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Problem setting

Problem setting

@ Plasma: a gaseous mixture of
negatively charged electrons and
highly charged positive ions,
being created by heating a gas or
by subjecting gas to a strong
electromagnetic field.

@ Fusion energy: a major area of
plasma physics research which
attempts to harness fusion
reactions as a source of large
scale sustainable energy.

Lightning is an example of plasma
present at Earth’s surface.
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Problem setting

Problem setting

Magnetic

Pl
RE field line

Blanket

A device that uses magnetic fields to
confine plasma in the shape
of a torus.
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Tokamak: the most
well-developed and well-funded
approach to fusion energy. This
method races hot plasma around
in a magnetically confined,
donut-shaped ring, with an
internal current.

ITER: (International
Thermonuclear Experimental
Reactor) when completed, ITER
will be the world's largest
tokamak able to produce more
energy than is required to initiate
and sustain a fusion reaction.
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Problem setting

Problem setting

MHD: (MagnetoHydroDynamics) a combination of the Navier-Stokes and Maxwell’s
equations which model the Plasma.

Involved operators in a 2D vector setting:
@ curl-curl: (V x u,V x v), with u,v: Q2 cR? - R? in
H(curl,Q) := {u € (L3(Q))? s.t. V x u € L2(Q)};
@ div-div: (V-u,V -v) with u,v: Q c R2 > R? in
H(div,Q) := {u e (L?(Q))? s.t. V-ue L2(Q)};

@ zero order: (u,v) with u,v : Q < R?2 — R? either in H(curl, Q) or H(div,Q);

@ combinations of the previous ones.
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Problem setting

2D stabilized curl-curl

@ Our focus: compatible B-Splines discretization based on the following discrete
De Rham sequencelll

Sp—1,p

, grad
R— SPP > ( Sp:p—1

> aul gp=lp=1 _,
of this variational problem:
Find w € H(curl, [0, 1]?) such that
(V xu,V xv) + p(u,v) = (f,v), VYve H(curl,[0,1]?),
where p > 0.
@ SP1:P2 :=span {Nﬂl (t1)N[? (tg)} 2D tensor-product B-spline space;

11,12

@ V xu = 0zu? — dyu' for any u = [ul(z,y), v?(z,y)]T.

[1] Buffa, Sangalli, Vdzquez, Comput. Methods Appl. Mech. Engrg., 2010
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Problem setting

2D stabilized curl-curl

@ Our focus: compatible B-Splines discretization based on the following discrete
De Rham sequencelll
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, grad
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Problem setting

Compatible B-spline discretization

@ Coefficient matrix Al,: is a 2 x 2 block matrix (rectangular blocks may occur)

ap o[ MET@SE, - —ab, @A, ] " [Mﬁfl ® ME, o
T (AR, ®@AR)T Sh, @ MR, o” MR, @Mp, |’
with

@ n = (n1,n2), where ni,ny are the mesh-sizes in x, y-direction,
respectively;

o SP = Sé (Nf(t))’(N]P(t))’ dt stiffness matrix;
o AL = Sé Nf_l(t)(N]P (t))' dt 'advection’ matrix;
o MP = Sé NP (£)N? (t) dt mass matrix.

4

Symbol of the matrix-sequence {A% }n
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Spectral tools

Spectral tools: symbol

@ A rather informal definition of symbol:
9 {An}n = matrix-sequence, dim(Ay) = dn — ©

8 f:DcR?Y— C measurable, 0 < measure(D) < o

{An}n has a spectral distribution described by f means that for n large enough

the eigenvalues of A,, are approximately a uniform sampling of f over D. J

f = spectral symbol of {A,},. Notation: | {A,}, ~ (f, D)

@ Remark: this definition can also be given is the singular values sense (replacing
f = |f]). Notation: {An}n ~o (f, D).
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Spectral tools

Spectral tools: symbol

@ A rather informal definition of symbol:
9@ {A,}n = matrix-sequence, dim(A4,) = d, —

@ f:DcR? easurable, 0 < measure(D) < o

{An}n has a spectral distribution described by f means that for n large enough

the eigenvalues of A, are approximately a uniform sampling er D. J

f = spectral symbol of {A,},. Notation: | {A,}n ~x\ (f, D)

@ Remark:

@ dn/s eigenvalues can be approximated by a sampling of A1(f) on a
uniform equispaced grid of the domain G

@ dn/s eigenvalues can be approximated by a sampling of As(f) on a
uniform equispaced grid of the domain G

Mariarosa Mazza - mariarosa.mazza®ipp.mpg.de Spectral analysis and numerical methods for 2D curl-curl



