f € H*(Q), find u € Hj () such that

Au=f in HY(Q)

Elliptic operator A defined by (Av, w) := a(v, w) symmetric, continuous
and coercive on H}(): HAVHH,l(Q) ~ HVHHI(Q)
Discretization on uniform grid: V,, C Hj(Q2) dim V), < oo ~ Apup = fp (%)

0 < h < 1 grid size

Target:
Realize discretization error accuracy = ~ APt ~ 27 (P for grid with spacing h ~ 27
Problem complexity: For h ~ 277 a total of N ~ 2’ unknowns

Optimal complexity for iterative solver:  Minimal amount of work is O (/)
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Multilevel Preconditioner

Asymptotically optimal preconditioner:  Cp  such that
condy(CpAp) ~ 1

and setup and application of C, in optimal linear complexity O(/N)

Schwarz iterative schemes based on subspace corrections

~> Multilevel schemes yielding optimal preconditioners:
» Multiplicative schemes ~» multigrid methods Brandt, Braess, Bramble, Hackbusch, Zulehner ...
IgA: Gahalaut, Kraus, Tomar ...

» Additive schemes ~» BPX preconditioner; wavelet discretization

Bramble, Pasciak, Xu, Yserentant, Oswald, Dahmen, Kunoth ...

Relevant idea from Approximation Theory: Multilevel characterization of function spaces
and norm equivalences

Not optimal are preconditioners based on domain decomposition, overlapping Schwarz, hierarchical
basis preconditioners. . . Beirao da Veiga, Cho, Pavarino. Scacci, Kleiss, Pechstein, Jiittler, Langer ...
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Multilevel Characterization of Function Spaces

Vi «— V, uniform grid with grid spacing h ~ 2~/ J resolution level
Multiresolution Vjg C Vjj41 C ... C V; C Vi C ... Hy(Q)
clospr(a) (Ufjjo v,-) = H(Q)

Linear orthogonal projectors Q; : H{(Q2) — Vj s.th. Q;Q; = Qj for j < £ ~» Q; — Qj—1 projector

Corollary
(S) ®; uniformly stable basis for V;: llelle, ~ |ICT¢J'HL2(Q)
(J) Jackson estimate )
v/'gfi/] v —=vil@ < 27 7vliws@ veH(Q) 0<s<é

(B) Bernstein inequality Iillisy < 27Villpey wEV s<rt

~

—> Norm equivalence

J
(NE) vl ~ > 2@~ @ vl veEVS se(-8,0)
Jj=lo
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Norm Equivalence for Optimal Preconditioning

Corollary: For Hg () Ajp Qi + Z 2%9(Q - Qi-1)
i=o
is optimal preconditioner for A, : V; — V/: CondQ(Cj/QAJCJl//Z) ~1 asJ—

Realization of le by wavelets:

Forany s € (—&,0):
EXp|ICIt representation of difference (Q — Qj—1)v in terms of wavelet basis together with diagonal

D := (2 )J=Jo»-~

~> Fast Wavelet Preconditioner (FWT) realizes preconditioning in optimal linear complexity
[Jaffard '92], [Dahmen, Kunoth '92]

Construction of FWT preconditioner:

Multiresolution of solution space H&(Q) ~
nestedness V; C Vj;1 implies existence of matrix M; o such that ; = M 0Pt

For some complement W1 of V; in V1, there exists basis called wavelet-basis V;
and matrix M; 1 such that ¥; = ML ®i

Two-scale transforms: M; performs a change of bases in the space Vj;i:

(W ) (MT )¢j+1 = M/T¢j+1
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Construction of FWT preconditioner

Two-scale transforms: M; performs a change of bases in the space Vj;1:
T
(\u ) (MT )q’f“ = Mj ®jn

Conversely: there exists G; such that reconstruction identity holds:

b;
by = GJT( J) = G]:0¢’j + G]:llllj where G; := Mf1

v
Important for efficiency: M; and G; uniformly sparse

Example of the structure of the matrices M; and G;:

