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CAFEM

standard Adaptive Finite Element Method (AFEM) of the form:

SOLVE —  ESTIMATE — MARK | —  REFINE

Qy: mesh (conforming or with a fixed level of nonconformity) at step k of the adaptive loop
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CAFEM

standard Adaptive Finite Element Method (AFEM) of the form:
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compute a local estimator e, (Uy, Q), Q € Q, for the error
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CAFEM

standard Adaptive Finite Element Method (AFEM) of the form:

SOLVE — ESTIMATE — MARK — gN=giN=

Qy: mesh (conforming or with a fixed level of nonconformity) at step k of the adaptive loop

compute the Galerkin solution Uy of the discrete problem

ESTIMATE

compute a local estimator e, (Uy, Q), Q € Q, for the error

use the estimator to mark a subset M, C Q) for refinement

refine the marked subset M (and some others) to obtain Q1 and go to step SOLVE
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: AFEM B

standard Adaptive Finite Element Method (AFEM) of the form:

SOLVE — ESTIMATE — MARK — REFINE

Qy: mesh (conforming or with a fixed level of nonconformity) at step k of the adaptive loop

compute the Galerkin solution U, of the discrete problem

ESTIMATE

compute a local estimator & (Uy, Q), Q € Q, for the error

use the estimator to mark a subset M, C Q) for refinement

REFINE
refine the marked subset M (and some others) to obtain Q and go to step SOLVE
k k+1 g p
BN [Dorfler — SIAM JNA, 1996] [Morin, Nochetto, Siebert — SIAM JNA, 2000]
:: convergence & optimality [Binev, Dahmen, Devore — NM, 2004] [Stevenson — MC, 2007]
[Bonito, Nochetto — SIAM JNA, 2010] [J-.
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CAFEM

standard Adaptive Finite Element Method (AFEM) of the form:

SOLVE — ESTIMATE — MARK — REFINE

Qy: mesh (conforming or with a fixed level of nonconformity) at step k of the adaptive loop

SOLVE

compute the Galerkin solution U, of the discrete problem

ESTIMATE

compute a local estimator ex (U, Q), Q € Qy, for the error

use the estimator to mark a subset M, C Q/ for refinement

refine the marked subset M, (and some others) to obtain Q.1 and go to step SOLVE

Primer of adaptive finite element methods
Multiscale and Adaptivity: Modeling, Numerics and Applications
Cetraro - July 6 - 11, 2009

[Nochetto, Veeser — LNM, 2012]
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CAFEM

standard Adaptive Finite Element Method (AFEM) of the form:

SOLVE — ESTIMATE — MARK — REFINE

Qy: mesh (conforming or with a fixed level of nonconformity) at step k of the adaptive loop

SOLVE

compute the Galerkin solution Uy of the discrete problem

ESTIMATE

compute a local estimator £, (U, Q), Q € Qy, for the error

use the estimator to mark a subset M, C Q/ for refinement

refine the marked subset M, (and some others) to obtain Q.1 and go to step SOLVE

A Posteriori Error Estimation Techniques
for Finite Element Methods
Oxford Univ. Press

[Verfiirt — 2013]
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extensions of tensor—product splines
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adaptive spline models

extensions of tensor—product splines

(T)HB-splines: (truncated) hierarchical B—splines [Forsey & Bartels — CG, 1988]

BN [Kraft — PhD thesis, 1998] B [Giannelli, Jiittler, Speleers — CAGD, 2012 & ACOM 2014] [N

<>

(analysis suitable) T—splines [Sederberg, Zheng, Bakenov, Nasri — ACMTG, 2003] .