Spectral tools

Toeplitz sequences and GLT

@ Toeplitz sequences {T%(f)},, generated by f € L1[—m, ] are such that

{Tn (f)}” ~g .\ (fs [=7, 7)),
under the hypothesis that f is real-valued.
@ GLT sequences {A,}, are equipped with a symbol in the singular value sense
{An}, ~o Xs X :[0,1] x [—=7, 7] - C. (1D case)

(GLT = algebra containing Toeplitz, low-rank+small-norm and special diagonal
matrices)
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curl-curl problem

Spectral analysis -
P Y curl-div problem

Symbol for the curl-curl problem, p =0

@ Structure of A: submatrix of a 2-level block Toeplitz+low-rank — GLT

@ Symbol: assume (n1,n2) = (v1,v2)n with v1,v2 € Q, n €N, then
{Aon}n ~MA (fo’ [_Wv 7‘—]2)’

where f0: [—7,7]2 — C2*2 is the following dyad

va(e=i02 — 1)

1 . .
f0(01,€2) = —myp_1(01)mp—_1(62) (y2(9192 —-1) _yl(e—191 _ 1))
140%] _yl(eiel _ 1)
vH (01,05)
v(071,602)
with
P
o mp(0)= dopr1(p+1) +2 Y. bapt1(p+ 1~ k)cos(kd), symbol of the
k=1

mass matrix-sequence {nMZ%},;
@ ¢q = cardinal B-spline of degree ¢ on the nodes 0,1,...,q + 1.
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curl-curl problem

Spectral analysis -
P Y curl-div problem

Eigenvalue functions for curl-curl problem, u =0

Since fY is a dyad
[*)] Al(fo) =] 0;

@ Xa(fY) = V11y2 mp—1(01)mp—_1(62) [vH (01, 62)1}(61,92)]

— 1,11,/2 mp—1(01)mp—1(62) [ug (2 —2cos(62)) + y% 2-2 COS(@l))] )

A nice connection between continuous problem and spectral information:

@ Continuum: the curl-curl operator has infinite dimensional kernel and on the
complement behaves as a second order operator.

y

@ Spectral counterpart: \1(f%) =0, while A2(f°) is the symbol of the 2D
Laplacian operator“].

[1] Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, Comput. Methods Appl. Mech. Engrg., 2015
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curl-curl problem

Spectral analysis -
P Y curl-div problem

Eigenvalue functions for curl-curl problem, u > 0

Eigenvalue functions of f#:

A (f*) ~ mp—l(el)mp—l(92)77”2

A2 (F#) ~ mp_1(61)my_1 (62) i(ué@ —2c08(02)) + 13 (2 — 2cos(01))) + L

- i i _ I
my, = 7r;1}7rr1]2>\k(f )s My, = [2%2)\1@()” )s

we expect the eigenvalues of Ak, to identify 2 blocks and to verify

#1402 N(AR) € [ma, M1]} = % + o(dim(AR)),
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curl-curl problem
curl-div problem

Spectral analysis

Eigenvalue functions for curl-curl problem, u > 0

@ An equispaced sampling of the eigenvalues functions in [—, 7] gives an
approximation of the eigenvalues of A%, .

A1 (f*) A2(f*)

Comparison between the eigenvalues of A}, (red dots) and A (f*), k=1,2
(grey surface), when n =40, p = 3, u = 1072 (matrix-size 3612).

@ #{i: N\(AL) € [m1, M1]} = 1848, #{i : Ni(AL) € [ma, M2]} = 1659.
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curl-curl problem

Spectral analysis -
P Y curl-div problem

Eigenvalue functions for curl-curl problem, u > 0

14 /25

[ n ] eigsin [mi, Mi] | dim(AR)/2 | Out. | Out./dim(AR) |

10 168 156 12 0.0385
20 528 506 22 0.0217
30 1088 1056 32 0.0152
40 1848 1806 42 0.0116
50 2808 2756 52 0.0094
60 3968 3906 62 0.0079

[ n [ eigsin [mo, Ma] | dim(AR)/2 | Out. | Out./dim(A}) |

10 117 156 39 0.1250
20 431 506 75 0.0741
30 945 1056 111 0.0526
40 1659 1806 147 0.0407
50 2572 2756 184 0.0334
60 3687 3906 219 0.0280

Comparison of the effective number of eigenvalues of A}, contained in the interval
[m1, M2] (up) [m2, M2] (down) with the expected number dim (A%, )/2.
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curl-curl problem

Spectral analysis -
P Y curl-div problem

Sources of ill-conditioning for the curl-curl problem

A study of the eigenvalue functions tell us that there are three sources of
ill-conditioning for the curl-curl problem:

@ 1 =0:
(1) A1 (f*) =0, that is the number of eigenvalues in a neighborhood of zero
is given by %’4") + o(dim(An)).