[of 0

Nonzero pattern of matrices M; (left) and G; (right) for boundary-adapted B-splines of order
m = 2 as generators and duals of order /i = 4 (providing norm equivalences (NE) for H*(0, 1) for

€(-3/2,3/2))
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Basis Changes

Fix finest resolution level J and repeat function space decomposition ~»

for every v € V,:

single-scale representation v = (cJ)Td>J = E CJ kP k
ken,

multi-scale representation v = (cjo)T<Dj0 + (djO)T\llj0 +o (dy) TV

J—1 J—1
with respect to the multiscale or wavelet basis W’ := &5 U U v =: U v;

Jj=io J=ip—1
Both representations useful ~»
Wavelet Transform T, : £2(Ay) — £2(Ay), d = ¢ d’ = (Cio’dfo’ o ,dJ,l)T

M;

0
~ T,)=Tsy-1--Tyjy where T, := ( 0 1#B —#bj41) ) e R#FADXGE#AY)

Theorem: M; (and G;) uniformly sparse

~ Ty (and inverse TJ_I) can be applied in O(N,) arithmetic operations
(optimal complexity)

Fast Wavelet Transform (FWT)

Recall: Fast Fourier Transform (FFT) needs O(N, log N;) arithmetic operations

T, (and inverse TJ_I) should not be set up explicitly ...... instead
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Pyramid Scheme for Realizing Fast Wavelet Transform in O(N,) Operations
Ty 62(8)) = 6(A))

TJdJ =cCy
. M; 0
with T, := T, 1~ A.TJJO and T, ; = ( 01 (A —#8741) > c R#ADX(#D))

Mjo,0 Mjg+1,0 My_10
Co T Cptl - Gtz — 0 Cyo1 — cy
Mjo.1 Mjo+1,1 My_11
A a e e
dj djp+1 djp+2 dy—1
J K’Z(TDKU) HQ(TB) J Nz(TDKU) "{2(TB)
4 4.743e+00 4.640e+00 1 1.097e+01 8.011e+00
5 6.221e+00 6.024e+00 12 1.103e+01 8.034e+-00
6 8.154e100 6.860e1-00 13 1.106e+01 8.046e+00
7 9.473e+00 7.396e+00 14 1.107e+01 8.051e+4-00
8 1.023e+01 7.707e+-00 15 1.108e+01 8.054e+00
9 1.064e+01 7.876e+00 16 1.108e+01 8.056e+-00
10 1.086e+01 7.965¢+00

Computed spectral condition numbers for the Fast Wavelet Transform on [0, 1] for different
constructions of biorthogonal spline-wavelets on the interval [Dahmen, Kunoth, Urban, 1999] and
[Burstedde, Dissertation, 2006]; results taken from [Pabel, Diploma Thesis, 2005]
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Plots of generators ®; and wavelets V;

k=D BB, 12001, L1987, € 1013

\
05 7 —
0 1 2 3 w0

Daubechies D4 generator and wavelet (support [-1,2] and 2 vanishing moments for the wavelet)
[https://www.mathematik.uni-marburg.de/~waveletsoft /]

Va1 Yoo

Y20 Y21
| \V/X\/ ‘0 /\\/ W vl\‘
biorthogonal spline-wavelet for m = 2 and m = 4; generated by piecewise linear B-Splines as

primals (providing norm equivalences (NE) for H*(0, 1) for s € (—3/2,3/2))

Angela Kunoth — Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs



Preconditioning by Wavelets

Important: on uniform grids, stiffness matrix should not be explicitly set up in wavelet basis;
set-up in wavelet basis leads to matrix with O(N, log N,) entries and exhibits finger band structure

1000

70 L L L L L L 0
0 10 20 30 40 50 60 70

(stiffness matrix in wavelet basis for 1D problem) [Castano '05]
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Preconditioning with Fast Wavelet Transform

Application to elliptic PDE ~ ~»

