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I Elliptic and parabolic partial differential equations (PDEs) in weak form; regularity of
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Part IV: Adaptive Wavelet Methods for Control Problems Constrained by Elliptic PDEs

In this part: adaptive (a-posteriori) discretizations

Loop: Solve −→ Estimate −→ Refine −→ Solve . . . until target acccuracy reached

I Introduction: uniform and adaptive approximations

I Tracking type control problem constrained by elliptic PDE in wavelet coordinates

I Inexact gradient methods: convergence

I Complexity estimates
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Introduction: Uniform versus Adaptive Approximations

Recall: A-priori estimates for finite elements (or B-splines/generators in multiresolution analysis)
Quality measure: Approximation in L2(Ω) norm ‖y − yh‖L2(Ω) ≤ ε

A–priori error estimates: Ω ⊂ Rd dim Vh = N ∼ h−d uniform grid

‖y − yh‖L2(Ω) <∼ hs ‖y‖Hs (Ω) yh ∈ Vh 0 ≤ s ≤ p + 1

⇐⇒ ‖y − yN‖L2(Ω) <∼ N−s/d ‖y‖Hs (Ω)

N degrees of freedom ←→ maximal achievable accuracy O(N−(p+1)/d )

Approximation rate determined by

(i) (piecewiese polynomials of degree p ;) approximation order p + 1 of Vh

(ii) space dimension d

(iii) amount of smoothness of y in L2 measured in Hs norm

For approximation in H1(Ω) norm (energy norm for elliptic PDE) with one order less:

‖y − yN‖H1(Ω)
<∼ N−(s−1)/d ‖y‖Hs (Ω)

Problem: one needs to know s to prescribe accuracy ε = N−(s−1)/d

In addition: if y 6∈ Hs (Ω) for some s > 1 (or only valid for s > 1 with small s),
estimates cannot be used (or are not useful)

Idea in this case: use non-uniform grid to approximate y and achieve same rate

; adaptive (or nonlinear) approximation of y
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Example: Uniform Versus Adaptive Approximations [De]

Consider problem to approximate function on Ω = (0, 1) by piecewise constants on grid

0 = x0 < x1 < · · · < xN = 1 Ωj := [xj , xj+1) and approximation in L∞(Ω) norm

Case 1: f Lipschitz-continuous on [0, 1]

approximation fN (x) := f (xn−1) for all x ∈ [xn−1, xn)

=⇒ |f (x)− fN (x)| = |f (x)− f (xn−1)| =

∣∣∣∣∣
∫ x

xn−1

f ′(t) dt

∣∣∣∣∣ ≤ hn‖f ′‖L∞(xn−1,xn)

with grid spacing hn := |xn − xn−1|

=⇒ ‖f − fN‖L∞(Ω) ≤
1

N
‖f ′‖L∞(Ω) for hn =

1

N
(uniform grid)

Case 2: assume ‖f ′‖L1(Ω) = 1

define non-decreasing function φ(x) :=

∫ x

0

|f ′(t)| dt ⇒ φ(0) = 0 and φ(1) = 1

consider now partition 0 = x0 < x1 < · · · < xN = 1 such that∫ xn

xn−1

|f ′(t)| dt = φ(xn)− φ(xn−1) =
1

N

=⇒ for x ∈ [xn−1, xn]:

|f (x)− f (xn−1)| =

∣∣∣∣∣
∫ x

xn−1

f ′(t) dt

∣∣∣∣∣ ≤
∫ x

xn−1

|f ′(t)| dt ≤
∫ xn

xn−1

|f ′(t)| dt =
1

N

=⇒ ‖f − fN‖L∞(Ω) ≤
1

N
‖f ′‖L1(Ω) (grid adapted to f )
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Example: Uniform Versus Adaptive Approximations [De]

Result:

f ∈ W 1(L∞(Ω)) (case 1) : xj =
j

N
|Ωj | =

1

N

=⇒ inf
S piecewise constant

‖f − S‖L∞(Ω) ≤ N−1|f |W 1(L∞(Ω))

f ∈ W 1(L1(Ω)) (case 2) : choose Ωj such that

∫
Ωj

|f ′(t)|dt = N−1‖f ′‖L1(Ω)

=⇒ inf
S piecewise constant

‖f − S‖L∞(Ω) ≤ N−1|f |W 1(L1(Ω))

This means:

convergence rate of same order N−1 for rougher function just satisfying ‖f ′‖L1(Ω) <∞ than for

function f ′ ∈ L∞(Ω) by adapting grid to f

Generalization to solutions of (systems of) PDEs ? Function to be approximated is unknown

Wish list for method adapted to (systems of) PDEs:

