Adaptive Matrix Algebras In Unconstrained Optimization

Stefano Cipolla*, C. Di Fiore*, P. Zellini*

* University of Rome “Tor Vergata”
Department of Mathematics

Splines and PDEs: Recent Advances from Approximation Theory to
Structured Numerical Linear Algebra
Cetraro (CS) - July 3-7, 2017

Adaptive Matrix Algebras In Unconstrained Optimization Stefano Cipolla



e Problem

“In 1963 | attended a meeting at Imperial College, London, where most of the
participants agreed that the general algorithms of that time for nonlinear optimization
calculations were unlikely to be successful if there were more than 10 variables, unless
one had an approximation to the solution in the region of convergence of Newton's
method. However, because | had studied the report of Davidson that presented the first
variable metric algorithm, | already had a computer program that would calculate least

values of functions of up to 100 variables using only function values and first
derivatives.”

M. J. D. Powell

f:R" = R lower bounded,
find x. such that

f(x«) = xrre'li]gn f(x).

Zheng, W., Bo, P, Liu, Y., Wang, W. (2012).
Fast B-spline curve fitting by L-BFGS. Computer Aided Geometric Design, 29(7), 448-462.
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Matrix Algebras

Let U be a unitary matrix, let us define
L={Udz)U" : zeC"V = sdU, d(z)=diag(z1,...,zn).
Given A € M,(C) let us define

o La=argminxeg ||[X — Allp, where ||Allr = 327 _; 3rear;

Properties L4

o L, well defined because L is a closed subspace of C"*" (Pythagoras Theorem);

LA = Ud(za)U" where [z4]; = [UMAU];, i=1,...,m;

A € R™n (J € RMXn (UH: UT) :>LA e Rnxn.

A S.P.D (Real Symmetric Positive Definite), U € R"*" (U" = UT) = L4 S.P.D;
trla =) i[zali = tr A

detLp = [];[zali > detA.

X(M) number of FLOPS sufficient to perform matrix-vector product Mx, x € C".

If L € £ =sdU, then x(L) = x(UT) + x(U) + n.
o x(U) =x(UT) = 0(n) = x(L) = O(n) forall L € L.
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Generalized Broyden Class : Algorithm Structure [2003-2015-2017]

Algorithm 0.1: Generalized Broyden Class
Data: xg € R"; gy = Vf(xo);
By =By S.P.D., dy €R" djg < 0;

o By is a S.P.D. approx. of By;

1 for k=0,1... do -

2 Xkr1 = Xk 4+ Aedy ; o if By = By for all k =0,1,... we
3 Sk = Xkt1 — Xk; obtain classic Broyden Class

4 Yi = Bk1 T Bk methods;

5 Bii1 = D(Br, sk, i)

o the NS algorithm and S
algorithms generate sequences

. X , AB
Compute dyi1 = — B g1; Define Biiy SPD S; éé&k§§E$éi¢€§IEFE}§EﬁT!

Define Bk+1 S.P.D; compute dyi1 = *E’Lllgkq NS;

Generalized Broyden Class updating formula:
o ®(Bi,si,yk) = Bi+ Fowwyi — 2

~7BSST3+ STBS VVT
Ve TBrs, DrSkSk Bie - @(si Bisi)viv

Yk Bk Sk

ylsi sl Bisi’

where ¢ € [0,1) is a parameter and v, =
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Generalized Broyden Class Updates : Properties

Properties

Algorithm 0.2: Generalized B.C.
Data: xg € R"; gy = Vf(xo);
By =By S.P.D, dy €R", djgo < O;

o O(By, sk, yi)sk = Yk
Bii1sk = yk — Secant Algorithm;
Bii1Sk # yk — Non Secant Algorithm;

1 for k=0,1... do

2 X1 = Xk + Ady o gldi < 0and A such that (0 < c1 < 2 < 1):
Z Sk = Xit1 = Xii f(Xk+1) < f(Xk) —+ Cl)\kg;(rdk

5

Yk = Bk1 T Bi
Bii1 = P(Br, sk, i)

= . 4
? diy1 = 73[‘11gk+1 NS; s[yk >0 and f(xk+1) < f(xk).
- o s]y,>0and By S.P.D. = &(By, s, y,) S.P.D;
dk\l:*BHllgku; ; S;

Biy1 SPD. =g/ dii1 <0 (NS);
Biy1 = ®(Bi, sk, yx) SP.D. = gl 1di1 <0 (S).