Theorem: A, = DJ_ITJT (b, AdD)) T, DJ_1

has uniformly bounded condition numbers independent of J with D, diagonal matrix

Proof:
Combine mapping property of A: HAVHHfl(n) ~ ”VHH1(Q)
with norm equivalence (NE) for v € V; C HI(Q) in wavelet coordinates v = v’ W’

Hv||H1(n) ~ ||Dyvlle, and similarly for dual norm

Stiffness matrix in wavelet coordinates  (W’, AWY) = T] (d,, Ad,) T,
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Preconditioning with Fast Wavelet Transform: Condition Numbers

—Au4+u =f inQCR?
Elliptic PDE: )
% =0 ondQ
—A+1 (—A +1)CK
J 0 1 0 1 —A+1 (—A+1)CK
3 | 229 | 223 | 256 | 271 J 0 1 4 5 0 1 3 4
4 | 244 | 239 | 263 | 279 3 | 510 | 782 | 760 | 495 | 256 | 278 | 173 | 004
5 | 255 | 250 | 289 | 306 4 | 627 | 120 128 124 | 308 | 334 | 209 | 118
6 | 262 | 257 | 301 | 319 5 | 646 | 149 149 147 | 372 | 404 | 253 | 143
8 | 271 | 266 | 319 | 339 6 | 664 | 165 165 165 | 416 | 451 | 282 | 160
10 | 276 | 271 | 330 | 350 8 | 681 | 179 179 179 | 480 | 521 | 326 | 184
12 | 278 | 273 | 337 | 358 space dimension d — 2
Space dimension d = 1
—A+1 (—a +1)CK
J 0 9 0 1 4
3 [ 1103 | 260 | 256 | 285 | 183
4 | 1017 | 1013 | 520 | 578 | 371
5 | 2008 | 2222 | 557 | 620 | 398
6 | 2450 | 2443 | 572 | 636 | 409

space dimension d = 3

Uniformly bounded and absolutely small spectral condition numbers cond> (A )
Additional preconditioning transformation on lowest level using singular value decomposition of

Aj,: digit at head of each column indicates number of small eigenvalues shifted upward; number 0
corresponds to no additional preconditioning; exact diagonal (diag AJ)’1
b)) = USUT with orthogonal U and diagonal S containing eigenvalues;

replace S by § with smaller range of eigenvalues and replace A;; by Afo = usu’ (can be
[Burstedde '05, Chapter 4.3.3]

Aj() = a(¢,-0,

interpreted as transformation of generator basis)

[Burstedde '05]
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Ingredients for Efficient Numerical Solution: Nested Iteration

Recall goal: realize discretization error accuracy =, ~ W ~ 272 for grid with spacing h ~ 2~/
with minimal amount of work O(N) N ~ 2% unknowns

Theorem:
Starting with coarsest level jo, solve Ajy; = f; on each level j up to discretization error
accuracy ¢ and prolongate result from level j to next level j 4 1 as initial guess
~»  Optimal preconditioner + nested iteration yields method of
optimal complexity O(N,)

to reach discretization error accuracy on finest level J

Numerical results in Part Ill in context of control problems . ..
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Excursion: Wavelets for Image Processing

Wavelets in signal and image processing . . .
e Signal or image: explicitly given object described by N data points
e Goal: data compression without loosing essential information
e Method: single-(fine-)scale +— multi-scale representation of object

e Change of representation by Fast Wavelet Transform in O(N) operations (based on locally
supported functions)

~> Discard small coefficients in multi-scale representation

~> Data compression

e Landmark: Daubechies’ construction of L(R) orthonormal wavelets with compact support
[1988]
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Image Compression — (Old) Examples

N

JPEG compression (12.9:1, 45.853 bytes)
Wavelet compression: JPEG 2000 (12.9:1, 45.621 bytes)  [Brislawn, FBI, Los Alamos Laboratory, 1996]

Original (left), compression 100:1 (MT-WICE (Wavelet Based Image Compression), Mevis, right)
Compression 80:1 (MT-WICE left)  JPEG (right)
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