I does not need any a-priori information (i.e., on smoothness of solutions)

I realizes theoretically optimal order under minimal smoothness assumptions

I can be uniformly used for different types of problems

In the following: adaptive methods for control problems constrained by elliptic or parabolic PDEs
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Control problems constrained by elliptic Neumann problem

Linear–Quadratic Elliptic Control Problems: Neumann Problem with Distributed Control

Given y∗, f , ω > 0

minimize J(y , u) = 1
2‖y − y∗‖2

H1−s (Ω)
+ ω

2 ‖u‖
2
(H1−t (Ω))′

subject to −∆y + y = f + u in Ω ⊂ Rd

∂y
∂n = 0 on ∂Ω

0 ≤ s ≤ 1 smoothness parameter for state y
0 ≤ t smoothness parameter for control u

A : H1(Ω)→ (H1(Ω))′ weak formulation employing 〈Av ,w〉 :=
∫

Ω
(∇v · ∇w + vw)dx

nontrivial solution for y∗ 6≡ A−1f

minimize J(y , u) = 1
2‖y − y∗‖2

H1−s (Ω)
+ ω

2 ‖u‖
2
(H1−t (Ω))′

subject to Ay = f + u

(1)
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Control problems in (infinite) wavelet coordinates

Neumann problem (1) with distributed control without Riesz operators

Minimize
J(y, ũ) = 1

2 ‖D
−s (y − y∗)‖2 + ω

2 ‖D
t ũ‖2 0 ≤ s ≤ 1, 0 ≤ t

subject to
Ay = f + ũ

A : `2 → `2 automorphism ‖ · ‖ := ‖ · ‖`2

Necessary (and Sufficient Conditions) for Optimality

Lagr(y, u, p) := J(y, u) +
〈
p, Ay − (f + D−t u)

〉
and δLagr = 0 ;

Ay = f + D−t u

ATp = − D−sD−s (y − y∗)

ωu = D−t p

(2) ⇐⇒ Qu = g (3)

Q : `2 → `2 automorphism

where
Q := D−tA−TD−2sA−1D−t + ωI symmetric positive definite

g := D−tA−TD−2s (y∗ − A−1f)

Q cannot be realized by setting up and inverting A explicitly !

Condensed form (3) useful for deriving a convergent numerical scheme — but realization done
through extended form (2)
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Inexact Gradient Methods: Convergence

Starting point: Convergent iteration for the ∞-dimensional problem

Iterative solution of (4) Qu = g Q symmetric positive definite

; un+1 = un + α (g − Qun) n = 0, 1, 2, . . . (5) 0 < α∗ ≤ α ≤ α∗

; ‖un+1 − u‖ ≤ ρ ‖un − u‖ (6) where ρ := ‖I− αQ‖ < 1

(guaranteed by asumptotically optimal conditioning in wavelet coordinates)

Ideal iteration ; computable scheme for evaluation of
Qun = (D−tA−TD−2sA−1D−t + ωI)un and g

; Techniques from [CDD1,CDD2] developing adaptive methods for one elliptic PDE applied to

Qu = g

described next . . .
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Adaptive Approximate Iterations

Res [η,Q, g, v]→ rη determines for given η > 0
a finitely supported rη satisfying ‖g − Qv − rη‖ ≤ η

Coarse [η,w]→ wη determines for given η > 0
a finitely supported wη satisfying ‖w − wη‖ ≤ η

Realization: sort w into nonincreasing order ; w∗

find smallest k such that sum of k largest coefficients exceeds ‖w‖2 − η2 ; wη

Cost: for N = #(suppw):
2N and N for level-wise (binned) sorting (instead of N log N for component-wise sorting)

Main algorithm: # interior iterations is K := min{` : ρ`−1(α` + ρ) ≤ 1
10}

(α relaxation weight ρ < 1 contraction number in (5), (6))
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Adaptive Approximate Iterations — Main Algorithm

Solve [ε,Q, g]→ uε α relaxation weight ρ < 1 contraction number

(i) j = 0 u0 = 0 ε0 := 1
2 c
−1
A (c−1

A ‖f‖ + ‖y∗‖)

(ii) If εj ≤ ε: stop and set uε := uj

Otherwise v0 := uj

(ii.1) For n = 0, . . . ,K − 1 compute

Res [ρnεj ,Q, g, v
n]→ rn (7)

vn+1 := vn + α rn

(ii.2) Apply Coarse [ 2
5 εj , v

K ]→ uj+1

set εj+1 := 1
2 εj

j + 1 7→ j

go to (ii)