[Scott, Sederberg, Hughes — CMAME, 2012] [Beirdo da Veiga, Buffa, Sangalli, Vazquez — M3AS, 2013]

polynomial splines over (hierarchical) T-meshes

B [Deng, Chen, Feng — JCAM, 2006] [Deng, Chen, Li, Hu, Tong, Yang, Feng — GM, 2008]

locally refined (LR) B-splines [Dokken, Lyche, Pettersen — CAGD, 2013] fl [Bressan — CAGD, 2013]
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adaptive spline models

extensions of tensor—product splines

(T)HB-splines: (truncated) hierarchical B—splines [Forsey & Bartels — CG, 1988]

BN [Kraft — PhD thesis, 1998] B [Giannelli, Jiittler, Speleers — CAGD, 2012 & ACOM 2014] [N

=
... many key properties are directly preserved by construction
.. .the refinement rules are simple and straightforward
. = facilitates the design of

daptive i tri thods (AIGM
““‘ adaptive isogeometric methods ( )

(analysis suitable) T—splines [Sederberg, Zheng, Bakenov, Nasri — ACMTG, 2003] .

[Scott, Sederberg, Hughes — CMAME, 2012]

[Beirdo da Veiga, Buffa, Sangalli, Vazquez — M3AS, 2013]

polynomial splines over (hierarchical) T-meshes

B [Deng, Chen, Feng — JCAM, 2006] [Deng, Chen, Li, Hu, Tong, Yang, Feng — GM, 2008]

locally refined (LR) B-splines [Dokken, Lyche, Pettersen — CAGD, 2013] fl [Bressan — CAGD, 2013]
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o SOLVE: hierarchical setting and scheme
o ESTIMATE: a posteriori error analysis
o [MARK]

o REFINE: properties & grading

o [complexity of REFINE]

o [total error & approximation classes]

o Local upper bound

o Optimal marking and convergence rates
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o SOLVE: hierarchical setting and scheme
o ESTIMATE: a posteriori error analysis
o [MARK]

o REFINE: properties & grading
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 hierarchical meshes

QoD ...DQN-1
domain hierarchy

» each domain QY is the union of the closure of elements of the
tensor—product grid G¢—1

o - J{o: oee ).
» active elements of level ¢

¢'={Qec:Qca'nqg o}
» hierarchical mesh

o={Qeg’ t=01,.. ,N-1}
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 hierarchical meshes

QoD ...DQN-1
domain hierarchy

» each domain QY is the union of the closure of elements of the
tensor—product grid G¢—1

2 = Jfa: eecl.
» active elements of level ¢

¢'={Qec:Qca'nqg o}
» hierarchical mesh

o={Qeg’ t=01,.. ,N-1}

Q* = Q &  QF is a refinement of Q J

each element Q* € Q* either also belongs to Q or it is obtained via refinement of Q € Q
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SR —

model problem

—div(AVu) =f inQ, ulpe =0, (1)

where Q C RY, d > 1, is a bounded domain and f is any square integrable function

SOLVE — ESTIMATE — MARK — REFINE
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cAlGM /4

model problem

—div(AVu) =f inQ, u |aQ =0, (1)

where Q C RY, d > 1, is a bounded domain and f is any square integrable function

SOLVE — ESTIMATE — MARK — REFINE

at step k of the adaptive loop:
Qy: (strictly) admissible mesh
S(Qk): THB-spline space over Qy

Uy discrete solution
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cAlGM /4

model problem

— div(AVu) = f

“|aQ =0, 1

where Q C RY, d > 1, is a bounded domain and f is any square integrable function

SojAvis} — ESTIMATE —

at step k of the adaptive loop:
Qy: (strictly) admissible mesh
S(Qk): THB-spline space over Qy
Uy discrete solution

> Uy = SOLVE(Qy)

MARK —  REFINE

function space: V := H}(Q)

bilinear form:
a(u, v) ::/AVUVV Yu,veV
Q

weak solution: find u € V s.t.
a(u,v) =< f,v> Yvev
Galerkin solution: find Uy € Sp(Qk) s.t.

