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@ The Fitting Problem
© Some Theory and Examples

© Next Steps



Fitting:
e Approximate given function data (continuous or discrete) by
splines
@ Special treatment of interfaces or boundary edges possible

Industrial
Application:

clamped fillet,
generate smooth
transitions across
the top and
bottom boundary




Least Squares: Introduction

Given (discrete case):
o Data samples p; € R3, j=1,...,M
o Parameter values tj = (uj,v;) €ER%j=1,...,M
e Spline basis B; : [0,1]> = R,i=1,...,n

Standard procedure: Find control points
s=(d},d?,d3, ..., d} d? d3), such that

M n
Fis) =3I S dBi(t) —pill3
=1 =1
spline surface xs(t;)

is minimal.
Next step: Generalize the objective function.



Smooth Transitions Across Boundaries

How to achieve smooth transitions across patch interfaces?

M
F(s) = 2_: Ixs(5) — pil13



Smooth Transitions Across Boundaries

How to achieve smooth transitions across patch interfaces?

M
F(s) = E_: Ixs(t)) — pil3
!

M K
F(s) = lIxs(t) = pill3 +v D I (B) — nill
j=1 k=1

@ nyg: given unit normal vector

o n, (tx): unit normal vector of the solution at a given
parameter value #;

@ : weight



Smooth Transitions Across Boundaries

How to achieve smooth transitions across patch interfaces?

M
F(s) = E_: Ixs(t)) — pil3
!

M K
F(s) = lIxs(t) = pill3 +v D I (B) — nill
j=1 k=1

@ nyg: given unit normal vector

o n, (tx): unit normal vector of the solution at a given
parameter value #;

@ : weight

Find minimizer of F(s) with Gauss-Newton.



Theory: Questions

@ Existence of a solution - dependence on mesh parameter h

@ Speed of convergence



Stability of a B-spline Basis

Theorem

There exists a constant K such that all linear spline combinations
xs(u) = Yi4 d;Bj(u) with control point vector s fulfill

1
llslloo < lixsfloo < slloc
where ||x||coc = SUP(u,v) Ix(u, v)]|2.

de Boor: Spline approximation by quasi interpolants.
Lyche, Pefia: Optimally stable multivariate bases




Some Notation

0

0

Q:
Q:
h:

micro element
support extension for p = 2
mesh size

Sp(=): spline space defined by
degree p and knot vector =
Mp=: spline projector to S,(=)

Sobolev spaces:
e H"(Q): r-th derivative square
integrable

e H;(Q): bent Sobolev space
o r-th derivatives on single
element @ square integrable
e across element interfaces
smooth like splines



Approximation Power of Splines

Theorem

Let the mesh Q induced by = be locally quasi uniform with mesh
parameter h. There is a constant C > 0 such that for all s € N,
s<p+1andforall f € H;(Q)

|f - I_I/D,E(f)|H'(<;>) <C: h57r|f|ys(c"\))
for0 <r<s.

Bazilevs, da Veiga, Cottrell, Hughes, Sangalli: Isogeometric Analysis: Approximation, stability and error estimates
for h-refined meshes..

<




Application to our Problem

Continuous version of the problem:

Fh(s) = llxs.p = FIIZ2 +~0h? || s,y — NF |72 — min,

~o constant

® ¢ = ||xsn — f|| ;2 point error

@ 1y = ||Nxs,n — Nf||;2 normal error

Theorem (Existence of a solution and convergence rate)

@ For every h this problem has a solution.
@ The sequence of solutions realizes the optimal approximation
order, i.e. there exists constants Cy, C; such that
Q@ &p S Cl hp+1
o ny < GohP




Proof (Part 1, Sketch).

Compactness Argument: By stability, it suffices to consider
mins Fy(s) on a box with side length K(C + ||f||2), i.e. on a
compact domain.




Proof (Part 2, Sketch).
We know:

|Mp=f — fll2 < c1hP* for some constant ¢; (1)
To show:

|NMp=f — Nf||;2 < co2hP for some constant c (2)
(1) and (2) imply

Fr(s) = lIxs,n — FlI72 + Y0h? || Nxs,n — NF[|72
< C12 h2p+2 + ’yoh2C2h2p

= (a1 + Y0e2) P2




Proof (Part 3, Sketch).

g5 < Fi(s)

< (& +0ck)n*Pt?

= ep < \/ 2 +y0c3hPTE

Yoh*ni < Fi(s)
< (¢f +ocd)h*Pt2

2
= Nh < —Cl2 s 109 hP
- Yo




Convergence Rates: Results

Sample data: cos(20x) on [0, 1], 10 000 samples
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Convergence Rates: Results

Maximal Point Errors

error value
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bg-:;fh
B-splines of degree 3, v9 =1
Measured error: max; ||xs n(t;) — pjll2



Convergence Rates: Results

Maximal Normal Errors
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B-splines of degree 3, 7o =1
Measured error: maxy ||ny , (tx) — nill2



Recall: Data Set

Normal samples only along the red boundaries.



Convergence Rates:

error value

Industrial Application

Maximal Point Errors
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B-splines of degree 3, 9 =1

Measured error: max; ||xs n(t;) — pjll2



Convergence Rates: Industrial Application

error value

Maximal Normal Errors
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B-splines of degree 3, v9 =1
Measured error: maxy ||ny , (tx) — nill2



Next Steps: Control of weight g

Prescribed:
@ error thresholds & and 7j for the point and normal errors ¢y,
and ny

o (induced) ratio o = < between £ and 7

il

Idea:
@ Use p to reach £ and 7 quickly, i.e. without using

unnecessarily many dofs.
e Control g to reach and/or keep ¢ in each refinement step.

e For each h, test if e, <& and ny < 7.
o If this is not the case, choose v s.t. o = % ~ 0

How to find a suitable value ~g:
Find a function § which describes the dependence = = (o) for

each h.



Extension: Replace | - ||3 by a norm-like function

M
= lxs(t) = pll3
j=1
1

M
F(s) =Y N(lIxs(t;) — pill),
j=1

N :Rt = Rt N € C?, is a norm-like function

Advantages:

o different norms in the objective function treat outliers
differently

@ non-differentiable norms can be approximated

@ least squares problem contained as a special case

Done: Implementation - Missing: Theory



Thank you for your attention!
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