
CIME–EMS Summer School “Splines and PDEs”, 2017

Adaptive Multiscale Methods for the Numerical Treatment of
Systems of PDEs

Angela Kunoth

Universität zu Köln, Germany

Sketch of Contents

I Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
solutions

I Control problems constrained by elliptic and parabolic PDEs

I Numerical approximations of solutions on uniform and non-uniform/adaptive grids

I Concepts of multiscale methods and adaptivity; convergence proofs and complexity estimates

I Realization of these concepts by B-spline-wavelets

I Fast solvers: multilevel preconditioning; implementation issues

Literature: see References in notes kunoth.pdf
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Part III: Control Problems Constrained by Elliptic PDEs

Optimization problems with PDEs:

I Tracking type control problems constrained by PDE, e.g. flow control

I Topology optimization

I Shape optimization

I Variables: state, control, adjoint (or co-)state

I Additional inequality constraints on control and/or state

In the following main subjects:

I Tracking type control problem constrained by elliptic (or parabolic) PDE
; system of coupled PDEs

I Variables: state, control, adjoint (or co-)state

I In this part: discretizations on uniform grids

I Efficient solution schemes based on wavelets

I Convergence and optimal complexity

Literature:

[BK] C. Burstedde, A. Kunoth, Fast iterative solution of elliptic control problems in wavelet
discretization, Journal of Computational and Applied Mathematics 196 (2006), 299-319.
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Optimization Problems: First Order Necessary Conditions

Constrained minimization problem

inf
(y,u)∈Y×U

J (y , u) J : Y × U → R Y,U,Q Hilbert spaces

subject to K(y , u) = 0 K : Y × U → Q′ control u ∈ U, state y ∈ Y

Assumption on K: for given u ∈ U , there exists unique state y ∈ Y

Solution approach: compute zeroes of first order Fréchet derivatives of Lagrangian functional

L(y , u, p) := J (y , u) + 〈K(y , u), p〉Q′×Q L : Y × U ×Q → R costate/adjoint p ∈ Q

; δL(y , u, p) :=

Ly (y , u, p)

Lu(y , u, p)

Lp(z, u, p)

 = 0 ⇐⇒

Jy (y , u) + 〈Ky (y , u), p〉Q′×Q
Ju(y , u) + 〈Ku(y , u), p〉Q′×Q

K(y , u)

 = 0

Special case: J quadratic in y , u K linear in y , u
=⇒ necessary conditions for optimality are sufficient

; linear (Karush-Kuhn-Tucker (KKT) or saddle point) systemLyy Lyu K∗y
Luy Luu K∗u
Ky Ku 0

y
u
p

 = g ⇐⇒:

(
A B∗
B 0

)(
(y , u)T

p

)
= g ⇐⇒: G q = g

〈C∗q, r〉 := 〈q, Cr〉
A,B linear, continuous; A invertible on kerB; im B = Q′ =⇒ G boundedly invertible
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Control problems constrained by elliptic Neumann problem

Linear–Quadratic Elliptic Control Problems: Neumann Problem with Distributed Control

Given y∗, f , ω > 0

minimize J(y , u) = 1
2‖y − y∗‖2

H1−s (Ω)
+ ω

2 ‖u‖
2
(H1−t (Ω))′

subject to −∆y + y = f + u in Ω ⊂ Rd

∂y
∂n = 0 on ∂Ω

(1)

0 ≤ s ≤ 1 smoothness parameter for state y
0 ≤ t smoothness parameter for control u

A : H1(Ω)→ (H1(Ω))′ weak formulation employing 〈Av ,w〉 :=
∫

Ω
(∇v · ∇w + vw)dx

nontrivial solution for y∗ 6≡ A−1f

minimize J(y , u) = 1
2‖y − y∗‖2

H1−s (Ω)
+ ω

2 ‖u‖
2
(H1−t (Ω))′

subject to Ay = f + u

(2)
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Wavelet Methods for Elliptic Control Problems — Modelling Norms in Cost Functional

Discretization of (continuous) control problem in (infinite) wavelet coordinates
;

I Modelling: Cost functional with Sobolev norms ∼ weighted sequence norms

I Numerical Analysis: Optimal preconditioning

I (in next part) Numerical Solution by Adaptive Scheme: Linear elliptic PDE as constraints
Iterative scheme – A–posteriori error estimates – convergence
– convergence rate and optimal complexity estimates
regularity theory in Besov spaces – wavelet–best N–term approximation

Standard Discretizations

Elliptic PDE: A : Y → Y ′ isomorphism ; (finite–dimensional) discretization ; iterative solvers,
efficient preconditioners

©© control problem: Evaluation of fractional Sobolev norms ?

