
C. Garoni and S. Serra-Capizzano GLT Sequences

Generalized Locally Toeplitz Sequences:
A Spectral Analysis Tool for Discretized Differential Equations

Carlo Garoni and Stefano Serra-Capizzano

Contents
1 Introduction 2

2 The Theory of GLT Sequences: A Summary 4

3 Applications 7
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Matrix-Norm Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 GLT Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Arrow-Shaped Sampling Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 FD Discretization of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 FD Discretization of Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 FD Discretization of Convection-Diffusion-Reaction Equations . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 FD Discretization of Higher-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Non-uniform FD Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 FE Discretization of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 FE Discretization of Convection-Diffusion-Reaction Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 FE Discretization of a System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 IgA Discretization of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 B-Spline IgA Collocation Discretization of Convection-Diffusion-Reaction Equations . . . . . . . . . . . . . 28
3.4.2 Galerkin B-Spline IgA Discretization of Convection-Diffusion-Reaction Equations . . . . . . . . . . . . . . . 37
3.4.3 Galerkin B-Spline IgA Discretization of Second-Order Eigenvalue Problems . . . . . . . . . . . . . . . . . . 43

4 Bibliography 46

CIME, Cetraro (Cosenza), Italy, July 3–7, 2017 Page 1 of 48



C. Garoni and S. Serra-Capizzano GLT Sequences

1 Introduction
Origin and purpose of the theory of GLT sequences The theory of Generalized Locally Toeplitz (GLT) sequences
stems from Tilli’s work on Locally Toeplitz (LT) sequences [56] and from the spectral theory of Toeplitz matrices [2,
10, 11, 12, 13, 36, 44, 55, 57, 58, 59, 60]. It was then developed by the authors in [33, 34, 50, 51] and has been
recently extended by Barbarino in [3]. It was devised in order to solve a specific application problem, namely the problem
of computing/analyzing the spectral distribution of matrices arising from the numerical discretization of Differential
Equations (DEs). A final goal of this spectral analysis is the design of efficient numerical methods for computing the
related numerical solutions. The theory of GLT sequences finds applications also in other areas of science (see, e.g., [16]
and [33, Sections 10.1–10.4]), but the computation of the spectral distribution of DE discretization matrices remains the
main application. The next paragraph is therefore devoted to a general description of this application.

Main application of the theory of GLT sequences Suppose a linear DE

Au = g

is discretized by a linear numerical method characterized by a mesh fineness parameter n. In this situation, the computation
of the numerical solution reduces to solving a linear system of the form

Anun = gn,

where the size dn of the matrix An increases with n. What is often observed in practice is that An enjoys an asymptotic
spectral distribution as n→ ∞, i.e., as the mesh is progressively refined. More precisely, it often turns out that, for a large
class of test functions F ,

lim
n→∞

1
dn

dn

∑
j=1

F(λ j(An)) =
1

µk(D)

∫
D

F(κ(y))dy,

where λ j(An), j = 1, . . . ,dn, are the eigenvalues of An, µk is the Lebesgue measure in Rk, and κ : D ⊂ Rk → C. In this
situation, the function κ is referred to as the spectral symbol of the sequence {An}n. The spectral information contained
in κ can be informally summarized as follows: assuming that n is large enough, the eigenvalues of An, except possibly for
o(dn) outliers, are approximately equal to the samples of κ over a uniform grid in D. For example, if k = 1, dn = n and
D = [a,b], then, assuming we have no outliers, the eigenvalues of An are approximately equal to

κ

(
a+ i

b−a
n

)
, i = 1, . . . ,n,

for n large enough. Similarly, if k = 2, dn = n2 and D = [a1,b1]× [a2,b2], then, assuming we have no outliers, the
eigenvalues of An are approximately equal to

κ

(
a1 + i1

b1−a1

n
, a2 + i2

b2−a2

n

)
, i1, i2 = 1, . . . ,n,

for n large enough. It is then clear that the symbol κ provides a ‘compact’ and quite accurate description of the spectrum
of the matrices An (for n large enough).

The theory of GLT sequences is a powerful apparatus for computing the spectral symbol κ . Indeed, the sequence of
discretization matrices {An}n turns out to be a GLT sequence with symbol (or kernel) κ for many classes of DEs and
numerical methods, especially if the numerical method belongs to the family of the so-called ‘local methods’. Local
methods are, for example, Finite Difference (FD) methods, Finite Element (FE) methods with ‘locally supported’ basis
functions, and collocation methods; in short, all standard numerical methods for the approximation of DEs. We refer the
reader to Section 3.2 and [9, 33, 34, 50, 51, 52] for applications of the theory of GLT sequences in the context of FD
discretizations of DEs; to Section 3.3 and [5, 9, 25, 26, 33, 34, 51] for the FE and collocation settings; to Section 3.4 and
[22, 27, 33, 34, 28, 30, 31, 32, 48] for the case of Isogeometric Analysis (IgA) discretizations, both in the collocation and
Galerkin frameworks; and to [24] for a further recent application to fractional DEs.

Practical use of the spectral symbol It is worth emphasizing that the knowledge of the spectral symbol κ , which can
be attained through the theory of GLT sequences, is not only interesting in itself, but may also be exploited for practical
purposes. Let us mention some of them.

(a) Compare the spectrum of An, compactly described by κ , with the spectrum of the differential operator A.
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(b) Understand whether the numerical method used to discretize the DE Au = g is appropriate or not to spectrally
approximate the operator A.

(c) Analyze the convergence and predict the behavior of iterative methods (especially, multigrid and preconditioned
Krylov methods), when they are applied to An.

(d) Design fast iterative solvers (especially, multigrid and preconditioned Krylov methods) for linear systems with
coefficient matrix An.

The goal (b) can be achieved through the spectral comparison mentioned in (a) and allows one to classify the various
numerical methods on the basis of their spectral approximation properties. In this way, it is possible to select the best
approximation technique among a set of given methods. In this regard, we point out that the symbol-based analysis carried
out in [28] proved that IgA is superior to classical FE methods in the spectral approximation of the underlying differential
operator A. The reason for which the spectral symbol κ can be exploited for the purposes (c)–(d) is the following: the
convergence properties of iterative solvers in general (and of multigrid and preconditioned Krylov methods in particular)
strongly depend on the spectral features of the matrix to which they are applied; hence, the spectral information provided
by κ can be conveniently used for designing fast solvers of this kind and/or analyzing their convergence properties. In this
respect, we recall that noteworthy estimates on the superlinear convergence of the Conjugate Gradient (CG) method are
strictly related to the asymptotic spectral distribution of the matrices to which the CG method is applied; see [4]. We also
refer the reader to [20, 21, 23] for recent developments in the IgA framework, where the spectral symbol was exploited to
design ad hoc iterative solvers for IgA discretization matrices.

Description of the present work The present work is an excerpt of the book [33]. Its purpose is to introduce the
reader to the theory of GLT sequences and its applications in the context of DE discretizations. Following [33], we will
here consider only unidimensional DEs both for simplicity and because the key ‘GLT ideas’ are better conveyed in the
univariate setting. For the multivariate setting, the reader is referred to the literature cited above and, especially, to the
book [34].
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2 The Theory of GLT Sequences: A Summary
In this chapter we present a self-contained summary of the theory of GLT sequences. Despite its conciseness, our presen-
tation contains everything one needs to know in order to understand the applications presented in the next chapter.

Matrix-sequences Throughout this work, by a matrix-sequence we mean a sequence of the form {An}n, where An is an
n×n matrix. We say that the matrix-sequence {An}n is Hermitian if each An is Hermitian.

Singular value and eigenvalue distribution of a matrix-sequence Let µk be the Lebesgue measure in Rk. Throughout
this work, all the terminology coming from measure theory (such as ‘measurable set’, ‘measurable function’, ‘almost
everywhere (a.e.)’, etc.) is always referred to the Lebesgue measure. Let Cc(R) (resp., Cc(C)) be the space of continuous
complex-valued functions with bounded support defined on R (resp., C). If A is a square matrix of size n, the singu-
lar values and the eigenvalues of A are denoted by σ1(A), . . . ,σn(A) and λ1(A), . . . ,λn(A), respectively. The set of the
eigenvalues (i.e., the spectrum) of A is denoted by Λ(A).

Definition 2.1. Let {An}n be a matrix-sequence and let f : D⊂Rk→C be a measurable function defined on a set D with
0 < µk(D)< ∞.

• We say that {An}n has a singular value distribution described by f , and we write {An}n ∼σ f , if

lim
n→∞

1
n

n

∑
i=1

F(σi(An)) =
1

µk(D)

∫
D

F(| f (x)|)dx, ∀F ∈Cc(R).

In this case, f is called the singular value symbol of {An}n.

• We say that {An}n has a spectral (or eigenvalue) distribution described by f , and we write {An}n ∼λ f , if

lim
n→∞

1
n

n

∑
i=1

F(λi(An)) =
1

µk(D)

∫
D

F( f (x))dx, ∀F ∈Cc(C).

In this case, f is called the spectral (or eigenvalue) symbol of {An}n.

When we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood that {An}n is a matrix-sequence and f is
a measurable function defined on a subset D of some Rk with 0 < µk(D) < ∞. If {An}n has both a singular value and a
spectral distribution described by f , we write {An}n ∼σ ,λ f .

We report in S 1 and S 2 the statements of two useful results concerning the spectral distribution of matrix-sequences.
Throughout this work, if A is an n× n matrix and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A, i.e., the
p-norm of the vector (σ1(A), . . . ,σn(A)) formed by the singular values of A; see [7]. The Schatten ∞-norm ‖A‖∞ is the
largest singular value of A and coincides with the classical 2-norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of all the
singular values of A and is often referred to as the trace-norm of A. The (topological) closure of a set S is denoted by S.

S 1. If {An}n ∼λ f and Λ(An)⊆ S for all n then f ∈ S a.e.

S 2. If An = Xn +Yn where

• each Xn is Hermitian and {Xn}n ∼λ f ,

• ‖Xn‖,‖Yn‖ ≤C for all n, where C is a constant independent of n,

• n−1‖Yn‖1→ 0,

then {An}n ∼λ f .

Informal meaning Assuming f is Riemann-integrable, the spectral distribution {An}n ∼λ f has the following informal
meaning: all the eigenvalues of An, except possibly for o(n) outliers, are approximately equal to the samples of f over
a uniform grid in D (for n large enough). For instance, if k = 1 and D = [a,b], then, assuming we have no outliers, the
eigenvalues of An are approximately equal to

f
(

a+ i
b−a

n

)
, i = 1, . . . ,n,
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for n large enough. Similarly, if k = 2, n = m2 and D = [a1,b1]× [a2,b2], then, assuming we have no outliers, the
eigenvalues of An are approximately equal to

f
(

a1 + i
b1−a1

m
, a2 + j

b2−a2

m

)
, i, j = 1, . . . ,m,

for n large enough. A completely analogous meaning can also be given for the singular value distribution {An}n ∼σ f .

Zero-distributed sequences A matrix-sequence {Zn}n such that {Zn}n ∼σ 0 is referred to as a zero-distributed se-
quence. In other words, {Zn}n is zero-distributed if and only if

lim
n→∞

1
n

n

∑
i=1

F(σi(Zn)) = F(0), ∀F ∈Cc(R).

Z 1 – Z 2 will provide us with an important characterization of zero-distributed sequences together with a useful sufficient
condition for detecting such sequences. For convenience, throughout this work we use the natural convention 1/∞ = 0.

Z 1. {Zn}n ∼σ 0 if and only if Zn = Rn +Nn with lim
n→∞

n−1rank(Rn) = lim
n→∞
‖Nn‖= 0.

Z 2. {Zn}n ∼σ 0 if there is a p ∈ [1,∞] such that lim
n→∞

n−1/p‖Zn‖p = 0.

Sequences of diagonal sampling matrices If n ∈ N and a : [0,1]→ C, the nth diagonal sampling matrix generated by
a is the n×n diagonal matrix given by

Dn(a) = diag
i=1,...,n

a
( i

n

)
.

{Dn(a)}n is called the sequence of diagonal sampling matrices generated by a.

Toeplitz sequences If n ∈ N and f : [−π,π]→ C is a function in L1([−π,π]), the nth Toeplitz matrix generated by f is
the n×n matrix

Tn( f ) = [ fi− j]
n
i, j=1,

where the numbers fk are the Fourier coefficients of f ,

fk =
1

2π

∫
π

−π

f (θ)e−ikθ dθ , k ∈ Z.

{Tn( f )}n is called the Toeplitz sequence generated by f .

T 1. For every n ∈ N the map Tn(·) : L1([−π,π])→ Cn×n

• is linear: Tn(α f +βg) = αTn( f )+βTn(g) for α,β ∈ C and f ,g ∈ L1([−π,π]);

• satisfies (Tn( f ))∗ = Tn( f ) for all f ∈ L1([−π,π]), so if f is real then Tn( f ) is Hermitian for all n.

T 2. If f ∈ L1([−π,π]) then {Tn( f )}n ∼σ f . If f ∈ L1([−π,π]) and f is real then {Tn( f )}n ∼λ f .

T 3. If n ∈ N, 1≤ p≤ ∞ and f ∈ Lp([−π,π]), then ‖Tn( f )‖p ≤ n1/p

(2π)1/p ‖ f‖Lp .

Approximating classes of sequences The notion of approximating classes of sequences (a.c.s.) is the fundamental
concept on which the theory of GLT sequences is based.