Convergence: application of

Theorem [CDD1] For any ε > 0

Solve [ε,Q, g]→ uε terminates after finitely many steps and ‖u− uε‖ ≤ ε

Proof: Bootstrapping argument for convergence analogous to proof of Proposition for Q in Part III
for condensed equation (3) but more involved
Coarse is employed only for optimal computational complexity (later)
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Routines for Realization of Res

Apply [η,A, v]→ wη computes for given η > 0
a finitely supported wη satisfying ‖Av − wη‖ ≤ η

Solve [η,A, f + u, y0, ε0]→ yη computes for given η > 0, initial guess y0 for y
with accuracy ε0

a finitely supported yη satisfying ‖y − yη‖ ≤ η

employs

Res ell [η,A, f + u, y]→ rη

(i) Apply [ 1
3η,A, y]→ wη

(ii) Coarse[ 1
3η, f]→ fη

Coarse[ 1
3η, u]→ uη

(iii) set rη := fη + uη − wη

Solve [η,AT ,−y + y∗, p
0, ε0]→ pη computes for given η > 0

a finitely supported pη satisfying ‖p− pη‖ ≤ η
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Realization of Res [ρnεj , . . .] — (n + 1)th iterate in (j + 1)th block in (7)

η := ρnεj

Res [η,Q, g, v]→ rη

(i) δu := ρn−1εj (ρ + αn) δy := c−1
A δu + η

(ii) Coarse[4δy, y
j+1,n]→ yj+1,n+1,0

η

(iii) Solve [ 1
2 cA η,A, f, u

j+1,n, yj+1,n+1,0
η ]→ yη =: yj+1,n+1

(iv) Coarse[ 4
ω δu, p

j+1,n]→ pj+1,n+1,0
η

(v) Solve [ 1
2η,A

T ,−yη + y∗, p
j+1,n+1,0
η ]→ pη =: pj+1,n+1

(vi) set rη := pη − ωv
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Complexity Estimates

Main ideas from [CDD1]:

Ideal benchmark: Best (wavelet) N-term approximation

Show that Solve realizes asymptotically the work/accuracy balance

of best wavelet N–term approximation ‖v − vN‖ := min
# supp w≤N

‖v − w‖

Target accuracy ε (∼ N−s ) ←→ Work ε−1/s (∼ N)

; classify ‘sparse’ sequences in `2 whose best N–term approximation decays

at certain rate As := {v ∈ `2 : ‖v − vN‖ <∼ N−s}

Coarsening Lemma v ∈ As and w finitely supported such that ‖v − w‖ ≤ η

=⇒ output wη of Coarse [4η,w] satisfies

# suppwη <∼ η−1/s , ‖v − wη‖ <∼ 5η, ‖wη‖As <∼ ‖v‖As
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Convergence and Complexity (for a single Elliptic PDE)

(Idealized) iteration (for symmetric A)

vn+1 = vn + (f − Avn) update via Res [η,A, f, v]→ rη ; Solve [ε,A, f]→ vε

Theorem [Cohen, Dahmen, DeVore ’01/’02]

Vanishing moments (CP) for wavelets =⇒ A is s∗–compressible

=⇒ for variational problem satisfying (MP) scheme Solve can be designed with properties:

(I) For every target accuracy ε > 0 Solve produces after finitely many steps
approximate solution vε such that ‖v − vε‖ ≤ ε

(II) Exact solution v ∈ As =⇒ supp vε, # flops ∼ ε−1/s ∼ N

Core ingredient of Solve : compressible operators (later)
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Convergence and Complexity Analysis for Control Problem with Elliptic PDE

Essential ideas: Res for Solve [. . . ,Q, . . .] reduced to Res for Solve [. . . ,A, . . .]

and KKT system ←→ condensed system Qu = g

‘Benchmark’ Theorem (for control with elliptic PDE [Dahmen, Kunoth, SICON ’05])

For any target accuracy ε > 0 Solve [ε,Q, g]→ uε converges in finitely many steps

‖u− uε‖ ≤ ε ‖y − yε‖ <∼ ε ‖p− pε‖ <∼ ε uε, yε, pε finitely supported

u, y, p ∈ As =⇒

(# supp uε) + (# supp yε) + (# supp pε) <∼ ε−1/s
(
‖u‖1/s
As + ‖y‖1/s

As + ‖p‖1/s
As

)
‖uε‖As + ‖yε‖As + ‖pε‖As <∼ ‖u‖As + ‖y‖As + ‖p‖As

#flops ∼ ε−1/s
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Numerical Example for Elliptic Control Problem (2D)

target state y∗

type e = (1, 0) type e = (0, 1)
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[Burstedde ’05], [Burstedde, Kunoth ’08]

Observation: in wavelet coordinates, each variable obtains its own adaptive “refinement”
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