VF(xk + Aedi) > cog] di
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Generalized Broyden Class : Complexity

Algorithm 0.3: Generalized B.C. o if By = By for all k = 0,1... we obtain
Data: xg € R"; gy = Vf(xo); Broyden Class algorithms whose complexity is :
By =By S.P.D,dg €R", djgo < O; O(n?) FLOPS per step;
1 fork=0,1... do O(n?) memory allocations;
2 = Aedy o~ . , L.
3 ;(:Jr; xk:.(: 1— x:. . o if By # By algorithm’s complexity is :
4 Vi = 8rs1 — &k B Time Complexity per .SFep : I
5 Bii1 = D(Br,si, yvi)i —Nnumber of FLOPS sufficient to calculate B, = where
P B By is an approximation of By;
Bis1 | disr = —B." NS; Ls 2 =T
o k1Bt - number of FLOPS sufficient to multiply the matrix
6 Bk_1 by a vector;
dic1 = — Bl gkets ; S; - O(n) more FLOPS ;
_ B Space Complexity :
- number of memory allocation sufficient to store B’;l;
- O(n) more memory allocation.

° B;_&l = \U(é;17sk,yk) = Low Rank Correction of B;l.

o EX.: ¢ =0 (BFGS) Bk;ll = vaEe;IVk + prsks] where p = 1/s] 'y, Vie:= (I — pryxs] ).
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Global convergence of Generalized B.C.S with ¢ € [0,1)

Secant Global Convergence 017]

If By is such that

Algorithm 0.4: G.B.C.

tr By > tr By (1a)

Data: xo € R”; .

g = VF(x), det B, < det By (1b)

Bo = By S.P.D; [1Bisil® _ lIBesill®

do € R", d] gy < 0; 7 < = . (1c)
L fork=0,1... do (s Bisk)® ~ (] Brsk)?
2 Xkp1 = Xk + Apdy 5 .
3 sf*; kak _ x:; . and there exists M > 0 such that
4 Yk = Bk+1 T Bki ||Yk||2
5 Bit1 = (B, sk, ¥i): <M, )
6 dis1 = — B, gt Yy Sk

then
liminf||gk|| = 0.
v

NOTE 1: (1a) and (1b) are verified if B, = Lp, for some
L = sd U. NOTE 2: (2) is verified if f is convex.
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Global convergence of £L(K)B.C.S

For every
Algorithm 0.5: LK B.C.S
gorthm L= {Ud@z)U" : zeC")
Data: xo € R";
g, = VF(x0), £©; we have
By S.D.P, dg € R", dj go < 0;
1 for k=0,1... do trBy = trLp,
2 Xi41 = Xk + Axdy ;
3 Sk = Xk41 — Xk, det Bk S det [:Bk'
: {;eﬁ:nfkgzkf 8 BUT WHAT ABOUT CONDITION (ic) ?
6 Bij = ¢(L($:7Sk,yk): -
7 diy1 = — B 8ke1s IT IS SATISFIED IF Bys;, = Bysy !
U
ADAPTIVE CHOICE, i.e., find
ok . £ = {Ud(2) U} - z€C"} st
The choice L&) = L for k =0,1, ... is allowed... k
...BUT CONVERGENCE IS NOT E(k) _B
GUARANTEED! B, Sk = DkSk
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How to guarantee convergence [2017]

Theorem

Let A € R"™" be a symmetric matrix. For every fixed integers m and r with1 < m < n, mr <n
and for any V4 € R"™" such that VlT Vi = I, there exists an orthogonal matrix L € R"*" such
that if L = sdL and L, is the best approximation of A in L, then

Pi(La)Vi = pj(A)V1 3)

for any polynomial p; of degree j < m — 1.