New Paradigm

(I) mapping property for A : Y → Y ′

(II) transformation into equivalent ∞–dimensional well–posed `2 problem

(III) restriction to uniform grids: CG method for control with inner iterations to update state

; set up control problem in wavelet coordinates
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Building Blocks: (Biorthogonal) Wavelets

H Hilbert space on domain Ω ⊂ Rd with ‖ · ‖H H′ dual space for H with 〈·, ·〉

Ψ := {ψλ : λ ∈ I} ⊂ H Wavelets I (infinite) index set

(NE) Ψ Riesz basis for H

v ∈ H: v = vT Ψ :=
∑
λ∈I
〈v , ψ̃λ〉ψλ such that ‖v‖H ∼ ‖v‖`2(I)

(L) Locality diam (suppψλ) ∼ 2−|λ| |λ| resolution

ψλ centered around 2−|λ|k

(CP) Vanishing moments 〈v , ψλ〉 <∼ 2−|λ|(
d
2

+m̃) ‖v (m̃)‖L∞(supp ψλ) for some m̃
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Modelling in Wavelet Coordinates: Norms in Cost Functional

J(y , u) = 1
2‖y − y∗‖2

H1−s (Ω)
+ ω

2 ‖u‖
2
(H1−t (Ω))′ 0 ≤ s ≤ 1, 0 ≤ t

Example: min J(y , u) subject to

{
−y ′′ + y = 1 + u in (0, 1) y∗ = 0 ω = 1

dy
dn = 0 at 0, 1

Representer in wavelet coordinates

(without Riesz operators for ‖v‖2
Z ∼ ‖R

1/2
Z v‖ and ‖ · ‖U ‖ · ‖ = ‖ · ‖`2

):

J(y, ũ) = 1
2 ‖D

−s (y − y∗)‖2 + ω
2 ‖D

t ũ‖2 0 ≤ s ≤ 1, 0 ≤ t

; min J(y, ũ) subject to Ay = f + ũ
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Representer for Control Problem in Wavelet Coordinates

Minimize

J(y, ũ) = 1
2 ‖R

1/2
Z D−s (y − y∗)‖2 + ω

2 ‖R
1/2
U Dt ũ‖2 0 ≤ s ≤ 1, 0 ≤ t (3)

subject to
Ay = f + ũ (4)

A : `2 → `2 automorphism ‖ · ‖ := ‖ · ‖`2

Necessary (and Sufficient Conditions) for Optimality

Lagr(y, u, p) := J(y, u) +
〈
p, Ay − (f + D−t u)

〉
and δLagr = 0 ;

Ay = f + D−t u

ATp = − D−sRZD
−s (y − y∗)

ωRUu = D−t p

(5) ⇐⇒ Qu = g (6)

Q : `2 → `2 automorphism

where
Q := D−tA−TD−sRZD

−sA−1D−t + ωRU symmetric positive definite

g := D−tA−TD−sRZD
−s (y∗ − A−1f)

Q should not be realized by setting up and inverting A explicitly !

Condensed form (6) useful for deriving a convergent numerical scheme — but realization done
through extended form (5)

Recall: on uniform grids, stiffness matrix A should not be explicitly set up in wavelet basis ; use
fast wavelet transform instead
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A Nested Iteration-Inexact CG (NIICG) Algorithm

In this chapter from now on: uniform grids with highest grid level J (amount of unknowns here
shortly N) and j0 coarsest level of resolution;
consider coupled system (5) and condensed system (6)

A Basic Conjugate Gradient (CG) Method

Consider linear system

Mq = z, M ∈ RN×N symmetric positive definite, cM‖v‖ ≤ ‖Mv‖ ≤ CM‖v‖, v ∈ RN
,

(7)

with given right hand side z ∈ RN , ‖ · ‖ := ‖ · ‖`2(∆J ), constants 0 < cM ≤ CM <∞;

denote residual using an approximation q̃ to q for (7) by Res (q̃) := Mq̃− z

Idea: employ a basic conjugate gradient (CG) method that iteratively computes approximate
solution qK to (7) with given initial vector q0 and given tolerance ε > 0 such that

‖MqK − z‖ = ‖Res (qK )‖ ≤ ε, (8)

where K is number of iterations
(later: ε specified depending on discretization tolerance for (7)

Scheme CG below contains routine

Apply (ηk ,M, dk ) (9):

for M = A,AT is simply matrix–vector multiplication Mdk ;
otherwise, it approximately computes Mdk up to tolerance ηk = ηk (ε) depending on ε
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A Basic Conjugate Gradient (CG) Method

CG [ε, q0,M, z]→ qK (10)

(i) Set d0 := z−Mq0 and r0 := −d0. Let k = 0.