(2) A2(f*) has an analytic zero in (61,602) = (0,0) of order 2 =
ill-conditioning in the low frequencies.

(3) A2(f*) possesses infinitely many numerical exponential zeros at the
m-edges when p becomes large = ill-conditioning in the high frequencies.

@ 4 > 0, but 'small’: similar scenario.
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. curl-curl problem
Spectral analysis =
curl-div problem

Another stabilization term: the curl-div problem

@ B-spline discretization of the following variational problem
Find w € H(curl, [0,1]2) n H(div, [0, 1]?) such that
a(V xu,V xv)+B(V-u,V-v), YveH(curl[0,1]%) n H(div, [0,1]?),

with 0 < , 8 < 1 and H(curl, [0, 1]%) n H(div, [0,1]2) = H' ([0, 1]?).

@ Coefficient matrix:

(A7, ® A7,)T

qod _ o] ML ®Sh,  —AL®AL) TSE@ME, (4% @b,
" Any ® Any, My, ® Sh,

—(Ah, @ AL)T S, @ ME,

with Af = S(l) NP (£)(N?(t)) dt advection matrix.
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curl-curl problem

Spectral analysis iy prefblam

Another stabilization term: the curl-div problem

@ B-spline discretization of the following variational problem

Find w € H(curl, [0,1]2) n H(div, [0, 1]?) such that

(@ * .V x v € H(curl, [0, 1]2) ~ H(div, [0, 1]2),

with 0 < , 8 < 1 and H(curl, [0, 1]%) n H(div, [0,1]2) = H' ([0, 1]?).

@ Coefficient matrix:

A?L’ﬁ =a |: Mﬁl ®S£2 _AIT)H ®A£2]+ﬁ {351 ®M7I;2 (A;fll ®A£2)T

(AL, ® AL)T  Sh, @ ME, Ab ®@AL, MP, ®Sh,

with Af = S(l) NP (£)(N?(t)) dt advection matrix.
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curl-curl problem

Spectral analysis curl-div problem

Symbol for the curl-div problem

@ Structure of A% a permutation of A%? is a 2-level block Toeplitz-+low-rank
— GLT

@ Symbol: assume (n1,n2) = (v1,v2)n with v1,v2 € Q, n €N, then
(437} s (2 [ ),
n

where o8 : [—7, 7]? — C2*2 with

£177(01,02) = a%mp(el)mp—l(ez)@ —2cos(62)) + ﬁ%mp—l(el)mp(@)(? — 2cos(01)),
£35°(01,02) = (a — B)ap(61)ap(62),
F50P(01,02) = £5°(01,02),

8 (01,02) = az—;mp,l(el)mp(eg)@ — 2cos(61)) + 5Z—jmp(91)mp,l(92)(2 — 2cos(62)).

with ap(8) = =230 | ¢'5,41(p+ 1 — k) sin(k6) symbol of the advection
matrix-sequence {—iAb},.
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curl-curl problem
curl-div problem

Spectral analysis

Bounds for the eigenvalue functions

Here, n = 10, p = 3.

a=1,p=05

20 40 60 80 100 120 140 160

0 < min(a, B) L(61,602) < A1(f*?) < A2(f*?) < max(a, 8) L(61,02).
— —

Mq, B Mcx,B
L(01,62) is the symbol of the Laplacian operator.
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Numerical methods

A subcase: a = 8 =1 (vector Laplacian)

Case oo = 8 = 1: vector Laplacian matrix-sequence

_ (A'}fl)(l,l) 0 L 0 2
{Ln}n = 0 (Ai{l)(z,z) ~ o L =, 7]

n

(1) L is nonnegative and has a zero of order 2 in zero —> L, is ill-conditioned in
the low frequencies. Classical problem solved by MGM preconditioning.

(2) L has infinitely many exponential numerical zeros at the m-edges when p
becomes large — L, is ill-conditioned in the high frequencies. Non-canonical
problem solvable by GLT theory.

[1] Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, Comput. Methods Appl. Mech. Engrg., 2015
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Numerical methods

A subcase: a = 8 =1 (vector Laplacian)

@ MGM-GLTII: A suitable smoother for MGM is suggested by the symbol of Ly,:

PCG or PGMRES with preconditioner

(T(mp—l(el)) ® T(mp—1(62)) 0 )
0 T(mp—1(61)) ® T(mp—1(02))

@ Remark: such a post-smoothing is used only at the finest level (few iterations),
while at the other levels we use standard Gauss-Seidel pre- and post-smoothing.