THE ORTHOGONAL MATRIX L CAN BE CONSTRUCTED AS THE PRODUCT OF mr
HOUSEHOLDER MATRICES!
(L has mr fixed columns)

Consider A € R"*" and V; € R"*". The computational cost to produce an orthogonal matrix U
and L such that LoVi = AVy, where £L = sdU is : O(n) + 2x(A) when m =2, r =1 and
O(n) + 4x(A) when m =2, r =2.
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LK)QN on Quadratic Problems

1
min f(x) where f(x) = =x" Ax —x"b, A S.P.D.. J
x€R" 2

Algorithm 0.6: Generalized BFGS, H) = B;l Theorem (PCG matching)

Data: xg € R", go = Axg — b, Hp spd,

do = —Hogo, k=O0; Let us consider Algorithm 0.6. If
1 for k=0,1... do ~
2 Xkr1 = Xk + Mdy 5 /% A exact 1.s. */ Hygk+1 = BkHogk+1 where By # 0,
3 Sk = Xk+1 — Xk;
4 8k+1 = Axpq1 — b; then we have :
5 Yk = 8k+1 — 8k

—1/sTy, - T .
6 Pk =1/8cYk; 818 =0forall j=0,... k;
7 Define Hy spd ;
8 Hipr = (I — prseyf ) Ak(! — pryes) + prsisys Si1As; =0 forall j=0,...,k
9 Set diy1 = —Hiky18k+1;

span{so, - - . ,Sk+1} = span{Hogo, - - -, Hogk+1}: |

If Hy = I, find an £(¥) such that
rWs g d rWe —_
B, Sk = DikSk ana Lp 8+1 = Ck8k+1-
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Numerical Results (¢ = 0) £L(K)QN vs HQN [2003] vs DQN [2007]

P = {93 test problems from CUTEST}, S = {£QN, HQN, DQN}

tp,s 1,
rps = ———— € [1,n 7)= —size{p € P | rs <7} [2002
s = ey €Ml ps(r) = sizelp € P s < 7). 2002
ps(1) probability to win;
ps :=lim__ _ ps(7) is the probability that the solver solves a problem;
M
///fﬁ = 1 —c

ps(7) is the probability for solver s € S that a performance ratio rp s is within a factor 7 € R of the best possible ratio.

Adaptive Matrix Algebras In Unconstrained Optimization

Stefano Cipolla



(1]

[4

[5

=

R. H. Byrd, J. Nocedal, Y. Yuan, Convergence of a Class of Quasi-Newton Methods on
Convex Problems, SIAM Journal of Numerical Analysis, 24-5, 1171-1190 (1987).

E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles
Mathematical programming 91(2) 201-213 (2002).

C.Di Fiore, S.Fanelli, F.Lepore, P.Zellini, Matrix algebras in Quasi-Newton methods for
unconstrained minimization, Numerische Mathematik, 94, 479-500 (2003).

A. Bortoletti, C. Di Fiore, S. Fanelli, P. Zellini, A new class of quasi-Newtonian methods for
optimal learning in MLP-networks, |IEEE Transactions on Neural Networks, 14, 263-273
(2003).

Cai, J.F, R.H. Chan, and C. Di Fiore. Minimization of a detail-preserving regularization
functional for impulse noise removal. Journal of Mathematical Imaging and Vision 29.1
(2007): 79-91.

S. Cipolla, C. Di Fiore, F. Tudisco, P. Zellini, Adaptive Matrix Algebras in unconstrained
minimization, Linear Algebra and its Applications, 471, 544-568, (2015).

S. Cipolla, C. Di Fiore, P. Zellini, Low complexity matrix projections preserving actions on
vectors, submitted, (2017).

S. Cipolla, C. Di Fiore, P. Zellini, A Quasi Newton-type approach to restricted Broyden Class,
in preparation, (2017).

Adaptive Matrix Algebras In Unconstrained Optimization Stefano Cipolla



