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Motivation

Fitting:
Approximate given function data (continuous or discrete) by
splines
Special treatment of interfaces or boundary edges possible

Industrial
Application:

clamped fillet,
generate smooth
transitions across
the top and
bottom boundary



Least Squares: Introduction

Given (discrete case):
Data samples pj ∈ R3, j = 1, . . . ,M
Parameter values tj = (uj , vj) ∈ R2, j = 1, . . . ,M
Spline basis Bi : [0, 1]2 7→ R, i = 1, . . . , n

Standard procedure: Find control points
s = (d1

1 , d2
1 , d3

1 , . . . , d1
n , d2

n , d3
n ), such that

F (s) =
M∑
j=1
‖

n∑
i=1

diBi(tj)︸ ︷︷ ︸
spline surface xs(tj )

−pj‖22

is minimal.
Next step: Generalize the objective function.



Smooth Transitions Across Boundaries

How to achieve smooth transitions across patch interfaces?

F (s) =
M∑
j=1
‖xs(tj)− pj‖22

↓

F (s) =
M∑
j=1
‖xs(tj)− pj‖22 + γ

K∑
k=1
‖nxs (t̂k)− nk‖22

nk : given unit normal vector
nxs (t̂k): unit normal vector of the solution at a given
parameter value t̂k
γ: weight

Find minimizer of F (s) with Gauss-Newton.
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Theory: Questions

Existence of a solution - dependence on mesh parameter h
Speed of convergence



Stability of a B-spline Basis

Theorem
There exists a constant K such that all linear spline combinations
xs(u) =

∑n
i=1 diBi(u) with control point vector s fulfill

1
K ‖s‖∞ ≤ ‖xs‖∞ ≤ ‖s‖∞,

where ‖x‖∞ = sup(u,v) ‖x(u, v)‖2.

de Boor: Spline approximation by quasi interpolants.
Lyche, Peña: Optimally stable multivariate bases



Some Notation

Q: micro element
Q̃: support extension for p = 2
h: mesh size

Sp(Ξ): spline space defined by
degree p and knot vector Ξ
Πp,Ξ: spline projector to Sp(Ξ)

Sobolev spaces:
H r (Q): r -th derivative square
integrable
Hr

h(Q̃): bent Sobolev space
r -th derivatives on single
element Q square integrable
across element interfaces
smooth like splines



Approximation Power of Splines

Theorem
Let the mesh Q induced by Ξ be locally quasi uniform with mesh
parameter h. There is a constant C > 0 such that for all s ∈ N,
s ≤ p + 1 and for all f ∈ Hs

h(Q̃)

|f − Πp,Ξ(f )|Hr (Q) ≤ C · hs−r |f |Hs(Q̃)

for 0 ≤ r ≤ s.

Bazilevs, da Veiga, Cottrell, Hughes, Sangalli: Isogeometric Analysis: Approximation, stability and error estimates
for h-refined meshes..



Application to our Problem

Continuous version of the problem:

Fh(s) = ‖xs,h − f ‖2L2 + γ0h2‖Nxs,h − Nf ‖2L2 → min,

γ0 constant

εh = ‖xs,h − f ‖L2 point error
ηh = ‖Nxs,h − Nf ‖L2 normal error

Theorem (Existence of a solution and convergence rate)
For every h this problem has a solution.
The sequence of solutions realizes the optimal approximation
order, i.e. there exists constants C1,C2 such that

εh ≤ C1hp+1

ηh ≤ C2hp



Proof (Part 1, Sketch).
Compactness Argument: By stability, it suffices to consider
mins Fh(s) on a box with side length K (C + ‖f ‖2), i.e. on a
compact domain.



Proof (Part 2, Sketch).
We know:

‖Πp,Ξf − f ‖L2 ≤ c1hp+1 for some constant c1 (1)

To show:

‖NΠp,Ξf − Nf ‖L2 ≤ c2hp for some constant c2 (2)

(1) and (2) imply

Fh(s) = ‖xs,h − f ‖2L2 + γ0h2‖Nxs,h − Nf ‖2L2

≤ c2
1h2p+2 + γ0h2c2h2p

= (c1 + γ0c2)h2p+2



Proof (Part 3, Sketch).

ε2
h ≤ Fh(s)

≤ (c2
1 + γ0c2

2 )h2p+2

⇒ εh ≤
√
c2

1 + γ0c2
2h

p+1

γ0h2η2
h ≤ Fh(s)

≤ (c2
1 + γ0c2

2 )h2p+2

⇒ ηh ≤

√
c2

1 + γ0c2
2

γ0
hp



Convergence Rates: Results

Sample data: cos(20x) on [0, 1], 10 000 samples
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Recall: Data Set

Normal samples only along the red boundaries.



Convergence Rates: Industrial Application

B-splines of degree 3, γ0 = 1
Measured error: maxj ‖xs,h(tj)− pj‖2
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Next Steps: Control of weight γ0

Prescribed:
error thresholds ε̄ and η̄ for the point and normal errors εh
and ηh
(induced) ratio % = ε̄

η̄ between ε̄ and η̄
Idea:

Use % to reach ε̄ and η̄ quickly, i.e. without using
unnecessarily many dofs.
Control γ0 to reach and/or keep % in each refinement step.

For each h, test if εh ≤ ε̄ and ηh ≤ η̄.
If this is not the case, choose γ0 s.t. %h = εh

ηh
≈ %

How to find a suitable value γ0:
Find a function δ which describes the dependence εh

ηh
= δ(γ0) for

each h.



Extension: Replace ‖ · ‖22 by a norm-like function

F (s) =
M∑
j=1
‖xs(tj)− pj‖22

↓

F (s) =
M∑
j=1

N(‖xs(tj)− pj‖2),

N : R+ → R+,N ∈ C2, is a norm-like function

Advantages:
different norms in the objective function treat outliers
differently
non-differentiable norms can be approximated
least squares problem contained as a special case

Done: Implementation - Missing: Theory



Thank you for your attention!
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