@ Remark: such a preconditioner is a tensor product of banded matrices then only
a linear computational cost is required.

[1] Donatelli, Garoni, Manni, Serra-Capizzano, Speleers, Comput. Methods Appl. Mech. Engrg., 2015
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Numerical methods

Numerical proposal

Thanks to the following relation,

0 < min(a, B) L(01,02) < A1 (FP) < X2 (F¥P) < max(a, B) L(61,02).
— —

Mq, B Ma,ﬁ
L(61,02) is the symbol of the Laplacian operator.

we can apply the MGM-GLT method to the coefficient matrix Af{’ﬁ for general o and

@ We expect robustness with respect to p;
@ We expect optimality with respect to the matrix-size;

@ A first attempt to guarantee robustness with respect to «, 3 is to use the
MGM-GLT as preconditioner for the CG.
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Numerical methods

Numerical results

Test example: tol= 10~7. Here n is the mesh-size.

p=1 p=2 p=3

n ‘ PIVIGI\/I MGM CG n ‘ PIWGI\/I MGM CG n ‘ PI\AGIVI MGM CG

16 3 5 28 15 2 4 19 14 2 4 31

32 3 5 55 31 2 4 34 | 30 2 5 39

64 3 5 107 | 63 2 4 66 | 62 2 5 638
p=4 p=>5 p==6

n ‘ PIVIGI\/I MGM CG n ‘ PIVIGI\/I MGM CG n ‘ PI\/IGI\I MGM CG

13 2 4 62 12 2 4 103 11 3 5 160

29 2 4 70 28 2 4 142 | 27 3 5 281

61 3 5 88 60 3 5 155 | 59 3 5 325
a=18=1

“Pyewm” is the preconditioner given by one iteration of the multigrid “MGM-GLT”
applied to the coefficient matrix AP
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Numerical methods

Numerical results

Test example: tol= 10~7. Here n is the mesh-size.

p=1 p=2 p=3

n ‘ PMGM MGM CG n ‘ PMGM MGM CG n ‘ PMGM MGM CG

16 6 18 76 | 15 5 12 49 | 14 4 10 52

32 6 17 149 | 31 5 11 94 | 30 5 10 94

64 6 16 280 | 63 5 11 180 | 62 5 10 187
p=4 p=5 p=6

n ‘ PIVIGI\/I MGM CG n ‘ PIVIGI\/I MGM CG n ‘ PI\/IGI\I MGM CG

13 4 10 105 | 12 5 11 206 | 11 6 13 330
29 4 10 119 | 28 5 11 231 | 27 6 13 475
61 5 10 192 | 60 5 11 265 | 59 5 13 522

a=14=10"1

“"Pyewm” is the preconditioner given by one iteration of the multigrid “MGM-GLT”
applied to the coefficient matrix A%’B.
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Numerical methods

Numerical results

Test example: tol= 10~7. Here n is the mesh-size.

p=1 p=2 p=3
n ‘ PMGM MGM CG n ‘ PMGM MGM CG n ‘ PMGM MGM CG
16 16 105 166 | 15 15 94 128 | 14 13 7 124
32 17 115 352 | 31 15 83 237 | 30 14 73 234
64 17 118 698 | 63 14 72 449 | 62 14 68 460
p=4 p=5 p=6
n ‘ PIVIGI\/I MGM CG n ‘ PIVIGI\/I MGM CG n ‘ PI\/IGI\I MGM CG
13 13 67 149 | 12 14 70 273 | 11 16 78 No conv.
29 13 65 240 | 28 13 60 330 | 27 14 66 602
61 13 65 476 | 60 13 62 510 | 59 13 60 667

a=1 =102

“"Pyewm” is the preconditioner given by one iteration of the multigrid “MGM-GLT”
applied to the coefficient matrix A%’B.
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Conclusions

Conclusions

Summary:

@ We use the GLT theory to spectrally analyse matrices coming from a IgA
discretization of the curl-curl and curl-div problems.

@ We exploit the obtained spectral information to suggest a suitable solver for the
corresponding linear systems.

Ongoing works and future tasks:
@ Multidimensional spectral analysis and related iterative strategies.

@ Deal with the parameters p, a, B: depending on their value the coefficient
matrix can be highly ill-conditioned, so a regularization strategy should be
applied.

@ Extend this approach to the case with mapping (general geometries).

THANK YOU FOR YOUR ATTENTION!
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