(ii) While ‖rk‖ > ε

mk := Apply (ηk (ε),M, dk ) αk :=
(rk )T rk

(dk )Tmk

qk+1 := qk + αkdk rk+1 := rk + αkmk

βk :=
(rk+1)T rk+1

(rk )T rk
dk+1 := −rk+1 + βkdk

k := k + 1

(iii) Set K := k − 1.

Note: Routine CG computes residual up to stopping criterion ε;
error in solution is multiplied by ‖M−1‖ = c−1

M ;

error: ‖q− qK‖ = ‖M−1(z−MqK )‖ ≤ ‖M−1‖ ‖Res (qK )‖ ≤ ε c−1
M (11)

Next: design routine CG for condensed system (6) involving

Apply for M replaced by Q ( = D−tA−TD−sRZD
−sA−1D−t + ωRU ) (symmetric positive

definite)

and right hand side z replaced by g ( = D−tA−TD−sRZD
−s (y∗ − A−1f))
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Approximate Right Hand Sides

Approximate computation of g by applying interior cg iterations up to stopping criterion ζ:

Rhs [ζ,A, f, y∗]→ gζ (12)

(i) CG [
cA
2C

cA
C2C2

0
ζ, 0,A, f]→ g1

(ii) CG [
cA
2C ζ, 0,A

T,−D−sRZD
−s(g1 − y∗)]→ g2

(iii) gζ := D−tg2.

Note: tolerances used within the two conjugate gradient methods depend on constants cA,C ,C0

from mapping property of A, bounds C of diagonal operators D−s ,D−t and bounds C0 for L2

Riesz operator.

Note also: the additional factor cA(CC0)−2 in stopping criterion in step (i) in comparison to step
(ii) is in general smaller than one

; primal system needs to be solved more accurately than adjoint system in step (ii)

Proposition
The result gζ of Rhs [ζ,A, f, y∗] satisfies upon completion

‖gζ − g‖ ≤ ζ. (13)

Proof: See step by step definition of different right hand sides and employ bounds on operators. 2
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Apply for Q

For computation of approximation mη to matrix–vector product Qd, employ this routine which

needs in last step an appropriate approximation for g (with D−1
U = D−t ,D−1

Z = D−s )

Apply [η,Q, d]→ mη (14)

(i) CG [
cA
3C

cA
C2C2

0
η, 0,A, f + D−1

U d]→ yη

(ii) CG [
cA
3C η, 0,A

T,−D−1
Z RZD

−1
Z (yη − y∗)]→ pη

(iii) mη := gη/3 + ωRUd− D−1
U pη .

Note: tolerances differ only slightly from those the routine Rhs , although the ratio between the
tolerances in step (i) and (ii) is the same, namely, cA(CC0)−2 (reason can be seen in proof of
following result)

Proposition The result mη of Apply [η,Q, d] satisfies

‖mη − Qd‖ ≤ η. (15)

Proof: Confirm that choice of the stopping criteria in steps (i) and (ii) indeed yields (15):
Denote by yd exact solution of primal equation in (5) with d in place of u on right hand side, and
by pd exact solution of adjoint equation in (5) with yd on the right hand side

; step (iii) and Qu− g = ωRUu− D−tp combined with error bounds on Riesz operators and
diagonal matrices yield

‖mη − Qd‖ = ‖gη/3 − g + ωRUd− D−1
U pη − (Qd− g)‖

≤ 1
3η + ‖ωRUd− D−1

U pη − (ωRUd− D−1
U pd)‖

≤ 1
3η + C‖pd − pη‖ (16)
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Apply for Q

(Continuation of proof)

For p̂ exact solution of adjoint equation with yη on right hand side, we have

pd − p̂ = −A−TD−1
Z RZD

−1
Z (yd − yη) (17)

; by mapping property of A and by error bounds on Riesz operators and diagonal matrices we
have