Definition 2.2. Let {An}n be a matrix-sequence and let {{Bn,m}n}m be a sequence of matrix-sequences. We say that
{{Bn,m}n}m is an approximating class of sequences (a.c.s.) for {An}n if the following condition is met: for every m there
exists nm such that, for n≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m)≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.
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Throughout this work, we use the abbreviation ‘a.c.s.’ for both the singular ‘approximating class of sequences’ and
the plural ‘approximating classes of sequences’; it will be clear from the context whether ‘a.c.s.’ is singular or plural.
Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large m, the sequence {Bn,m}n approximates
{An}n in the sense that An is eventually equal to Bn,m plus a small-rank matrix (with respect to the matrix size n) plus
a small-norm matrix. It turns out that the notion of a.c.s. is a notion of convergence in the space of matrix-sequences
E = {{An}n : {An}n is a matrix-sequence}, i.e., there exists a topology τa.c.s. on E such that {{Bn,m}n}m is an a.c.s. for
{An}n if and only if {{Bn,m}n}m converges to {An}n in (E,τa.c.s.). The theory of a.c.s. may then be interpreted as an
approximation theory for matrix-sequences, and for this reason we will use the convergence notation {Bn,m}n

a.c.s.−→ {An}n
to indicate that {{Bn,m}n}m is an a.c.s. for {An}n.

ACS 1. {An}n ∼σ f if and only if there exist matrix-sequences {Bn,m}n ∼σ fm such that {Bn,m}n
a.c.s.−→ {An}n and fm→ f

in measure.

ACS 2. Suppose the matrices An are Hermitian. Then, {An}n ∼λ f if and only if there exist Hermitian matrix-sequences
{Bn,m}n ∼λ fm such that {Bn,m}n

a.c.s.−→ {An}n and fm→ f in measure.

ACS 3. Let p ∈ [1,∞] and suppose for every m there exists nm such that, for n≥ nm, ‖An−Bn,m‖p ≤ ε(m,n)n1/p, where
limm→∞ limsupn→∞ ε(m,n) = 0. Then {Bn,m}n

a.c.s.−→ {An}n.

Generalized locally Toeplitz sequences A Generalized Locally Toeplitz (GLT) sequence {An}n is a special matrix-
sequence equipped with a measurable function κ : [0,1]× [−π,π]→ C, the so-called symbol (or kernel). We use the
notation {An}n ∼GLT κ to indicate that {An}n is a GLT sequence with symbol κ . The symbol of a GLT sequence is unique
in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ξ then κ = ξ a.e. in [0,1]× [−π,π]. The main properties of GLT
sequences are summarized in the following list. If A is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A;
we recall that A† = A−1 whenever A is invertible and we refer the reader to [8, 35] for more details on the pseudoinverse of
a matrix. If A is a Hermitian matrix and f is a function defined at each point of Λ(A), we denote by f (A) the unique matrix
such that f (A)v = f (λ )v whenever Av = λv; for more on matrix functions, we refer the reader to Higham’s book [37].

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ . If {An}n ∼GLT κ and the matrices An are Hermitian then {An}n ∼λ κ .

GLT 2. If {An}n ∼GLT κ and An = Xn +Yn, where

• every Xn is Hermitian,

• ‖Xn‖, ‖Yn‖ ≤C for some constant C independent of n,

• n−1‖Yn‖1→ 0,

then {An}n ∼λ κ .

GLT 3. We have

• {Tn( f )}n ∼GLT κ(x,θ) = f (θ) if f ∈ L1([−π,π]),

• {Dn(a)}n ∼GLT κ(x,θ) = a(x) if a : [0,1]→ C is Riemann-integrable,

• {Zn}n ∼GLT κ(x,θ) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then

• {A∗n}n ∼GLT κ ,

• {αAn +βBn}n ∼GLT ακ +βξ for all α,β ∈ C,

• {AnBn}n ∼GLT κξ .

GLT 5. If {An}n ∼GLT κ and κ 6= 0 a.e. then {A†
n}n ∼GLT κ−1.

GLT 6. If {An}n ∼GLT κ and each An is Hermitian, then { f (An)}n ∼GLT f (κ) for every continuous function f : C→ C.

GLT 7. {An}n ∼GLT κ if and only if there exist GLT sequences {Bn,m}n ∼GLT κm such that {Bn,m}n
a.c.s.−→ {An}n and

κm→ κ in measure.
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3 Applications
In this chapter we present several applications of the theory of GLT sequences to the spectral analysis of DE discretiza-
tion matrices. Our aim is to show how to compute the singular value and eigenvalue distribution of matrix-sequences
arising from a DE discretization through the ‘GLT tools’ presented in the previous chapter. We begin by considering FD
discretizations, then we will move to FE discretizations, and finally we will focus on IgA discretizations. Before starting,
we collect in the next section some auxiliary results.

3.1 Preliminaries
3.1.1 Matrix-Norm Inequalities

If 1≤ p≤ ∞, the symbol | · |p denotes both the p-norm of vectors and the associated operator norm for matrices:

|x|p =

{
(∑m

i=1 |xi|p)1/p , if 1≤ p < ∞,
maxi=1,...,m |xi|, if p = ∞,

x ∈ Cm,

|X |p = max
x∈Cm

x6=0

|Xx|p
|x|p

, X ∈ Cm×m.

The 2-norm | · |2 is also known as the spectral (or Euclidean) norm and it is preferably denoted by ‖ · ‖. Important
inequalities involving the p-norms with p = 1,2,∞ are the following:

‖X‖ ≤
√
|X |1|X |∞, X ∈ Cm×m, (3.1)

‖X‖ ≥ |xi j|, i, j = 1, . . . ,m, X ∈ Cm×m; (3.2)

see [8, 35]. Recalling that |X |1 = max j=1,...,m ∑
m
i=1 |xi j| and |X |∞ = maxi=1,...,m ∑

m
j=1 |xi j|, the inequalities (3.1)–(3.2) are

particularly useful to estimate the spectral norm of a matrix when we have bounds for its components.
As mentioned in Chapter 2, the Schatten p-norm of an n× n matrix A is defined as the p-norm of the vector

(σ1(A), . . . ,σn(A)) formed by the singular values of A. The Schatten ∞-norm ‖A‖∞ is the largest singular value σmax(A)
and coincides with the spectral norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of all the singular values of A and is often
referred to as the trace-norm of A. The Schatten p-norms are deeply studied in Bhatia’s book [7]. Here, we just recall a
couple of basic trace-norm inequalities that we shall need in what follows:

‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖, X ∈ Cm×m, (3.3)

‖X‖1 ≤
m

∑
i, j=1
|xi j|, X ∈ Cm×m. (3.4)

The inequality (3.3) follows from the equation σmax(X) = ‖X‖ and the definition ‖X‖1 = ∑
m
i=1 σi(X) = ∑

rank(X)
i=1 σi(X).

For the proof of (3.4), see, e.g., [33, Section 2.4.3].

3.1.2 GLT Preconditioning

The next theorem is an important result in the context of GLT preconditioning, but it will be used only in Section 3.4.3.
The reader may then decide to skip it on first reading and come back here afterwards, just before going into Section 3.4.3.

Theorem 3.1. Let {An}n be a sequence of Hermitian matrices such that {An}n ∼GLT κ , and let {Pn}n be a sequence of
Hermitian Positive Definite (HPD) matrices such that {Pn}n ∼GLT ξ with ξ 6= 0 a.e. Then, the sequence of preconditioned
matrices P−1

n An satisfies
{P−1

n An}n ∼GLT ξ
−1

κ,

and
{P−1

n An}n ∼σ ,λ ξ
−1

κ.

Proof. The GLT relation {P−1
n An}n∼GLT ξ−1κ is a direct consequence of GLT 4 – GLT 5. The singular value distribution

{P−1
n An}n ∼σ ξ−1κ follows immediately from GLT 1. The only difficult part is the spectral distribution {P−1

n An}n ∼λ

ξ−1κ , which does not follow from GLT 1 because P−1
n An is not Hermitian in general.
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Since Pn is HPD, the eigenvalues of Pn are positive and the matrices P1/2
n and P−1/2

n are well-defined. Moreover,

P−1
n An ∼ P−1/2

n AnP−1/2
n , (3.5)

where X ∼ Y means that X is similar to Y . The good news is that P−1/2
n AnP−1/2

n is Hermitian and, moreover, by GLT 4 –
GLT 6 (with GLT 6 applied to f (z) = |z|1/2), we have

{P−1/2
n AnP−1/2

n }n ∼GLT |ξ |−1/2
κ|ξ |−1/2 = |ξ |−1

κ = ξ
−1

κ;

note that the latter equation follows from the fact that ξ ≥ 0 a.e. by S 1, since Pn is HPD and {Pn}n ∼λ ξ by GLT 1. Since
P−1/2

n AnP−1/2
n is Hermitian, GLT 1 yields

{P−1/2
n AnP−1/2

n }n ∼λ ξ
−1

κ.

Thus, by the similarity (3.5),

{P−1
n An}n ∼λ ξ

−1
κ.

3.1.3 Arrow-Shaped Sampling Matrices

If n ∈N and a : [0,1]→C, the nth arrow-shaped sampling matrix generated by a is denoted by Sn(a) and is defined as the
following symmetric matrix of size n:

(Sn(a))i, j = (Dn(a))min(i, j),min(i, j) = a
(min(i, j)

n

)
, i, j = 1, . . . ,n, (3.6)

that is,

Sn(a) =



a( 1
n ) a( 1

n ) a( 1
n ) · · · · · · a( 1

n )

a( 1
n ) a( 2

n ) a( 2
n ) · · · · · · a( 2

n )

a( 1
n ) a( 2

n ) a( 3
n ) · · · · · · a( 3

n )
...

...
...

. . .
...

...
...

...
. . .

...
a( 1

n ) a( 2
n ) a( 3

n ) · · · · · · a(1)


.

The name is due to the fact that, if we imagine to color the matrix Sn(a) by assigning the color i to the entries a( i
n ), the

resulting picture looks like a sort of arrow pointing toward the upper left corner. Throughout this work, if X ,Y ∈ Cm×m,
we denote by X ◦Y the componentwise (Hadamard) product of X and Y :

(X ◦Y )i j = xi jyi j, i, j = 1, . . . ,m.

Moreover, if g : D→C is continuous over D, with D⊆Ck for some k, we denote by ωg(·) the modulus of continuity of g,

ωg(δ ) = sup
x,y∈D
‖x−y‖≤δ

|g(x)−g(y)|, δ > 0.

If we need/want to specify D, we will say that ωg(·) is the modulus of continuity of g over D.

Theorem 3.2. Let a : [0,1]→ C be continuous and let f be a trigonometric polynomial of degree ≤ r. Then, we have

‖Sn(a)◦Tn( f )−Dn(a)Tn( f )‖ ≤ (2r+1)‖ f‖∞ ωa

( r
n

)
(3.7)

for every n ∈ N,
‖Sn(a)◦Tn( f )‖ ≤C (3.8)

for every n ∈ N and for some constant C independent of n, and

{Sn(a)◦Tn( f )}n ∼GLT a(x) f (θ). (3.9)
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Proof. For all i, j = 1, . . . ,n,

• if |i− j|> r, then the Fourier coefficient fi− j is zero and, consequently,

(Sn(a)◦Tn( f ))i j = (Sn(a))i j(Tn( f ))i j = a
(min(i, j)

n

)
fi− j = 0,

(Dn(a)Tn( f ))i j = (Dn(a))ii(Tn( f ))i j = a
( i

n

)
fi− j = 0;

• if |i− j| ≤ r, then, using (3.2) and T 3, we obtain

|(Sn(a)◦Tn( f ))i j− (Dn(a)Tn( f ))i j|= |(Sn(a))i j(Tn( f ))i j− (Dn(a))ii(Tn( f ))i j|
= |(Sn(a))i j− (Dn(a))ii| |(Tn( f ))i j|

≤
∣∣∣∣a(min(i, j)

n

)
−a
( i

n

)∣∣∣∣‖Tn( f )‖

≤ ‖ f‖∞ ωa

(∣∣∣min(i, j)
n

− i
n

∣∣∣).
Since |i− j| ≤ r, we have ∣∣∣min(i, j)

n
− i

n

∣∣∣≤ | j− i|
n
≤ r

n
,

hence ∣∣(Sn(a)◦Tn( f ))i j− (Dn(a)Tn( f ))i j
∣∣≤ ‖ f‖∞ ωa

( r
n

)
.

It follows from the first item that the nonzero entries in each row and column of Sn(a) ◦Tn( f )−Dn(a)Tn( f ) are at most
2r+1. Hence, from the second item we infer that the 1-norm and the ∞-norm of Sn(a)◦Tn( f )−Dn(a)Tn( f ) are bounded
by (2r+1)‖ f‖∞ ωa(

r
n ). The application of (3.1) yields (3.7). Using (3.7) we obtain

‖Sn(a)◦Tn( f )‖ ≤ ‖Sn(a)◦Tn( f )−Dn(a)Tn( f )‖+‖Dn(a)‖‖Tn( f )‖ ≤ (2r+1)‖ f‖∞ ωa

( r
n

)
+‖a‖∞‖ f‖∞,

which implies (3.8). Finally, since ωa(
r
n )→ 0 as n→ ∞, the matrix-sequence {Sn(a) ◦ Tn( f )−Dn(a)Tn( f )}n is zero-

distributed by (3.7) and Z 1 (or Z 2). Thus, (3.9) follows from GLT 3 – GLT 4.

3.2 FD Discretization of Differential Equations
3.2.1 FD Discretization of Diffusion Equations

Consider the following second-order differential problem:{
−(a(x)u′(x))′ = f (x), x ∈ (0,1),
u(0) = α, u(1) = β ,

(3.10)

where a ∈C([0,1]) and f is a given function. To ensure the well-posedness of this problem, further conditions on a and f
should be imposed; for example, f ∈ L2([0,1]) and a ∈C1([0,1]) with a(x)> 0 for every x ∈ [0,1], so that problem (3.10)
is elliptic (see Chapter 8 of [14], especially the Sturm-Liouville problem on page 223). However, we here only assume
that a ∈C([0,1]) as the GLT analysis presented herein does not require any other assumption.