a(Ug, V) =<,V > vV e Sp(Qk)
7/39



+ THB-splines

subdomain hierarchy: Q2 D Q1 D ... D QN-1
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.- THB—splines

a B—spline

) HB—splines
B e B
is active iff {B € B:
supp [ is active,

£=0,1,...}

supp /

subdomain hierarchy: Q2 D Q1 D ... D QN-1 B—splines of level £: B*

8/39



.. THB-splines

a B—spline

e Bt HB-splines
is active iff {BeB*:
3 C Qf and B is active,
£=0,1,...}
subdomain hierarchy: Q2 D Q1 D ... D QN-1 B-splines of level ¢: BY

hierarchical B—splines on 2 levels

T € span B*

n
trunc

truncated hierarchical B—splines on 2 levels

THB-splines

{trunc B € B : B is active, £=0,...,N —1}

where trunc 8 = trunCN—l(. - (trunce"'lﬁ))

[Giannelli, Jiittler, Speleers — CAGD, 2012 & ACOM 2014]
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.. THB-splines

a B-spline HB-splines
B € B!
is active iff {BeB*:
C Qf and B is active,
£=0,1,...}
subdomain hierarchy: Q2 D Q1 D ... D QN-1 B-splines of level ¢: BY
hierarchical B—splines on 2 levels truncated hierarchical B—splines on 2 levels
T € span B¢ THB-splines
truncttir = Z E {trunc B € B : B is active, £=0,...,N —1}

where trunc 8 = trunCN—l(. - (trunce"'lﬁ))

hierarchical B—splines on 3 levels truncated hierarchical B—splines on 3 levels
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AleM 2/

model problem
—div(AVu) =f inQ, Ulpq =0,

where Q C RY, d > 1, is a bounded domain and f is any square integrable function

SOLVE — [EISSays — MARK —  REFINE

residual representation:
at step k of the adaptive loop:

Qy: (strictly) admissible mesh <R, v>= Z / rv
S(Qk): THB-spline space over Q Qe ’ @
Uy discrete solution r=f +div(AVUy) in any Q € Q4

error indicators:

» U, = SOLVE(Qy)

> o = ESTIMATE(Qx, Uy, f) B, (U Qk) = D hgllrlliz(q)
QeQ,

ingredients for upper bound:
partition of unity + # basis functions
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S ESTIMATE

Let u be the exact weak solution of the model problem, the error estimator

Ezgk(Ukan) = Z szgk(Uk,Q) with szgk(Uk,Q) _ h%)||r||iz(Q)
QEQ)
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CESTIMATE

Let u be the exact weak solution of the model problem, the error estimator

Ezgk(Ukan) = Z ezgk(Uk,Q) with szgk(UkyQ) _ h%)||r||iz(Q)
QEQ)

@ is reliable = it is an upper bound of the error of the Galerkin approximation Uy

lllu = UkllIg < Cuped, (Uk, Qk)
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CESTIMATE

Let u be the exact weak solution of the model problem, the error estimator

B, (U Q) = > €5, (U Q) with <} (Uk, Q) = hplIrlf72q
QeEQy

@ is reliable = it is an upper bound of the error of the Galerkin approximation Uy

lllu = UkllIg < Cuped, (Uk, Qk)

Q@ is efficient = it is a lower bound for the error of Uy up to oscillations
2 2 2
€0, (U, Qk) < Cip (Illu — Uk|Ig + osco(Uk, Q)%)

where

osczgk(Uk, Q) = Z 0sc?(Uy, Q) with osc(Uy, Q) = hgl|lr — Mnrlli2(q)

QREQ
and My : L2(Q) — Qn, n= (n1,...,ny), denotes the L2 projector onto the space of
polynomials of degree n; in the space direction j. >
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AleM s/

model problem
—div(AVu) =f inQ, Ulpq =0, (2)

where Q C RY, d > 1, is a bounded domain and f is any square integrable function

SOLVE - ESTIMATE — —  REFINE

at step k of the adaptive loop: selects M using Dérfler marking
Qy: (strictly) admissible mesh (bulk chasing)
S(Qk): THB-spline space over Qy

Uy discrete solution EQk(Uk»Mk) > 95Qk(Uk7 Qx)

for0<O<1

» U, = SOLVE(Qx)

> My = MARK(Qy, k)

