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The Problem

“In 1963 I attended a meeting at Imperial College, London, where most of the
participants agreed that the general algorithms of that time for nonlinear optimization
calculations were unlikely to be successful if there were more than 10 variables, unless
one had an approximation to the solution in the region of convergence of Newton’s
method. However, because I had studied the report of Davidson that presented the first
variable metric algorithm, I already had a computer program that would calculate least
values of functions of up to 100 variables using only function values and first
derivatives.”

M. J. D. Powell

f : Rn → R lower bounded,

find x∗ such that

f (x∗) = min
x ∈ Rn

f (x).

Zheng, W., Bo, P., Liu, Y., Wang, W. (2012).
Fast B-spline curve fitting by L-BFGS. Computer Aided Geometric Design, 29(7), 448-462.

Adaptive Matrix Algebras In Unconstrained Optimization Stefano Cipolla



Matrix Algebras

Let U be a unitary matrix, let us define

L = {Ud(z)UH : z ∈ Cn} = sd U, d(z) = diag(z1, . . . , zn).

Given A ∈ Mn(C) let us define

LA = arg minX∈L ||X − A||F , where ||A||F =
∑n

r,t=1 art art ;

Properties LA

LA well defined because L is a closed subspace of Cn×n (Pythagoras Theorem);

LA = Ud(zA)UH where [zA]i = [UH AU]ii , i = 1, . . . , n;

A ∈ Rn×n, U ∈ Rn×n (UH = UT ) ⇒ LA ∈ Rn×n;

A S.P.D (Real Symmetric Positive Definite), U ∈ Rn×n (UH = UT ) ⇒ LA S.P.D;

trLA =
∑

i [zA]i = tr A;

detLA =
∏

i [zA]i ≥ detA.

χ(M) number of FLOPS sufficient to perform matrix-vector product Mx , x ∈ Cn.

If L ∈ L = sdU, then χ(L) = χ(UT ) + χ(U) + n.

χ(U) = χ(UT ) = O(n) =⇒ χ(L) = O(n) for all L ∈ L.
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Generalized Broyden Class : Algorithm Structure [2003-2015-2017]

Algorithm 0.1: Generalized Broyden Class

Data: x0 ∈ Rn; g0 = ∇f (x0);

B̃0 = B0 S.P.D., d0 ∈ Rn, dT
0 g0 < 0;

1 for k = 0, 1 . . . do
2 xk+1 = xk + λk dk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6


Define B̃k+1 S.P.D; compute dk+1 = −B̃−1

k+1gk+1 NS;

Compute dk+1 = −B−1
k+1gk+1; Define B̃k+1 S.P.D S;

Remarks

B̃k is a S.P.D. approx. of Bk ;

if B̃k = Bk for all k = 0, 1, . . . we
obtain classic Broyden Class
methods;

the NS algorithm and S
algorithms generate sequences
{xk}k∈N,{gk}k∈N,{Bk}k∈N
COMPLETELY DIFFERENT!

Generalized Broyden Class updating formula:

Φ(B̃k , sk , yk ) = B̃k + 1
yT

k
sk

yk yT
k −

1
sT
k

B̃k sk
B̃k sk sT

k B̃k + φ(sT
k B̃k sk )vk vT

k ,

where φ ∈ [0, 1) is a parameter and vk = yk

yT
k

sk
− B̃k sk

sT
k

B̃k sk
.
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Generalized Broyden Class Updates : Properties

Algorithm 0.2: Generalized B.C.

Data: x0 ∈ Rn; g0 = ∇f (x0);

B̃0 = B0 S.P.D, d0 ∈ Rn, dT
0 g0 < 0;

1 for k = 0, 1 . . . do
2 xk+1 = xk + λk dk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6


B̃k+1 ; dk+1 = −B̃−1

k+1gk+1 NS;

dk+1 = −B−1
k+1gk+1; B̃k+1 ; S;

Properties

Φ(B̃k , sk , yk )sk = yk

Bk+1sk = yk → Secant Algorithm;
B̃k+1sk 6= yk → Non Secant Algorithm;

gT
k dk < 0 and λk such that (0 < c1 < c2 < 1):

f (xk+1) ≤ f (xk ) + c1λk gT
k dk

∇f (xk + λk dk ) ≥ c2gT
k dk

⇓
sT

k yk > 0 and f (xk+1) < f (xk ).

sT
k yk > 0 and B̃k S.P.D. ⇒ Φ(B̃k , sk , yk ) S.P.D;{

B̃k+1 S.P.D. ⇒ gT
k+1dk+1 < 0 (NS);

Bk+1 = Φ(B̃k , sk , yk ) S.P.D. ⇒ gT
k+1dk+1 < 0 (S).
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Generalized Broyden Class : Complexity

Algorithm 0.3: Generalized B.C.

Data: x0 ∈ Rn; g0 = ∇f (x0);

B̃0 = B0 S.P.D, d0 ∈ Rn, dT
0 g0 < 0;

1 for k = 0, 1 . . . do
2 xk+1 = xk + λk dk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6


B̃k+1 ; dk+1 = −B̃−1

k+1gk+1 NS;

dk+1 = −B−1
k+1gk+1; B̃k+1 ; S;

Complexity

if B̃k = Bk for all k = 0, 1 . . . we obtain
Broyden Class algorithms whose complexity is :
O(n2) FLOPS per step;
O(n2) memory allocations;

if B̃k 6= Bk algorithm’s complexity is :
� Time Complexity per Step :
- number of FLOPS sufficient to calculate B̃−1

k where

B̃k is an approximation of Bk ;
- number of FLOPS sufficient to multiply the matrix
B̃−1

k by a vector;
- O(n) more FLOPS ;
� Space Complexity :
- number of memory allocation sufficient to store B̃−1

k ;
- O(n) more memory allocation.