FD discretization We consider the discretization of (3.10) by the classical second-order central FD scheme on a uniform
grid. In the case where a(x) is constant, this is also known as the (−1,2,−1) scheme. Let us describe it shortly; for
more details on FD methods, we refer the reader to the available literature (see, e.g., [53] or any good book on FDs).
Choose a discretization parameter n ∈ N, set h = 1

n+1 and x j = jh for all j ∈ [0,n+1]. For j = 1, . . . ,n we approximate
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−(a(x)u′(x))′|x=x j by the classical second-order central FD formula:

−(a(x)u′(x))′|x=x j ≈−
a(x j+ 1

2
)u′(x j+ 1

2
)−a(x j− 1

2
)u′(x j− 1

2
)

h

≈−
a(x j+ 1

2
)

u(x j+1)−u(x j)

h
−a(x j− 1

2
)

u(x j)−u(x j−1)

h
h

=
−a(x j+ 1

2
)u(x j+1)+

(
a(x j+ 1

2
)+a(x j− 1

2
)
)
u(x j)−a(x j− 1

2
)u(x j−1)

h2 . (3.11)

This means that the nodal values of the solution u satisfy (approximately) the following linear system:

−a(x j+ 1
2
)u(x j+1)+

(
a(x j+ 1

2
)+a(x j− 1

2
)
)
u(x j)−a(x j− 1

2
)u(x j−1) = h2 f (x j), j = 1, . . . ,n.

We then approximate the solution by the piecewise linear function that takes the value u j in x j for j = 0, . . . ,n+1, where
u0 = α , un+1 = β , and u = (u1, . . . ,un)

T solves

−a(x j+ 1
2
)u j+1 +

(
a(x j+ 1

2
)+a(x j− 1

2
)
)
u j−a(x j− 1

2
)u j−1 = h2 f (x j), j = 1, . . . ,n. (3.12)

The matrix of the linear system (3.12) is the n×n tridiagonal symmetric matrix given by

An =



a 1
2
+a 3

2
−a 3

2

−a 3
2

a 3
2
+a 5

2
−a 5

2

−a 5
2

. . . . . .

. . . . . . −an− 1
2

−an− 1
2

an− 1
2
+an+ 1

2


, (3.13)

where ai = a(xi) for all i ∈ [0,n+1].

GLT analysis of the FD discretization matrices We are going to see that the theory of GLT sequences allows one to
compute the singular value and spectral distribution of the sequence of FD discretization matrices {An}n. Actually, this is
the fundamental example that led to the birth of the theory of LT sequences and, subsequently, of GLT sequences.

Theorem 3.3. If a ∈C([0,1]) then
{An}n ∼GLT a(x)(2−2cosθ) (3.14)

and
{An}n ∼σ ,λ a(x)(2−2cosθ). (3.15)

Proof. It suffices to prove (3.14) because (3.15) follows from (3.14) and GLT 1 as the matrices An are symmetric. Con-
sider the matrix

Dn(a)Tn(2−2cosθ) =



2a( 1
n ) −a( 1

n )

−a( 2
n ) 2a( 2

n ) −a( 2
n )

−a( 3
n )

. . . . . .

. . . . . . −a( n−1
n )

−a(1) 2a(1)


. (3.16)

In view of the inequalities
∣∣x j− j

n

∣∣≤ 1
n+1 = h, j = 1, . . . ,n, a direct comparison between (3.16) and (3.13) shows that the

modulus of each diagonal entry of the matrix An−Dn(a)Tn(2− 2cosθ) is bounded by 2ωa(3h/2), and the modulus of
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each off-diagonal entry of An−Dn(a)Tn(2−2cosθ) is bounded by ωa(3h/2). Therefore, the 1-norm and the ∞-norm of
An−Dn(a)Tn(2−2cosθ) are bounded by 4ωa(3h/2), and so, by (3.1),

‖An−Dn(a)Tn(2−2cosθ)‖ ≤ 4ωa(3h/2)→ 0 as n→ ∞.

Setting Zn = An−Dn(a)Tn(2−2cosθ), we have {Zn}n ∼σ 0 by Z 1 (or Z 2). Since

An = Dn(a)Tn(2−2cosθ)+Zn,

GLT 3 and GLT 4 yield (3.14).

Remark 3.1 (formal structure of the symbol). From a formal viewpoint (i.e., disregarding the regularity of a(x) and
u(x)), problem (3.10) can be rewritten in the form{

−a(x)u′′(x)−a′(x)u′(x) = f (x), x ∈ (0,1),
u(0) = α, u(1) = β .

From this reformulation, it appears more clearly that the symbol a(x)(2−2cosθ) consists of the two ‘ingredients’:

• The coefficient of the higher-order differential operator, namely a(x), in the physical variable x. To make a par-
allelism with Hörmander’s theory [38], the higher-order differential operator −a(x)u′′(x) is the so-called principal
symbol of the complete differential operator−a(x)u′′(x)−a′(x)u′(x) and a(x) is then the coefficient of the principal
symbol.

• The trigonometric polynomial associated with the FD formula (−1,2,−1) used to approximate the higher-order
derivative −u′′(x), namely 2− 2cosθ = −eiθ +2− e−iθ , in the Fourier variable θ . To see that (−1,2,−1) is
precisely the FD formula used to approximate −u′′(x), simply imagine a(x) = 1 and note that in this case the FD
scheme (3.11) becomes

−u′′(x j)≈
−u(x j+1)+2u(x j)−u(x j−1)

h2 ,

i.e., the FD formula (−1,2,−1) to approximate −u′′(x j).

We observe that the term−a′(x)u′(x), which only depends on lower-order derivatives of u(x), does not enter the expression
of the symbol.

Remark 3.2 (nonnegativity and order of the zero at θ = 0). The trigonometric polynomial 2−2cosθ is nonnegative
on [−π,π] and it has a unique zero of order 2 at θ = 0, because

lim
θ→0

2−2cosθ

θ 2 = 1.

This reflects the fact that the associated FD formula (−1,2,−1) approximates −u′′(x), which is a differential operator
of order 2 (it is also nonnegative on the space of functions v ∈ C2([0,1]) such that v(0) = v(1) = 0, in the sense that∫ 1

0 −v′′(x)v(x)dx =
∫ 1

0 (v
′(x))2dx≥ 0 for all such v).

3.2.2 FD Discretization of Convection-Diffusion-Reaction Equations

1st Part

Suppose we add to the diffusion equation (3.10) a convection and a reaction term. In this way, we obtain the following
convection-diffusion-reaction equation in divergence form with Dirichlet boundary conditions:{

−(a(x)u′(x))′+b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0,1),
u(0) = α, u(1) = β ,

(3.17)

where a : [0,1]→ R is continuous as before and we assume that b,c : [0,1]→ R are bounded. Based on Remark 3.1,
we expect that the term b(x)u′(x) + c(x)u(x), which only involves lower-order derivatives of u(x), does not enter the
expression of the symbol. In other words, if we discretize the higher-order term −(a(x)u′(x))′ as in (3.11), the symbol of
the resulting FD discretization matrices Bn should be again a(x)(2−2cosθ). We are going to show that this is in fact the
case.
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FD discretization Let n ∈ N, set h = 1
n+1 and x j = jh for all j ∈ [0,n+1]. Consider the discretization of (3.17) by the

FD scheme defined as follows.

• To approximate the higher-order (diffusion) term −(a(x)u′(x))′, use again the FD formula (3.11), i.e.,

−(a(x)u′(x))′|x=x j ≈
−a(x j+ 1

2
)u(x j+1)+

(
a(x j+ 1

2
)+a(x j− 1

2
)
)
u(x j)−a(x j− 1

2
)u(x j−1)

h2 . (3.18)

• To approximate the convection term b(x)u′(x), use any (consistent) FD formula; to fix the ideas, here we use the
second-order central formula

b(x)u′(x)|x=x j ≈ b(x j)
u(x j+1)−u(x j−1)

2h
. (3.19)

• To approximate the reaction term c(x)u(x), use the obvious equation

c(x)u(x)|x=x j = c(x j)u(x j). (3.20)

The resulting FD discretization matrix Bn admits a natural decomposition as

Bn = An +Zn, (3.21)

where An is the matrix coming from the discretization of the higher-order (diffusion) term −(a(x)u′(x)), while Zn is the
matrix coming from the discretization of the lower-order (convection and reaction) terms b(x)u′(x) and c(x)u(x). Note
that An is given by (3.13) and Zn is given by

Zn =
h
2



0 b1

−b2 0 b2

. . . . . . . . .

−bn−1 0 bn−1

−bn 0


+h2



c1

c2

. . .

cn−1

cn


, (3.22)

where bi = b(xi) and ci = c(xi) for all i = 1, . . . ,n.

GLT analysis of the FD discretization matrices We now prove that Theorem 3.3 holds unchanged with Bn in place of
An. This highlights a general aspect: lower-order terms such as b(x)u′(x)+ c(x)u(x) do not enter the expression of the
symbol and do not affect in any way the asymptotic singular value and spectral distribution of DE discretization matrices.

Theorem 3.4. If a ∈C([0,1]) and b,c : [0,1]→ R are bounded then

{Bn}n ∼GLT a(x)(2−2cosθ) (3.23)

and
{Bn}n ∼σ ,λ a(x)(2−2cosθ). (3.24)

Proof. By (3.1), the matrix Zn in (3.22) satisfies

‖Zn‖ ≤ h‖b‖∞ +h2‖c‖∞ ≤C/n (3.25)

for some constant C independent of n. As a consequence, {Zn}n is zero-distributed by Z 1 (or Z 2), hence {Zn}n ∼GLT 0
by GLT 3. Since {An}n ∼GLT a(x)(2−2cosθ) by Theorem 3.3, the decomposition (3.21) and GLT 4 imply (3.23).

Now, if the convection term is not present, i.e., b(x) = 0 identically, then Bn is symmetric and (3.24) follows from
(3.23) and GLT 1. If b(x) is not identically 0, then Bn is not symmetric in general and so (3.23) and GLT 1 only imply
the singular value distribution {Bn}n ∼σ a(x)(2− 2cosθ). Nevertheless, in view of the decomposition (3.21), since An
is symmetric and {An}n ∼λ a(x)(2− 2cosθ) by Theorem 3.3, since ‖Zn‖1 = O(1) by the inequalities (3.25) and (3.3),
and since ‖An‖ ≤ 4‖a‖∞ by (3.1), the spectral distribution {Bn}n ∼λ a(x)(2−2cosθ) holds (by GLT 2) even if b(x) is an
arbitrary bounded function.
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2nd Part

So far, we only considered differential equations with Dirichlet boundary conditions. A natural question is the following:
if we change the boundary conditions in (3.17), does the expression of the symbol change? The answer is ‘no’: boundary
conditions do not affect the singular value and eigenvalue distribution because they only produce a small-rank perturba-
tion in the resulting discretization matrices. To understand better this point, we consider problem (3.17) with Neumann
boundary conditions: {

−(a(x)u′(x))′+b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0,1),
u′(0) = α, u′(1) = β .

(3.26)

FD discretization We discretize (3.26) by the same FD scheme considered in the 1st part, which is defined by the FD
formulas (3.18)–(3.20). In this way, we arrive at the linear system

−a(x j+ 1
2
)u j+1 +

(
a(x j+ 1

2
)+a(x j− 1

2
)
)
u j−a(x j− 1

2
)u j−1

+
h
2
(
b(x j)u j+1−b(x j)u j−1

)
+h2c(x j)u j = h2 f (x j), j = 1, . . . ,n, (3.27)

which is formed by n equations in the n+2 unknowns u0,u1, . . . ,un,un+1. Note that u0 and un+1 should now be considered
as unknowns, because they are not specified by the Dirichlet boundary conditions. However, as it is common in the FD
context, u0 and un+1 are expressed in terms of u1, . . . ,un by exploiting the Neumann boundary conditions. The simplest
choice is to express u0 and un+1 as a function of u1 and un, respectively, by imposing the conditions

u1−u0

h
= α,

un+1−un

h
= β , (3.28)

which yield u0 = u1−αh and un+1 = un +βh. Substituting into (3.27), we obtain a linear system with n equations and n
unknowns u1, . . . ,un. Setting ai = a(xi), bi = b(xi), ci = c(xi) for all i ∈ [0,n+1], the matrix of this system is

Cn = Bn +Rn = An +Zn +Rn, (3.29)

where An, Bn, Zn are given by (3.13), (3.21), (3.22), respectively, and

Rn =


−a 1

2
− h

2
b1

−an+ 1
2
+

h
2

bn


is a small-rank correction coming from the discretization (3.28) of the boundary conditions.

GLT analysis of the FD discretization matrices We prove that Theorems 3.3 and 3.4 hold unchanged with Cn in place
of An and Bn, respectively.

Theorem 3.5. If a ∈C([0,1]) and b,c : [0,1]→ R are bounded then

{Cn}n ∼GLT a(x)(2−2cosθ) (3.30)

and
{Cn}n ∼σ ,λ a(x)(2−2cosθ). (3.31)

Proof. Let C denote a generic constant independent of n. It is clear that ‖Rn‖ ≤ ‖a‖∞ +(h/2)‖b‖∞ ≤C. Moreover, since
‖Rn‖1 ≤ rank(Rn)‖Rn‖ ≤C, the matrix-sequence {Rn}n is zero-distributed by Z 2. Note that {Zn}n is zero-distributed as
well because ‖Zn‖ ≤C/n by (3.25). In view of the decomposition (3.29), Theorem 3.3 and GLT 3 – GLT 4 imply (3.30).