11/39



AleMa/a

model problem
—div(AVu) =f inQ, Ulpq =0, (2)

where Q C RY, d > 1, is a bounded domain and f is any square integrable function

SOLVE — ESTIMATE — MARK —

at step k of the adaptive loop: refines not only the marked elements but
Qy: (strictly) admissible mesh also a suitable set of elements in their
S(Qk): THB-spline space over Qy neighborhood so that

Uy discrete solution . . L
k Q1 is a (strictly) admissible mesh

» Ux = SOLVE(Qx) = the # of basis functions acting
> ¢, = ESTIMATE(Qy, Uy, f) on any given point is bounded
» M = MARK(Qy, k) = the support of any basis function
> Oiy1 = REFINE(Qy, My) can be compared with the element size
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admissible meshes

a mesh is admissible of class m if each active element Q € G*

belongs to the support of basis functions of at most levels £ — m + 1

m = 2 = basis functions of at most 2 levels (£ — 1,£) on any element Q € G*
m = 3 = basis functions of at most 3 levels (¢ — 2,¢ — 1,£) on any element Q € G*

admissible of class 2 for p < (2,2) admissible of class 2 for p = (1,1)

admissible of class 3 for any p admissible of class 4 for any p
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neighborhood

... by considering THB—splines we can exploit the truncation
to generate admissible meshes with a certain structure ...

! XK

HB-splines THB—splines
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neighborhood

... by considering THB—splines we can exploit the truncation
to generate admissible meshes with a certain structure ...

LK TN

HB-splines THB-splines

given an element Q € G¢ marked for refinement, its neighborhood

collects all active elements of level £ — m + 1 whose intersection
with the support extension of Q w.r.t. level £ — m 4+ 2 is not empty

= when Q is refined all elements in AN'(Q, Q, m) have also to be
recursively refined in order to generate a (strictly) admissible mesh
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neighborhood

... by considering THB—splines we can exploit the truncation
to generate admissible meshes with a certain structure ...

KK

HB-splines THB-splines

given an element Q € G¢ marked for refinement, its neighborhood

collects all active elements of level £ — m + 1 whose intersection
with the support extension of Q w.r.t. level £ — m 4+ 2 is not empty

= when Q is refined all elements in AN'(Q, Q, m) have also to be
recursively refined in order to generate a (strictly) admissible mesh
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Q = REFINE(Q, M, m)

forall Qv € 9N M
Q = REFINE_RECURSIVE(Q, Qaq, m)

end

O = REFINE RECURSIVE(Q, Quq, m) miti
for all Q in the neighborhood of Qa4 meEsEid

Q = REFINE_RECURSIVE(Q, Q, m) L
end L

subdivide Qa4 and update Q e

Qpi1 for p = (2,2)

14/39



ENE - EINE - N - R

ex = ESTIMATE(Qy, U, f) — a posteriori upper bound in energy norm
[llu = Ukl < Cupek(Uk, Q«)
My = MARK(Qy, ex) — Dérfler marking (for estimator)
ek(Uk, My) > Oex(Uk, Qi)

Qi1 = REFINE(Qg, M) — reduction of the estimator

towards the contraction of the quasi—error

e = Uk lllg + ek 1 (Ukia) < o [[llu — Ukl + 7k (Uk)]

forany k>0, y>0and 0<a<1
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ENE - EINE - N - R

ex = ESTIMATE(Qy, U, f) — a posteriori upper bound in energy norm
[llu = Ukl < Cupek(Uk, Q«)
My = MARK(Qy, ex) — Dérfler marking (for estimator)
ek(Uk, My) > Oex(Uk, Qi)

Qi1 = REFINE(Qg, M) — reduction of the estimator

and the convergence of the adaptive scheme

llu = Uksllla + veks1(Ukgr) < Ma*

forany k>0, y>0and 0<a<1

15/39



(2]

o [complexity of REFINE]

o [total error & approximation classes]

o Local upper bound

o Optimal marking and convergence rates
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overlay

the overlay Q. of the two meshes Q1 and Q>

is the coarsest common refinement of Q1 and Q>

if Q1 and Q» are strictly admissible = Q. is strictly admissible

Q. has a bounded cardinality:

H#Qu = #(Q1® Q2) < #Q1 + #Q2 — #Qo,

where Qg is the initial mesh configuration.