B−1
k+1 = Ψ(B̃−1

k , sk , yk ) = Low Rank Correction of B̃−1
k .

EX.: φ = 0 (BFGS) B−1
k+1 = V T

k B̃−1
k Vk + ρk sk sT

k where ρk := 1/sT
k yk , Vk := (I − ρk yk sT

k ).
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Global convergence of Generalized B.C .S with φ ∈ [0, 1)

Algorithm 0.4: G.B.C.

Data: x0 ∈ Rn;
g0 = ∇f (x0),

B̃0 = B0 S.P.D,;

d0 ∈ Rn, dT
0 g0 < 0;

1 for k = 0, 1 . . . do
2 xk+1 = xk + λk dk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Bk+1 = Φ(B̃k , sk , yk );

6 dk+1 = −B−1
k+1gk+1;

Secant Global Convergence [2015-2017]

If B̃k is such that


tr Bk ≥ tr B̃k (1a)

det Bk ≤ det B̃k (1b)

||Bk sk ||2

(sT
k Bk sk )2

≤
||B̃k sk ||2

(sT
k B̃k sk )2

. (1c)

and there exists M > 0 such that

||yk ||2

yT
k sk

≤ M, (2)

then
lim inf ||gk || = 0.

NOTE 1: (1a) and (1b) are verified if B̃k = LBk
for some

L = sd U. NOTE 2: (2) is verified if f is convex.
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Global convergence of L(k)B.C .S

Algorithm 0.5: L(k)B.C .S
Data: x0 ∈ Rn;
g0 = ∇f (x0), L(0);

B0 S.D.P, d0 ∈ Rn, dT
0 g0 < 0;

1 for k = 0, 1 . . . do
2 xk+1 = xk + λk dk ;
3 sk = xk+1 − xk ;
4 yk = gk+1 − gk ;

5 Define L(k);

6 Bk+1 = Φ(L(k)
Bk
, sk , yk );

7 dk+1 = −B−1
k+1gk+1;

Remark

The choice L(k) ≡ L for k = 0, 1, . . . is allowed...

...BUT CONVERGENCE IS NOT
GUARANTEED!

For every

L = {Ud(z)UH : z ∈ Cn}

we have

tr Bk = trLBk

det Bk ≤ detLBk
.

BUT WHAT ABOUT CONDITION (1c) ?

IT IS SATISFIED IF B̃k sk = Bk sk !

⇓

ADAPTIVE CHOICE, i.e., find

L(k) = {Uk d(z)UH
k : z ∈ Cn} s.t.

L(k)
Bk

sk = Bksk
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How to guarantee convergence [2017]

Theorem

Let A ∈ Rn×n be a symmetric matrix. For every fixed integers m and r with 1 ≤ m ≤ n, mr ≤ n
and for any V1 ∈ Rn×r such that V T

1 V1 = Ir , there exists an orthogonal matrix L ∈ Rn×n such
that if L = sd L and LA is the best approximation of A in L, then

pj (LA)V1 = pj (A)V1 (3)

for any polynomial pj of degree j ≤ m − 1.

THE ORTHOGONAL MATRIX L CAN BE CONSTRUCTED AS THE PRODUCT OF mr
HOUSEHOLDER MATRICES!

(L has mr fixed columns)

Corollary

Consider A ∈ Rn×n and V1 ∈ Rn×r . The computational cost to produce an orthogonal matrix U
and LA such that LAV1 = AV1, where L = sd U is : O(n) + 2χ(A) when m = 2, r = 1 and
O(n) + 4χ(A) when m = 2, r = 2.
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L(k)QN on Quadratic Problems

min
x∈Rn

f (x) where f (x) =
1

2
xT Ax− xT b, A S.P.D..

Algorithm 0.6: Generalized BFGS, Hk = B−1
k

Data: x0 ∈ Rn, g0 = Ax0 − b, H0 spd,
d0 = −H0g0, k=0;

1 for k = 0, 1 . . . do
2 xk+1 = xk + λk dk ; /* λk exact l.s. */
3 sk = xk+1 − xk ;
4 gk+1 = Axk+1 − b;
5 yk = gk+1 − gk ;

6 ρk = 1/sT
k yk ;

7 Define H̃k spd ;

8 Hk+1 = (I − ρk sk yT
k )H̃k (I − ρk yk sT

k ) + ρk sk sT
k ;

9 Set dk+1 = −Hk+1gk+1;

Theorem (PCG matching)

Let us consider Algorithm 0.6. If

H̃k gk+1 = βk H0gk+1 where βk 6= 0,

then we have :

gT
k+1sj = 0 for all j = 0, . . . , k;

sT
k+1Asj = 0 for all j = 0, . . . , k;

span{s0, . . . , sk+1} = span{H0g0, . . . ,H0gk+1};

If H0 = I , find an L(k) such that

L(k)
Bk

sk = Bksk and L(k)
Bk

gk+1 = ckgk+1.
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Numerical Results (φ = 0) L(k)QN vs HQN [2003] vs DQN [2007]

P = {93 test problems from CUTEST}, S = {L(k)QN, HQN, DQN}

rp,s =
tp,s

mins∈S{tp,s}
∈ [1, rM ], ρs (τ) =

1

|P|
size{p ∈ P | rp,s ≤ τ} [2002]

ρs (1) probability to win;

ρ∗s := lim
τ→r−

M
ρs (τ) is the probability that the solver solves a problem;

Performance profile in a log2 scale : ITERATIONS
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Performance profile in a log2 scale : F. EVALUATIONS
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ρs (τ) is the probability for solver s ∈ S that a performance ratio rp,s is within a factor τ ∈ R of the best possible ratio.
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