If the matrices Cn are symmetric (this happens if b(x) = 0), from (3.30) and GLT 1 we immediately obtain (3.31).
If the matrices Cn are not symmetric, from (3.30) and GLT 1 we only obtain the singular value distribution in (3.31).
However, in view of (3.29), since ‖Rn +Zn‖1 = o(n) and ‖Rn +Zn‖, ‖An‖ ≤C, the spectral distribution in (3.31) holds
(by GLT 2) even if the matrices Cn are not symmetric.
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3rd Part

Consider the following convection-diffusion-reaction problem:{
−a(x)u′′(x)+b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0,1),
u(0) = α, u(1) = β ,

(3.32)

where a : [0,1]→ R is continuous and b,c : [0,1]→ R are bounded. The difference with respect to problem (3.17)
is that the higher-order differential operator now appears in non-divergence form, i.e., we have −a(x)u′′(x) instead of
−(a(x)u′(x))′. Neverthelss, based on Remark 3.1, if we use again the FD formula (−1,2,−1) to discretize the second
derivative −u′′(x), the symbol of the resulting FD discretization matrices should be again a(x)(2−2cosθ). We are going
to show that this is in fact the case.

FD discretization Let n ∈ N, set h = 1
n+1 and x j = jh for all j = 0, . . . ,n+1. We discretize again (3.32) by the central

second-order FD scheme, which in this case is defined by the following formulas:

−a(x)u′′(x)|x=x j ≈ a(x j)
−u(x j+1)+2u(x j)−u(x j−1)

h2 , j = 1, . . . ,n,

b(x)u′(x)|x=x j ≈ b(x j)
u(x j+1)−u(x j−1)

2h
, j = 1, . . . ,n,

c(x)u(x)|x=x j = c(x j)u(x j), j = 1, . . . ,n.

Then, we approximate the solution of (3.32) by the piecewise linear function that takes the value u j at the point x j for
j = 0, . . . ,n+1, where u0 = α , un+1 = β , and u = (u1, . . . ,un)

T solves the linear system

a(x j)(−u j+1 +2u j−u j−1)+
h
2

b(x j)(u j+1−u j−1)+h2c(x j)u j = h2 f (x j), j = 1, . . . ,n.

The matrix En of this linear system can be decomposed according to the diffusion, convection and reaction term, as
follows:

En = Kn +Zn, (3.33)

where Zn is the sum of the convection and reaction matrix and is given by (3.22), while

Kn =



2a1 −a1

−a2 2a2 −a2

. . . . . . . . .

−an−1 2an−1 −an−1

−an 2an


(3.34)

is the diffusion matrix (ai = a(xi) for all i = 1, . . . ,n).

GLT analysis of the FD discretization matrices Despite the nonsymmetry of the diffusion matrix, which is due to the
non-divergence form of the higher-order (diffusion) operator −a(x)u′′(x), we will prove that Theorems 3.3, 3.4, 3.5 hold
unchanged with En in place of An, Bn, Cn, respectively.

Theorem 3.6. If a ∈C([0,1]) and b,c : [0,1]→ R are bounded then

{En}n ∼GLT a(x)(2−2cosθ) (3.35)

and
{En}n ∼σ ,λ a(x)(2−2cosθ). (3.36)

Proof. Throughout this proof, the letter C will denote a generic constant independent of n. By (3.25),

‖Zn‖ ≤C/n,
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hence {Zn}n is zero-distributed. We prove that

{Kn}n ∼GLT a(x)(2−2cosθ), (3.37)

after which (3.35) will follow from GLT 3 – GLT 4 and the decomposition (3.33). It is clear from (3.34) that

Kn = diag
i=1,...,n

(ai) Tn(2−2cosθ).

By T 3 applied with p = ∞, we obtain

‖Kn−Dn(a)Tn(2−2cosθ)‖ ≤
∥∥∥ diag

i=1,...,n
(ai)−Dn(a)

∥∥∥‖Tn(2−2cosθ)‖ ≤ ωa(h)‖2−2cosθ‖∞ = 4ωa(h),

which tends to 0 as n→∞. We conclude that {Kn−Dn(a)Tn(2−2cosθ)}n is zero-distributed, and so (3.37) follows from
GLT 3 – GLT 4.

From (3.35) and GLT 1 we obtain the singular value distribution in (3.36). To obtain the spectral distribution, the
idea is to exploit the fact that Kn is ‘almost’ symmetric, because a(x) varies continuously when x ranges in [0,1], and so
a(x j) ≈ a(x j+1) for all j = 1, . . . ,n− 1 (when n is large enough). Therefore, by replacing Kn with one of its symmetric
approximations K̃n, we can write

En = K̃n +(Kn− K̃n)+Zn, (3.38)

and in view of the decomposition (3.38) we want to obtain the spectral distribution in (3.36) from GLT 2 applied with
Xn = K̃n and Yn = (Kn− K̃n)+Zn. Let

K̃n =



2a1 −a1

−a1 2a2 −a2

. . . . . . . . .

−an−2 2an−1 −an−1

−an−1 2an


. (3.39)

Since

‖Kn− K̃n‖ ≤
√
|Kn− K̃n|1 |Kn− K̃n|∞ ≤ max

i=1,...,n−1
|ai+1−ai| ≤ ωa(h)→ 0,

‖Kn‖ ≤
√
|Kn|1|Kn|∞ ≤ 4‖a‖∞ ≤C,

‖Zn‖→ 0,

it follows from GLT 2 that {En}n ∼λ a(x)(2−2cosθ).

Remark 3.3. In the proof of Theorem 3.6 we could also choose

K̃n = Sn(a)◦Tn(2−2cosθ) =



2ã1 −ã1

−ã1 2ã2 −ã2

. . . . . . . . .

−ãn−2 2ãn−1 −ãn−1

−ãn−1 2ãn


,

where ãi = a( i
n ) for all i = 1, . . . ,n and Sn(a) is the arrow-shaped sampling matrix defined in (3.6). With this choice of K̃n,

nothing changes in the proof of Theorem 3.6 except for the bound of ‖Kn− K̃n‖, which becomes ‖Kn− K̃n‖ ≤ 4ωa(h).

4th Part

Based on Remark 3.1, if we change the FD scheme to discretize the differential problem (3.32), the symbol should
become a(x)p(θ), where p(θ) is the trigonometric polynomial associated with the new FD formula used to approximate
the second derivative −u′′(x) (the higher-order differential operator). We are going to show through an example that this
is indeed the case.
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FD discretization Consider the convection-diffusion-reaction problem (3.32). Instead of the second-order central FD
scheme (−1,2,−1), this time we use the fourth-order central FD scheme 1

12 (1,−16,30,−16,1) to approximate the second
derivative −u′′(x). In other words, for j = 2, . . . ,n− 1 we approximate the higher-order term −a(x)u′′(x) by the FD
formula

−a(x)u′′(x)|x=x j ≈ a(x j)
u(x j+2)−16u(x j+1)+30u(x j)−16u(x j−1)+u(x j−2)

12h2 ,

while for j = 1,n we use again the FD scheme (−1,2,−1),

−a(x)u′′(x)|x=x j ≈ a(x j)
−u(x j+1)+2u(x j)−u(x j−1)

h2 .

From a numerical viewpoint, this is not a good choice because the FD formula 1
12 (1,−16,30,−16,1) is a very accurate

fourth-order formula, and in order not to destroy the accuracy one would gain from this formula, one should use a fourth-
order scheme also for j = 1,n instead of the classical (−1,2,−1). However, in this work we are not concerned with this
kind of issues and we use the classical (−1,2,−1) because it is simpler and allows us to better illustrate the GLT analysis
without introducing useless technicalities. As already observed before, the FD schemes used to approximate the lower-
order terms b(x)u′(x) and c(x)u(x) do not affect the symbol, as well as the singular value and eigenvalue distribution,
of the resulting sequence of discretization matrices. To illustrate once again this point, in this example we assume to
approximate b(x)u′(x) and c(x)u(x) by the following ‘strange’ FD formulas: for j = 1, . . . ,n,

b(x)u′(x)|x=x j ≈ b(x j)
u(x j)−u(x j−1)

h
,

c(x)u(x)|x=x j ≈ c(x j)
u(x j+1)+u(x j)+u(x j−1)

3
.

Setting ai = a(xi), bi = b(xi), ci = c(xi) for all i = 1, . . . ,n, the resulting FD discretization matrix Pn can be decomposed
according to the diffusion, convection and reaction term, as follows:

Pn = Kn +Zn,

where Zn is the sum of the convection and reaction matrix,

Zn = h



b1

−b2 b2

. . . . . .

−bn−1 bn−1

−bn bn


+

h2

3



c1 c1

c2 c2 c2

. . . . . . . . .

cn−1 cn−1 cn−1

cn cn


,

while Kn is the diffusion matrix,

Kn =
1

12



24a1 −12a1

−16a2 30a2 −16a2 a2

a3 −16a3 30a3 −16a3 a3

. . . . . . . . . . . . . . .

an−2 −16an−2 30an−2 −16an−2 an−2

an−1 −16an−1 30an−1 −16an−1

−12an 24an



.

GLT analysis of the FD discretization matrices Let p(θ) be the trigonometric polynomial associated with the FD
formula 1

12 (1,−16,30,−16,1) used to approximate the second derivative −u′′(x), i.e.,

p(θ) =
1
12

(e−2iθ −16e−iθ +30−16eiθ + e2iθ ) =
1
12

(30−32cosθ +2cos(2θ)).

Based on Remark 3.1, the following result is not unexpected.
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Theorem 3.7. If a ∈C([0,1]) and b,c : [0,1]→ R are bounded then

{Pn}n ∼GLT a(x)p(θ) (3.40)

and
{Pn}n ∼σ ,λ a(x)p(θ). (3.41)

Proof. Throughout this proof, the letter C will denote a generic constant independent of n. To simultaneously obtain
(3.40) and (3.41), we consider the following decomposition of Pn:

Pn = K̃n +(Kn− K̃n)+Zn,

where K̃n is the symmetric approximation of Kn given by

K̃n = Sn(a)◦Tn(p) =
1

12



30ã1 −16ã1 ã1

−16ã1 30ã2 −16ã2 ã2

ã1 −16ã2 30ã3 −16ã3 ã3

. . . . . . . . . . . . . . .

ãn−4 −16ãn−3 30ãn−2 −16ãn−2 ãn−2

ãn−3 −16ãn−2 30ãn−1 −16ãn−1

ãn−2 −16ãn−1 30ãn


(ãi = a( i

n ) for all i = 1, . . . ,n). We show that:

(a) {K̃n}n ∼GLT a(x)p(θ);

(b) ‖Kn‖, ‖K̃n‖ ≤C and ‖Zn‖→ 0;

(c) ‖Kn− K̃n‖1 = o(n).

Note that (b)–(c) imply that {(Kn− K̃n)+Zn}n ∼σ 0 by Z 2. Once we have proved (a)–(c), the GLT relation (3.40) follows
from GLT 4, the singular value distribution in (3.41) follows from (3.40) and GLT 1, and the spectral distribution in (3.41)
follows from GLT 2 applied with Xn = K̃n and Yn = (Kn− K̃n)+Zn.

Proof of (a). See Theorem 3.2.

Proof of (b). We have

‖Zn‖ ≤
√
|Zn|1 |Zn|∞ ≤ 2h‖b‖∞ +h2‖c‖∞→ 0,

‖Kn‖ ≤
√
|Kn|1 |Kn|∞ ≤

64
12
‖a‖∞,

‖K̃n‖ ≤
√
|K̃n|1 |K̃n|∞ ≤

64
12
‖a‖∞.

Note that the uniform boundedness of ‖K̃n‖ with respect to n was already known from Theorem 3.2.

Proof of (c). A direct comparison between Kn and K̃n shows that

Kn = K̃n +Rn +Nn,

where Nn = Kn− K̃n−Rn and Rn is the matrix whose rows are all zeros except for the first and the last one, which are
given by

[24a1−30ã1 −12a1 +16ã1 − ã1 0 · · · 0]

and
[0 · · · 0 − ãn−2 −12an +16ãn−1 24an−30ãn] ,
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respectively. We have

‖Rn‖ ≤
83
12
‖a‖∞, rank(Rn)≤ 2, ‖Nn‖ ≤

64
12

ωa

(2
n

)
and

‖Kn− K̃n‖1 ≤ ‖Rn‖1 +‖N‖1 ≤ rank(Rn)‖Rn‖+n‖Nn‖,
hence ‖Kn− K̃n‖1 = o(n).

Remark 3.4 (nonnegativity and order of the zero at θ = 0). Despite we have changed the FD scheme to approximate
the second derivative −u′′(x), the resulting trigonometric polynomial p(θ) retains some properties of 2− 2cosθ . In
particular, p(θ) is nonnegative over [−π,π] and it has a unique zero of order 2 at θ = 0, because

lim
θ→0

p(θ)
θ 2 = 1 = lim

θ→0

2−2cosθ

θ 2 .

This reflects the fact the the associated FD formula 1
12 (1,−16,30,−16,1) approximates −u′′(x), which is a differential

operator of order 2 and it is also nonnegative on {v ∈C2([0,1]) : v(0) = v(1) = 0}; cf. Remark 3.2.