17/39



Q* = REFINE(Q, M, m)

...an estimate of the form:

#Q" —#Q<NAH#M

...is not valid by considering a constant
independent of the refinement step...
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complexity estimates

Q* = REFINE(Q, M, m)

...an estimate of the form:

#Q" —#Q<NAH#M

...is not valid by considering a constant
independent of the refinement step...

= the cumulative effect for a sequence of
admissible meshes must be considered:

J—-1

#Q,—#Q0 <AD #M;

j=0

AFEM [Binev, Dahmen, Devore — NM, 2004] [Stevenson — MC, 2007]
AST—spIines [Morgenstern, Peterseim — CAGD, 2015] [Morgenstern — SIAMJNA, 2016]
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M=Ulg M

= set of marked elements used to generate the
sequence of strictly admissible meshes

Qo, Q1,...,Qy starting from Qg = G°

Q; = REFINE(Qj_1,Mj_1,m), M;_1 CQj 1 forje{l,...,J}
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complexity of refine

M= M;

= set of marked elements used to generate the
sequence of strictly admissible meshes

Qo, Q1,...,Qy starting from Qg = G°

QJ = REFINE(Qj717Mj71)m)a Mjfl - ijl for Jj€ {17 B 7J}

= there exists a constant A > 0 so that

J—-1

#Q, - #Q0 < NY #M;,

i=0

= A(d, p, m) == 4(4C + 1)

- 2
C:= (271 —+ 77@) , Cs = Gs(p,m) :=2""2(2p+ 1), p= Tax pi-
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:- total error

lu = Uklllg +vex (Ui, Q) s [[lu— Uk + osci(

quasi—error total error

@ estimators dominate oscillations + global lower and upper bounds imply:

total error =~ estimator = quasi-error

e hY

the marking strategy is governed by

the error indicators .
the AIGM controls the quasi—error

the decay rate of the AIGM must be (contraction property)

characterized by the total error

quasi-optimality of total error:

Il = Ukl 13+ 0sc (Ui, Q&) < inf (1llu = VI3 + osck (V. Q1)

20/39



Qu := {admissible mesh Q : #Q — #Qo < M}

...the notion of total error is introduced to define:

As:={(v,f,A) : |v,f,Als := suppsso(M* o(M; v, f,A)) < co},

approximation class

where
o(M;v,f,A) := inf oe(u,f,A)/2
QeQpm

characterizes the quality of the best approximation in Qp w.r.t.

oe(u, f,A) =infyesp (o) (Illu— VIIIE +OSCZQ(V. 9))

best total error

21/39



+ local upper bound

U = U™l < Cubep (U, R)

where Rg_, o= is the refined set of elements

derived in terms of quasi—interpolation (QI) operators

@ quasi—interpolant of level £

[Buffa, Garau, Giannelli, Sangalli — LNCSE, 2016]

spline spaces on tensor—product meshes

class of L2 stable QI operators

@ hierarchical quasi—interpolant based on THB-splines

[Speleers, Manni — NM, 2016]

hierarchical spline space

direct multi—level construction in terms of the truncated basis
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+ Qlseting for LUB.

QI of level ¢
0 It 12(Q) —» V¢

Th = 37N (V) with /f::{i:B;er}, ¢=0,...,N—1
iclt

Z . . . .
{AB;}B;EBZ' local projection onto one element Qg; in the support of 3; so that

(%) [supp Gil <C (for some constant C that depends on the degree p)

| Qs
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+ Qlseting for LUB.

QI of level ¢
0 It 12(Q) —» V¢

Th = 37N (V) with /f::{i:B;er}, ¢=0,...,N—1
iclt

Z . . . .
{AB;}B;EBZ' local projection onto one element Qg, in the support of 3; so that

(%) [supp Gil <C (for some constant C that depends on the degree p)

| Qs

hierarchical QI

0 o : L%(Q) — spanT(Q)

N-1
Iov:= Z Z )\%‘_(v)’r,- with Ié:: index set of active (T)HB-splines at level ¢
£=0 jelt
Q

and B; = mot7; ...
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+ Qlseting for LUB.