‖pd − p̂‖ ≤
C 2C 2

0

cA
‖yd − yη‖ ≤

1

3C
η, (18)

where last estimate follows by the choice of the threshold in step (i).
Combining (16) and (18) together with (13) and stopping criterion in step (ii) ;

‖mη − Qd‖ ≤ 1
3η + C (‖pd − p̂‖ + ‖p̂− pη‖)

≤ 1
3η + C

(
1

3C η + 1
3C η
)

= η

2

Note: Effect of applications of M in CG and more general Krylov subspace schemes with respect to
convergence investigated in numerical linear algebra context by e.g. [van den Eshof, Sleijpen 2004];
for system Qu = g: difference between actually computed residual rk in CG [ε, q0,Q, g] and
Res (uk ) = Quk − g can be estimated as

‖rk − Res (uk )‖ ≤ CQ

k−1∑
i=0

ηi |αi | ‖di‖,

where CQ is upper bound for Q and αi , di defined in (10) ; in principle, one could choose

thresholds ηi = ηi (ε) for inner iterations Apply (ηi ,Q, di ) as ηi = ε(|αi | ‖di‖)−1

Angela Kunoth — Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 13



A Nested-Iteration-Inexact-Conjugate-Gradient (NIICG) Algorithm

Now combine inexact CG solver (10) for Q with nested iteration:

NIICG [f, y∗, J]→ uJ (19)

(i) Initialization for coarsest level j := j0

(1) Compute right hand side gj0 by QR decomposition

of Aj0 using (6)

(2) Compute solution uj0 of (6) by QR decomposition

of Qj0

(ii) While j < J

(1) Prolongate uj → uj+1
0 by padding with zeros, set

j := j + 1.

(2) Compute right hand side using

Rhs [ν 2−(m−1)j ,A, f j , yj∗]→ gj .

(3) Compute solution of (6) using

CG [ν 2−(m−1)j , uj0,Q, g
j ]→ uj .

Recall: step (ii.3) requires multiple calls of Apply [η,Q, d], which in turn invokes both

CG [. . . ,A, . . .] as well as CG [. . . ,AT , . . .] in each application

Note: thresholds in steps (ii.2) and (ii.3) chosen proportional to a-priori error estimate in energy

norm (represented by ‖ · ‖`2
) 2−(m−1)j for B-spline wavelets of exactness m;

prolongation by padding with zeros since wavelet coefficients correspond to detail coefficients
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A Nested-Iteration-Inexact-Conjugate-Gradient (NIICG) Algorithm

Theorem
Residual Qu− g computed on each level j up to discretization error proportional to 2−(m−1)j and
corresponding solutions are taken as initial guesses for next higher level

=⇒ NIICG is asymptotically optimal method: it provides the solution uJ up to discretization
error on level J in overall amount of O(NJ ) arithmetic operations.

Note: Result follows since finite versions of A and Q have uniformly bounded condition numbers;
remainder of argumentation follows as in Part II by geometric series argument

Numerical Results

j ‖rjK‖ #O #E #A #R ‖R(yJ )−yj‖ ‖yJ−P(yj )‖ ‖R(uJ )−uj‖ ‖uJ−P(uj )‖
3 6.86e-03 1.48e-02 1.27e-04 4.38e-04
4 1.79e-05 5 12 5 8 2.29e-03 7.84e-03 4.77e-05 3.55e-04
5 1.98e-05 5 14 6 9 6.59e-04 3.94e-03 1.03e-05 2.68e-04
6 4.92e-06 7 13 5 9 1.74e-04 1.96e-03 2.86e-06 1.94e-04
7 3.35e-06 7 12 5 9 4.55e-05 9.73e-04 9.65e-07 1.35e-04
8 2.42e-06 7 11 5 10 1.25e-05 4.74e-04 7.59e-07 8.88e-05
9 1.20e-06 8 11 5 10 4.55e-06 2.12e-04 4.33e-07 5.14e-05

10 4.68e-07 9 10 5 9 3.02e-06 3.02e-06 2.91e-07 2.91e-07

Iteration history for two-dimensional distributed control problem with Neumann boundary
conditions, ω = 1, Z = H1(Ω), U = (H0.5(Ω))′

stopping criterion for outer iteration (relative to ‖ · ‖ corresponding to energy norm) on level j

chosen proportional to 2−j

#E: maximum number of inner iterations for primal system, for adjoint system (#A) and design
equation (#R)
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