3.2.3 FD Discretization of Higher-Order Equations

So far we only considered the FD discretization of second-order differential equations. In order to show that the GLT
analysis is not limited to second-order equations, in this section we deal with an higher-order problem. For simplicity, we
focus on the following fourth-order problem with homogeneous Dirichlet–Neumann boundary conditions:

a(x)u(4)(x) = f (x), x ∈ (0,1),
u(0) = 0, u(1) = 0,
u′(0) = 0, u′(1) = 0,

(3.42)

where a ∈ C([0,1]) and f is a given function. We do not consider more complicated boundary conditions, and we do
not include terms with lower-order derivatives, because we know from Remark 3.1 and the experience gained from the
previous section that both these ingredients only serve to complicate things, but ultimately they do not affect the symbol,
as well as the singular value and eigenvalue distribution, of the resulting discretization matrices. Based on Remark 3.1,
the symbol of the matrix-sequence arising from the FD discretization of (3.42) should be a(x)q(θ), where q(θ) is the
trigonometric polynomial associated with the FD formula used to discretize u(4)(x). We will see that this is in fact the
case.

FD discretization We approximate the fourth derivative u(4)(x) by the second-order central FD scheme (1,−4,6,−4,1),
which yields the approximation

a(x)u(4)(x)|x=x j ≈ a(x j)
u(x j+2)−4u(x j+1)+6u(x j)−4u(x j−1)+u(x j−2)

h4 ,

for all j = 2, . . . ,n+ 1; here, h = 1
n+3 and x j = jh for j = 0, . . . ,n+ 3. Taking into account the homogeneous boundary

conditions, we approximate the solution of (3.42) by the piecewise linear function that takes the value u j in x j for j =
0, . . . ,n+3, where u0 = u1 = un+2 = un+3 = 0 and u = (u2, . . . ,un+1)

T is the solution of the linear system

a(x j)(u j+2−4u j+1 +6u j−4u j−1 +u j−2) = h4 f (x j), j = 2, . . . ,n+1.

The matrix An of this linear system is given by

An =



6a2 −4a2 a2

−4a3 6a3 −4a3 a3

a4 −4a4 6a4 −4a4 a4

. . . . . . . . . . . . . . .

an−1 −4an−1 6an−1 −4an−1 an−1

an −4an 6an −4an

an+1 −4an+1 6an+1


,

where ai = a(xi) for all i = 2, . . . ,n+1.
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GLT analysis of the FD discretization matrices Let q(θ) be the trigonometric polynomial associated with the FD
formula (1,−4,6,−4,1), i.e.,

q(θ) = e−2iθ −4e−iθ +6−4eiθ + e2iθ = 6−8cosθ +2cos(2θ).

Theorem 3.8. If a ∈C([0,1]) then
{An}n ∼GLT a(x)q(θ) (3.43)

and
{An}n ∼σ ,λ a(x)q(θ), (3.44)

Proof. We show that
‖An−Sn(a)◦Tn(q)‖→ 0. (3.45)

Once this is proved, since {Sn(a)◦Tn(q)}n ∼GLT a(x)q(θ) and ‖Sn(a)◦Tn(q)‖ is uniformly bounded with respect to n (by
Theorem 3.2), and since ‖An‖ ≤ 16‖a‖∞ by (3.1), the relations (3.43)–(3.44) follow from the decomposition

An = Sn(a)◦Tn(q)+(An−Sn(a)◦Tn(q))

and from GLT 1 – GLT 4, taking into account that Sn(a)◦Tn(p) is symmetric and {An−Sn(a)◦Tn(q)}n is zero-distributed
by (3.45) and Z 1 (or Z 2). Let us then prove (3.45). The matrices An and Sn(a)◦Tn(q) are banded (pentadiagonal) and,
for all i, j = 1, . . . ,n with |i− j| ≤ 2, a crude estimates gives∣∣(An)i j− (Sn(a)◦Tn(q))i j

∣∣= ∣∣∣ai+1(Tn(q))i j−a
(min(i, j)

n

)
(Tn(q))i j

∣∣∣
=
∣∣∣a( i+1

n+3

)
−a
(min(i, j)

n

)∣∣∣ |(Tn(q))i j|

≤ 6ωa

(6
n

)
.

Hence, by (3.1), ‖An−Sn(a)◦Tn(q)‖ ≤ 5 ·6ωa(
6
n )→ 0.

Remark 3.5 (nonnegativity and order of the zero at θ = 0). The polynomial q(θ) is nonnegative over [−π,π] and has
a unique zero of order 4 at θ = 0, because

lim
θ→0

q(θ)
θ 4 = 1.

This reflects the fact that the FD formula (1,−4,6,−4,1) associated with q(θ) approximates the fourth derivative u(4)(x),
which is a differential operator of order 4 (it is also nonnegative on the space of functions v ∈C4([0,1]) such that v(0) =
v(1) = 0 and v′(0) = v′(1) = 0, in the sense that

∫ 1
0 v(4)(x)v(x)dx =

∫ 1
0 (v
′′(x))2dx≥ 0 for all such v); see also Remarks 3.2

and 3.4.

3.2.4 Non-uniform FD Discretizations

All the FD discretizations considered in the previous sections are based on uniform grids. It is natural to ask whether
the theory of GLT sequences finds applications also in the context of non-uniform FD discretizations. The answer to
this question is affirmative, at least in the case where the non-uniform grid is obtained as the mapping of a uniform grid
through a fixed function G, independent of the mesh size. In this section we illustrate this claim by means of a simple
example.

FD discretization Consider the diffusion equation (3.10) with a ∈C([0,1]). Take a discretization parameter n ∈ N, fix
a set of grid points 0 = x0 < x1 < .. . < xn+1 = 1 and define the corresponding stepsizes h j = x j− x j−1, j = 1, . . . ,n+1.
For each j = 1, . . . ,n, we approximate −(a(x)u′(x))′|x=x j by the FD formula

−(a(x)u′(x))′|x=x j ≈−
a(x j +

h j+1
2 )u′(x j +

h j+1
2 )−a(x j−

h j
2 )u′(x j−

h j
2 )

h j+1
2 +

h j
2

≈−
a(x j +

h j+1
2 )

u(x j+1)−u(x j)

h j+1
−a(x j−

h j
2 )

u(x j)−u(x j−1)

h j
h j+1

2 +
h j
2

=
2

h j +h j+1

[
−

a(x j−
h j
2 )

h j
u(x j−1)+

(a(x j−
h j
2 )

h j
+

a(x j +
h j+1

2 )

h j+1

)
u(x j)−

a(x j +
h j+1

2 )

h j+1
u(x j+1)

]
.
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This means that the nodal values of the solution u satisfy (approximately) the following linear system:

−
a(x j−

h j
2 )

h j
u(x j−1)+

(a(x j−
h j
2 )

h j
+

a(x j +
h j+1

2 )

h j+1

)
u(x j)−

a(x j +
h j+1

2 )

h j+1
u(x j+1) =

h j +h j+1

2
f (x j), j = 1, . . . ,n.

We then approximate the solution by the piecewise linear function that takes the value u j in x j for j = 0, . . . ,n+1, where
u0 = α , un+1 = β , and u = (u1, . . . ,un)

T solves

−
a(x j−

h j
2 )

h j
u j−1 +

(a(x j−
h j
2 )

h j
+

a(x j +
h j+1

2 )

h j+1

)
u j−

a(x j +
h j+1

2 )

h j+1
u j+1 =

h j +h j+1

2
f (x j), j = 1, . . . ,n.

The matrix of this linear system is the n×n tridiagonal symmetric matrix given by

tridiagn

[
−

a(x j−
h j
2 )

h j
,

a(x j−
h j
2 )

h j
+

a(x j +
h j+1

2 )

h j+1
, −

a(x j +
h j+1

2 )

h j+1

]
. (3.46)

GLT analysis of the FD discretization matrices Let h = 1
n+1 and x̂ j = jh, j = 0, . . . ,n+1. In the following, we assume

that the set of points {x0,x1, . . . ,xn+1} is obtained as the mapping of the uniform grid {x̂0, x̂1, . . . , x̂n+1} through a fixed
function G, i.e., x j = G(x̂ j) for j = 0, . . . ,n+1, where G : [0,1]→ [0,1] is an increasing and bijective map, independent
of the mesh parameter n. The resulting FD discretization matrix (3.46) will be denoted by AG,n in order to emphasize its
dependence on G. In formulas,

AG,n = tridiagn

[
−

a(G(x̂ j)−
h j
2 )

h j
,

a(G(x̂ j)−
h j
2 )

h j
+

a(G(x̂ j)+
h j+1

2 )

h j+1
, −

a(G(x̂ j)+
h j+1

2 )

h j+1

]
(3.47)

with
h j = G(x̂ j)−G(x̂ j−1), j = 1, . . . ,n.

Theorem 3.9. Let a ∈C([0,1]). Suppose G : [0,1]→ [0,1] is an increasing bijective map in C1([0,1]) and there exist at
most finitely many points x̂ such that G′(x̂) = 0. Then{ 1

n+1
AG,n

}
n
∼GLT

a(G(x̂))
G′(x̂)

(2−2cosθ) (3.48)

and { 1
n+1

AG,n

}
n
∼σ ,λ

a(G(x̂))
G′(x̂)

(2−2cosθ). (3.49)

Proof. We only prove (3.48) because (3.49) follows immediately from (3.48) and GLT 1 as the matrices AG,n are sym-
metric. Since G ∈C1([0,1]), for every j = 1, . . . ,n there exist α j ∈ [x̂ j−1, x̂ j] and β j ∈ [x̂ j, x̂ j+1] such that

h j = G(x̂ j)−G(x̂ j−1) = G′(α j)h = (G′(x̂ j)+δ j)h, (3.50)
h j+1 = G(x̂ j+1)−G(x̂ j) = G′(β j)h = (G′(x̂ j)+ ε j)h, (3.51)

where

δ j = G′(α j)−G′(x̂ j),

ε j = G′(β j)−G′(x̂ j).

Note that
|δ j|, |ε j| ≤ ωG′(h), j = 1, . . . ,n,

where ωG′ is the modulus of continuity of G′. In view of (3.50) and (3.51), we have, for each j = 1, . . . ,n,

a
(

G(x̂ j)−
h j

2

)
= a
(

G(x̂ j)−
h
2
(G′(x̂ j)+δ j)

)
= a(G(x̂ j))+µ j, (3.52)

a
(

G(x̂ j)+
h j+1

2

)
= a
(

G(x̂ j)+
h
2
(G′(x̂ j)+ ε j)

)
= a(G(x̂ j))+η j, (3.53)
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where

µ j = a
(

G(x̂ j)−
h
2
(G′(x̂ j)+δ j)

)
−a(G(x̂ j)),

η j = a
(

G(x̂ j)+
h
2
(G′(x̂ j)+ ε j)

)
−a(G(x̂ j)).

This time
|µ j|, |η j| ≤CGωa(h), j = 1, . . . ,n,

where ωa is the modulus of continuity of a and CG is a constant depending only on G. Substituting (3.50)–(3.53) in (3.47),
we obtain

1
n+1

AG,n = hAG,n = tridiagn

[
−

a(G(x̂ j))+µ j

G′(x̂ j)+δ j
,

a(G(x̂ j))+µ j

G′(x̂ j)+δ j
+

a(G(x̂ j))+η j

G′(x̂ j)+ ε j
, −

a(G(x̂ j))+η j

G′(x̂ j)+ ε j

]
. (3.54)

Consider the matrix

Dn

(a(G(x̂))
G′(x̂)

)
Tn(2−2cosθ) = tridiagn

[
−

a(G(x̂ j))

G′(x̂ j)
, 2

a(G(x̂ j))

G′(x̂ j)
, −

a(G(x̂ j))

G′(x̂ j)

]
. (3.55)

Note that this matrix seems to be an ‘approximation’ of 1
n+1 AG,n; cf. (3.54) and (3.55). Since the function a(G(x̂))/G′(x̂)

is continuous a.e., GLT 3 and GLT 4 yield{
Dn

(a(G(x̂))
G′(x̂)

)
Tn(2−2cosθ)

}
n
∼GLT

a(G(x̂))
G′(x̂)

(2−2cosθ).

We are going to show that {
Dn

(a(G(x̂))
G′(x̂)

)
Tn(2−2cosθ)

}
n

a.c.s.−→
{ 1

n+1
AG,n

}
n
. (3.56)

Once this is proved, (3.48) follows immediately from GLT 7.
We first prove (3.56) in the case where G′(x̂) does not vanish over [0,1], so that

mG′ = min
x̂∈[0,1]

G′(x̂)> 0.

In this case, we will show directly that ‖Zn‖→ 0, where

Zn =
1

n+1
AG,n−Dn

(a(G(x̂))
G′(x̂)

)
Tn(2−2cosθ). (3.57)

The matrix Zn in (3.57) is tridiagonal and a straightforward computation based on (3.54)–(3.55) shows that all its compo-
nents are bounded in modulus by a quantity that depends only on n,G,a and that converges to 0 as n→ ∞. For example,
if j = 2, . . . ,n, then

|(Zn) j, j−1|=
∣∣∣∣a(G(x̂ j))+µ j

G′(x̂ j)+δ j
−

a(G(x̂ j))

G′(x̂ j)

∣∣∣∣≤ ∣∣∣∣a(G(x̂ j))+µ j

G′(x̂ j)+δ j
−

a(G(x̂ j))

G′(x̂ j)+δ j

∣∣∣∣+ ∣∣∣∣ a(G(x̂ j))

G′(x̂ j)+δ j
−

a(G(x̂ j))

G′(x̂ j)

∣∣∣∣
=

∣∣∣∣ µ j

G′(x̂ j)+δ j

∣∣∣∣+ ∣∣∣∣ a(G(x̂ j))δ j

G′(x̂ j)(G′(x̂ j)+δ j)

∣∣∣∣≤ CGωa(h)
mG′ −ωG′(h)

+
‖a‖∞ωG′(h)

mG′(mG′ −ωG′(h))
, (3.58)

which tends to 0 as n→ ∞. Thus, ‖Zn‖→ 0 as n→ ∞ by (3.1).
Now we consider the case where G has a finite number of points x̂ where G′(x̂) = 0. In this case, the previous

argument does not work because mG′ = 0. However, we can still prove (3.56) in the following way. Let x̂(1), . . . , x̂(s) be
the points where G′ vanishes, and consider the balls (intervals) B(x̂(k), 1

m ) = {x̂ ∈ [0,1] : |x̂− x̂(k)|< 1
m}. The function G′

is continuous and positive on the complement of the union
⋃s

k=1 B(x̂(k), 1
m ), so

mG′,m = min
x̂∈[0,1]\

⋃s
k=1 B(x̂(k), 1

m )
G′(x̂)> 0.