QI of level ¢
0 It 12(Q) —» V¢

Th = 37N (V) with /f::{i:B;er}, ¢=0,...,N—1
iert
{Aé-}B;eB@: local projection onto one element Qg, in the support of 3; so that

(%) % <C (for some constant C that depends on the degree p)
Bi

hierarchical QI

0 o : L%(Q) — spanT(Q)

N-1
Iov:= Z Z )\g‘_(v)’r,- with Ié:: index set of active (T)HB-splines at level ¢

£=0 ic1§

and B; = mot7; ...
...when considering an admissible hierarchical mesh Q,

an element Qp, that satisfies (x) may be chosen between
the active elements of level ¢ that belongs to the support of ;.
23/39



+ local upper bound

... sketch of the proof: E* = U — U*

Zg :spanT(Q) —» spanT(Q*), ifweSp(Q") = Zogw=w in Qg :=Q\Qr
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local upper bound

..sketch of the proof: E* = U — U*
Zg :spanT(Q) —» spanT(Q*), ifweSp(Q") = Zogw=w in Qg :=Q\Qr
we can consider the approximation V € Sp(Q) defined as

[ IoE* inQg, . [ E*—TIgE* inQg,
V= { E* in Qo, so that E*—V= { 0 in Q0. (xx)
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local upper bound

..sketch of the proof: E* = U — U*

Ig :spanT(Q) = spanT(Q*), ifweSp(Q") = ZIgw=w in Qg :=Q2\Qr

we can consider the approximation V € Sp(Q) defined as

[ IgE* in Qg, N [ E*—IgE* in Qg,
V= { E* in Qo, so that E*—V= { 0 in Q0. (xx)
by combining

a(E*,E*)=a(U,E*) — a(U*,E*) with a(E*,E*)=a(E*,E* —V) and (%)

we have
a(E*, E*) < > Ir(V)ll2(q)lIE* — ToE™ |l 12(q);
QER
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local upper bound

..sketch of the proof: E* = U — U*

Ig :spanT(Q) = spanT(Q*), ifweSp(Q") = ZIgw=w in Qg :=Q2\Qr

we can consider the approximation V € Sp(Q) defined as

[ IgE* in Qg, N [ E*—IgE* in Qg,
V= { E* in Qo, so that E*—V = { 0 in Q0. (xx)
by combining

a(E*,E*)=a(U,E*) — a(U*,E*) with a(E*,E*)=a(E*,E* —V) and (%)

we have
a(E*, E*) < > Ir(V)ll2(q)lIE* — ToE™ |l 12(q);
QER

the definition of eg(U, Q) & the approximation properties of Zg lead to

NEIE = a(E*, E*) S > (U, @IIE™[|hi(s(@.@)—m1))

QER
1/2 1/2
< Z Ezg(U: Q) Z ||E*||$-11(5(Q’g(o),m+1)) 55Q(Uy7—‘,f)|HE*|||Q
QER QER
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- optimal marking and A

1 62 Celb
Q*zQ7 ;:7(1——), 0. = %7 0 € (0,0«
H 2 93 1+ Club(l + /\osc) ( )
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1 62 Caip
oro w=y(1-5). e i fe00
a 1+ C/ub(l + /\osc) ( *)
» optimal marking: if
[[lu— U*|[13 + osc. (U*, Q%) < p[[l|lu — U||I3 + oscg, (U, Q)]

then the refined set of elem. R = Rg_, o~ satisfies the Dorfler property

co(U,R) > 0eq(U, Q)

main ingredients: reduction of total error, perturbation of oscillations
global lower bound (Cyyp), local upper bound (Cpyp). .-
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1 62 Caib
Q*?\_/Q7 M::7<17*>7 ‘9*:: 47 96 0,9
1+ C/ub(l + /\osc) ( *)
» optimal marking: if
1w — U*[I13 + oscy. (U*, Q%) < g [[I|u— UIIZ + ose3, (U, Q)]
then the refined set of elem. R = Rg_, o~ satisfies the Dorfler property

eg(U,R) > 0eg(U, Q)

main ingredients: reduction of total error, perturbation of oscillations
global lower bound (Cyyp), local upper bound (Cpyp). .-

