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Collocation method

Poisson problem

Find u : Ω→ R such that

−∆u = f in Ω,

u = 0 on ∂Ω,

where f : Ω→ R is a sufficiently regular function.
We suppose that the problem has an unique solution.
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Collocation method

The idea of collocation method

Find a suitable finite dimensional space for the solution:

Vn = span{u1, ..., un};
carefully choose n points in Ω (collocation points):

Θ = {τ1, ..., τn};
collocate the equations of the system at these points:

find ũ ∈ Vn such that

−∆ũ(τi ) = f (τi ) ∀τi ∈ Θ

ũ(x) =
n∑

i=1

ciui (x)⇒ Kc = F

Ki ,j = −∆uj (τi ) Fi = f (τi ).

High regular functions needed: at least C 2 at each collocation points.
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ũ(x) =
n∑

i=1

ciui (x)⇒ Kc = F

Ki ,j = −∆uj (τi ) Fi = f (τi ).

High regular functions needed: at least C 2 at each collocation points.
Monica Montardini 4 July 2017 4 / 20



Collocation method

The idea of collocation method

Find a suitable finite dimensional space for the solution:

Vn = span{u1, ..., un};
carefully choose n points in Ω (collocation points):

Θ = {τ1, ..., τn};
collocate the equations of the system at these points:
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Discretization

B-Splines

Uniform knot vector ⇒ no repetitions on the internal knots
⇒ maximal regularity B-splines Cp−1;

open knot vector.
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C-CSP Collocation Points
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C-CSP Collocation Points

An insight on C-CSP Collocation

IGA standard Galerkin: slow optimal ;
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C-CSP Collocation Points

An insight on C-CSP Collocation

IGA standard Galerkin: slow optimal ;

IGA standard collocation: fast suboptimal ;

Greville points: τi =
ξi+1+...+ξi+p

p i = 1, ..., n

Galerkin Greville
odd p even p

L2 p + 1 p − 1 p
H1 p p − 1 p
H2 p − 1 p − 1 p − 1
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C-CSP Collocation Points

Why are we interested in efficient IGA collocation?

Figure courtesy of [Schillinger, Evans, Reali, Scott and Hughes, 2013]
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C-CSP Collocation Points

C-CSP collocation

New schemes based on superconvergent points: [Gomez and De Lorenzis, 2016] ;
in particular Collocation at Clustered Superconvergent Points (C-CSP)
[Montardini, 2016] [Montardini, Sangalli and Tamellini, 2017] .

−u′′(x) = f (x)

u(0) = u(1) = 0

Galerkin residual: f − u′′h = u′′ − u′′h .

uh→ Galerkin solution;

u→ exact solution;

h→ mesh-size.

Galerkin superconvergent points:

(
∑

ψh,i∈Ψh

(u′′ − u′′h )2(ψh,i ))
1
2 ≤ Chp.
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C-CSP Collocation Points

Estimated Superconvergent Points

Degree Superconvergent Points in [-1,1]

p=3 −1√
3
, 1√

3

p=4 -1,0,1

p=5 ±
√

225−30
√

30
15

p=6 -1,0,1
p=7 ±0.504918567512

[Gomez and De Lorenzis, 2016]
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C-CSP Collocation Points

Odd p: C-CSP points

In 2D: tensor product of univariate ones.
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C-CSP Collocation Points

Even p: C-CSP attempts

SUBOPTIMALITY in L2 norm
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Numerical results

2D domains
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Numerical results

Annulus domain: p=3
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Numerical results

Annulus domain: p=5 and p=7
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Numerical results

Orders of convergence

Galerkin Greville C-CSP
odd p even p odd p even p

L2 p + 1 p − 1 p p + 1 p
H1 p p − 1 p p p
H2 p − 1 p − 1 p − 1 p − 1 p − 1
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Numerical results

Conclusions

Advantages
fast;
optimal for odd p;
optimal for odd p and for both periodic and Neumann problems;
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Numerical results

Conclusions

Advantages
fast;
optimal for odd p;
optimal for odd p and for both periodic and Neumann problems;

Problems
suboptimal for even p:
lack of mathematical explanation.
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Numerical results
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