For all indices j = 1, . . . ,n such that x̂ j ∈ [0,1]\
⋃s

k=1 B(x̂(k), 1
m ), the components in the jth row of the matrix (3.57) are

bounded in modulus by a quantity that depends only on n,m,G,a and that converges to 0 as n→ ∞. This becomes
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immediately clear if we note that, for such indices j, the inequality (3.58) holds unchanged with mG′ replaced by mG′,m.
The number of remaining rows of Zn (the rows corresponding to indices j such that x̂ j ∈

⋃s
k=1 B(x̂(k), 1

m )) is at most
2s(n+ 1)/m+ s. Indeed, each interval B(x̂(k), 1

m ) has length 2/m (at most) and can contain at most 2(n+ 1)/m+ 1 grid
points x̂ j. Thus, for every n,m we can split the matrix Zn into the sum of two terms, i.e.,

Zn = Rn,m +Nn,m,

where Nn,m is obtained from Zn by setting to zero all the rows corresponding to indices j such that x̂ j ∈
⋃s

k=1 B(x̂(k), 1
m )

and Rn,m = Zn −Nn,m is obtained from Zn by setting to zero all the rows corresponding to indices j such that x̂ j ∈
[0,1]\

⋃s
k=1 B(x̂(k), 1

m ). From the above discussion we have

lim
n→∞
‖Nn,m‖= 0

for all m, and

rank(Rn,m)≤
2s(n+1)

m
+ s

for all m,n. In particular, for each m we can choose nm such that, for n≥ nm, rank(Rn,m)≤ 3sn/m and ‖Nn,m‖ ≤ 1/m. The
convergence (3.56) now follows from the definition of a.c.s.

An increasing bijective map G : [0,1]→ [0,1] in C1([0,1]) is said to be regular if G′(x̂) 6= 0 for all x̂ ∈ [0,1] and is
said to be singular otherwise, i.e., if G′(x̂) = 0 for some x̂ ∈ [0,1]. If G is singular, any point x̂ ∈ [0,1] such that G′(x̂) = 0
is referred to as a singularity point (or simply a singularity) of G. The choice of a map G with one or more singularity
points corresponds to adopting a local refinement strategy, according to which the grid points x j rapidly accumulate at the
G-images of the singularities as n increases. For example, if

G(x̂) = x̂q, q > 1, (3.59)

then 0 is a singularity of G (because G′(0) = 0) and the grid points

x j = G(x̂ j) =
( j

n+1

)q
, j = 0, . . . ,n+1,

rapidly accumulate at G(0) = 0 as n→∞. We note that, whenever G is singular, the symbol in (3.48) is unbounded (except
in some rare cases where a(G(x̂)) and G′(x̂) vanish simultaneously).

3.3 FE Discretization of Differential Equations
3.3.1 FE Discretization of Convection-Diffusion-Reaction Equations

Consider the following convection-diffusion-reaction problem in divergence form with Dirichlet boundary conditions:{
−(a(x)u′(x))′+b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0,1),
u(0) = u(1) = 0,

(3.60)

where f ∈ L2([0,1]) and the coefficients a,b,c are only assumed to be in L∞([0,1]). These sole assumptions are enough
to perform the GLT analysis of the matrices arising from the FE discretization of (3.60). In this sense, we are going to
see that the theory of GLT sequences allows one to derive the singular value and spectral distribution of DE discretization
matrices under very weak hypotheses on the DE coefficients.

FE discretization We consider the approximation of (3.60) by classical linear FEs on a uniform mesh in [0,1] with
stepsize h = 1

n+1 . We briefly describe here this approximation technique and for more details we refer the reader to
[45, Chapter 4] or to any other good book on FEs. We first recall from [14, Chapter 8] that, if Ω⊂ R is a bounded
interval whose endpoints are, say, α and β , H1(Ω) denotes the (Sobolev) space of functions v ∈ L2(Ω) possessing a weak
(Sobolev) derivative in L2(Ω). We also recall that each v ∈H1(Ω) coincides a.e. with a continuous function in C(Ω), and
H1(Ω) can also be defined as the following subspace of C(Ω):

H1(Ω) =

{
v ∈C(Ω) : v is differentiable a.e. with v′ ∈ L2(Ω), v(x) = v(α)+

∫ x

α

v′(y)dy for all x ∈Ω

}
.
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Figure 3.1: Graph of the hat-functions ϕ1, . . . ,ϕn for n = 9.

In this definition, the weak derivative of a v ∈ H1(Ω) is just the classical derivative v′ (which exists a.e.). Let

H1
0 (Ω) = {v ∈ H1(Ω) : v(α) = v(β ) = 0}.

The weak form of (3.60) reads as follows [14, Chapter 8]: find u ∈ H1
0 ([0,1]) such that

a(u,w) = f(w), ∀w ∈ H1
0 ([0,1]),

where

a(u,w) =
∫ 1

0
a(x)u′(x)w′(x)dx+

∫ 1

0
b(x)u′(x)w(x)dx+

∫ 1

0
c(x)u(x)w(x)dx,

f(w) =
∫ 1

0
f (x)w(x)dx.

Let h = 1
n+1 and xi = ih, i = 0, . . . ,n+1. In the linear FE approach based on the uniform mesh {x0, . . . ,xn+1}, we fix the

subspace Wn = span(ϕ1, . . . ,ϕn)⊂ H1
0 ([0,1]), where ϕ1, . . . ,ϕn are the so-called hat-functions:

ϕi(x) =
x− xi−1

xi− xi−1
χ[xi−1,xi)(x)+

xi+1− x
xi+1− xi

χ[xi,xi+1)(x), i = 1, . . . ,n; (3.61)

see Figure 3.1. Note that Wn is the space of piecewise linear functions corresponding to the sequence of points 0 = x0 <
x1 < .. . < xn+1 = 1 and vanishing on the boundary of the domain [0,1]. In formulas,

Wn =
{

s : [0,1]→ R : s|[ i
n+1 ,

i+1
n+1 )

∈ P1, i = 0, . . . ,n, s(0) = s(1) = 0
}
,

where P1 is the space of polynomials of degree less than or equal to 1. We look for an approximation u Wn of u by solving
the following (Galerkin) problem: find u Wn ∈ Wn such that

a(u Wn ,w) = f(w), ∀w ∈ Wn.

Since {ϕ1, . . . ,ϕn} is a basis of Wn, we can write u Wn = ∑
n
j=1 u j ϕ j for a unique vector u = (u1, . . . ,un)

T . By linearity, the
computation of u Wn (i.e., of u) reduces to solving the linear system

Anu = f,

where f = (f(ϕ1), . . . , f(ϕn))
T and An is the stiffness matrix,

An = [a(ϕ j,ϕi)]
n
i, j=1.

Note that An admits the following decomposition:

An = Kn +Zn, (3.62)
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where

Kn =

[∫ 1

0
a(x)ϕ ′j(x)ϕ

′
i (x)dx

]n

i, j=1
(3.63)

is the (symmetric) diffusion matrix and

Zn =

[∫ 1

0
b(x)ϕ ′j(x)ϕi(x)dx

]n

i, j=1
+

[∫ 1

0
c(x)ϕ j(x)ϕi(x)dx

]n

i, j=1
(3.64)

is the sum of the convection and reaction matrix.

GLT analysis of the FE discretization matrices Using the theory of GLT sequences we now derive the spectral and
singular value distribution of the sequence of normalized stiffness matrices { 1

n+1 An}n.

Theorem 3.10. If a,b,c ∈ L∞([0,1]) then { 1
n+1

An

}
n
∼GLT a(x)(2−2cosθ) (3.65)

and { 1
n+1

An

}
n
∼σ ,λ a(x)(2−2cosθ). (3.66)

Proof. The proof consists of the following steps. Throughout the proof, the letter C will denote a generic constant
independent of n.

Step 1. We show that ∥∥∥ 1
n+1

Kn

∥∥∥≤C (3.67)

and ∥∥∥ 1
n+1

Zn

∥∥∥≤C/n. (3.68)

To prove (3.67), we note that Kn is a banded (tridiagonal) matrix, due to the local support property supp(ϕi) =
[xi−1,xi+1], i = 1, . . . ,n. Moreover, by the inequality |ϕ ′i (x)| ≤ n+1, for all i, j = 1, . . . ,n we have

|(Kn)i j|=
∣∣∣∣∫ 1

0
a(x)ϕ ′j(x)ϕ

′
i (x)dx

∣∣∣∣= ∣∣∣∣∫ xi+1

xi−1

a(x)ϕ ′j(x)ϕ
′
i (x)dx

∣∣∣∣≤ (n+1)2‖a‖L∞

∫ xi+1

xi−1

dx = 2(n+1)‖a‖L∞ .

Thus, the components of the tridiagonal matrix 1
n+1 Kn are bounded (in modulus) by 2‖a‖L∞ , and (3.67) follows from

(3.1).
To prove (3.68), we follow the same argument as for the proof of (3.67). Due to the local support property of the

hat-functions, Zn is tridiagonal. Moreover, by the inequalities |ϕi(x)| ≤ 1 and |ϕ ′i (x)| ≤ n+ 1, for all i, j = 1, . . . ,n we
have

|(Zn)i j|=
∣∣∣∣∫ xi+1

xi−1

b(x)ϕ ′j(x)ϕi(x)dx+
∫ xi+1

xi−1

c(x)ϕ j(x)ϕi(x)dx
∣∣∣∣≤ 2‖b‖L∞ +

2‖c‖L∞

n+1
,

and (3.68) follows from (3.1).

Step 2. Consider the linear operator Kn(·) : L1([0,1])→ Rn×n,

Kn(g) =
[∫ 1

0
g(x)ϕ ′j(x)ϕ

′
i (x)dx

]n

i, j=1
.

By (3.63), we have Kn = Kn(a). The next three steps are devoted to show that{ 1
n+1

Kn(g)
}

n
∼GLT g(x)(2−2cosθ), ∀g ∈ L1([0,1]). (3.69)

Once this is done, the theorem is proved. Indeed, by applying (3.69) with g = a we immediately get { 1
n+1 Kn}n ∼GLT

a(x)(2−2cosθ). Since { 1
n+1 Zn}n is zero-distributed by Step 1, (3.65) follows from the decomposition

1
n+1

An =
1

n+1
Kn +

1
n+1

Zn (3.70)
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and from GLT 3 – GLT 4; and the singular value distribution in (3.66) follows from GLT 1. If b(x) = 0 identically, then
1

n+1 An is symmetric and also the spectral distribution in (3.66) follows from GLT 1. If b(x) is not identically 0, the spectral
distribution in (3.66) follows from GLT 2 applied to the decomposition (3.70), taking into account what we have proved
in Step 1.

Step 3. We first prove (3.69) in the constant-coefficient case where g = 1 identically. In this case, a direct computation
based on (3.61) shows that

Kn(1) =
[∫ 1

0
ϕ
′
j(x)ϕ

′
i (x)dx

]n

i, j=1
=

1
h


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

=
1
h

Tn(2−2cosθ),

and the desired relation { 1
n+1 Kn(1)}n ∼GLT 2− 2cosθ follows from GLT 3. Note that it is precisely the analysis of the

constant-coefficient case considered in this step that allows one to realize what is the correct normalization factor. In our
case, this is 1

n+1 , which removes the 1
h from Kn(1) and yields a normalized matrix 1

n+1 Kn(1) = Tn(2− 2cosθ), whose
components are bounded away from 0 and ∞ (actually, in the present case they are even constant).

Step 4. Now we prove (3.69) in the case where g ∈C([0,1]). We first illustrate the idea, and then we go into the details.
The proof is based on the fact that the hat-functions (3.61) are ‘locally supported’. Indeed, the support [xi−1,xi+1] of the
ith hat-function ϕi(x) is located near the point i

n ∈ [xi,xi+1], and the amplitude of the support tends to 0 as n→ ∞. In this
sense, the linear FE method considered herein belongs to the family of the so-called ‘local’ methods. Since g(x) varies
continuously over [0,1], the (i, j) entry of Kn(g) can be approximated as follows, for every i, j = 1, . . . ,n:

(Kn(g))i j =
∫ 1

0
g(x)ϕ ′j(x)ϕ

′
i (x)dx =

∫ xi+1

xi−1

g(x)ϕ ′j(x)ϕ
′
i (x)dx

≈ g
( i

n

)∫ xi+1

xi−1

ϕ
′
j(x)ϕ

′
i (x)dx = g

( i
n

)∫ 1

0
ϕ
′
j(x)ϕ

′
i (x)dx = g

( i
n

)
(Kn(1))i j.

This approximation can be rewritten in matrix form as

Kn(g)≈ Dn(g)Kn(1). (3.71)

We will see that (3.71) implies that { 1
n+1 Kn(g)− 1

n+1 Dn(g)Kn(1)}n ∼σ 0, and (3.69) will then follow from Step 3 and
GLT 3 – GLT 4.

Let us now go into the details. Since supp(ϕi) = [xi−1,xi+1] and |ϕ ′i (x)| ≤ n+1, for all i, j = 1, . . . ,n we have

∣∣(Kn(g))i j− (Dn(g)Kn(1))i j
∣∣= ∣∣∣∣∫ 1

0

[
g(x)−g

( i
n

)]
ϕ
′
j(x)ϕ

′
i (x)dx

∣∣∣∣
≤ (n+1)2

∫ xi+1

xi−1

∣∣∣g(x)−g
( i

n

)∣∣∣dx≤ 2(n+1)ωg

( 2
n+1

)
.