» cardinality of My: if (u,f,A) € As, the AIGM generates a sequence

{9k, Sp(Qx)s Uk} k>0

so that for any kK > 0

_1
#My S Ju, £ A1 [|[lu = Uell3 + osc2(Uk, Q)] 2

main ingredients: minimal cardinality of M, overlay with bounded cardinality,
quasi-optimality of total error, optimal marking. . .
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by combining the pieces together...

cardinality of M (ass. on Dérfler's parameter, min. card. of M)
complexity estimate

property: the element residual dominates the oscillations

global lower bound

contraction of the quasi—error

we obtain

if (u,f,A) € Ag, the AIGM generates a sequence
{QkSp(Q4); Ukt ieso

so that

1
2

[Ilu — UkllI3 + osc2 (Uk, Qk)]

forany k >0

Slu, £ Als (#Qk — #Q0)™°
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example ##1: regular solution

GeoPDEs implementation — joint work with C. Bracco and R. Vazquez
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example #1: regular solution

GeoPDEs implementation — joint work with C. Bracco and R. Vazquez

—Au=f inQ=][0,1] x [0,1]

with exact solution:
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#1: p=(2,2),

$F,,
4,

T

++<‘\ T

m = 3, DOF = 4936

T

Iz

T

il AR

o

T \‘fA‘\ T

il

m =2, DOF = 8740

e

m = oo, DOF = 4776

m = 4, DOF = 4804
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#1: p=(3,3),

LT

m = 3, DOF = 5729

H

[90)

Te)
i i S M=y
- ! = :
= i o) £ £
il a ; i
I | N T
= == Il = Sinae

3

I

m = oo, DOF = 5705

m = 4, DOF = 5645
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#1: p = (4,4),

T e

T

m = 3, DOF = 2332

ings
fERii

88,
S

m =2, DOF = 5092

m = oo, DOF = 2864

m = 4, DOF = 2568
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p=(2,2) p=(33) p=(44)

m=2 m=3 m=4 m=oco global refinement

estimator o- - o- - o- - o- - o -
error *— *_ *_ *_ *_
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+ example #2: singular solution

—Au= f in Q’ Ll|(f}Q:07 Wlth

Exact solution: u(x.y)
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#2: m = 2, 23 iterations, 9 levels

p=(22) p=(33) p=(4,4)
DOF = 100,968 DOF = 19,521 DOF = 7,386
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#2: m =3, 23 iterations, 9 levelS

E

H

p=(22) p=(33) p=(4,4)
DOF = 96,301 DOF = 16,402 DOF = 6,192
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#2. m = 4, 23 terations, 9 levels

p=(22) p=(33) p=(4,4)
DOF = 96,228 DOF = 16,318 DOF = 6,492
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102 10? 102
10 10 10
108 10° 108
108 10° 108
10! 10? 10? 104 10° 108 10" 102 10* 10* 10° 10° 10" 10° 108
p—(2a2) P:(3,3)
m=2 m=3 m=4 m=oco global refinement
estimator o- - o- - o- - o- - o- -
error *_ *_ *_ *_ *_
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effectivity index =

estimator

error

P= (27 2)

effectivity index
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Design & Analysis of AIGMs

o Error estimation & convergence

hierarchical setting & schemes
a posteriori error analysis
contraction property

[Buffa, Giannelli — M3AS, 2016]

o Linear complexity of hierarchical refinement

mesh overlay with bounded cardinality

complexity estimate

o Optimality

total error and approximation classes
local upper bound
additional assumptions on mark

[Buffa, Giannelli — MATHICSE report (EPFL), 2017]
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