It follows that each entry of the matrix Zn =
1

n+1 Kn(g)− 1
n+1 Dn(g)Kn(1) is bounded in modulus by 2ωg(

2
n+1 ). Moreover,

Zn is banded (tridiagonal), because of the local support property of the hat-functions. Thus, both the 1-norm and the
∞-norm of Zn are bounded by C ωg(

2
n+1 ), and (3.1) yields ‖Zn‖ ≤C ωg(

2
n+1 )→ 0 as n→ ∞. Hence, {Zn}n ∼σ 0, which

implies (3.69) by Step 3 and GLT 3 – GLT 4.

Step 5. Finally, we prove (3.69) in the general case where g ∈ L1([0,1]). By the density of C([0,1]) in L1([0,1]), there
exist continuous functions gm ∈C([0,1]) such that gm→ g in L1([0,1]). By Step 4,{ 1

n+1
Kn(gm)

}
n
∼GLT gm(x)(2−2cosθ). (3.72)

Moreover,
gm(x)(2−2cosθ)→ g(x)(2−2cosθ) in measure. (3.73)

We show that { 1
n+1

Kn(gm)
}

n

a.c.s.−→
{ 1

n+1
Kn(g)

}
n
. (3.74)
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Since ∑
n
i=1 |ϕ ′i (x)| ≤ 2(n+1) for all x ∈ [0,1], by (3.4) we obtain

‖Kn(g)−Kn(gm)‖1 ≤
n

∑
i, j=1
|(Kn(g))i j− (Kn(gm))i j|=

n

∑
i, j=1

∣∣∣∣∫ 1

0

[
g(x)−gm(x)

]
ϕ
′
j(x)ϕ

′
i (x)dx

∣∣∣∣
≤
∫ 1

0

∣∣g(x)−gm(x)
∣∣ n

∑
i, j=1
|ϕ ′j(x)| |ϕ ′i (x)|dx≤ 4(n+1)2‖g−gm‖L1

and ∥∥∥ 1
n+1

Kn(g)−
1

n+1
Kn(gm)

∥∥∥
1
≤Cn‖g−gm‖L1 .

Thus, { 1
n+1 Kn(gm)}n

a.c.s.−→ { 1
n+1 Kn(g)}n by ACS 3. In view of (3.72)–(3.74), the relation (3.69) follows from GLT 7.

Remark 3.6 (formal structure of the symbol). Problem (3.60) can be formally rewritten as follows:{
−a(x)u′′(x)+(b(x)−a′(x))u′(x)+ c(x)u(x) = f (x), x ∈ (0,1),
u(0) = u(1) = 0.

(3.75)

It is then clear that the symbol a(x)(2− 2cosθ) has the same formal structure of the higher-order differential operator
−a(x)u′′(x) associated with (3.75) (as in the FD case; see Remark 3.1). The formal analogy becomes even more evident
if we note that 2−2cosθ is the trigonometric polynomial in the Fourier variable coming from the FE discretization of the
(negative) second derivative −u′′(x). Indeed, as we have seen in Step 3 of the proof of Theorem 3.10, 2− 2cosθ is the
symbol of the sequence of FE diffusion matrices { 1

n+1 Kn(1)}n, which arises from the FE approximation of the Poisson
problem {

−u′′(x) = f (x), x ∈ (0,1),
u(0) = u(1) = 0,

that is, problem (3.60) in the case where a(x) = 1 and b(x) = c(x) = 0 identically.

3.3.2 FE Discretization of a System of Equations

In this section we consider the linear FE approximation of a system of differential equations, namely

−(a(x)u′(x))′+ v′(x) = f (x), x ∈ (0,1),

−u′(x)−ρv(x) = g(x), x ∈ (0,1),

u(0) = 0, u(1) = 0,

v(0) = 0, v(1) = 0,

(3.76)

where ρ is a constant and a is only assumed to be in L1([0,1]). As we shall see, the resulting discretization matrices
appear in the so-called saddle point form [6, p. 3], and we will illustrate the way to compute the asymptotic spectral and
singular value distribution of their Schur complements using the theory of GLT sequences. It is worth noting that the
Schur complement is a key tool for the numerical treatment of the related linear systems [6, Section 5]. The analysis of
this section is similar to the analysis in [25, Section 2], but the discretization technique considered herein is a pure FE
approximation, whereas in [25, Section 2] the authors adopted a mixed FD/FE technique.

FE discretization We consider the approximation of (3.76) by linear FEs on a uniform mesh in [0,1] with stepsize
h = 1

n+1 . Let us describe it shortly. The weak form of (3.76) reads as follows:1 find u,v ∈ H1
0 ([0,1]) such that, for all

w ∈ H1
0 ([0,1]), 

∫ 1
0 a(x)u′(x)w′(x)dx+

∫ 1
0 v′(x)w(x)dx =

∫ 1
0 f (x)w(x)dx,

−
∫ 1

0 u′(x)w(x)dx−ρ
∫ 1

0 v(x)w(x)dx =
∫ 1

0 g(x)w(x)dx.
(3.77)

Let h = 1
n+1 and xi = ih, i = 0, . . . ,n+1. In the linear FE approach based on the mesh {x0, . . . ,xn+1}, we fix the subspace

Wn = span(ϕ1, . . . ,ϕn)⊂ H1
0 ([0,1]), where ϕ1, . . . ,ϕn are the hat-functions in (3.61) (see also Figure 3.1). Then, we look

1We are proceeding formally here, because the assumption a ∈ L1([0,1]) is too weak to ensure that the weak form (3.77) is well-defined. Keep in
mind, however, that our formal derivation is correct if a ∈ L∞([0,1]).
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for approximations u Wn ,v Wn of u,v by solving the following (Galerkin) problem: find u Wn ,v Wn ∈ Wn such that, for all
w ∈ Wn, 

∫ 1
0 a(x)u′Wn

(x)w′(x)dx+
∫ 1

0 v′Wn
(x)w(x)dx =

∫ 1
0 f (x)w(x)dx,

−
∫ 1

0 u′Wn
(x)w(x)dx−ρ

∫ 1
0 v Wn(x)w(x)dx =

∫ 1
0 g(x)w(x)dx.

Since {ϕ1, . . . ,ϕn} is a basis of Wn, we can write u Wn = ∑
n
j=1 u j ϕ j and v Wn = ∑

n
j=1 v j ϕ j for unique vectors u =

(u1, . . . ,un)
T and v = (v1, . . . ,vn)

T . By linearity, the computation of u Wn ,v Wn (i.e., of u,v) reduces to solving the lin-
ear system

A2n

[
u
v

]
=

[
f
g

]
,

where f =
[∫ 1

0 f (x)ϕi(x)dx
]n

i=1, g =
[∫ 1

0 g(x)ϕi(x)dx
]n

i=1 and A2n is the stiffness matrix, which possesses the following
saddle point structure:

A2n =

[
Kn Hn

HT
n −ρMn

]
.

Here, the blocks Kn,Hn,Mn are square matrices of size n, and precisely

Kn =

[∫ 1

0
a(x)ϕ ′j(x)ϕ

′
i (x)dx

]n

i, j=1
,

Hn =

[∫ 1

0
ϕ
′
j(x)ϕi(x)dx

]n

i, j=1
=

1
2


0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

=−iTn(sinθ),

Mn =

[∫ 1

0
ϕ j(x)ϕi(x)dx

]n

i, j=1
=

h
6


4 1
1 4 1

. . . . . . . . .
1 4 1

1 4

=
h
3

Tn(2+ cosθ).

Note that Kn is exactly the matrix appearing in (3.63). Note also that the matrices Kn, Mn are symmetric, while Hn is
skew-symmetric: HT

n =−Hn = iTn(sinθ).

GLT analysis of the Schur complements of the FE discretization matrices Assume that the matrices Kn are invertible.
This is satisfied, for example, if a > 0 a.e., in which case the matrices Kn are positive definite. The (negative) Schur
complement of A2n is the symmetric matrix given by

Sn = ρMn +HT
n K−1

n Hn =
ρh
3

Tn(2+ cosθ)+Tn(sinθ)K−1
n Tn(sinθ). (3.78)

In the following, we perform the GLT analysis of the sequence of normalized Schur complements {(n+1)Sn}n, and we
compute its asymptotic spectral and singular value distribution under the additional necessary assumption that a 6= 0 a.e.

Theorem 3.11. Let ρ ∈ R and a ∈ L1([0,1]). Suppose that the matrices Kn are invertible and that a 6= 0 a.e. Then

{(n+1)Sn}n ∼GLT ς(x,θ) (3.79)

and
{(n+1)Sn}n ∼σ ,λ ς(x,θ), (3.80)

where

ς(x,θ) =
ρ

3
(2+ cosθ)+

sin2
θ

a(x)(2−2cosθ)
.
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Proof. In view of (3.78), we have

(n+1)Sn =
ρ

3
Tn(2+ cosθ)+Tn(sinθ)

( 1
n+1

Kn

)−1
Tn(sinθ).

Moreover, by (3.69), { 1
n+1

Kn

}
n
=
{ 1

n+1
Kn(a)

}
n
∼GLT a(x)(2−2cosθ).

Therefore, under the assumption that a 6= 0 a.e., the GLT relation (3.79) follows from GLT 3 – GLT 5. The singular value
and spectral distributions in (3.80) follow from (3.79) and GLT 1 as the Schur complements Sn are symmetric.

3.4 IgA Discretization of Differential Equations
Isogeometric Analysis (IgA) is a modern and successful paradigm introduced in [17, 39] for analyzing problems governed
by DEs. Its goal is to improve the connection between numerical simulation and Computer-Aided Design (CAD) systems.
The main idea in IgA is to use directly the geometry provided by CAD systems and to approximate the solutions of DEs
by the same type of functions (usually, B-splines or NURBS). In this way, it is possible to save about 80% of the CPU
time, which is normally employed in the translation between two different languages (e.g., between FEs and CAD or
between FDs and CAD). In its original formulation [17, 39], IgA employs Galerkin discretizations, which are typical of
the FE approach. In the Galerkin framework an efficient implementation requires special numerical quadrature rules when
constructing the resulting system of equations; see, e.g., [42]. To avoid this issue, isogeometric collocation methods have
been recently introduced in [1]. Detailed comparisons with IgA Galerkin have shown the advantages of IgA collocation
in terms of accuracy versus computational cost, in particular when higher-order approximation degrees are adopted [49].
Within the framework of IgA collocation, many applications have been successfully tackled, showing its potential and
flexibility. Interested readers are referred to the recent review [47] and references therein. Section 3.4.1 is devoted to
the isogeometric collocation approach, whereas the more traditional isogoemetric Galerkin methods will be addressed in
Sections 3.4.2–3.4.3.

3.4.1 B-Spline IgA Collocation Discretization of Convection-Diffusion-Reaction Equations

Consider the convection-diffusion-reaction problem{
−(a(x)u′(x))′+b(x)u′(x)+ c(x)u(x) = f (x), x ∈Ω,

u(x) = 0, x ∈ ∂Ω,
(3.81)

where Ω is a bounded open interval of R, a : Ω→ R is a function in C1(Ω) and b,c, f : Ω→ R are functions in C(Ω).
We consider the isogeometric collocation approximation of (3.81) based on uniform B-splines of degree p≥ 2. Since this
approximation technique is not as known as FDs or FEs, we describe it below in some detail. For more on IgA collocation
methods, see [1, 47].

Isogeometric collocation approximation Problem (3.81) can be reformulated as follows:{
−a(x)u′′(x)+ s(x)u′(x)+ c(x)u(x) = f (x), x ∈Ω,

u(x) = 0, x ∈ ∂Ω,
(3.82)

where s(x) = b(x)−a′(x). In the standard collocation method, we choose a finite dimensional vector space W, consisting
of sufficiently smooth functions defined on Ω and vanishing on the boundary ∂Ω; we call W the approximation space.
Then, we introduce a set of N = dim W collocation points {τ1, . . . ,τN} ⊂Ω and we look for a function u W ∈ W satisfying
the differential equation (3.82) at the points τi, i.e.,

−a(τi)u′′W(τi)+ s(τi)u′W(τi)+ c(τi)u W(τi) = f (τi), i = 1, . . . ,N.

The function u W is taken as an approximation to the solution u of (3.82). If {ϕ1, . . . ,ϕN} is a basis of W, then we have
u W = ∑

N
j=1 u j ϕ j for a unique vector u = (u1, . . . ,uN)

T , and, by linearity, the computation of u W (i.e., of u) reduces to
solving the linear system

Au = f,
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where f =
[

f (τi)
]N

i=1 and

A =
[
−a(τi)ϕ

′′
j (τi)+ s(τi)ϕ

′
j(τi)+ c(τi)ϕ j(τi)

]N
i, j=1

=
(

diag
i=1,...,N

a(τi)
)[
−ϕ
′′
j (τi)

]N
i, j=1 +

(
diag

i=1,...,N
s(τi)

)[
ϕ
′
j(τi)

]N
i, j=1 +

(
diag

i=1,...,N
c(τi)

)[
ϕ j(τi)

]N
i, j=1 (3.83)

is the collocation matrix.
Now, suppose that the physical domain Ω can be described by a global geometry function G : [0,1]→ Ω, which is

invertible and satisfies G(∂ ([0,1])) = ∂Ω. Let
{ϕ̂1, . . . , ϕ̂N} (3.84)

be a set of basis functions defined on the parametric (or reference) domain [0,1] and vanishing on the boundary ∂ ([0,1]).
Let

{τ̂1, . . . , τ̂N} (3.85)

be a set of N collocation points in (0,1). In the isogeometric collocation approach, we find an approximation u W of u by
using the standard collocation method described above, in which

• the approximation space is chosen as W = span(ϕ1, . . .ϕN), with

ϕi(x) = ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂), i = 1, . . . ,N, (3.86)

• the collocation points in the physical domain Ω are defined as

τi = G(τ̂i), i = 1, . . . ,N. (3.87)

The resulting collocation matrix A is given by (3.83), with the basis functions ϕi and the collocation points τi defined as
in (3.86)–(3.87).

Assuming that G and ϕ̂i, i = 1, . . . ,N, are sufficiently regular, we can apply standard differential calculus to express
A in terms of G and ϕ̂i, τ̂i, i = 1, . . . ,N. Let us work out this expression. For any u : Ω→ R, consider the corresponding
function û : [0,1]→ R, which is defined on the parametric domain by

û(x̂) = u(x), x = G(x̂). (3.88)

In other words, û(x̂) = u(G(x̂)).2 Then, u satisfies (3.82) if and only if û satisfies the corresponding transformed problem{
−aG(x̂)û′′(x̂)+ sG(x̂)û′(x̂)+ cG(x̂)û(x̂) = f (G(x̂)), x̂ ∈ (0,1),
û(x̂) = 0, x̂ ∈ ∂ ((0,1)),

(3.89)

where aG, sG, cG are, respectively, the transformed diffusion, convection, reaction coefficient. They are given by

aG(x̂) =
a(G(x̂))
(G′(x̂))2 , (3.90)

sG(x̂) =
a(G(x̂))G′′(x̂)

(G′(x̂))3 +
s(G(x̂))
G′(x̂)

, (3.91)

cG(x̂) = c(G(x̂)), (3.92)

for x̂ ∈ [0,1]. The collocation matrix A in (3.83) can be expressed in terms of G and ϕ̂i, τ̂i, i = 1, . . . ,N, as follows:

A =
[
−aG(τ̂i)ϕ̂

′′
j (τ̂i)+ sG(τ̂i)ϕ̂

′
j(τ̂i)+ cG(τ̂i)ϕ̂ j(τ̂i)

]N
i, j=1

=
(

diag
i=1,...,N

aG(τ̂i)
)[
−ϕ̂
′′
j (τ̂i)

]N
i, j=1 +

(
diag

i=1,...,N
sG(τ̂i)

)[
ϕ̂
′
j(τ̂i)

]N
i, j=1 +

(
diag

i=1,...,N
cG(τ̂i)

)[
ϕ̂ j(τ̂i)

]N
i, j=1. (3.93)

In the IgA context, the geometry map G is expressed in terms of the functions ϕ̂i, in accordance with the isoparametric
approach [17, Section 3.1]. Moreover, the functions ϕ̂i themselves are usually B-splines or their rational versions, the so-
called NURBS. In this section, the role of the ϕ̂i will be played by B-splines over uniform knot sequences. Furthermore,
we do not limit ourselves to the isoparametric approach, but we allow the geometry map G to be any sufficiently regular
function from [0,1] to Ω, not necessarily expressed in terms of B-splines. Finally, following [1], the collocation points τ̂i
will be chosen as the Greville abscissae corresponding to the B-splines ϕ̂i.

2Note that ϕ̂i(x̂) = ϕi(G(x̂)) for i = 1, . . . ,N, so ϕ̂1, . . . , ϕ̂N are obtained from ϕ1, . . . ,ϕN by the rule (3.88). Moreover, the equation τi = G(τ̂i) is the
same as the relation x = G(x̂) in (3.88).
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B-splines and Greville abscissae For p,n≥ 1, consider the uniform knot sequence

t1 = · · ·= tp+1 = 0 < tp+2 < · · ·< tp+n < 1 = tp+n+1 = · · ·= t2p+n+1, (3.94)

where
ti+p+1 =

i
n
, i = 0, . . . ,n. (3.95)

The B-splines of degree p on this knot sequence are denoted by

Ni,[p] : [0,1]→ R, i = 1, . . . ,n+ p, (3.96)

and are defined recursively as follows [19]: for 1≤ i≤ n+2p,

Ni,[0](t) = χ[ti, ti+1)(t), t ∈ [0,1]; (3.97)

for 1≤ k ≤ p and 1≤ i≤ n+2p− k,

Ni,[k](t) =
t− ti

ti+k− ti
Ni,[k−1](t)+

ti+k+1− t
ti+k+1− ti+1

Ni+1,[k−1](t), t ∈ [0,1], (3.98)

where we assume that a fraction with zero denominator is zero. The Greville abscissa ξi,[p] associated with the B-spline
Ni,[p] is defined by

ξi,[p] =
ti+1 + ti+2 + . . .+ ti+p

p
, i = 1, . . . ,n+ p. (3.99)

We know from [19] that the functions N1,[p], . . . ,Nn+p,[p] belong to Cp−1([0,1]) and form a basis for the spline space{
s ∈Cp−1([0,1]) : s|[ i

n ,
i+1

n ) ∈ Pp, i = 0, . . . ,n−1
}
,

where Pp is the space of polynomials of degree less than or equal to p. Moreover, N1,[p], . . . ,Nn+p,[p] possess the following
properties [19].

• Local support property:
supp(Ni,[p]) = [ti, ti+p+1], i = 1, . . . ,n+ p. (3.100)

• Vanishment on the boundary:

Ni,[p](0) = Ni,[p](1) = 0, i = 2, . . . ,n+ p−1. (3.101)

• Nonnegative partition of unity:

Ni,[p](t)≥ 0, t ∈ [0,1], i = 1, . . . ,n+ p, (3.102)
n+p

∑
i=1

Ni,[p](t) = 1, t ∈ [0,1]. (3.103)

• Bounds for derivatives:

n+p

∑
i=1
|N′i,[p](t)| ≤ 2pn, t ∈ [0,1], (3.104)

n+p

∑
i=1
|N′′i,[p](t)| ≤ 4p(p−1)n2, t ∈ [0,1]. (3.105)

Note that the derivatives N′1,[p](t), . . . ,N
′
n+p,[p](t) (resp., N′′1,[p](t), . . . ,N

′′
n+p,[p](t)) may not be defined at some of

the points 1
n , . . . ,

n−1
n when p = 1 (resp., p = 1,2). In the summations (3.104)–(3.105), it is understood that the

undefined values are counted as 0.
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Figure 3.2: Graph of the B-splines Ni,[p], i = 1, . . . ,n+ p, for p = 3 and n = 10; the central basis functions Ni,[p], i =
p+1, . . . ,n, are depicted in blue.
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Figure 3.3: Graph of the cubic cardinal B-spline φ[3].

Let φ[q] be the cardinal B-spline of degree q ≥ 0 over the uniform knot sequence {0,1, . . . ,q+ 1}, which is defined
recursively as follows [19]:

φ[0](t) = χ[0,1)(t), t ∈ R, (3.106)

φ[q](t) =
t
q

φ[q−1](t)+
q+1− t

q
φ[q−1](t−1), t ∈ R, q≥ 1. (3.107)

It is known from [15, 19] that φ[q] ∈Cq−1(R) and

supp(φ[q]) = [0,q+1]. (3.108)

Moreover, the following symmetry property holds by [29, Lemma 3] (see also [15, p. 86]):

φ
(r)
[q]

(q+1
2

+ t
)
= (−1)r

φ
(r)
[q]

(q+1
2
− t
)
, t ∈ R, r,q≥ 0, (3.109)

where φ
(r)
[q] is the rth derivative of φ[q]. Note that φ

(r)
[q] (t) is defined for all t ∈ R if r < q, and for all t ∈ R\{0,1, . . . ,q+1}

if r ≥ q. Nevertheless, (3.109) holds for all t ∈ R, because when the left-hand side is not defined, the right-hand side is
not defined as well. Concerning the L2 inner products of derivatives of cardinal B-splines, it was proved in [29, Lemma 4]
that ∫

R
φ
(r1)
[q1]

(t)φ (r2)
[q2]

(t + τ)dt = (−1)r1φ
(r1+r2)
[q1+q2+1](q1 +1+ τ) = (−1)r2φ

(r1+r2)
[q1+q2+1](q2 +1− τ) (3.110)

for every τ ∈ R and every q1,q2,r1,r2 ≥ 0. Equation (3.110) is a property of the more general family of box splines
[54] and generalizes the result appearing in [15, p. 89]. Cardinal B-splines are of interest herein, because the so-called
central basis functions Ni,[p], i = p+1, . . . ,n, are uniformly shifted and scaled versions of the cardinal B-spline φ[p]. This
is illustrated in Figures 3.2–3.3 for p = 3. In formulas, we have

Ni,[p](t) = φ[p](nt− i+ p+1), t ∈ [0,1], i = p+1, . . . ,n, (3.111)

and, consequently,

N′i,[p](t) = nφ
′
[p](nt− i+ p+1), t ∈ [0,1], i = p+1, . . . ,n, (3.112)

N′′i,[p](t) = n2
φ
′′
[p](nt− i+ p+1), t ∈ [0,1], i = p+1, . . . ,n. (3.113)
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Remark 3.7. For degree p = 1, the central B-spline basis functions N2,[1], . . . ,Nn,[1] are the hat-functions ϕ1, . . . ,ϕn−1
corresponding to the grid points

xi = ih, i = 0, . . . ,n, h =
1
n
.

To see this, simply write (3.98) for p = 1 and compare it with (3.61). The graph of N2,[1], . . . ,Nn,[1] for n = 10 is depicted
in Figure 3.1.

In view of (3.99) and (3.100), the Greville abscissa ξi,[p] lies in the support of Ni,[p],

ξi,[p] ∈ supp(Ni,[p]) = [ti, ti+p+1], i = 1, . . . ,n+ p. (3.114)

The central Greville abscissae ξi,[p], i = p+ 1, . . . ,n, which are the Greville abscissae associated with the central basis
functions (3.111), simplify to

ξi,[p] =
i
n
− p+1

2n
, i = p+1, . . . ,n. (3.115)

The Greville abscissae are somehow equivalent, in an asymptotic sense, to the uniform knots in [0,1]. More precisely,∣∣∣ξi,[p]−
i

n+ p

∣∣∣≤ Cp

n
, i = 1, . . . ,n+ p, (3.116)

where Cp depends only on p. The proof of (3.116) is a matter of straightforward computations; we leave the details to the
reader.

B-spline IgA collocation matrices In the IgA collocation approach based on (uniform) B-splines, the basis functions
ϕ̂1, . . . , ϕ̂N in (3.84) are chosen as the B-splines N2,[p], . . . ,Nn+p−1,[p] in (3.96), i.e.,

ϕ̂i = Ni+1,[p], i = 1, . . . ,n+ p−2. (3.117)

In this setting, N = n+ p−2. Note that the boundary functions N1,[p] and Nn+p,[p] are excluded because they do not vanish
on the boundary ∂ ([0,1]); see also Figure 3.2. As for the collocation points τ̂1 . . . , τ̂N in (3.85), they are chosen as the
Greville abscissae ξ2,[p], . . . ,ξn+p−1,[p] in (3.99), i.e.,

τ̂i = ξi+1,[p], i = 1, . . . ,n+ p−2. (3.118)

In what follows we assume p ≥ 2, so as to ensure that N′′j+1,[p](ξi+1,[p]) is defined for all i, j = 1, . . . ,n+ p− 2. The

collocation matrix (3.93) resulting from the choices of ϕ̂i, τ̂i as in (3.117)–(3.118) will be denoted by A[p]
G,n, in order to

emphasize its dependence on the geometry map G and the parameters n, p:

A[p]
G,n =

[
−aG(ξi+1,[p])N

′′
j+1,[p](ξi+1,[p])+ sG(ξi+1,[p])N

′
j+1,[p](ξi+1,[p])+ cG(ξi+1,[p])N j+1,[p](ξi+1,[p])

]n+p−2

i, j=1

= D[p]
n (aG)K[p]

n +D[p]
n (sG)H [p]

n +D[p]
n (cG)M[p]

n ,

where
D[p]

n (v) = diag
i=1,...,n+p−2

v(ξi+1,[p])

is the diagonal sampling matrix containing the samples of the function v : [0,1]→ R at the Greville abscissae, and

K[p]
n =

[
−N′′j+1,[p](ξi+1,[p])

]n+p−2
i, j=1 ,

H [p]
n =

[
N′j+1,[p](ξi+1,[p])

]n+p−2
i, j=1 ,

M[p]
n =

[
N j+1,[p](ξi+1,[p])

]n+p−2
i, j=1 .

Note that A[p]
G,n can be decomposed as follows:

A[p]
G,n = K[p]

G,n +Z[p]
G,n,
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where
K[p]

G,n =
[
−aG(ξi+1,[p])N

′′
j+1,[p](ξi+1,[p])

]n+p−2

i, j=1
= D[p]

n (aG)K[p]
n

is the diffusion matrix, i.e., the matrix resulting from the discretization of the higher-order (diffusion) term in (3.82), and

Z[p]
G,n =

[
sG(ξi+1,[p])N

′
j+1,[p](ξi+1,[p])+ cG(ξi+1,[p])N j+1,[p](ξi+1,[p])

]n+p−2

i, j=1
= D[p]

n (sG)H [p]
n +D[p]

n (cG)M[p]
n

is the matrix resulting from the discretization of the terms in (3.82) with lower-order derivatives (i.e., the convection and
reaction terms). As already noticed in the previous sections about FD and FE discretizations, the matrix Z[p]

G,n can be
regarded as a ‘residual term’, since it comes from the discretization of the lower-order differential operators. Indeed, we
shall see that the norm of Z[p]

G,n is negligible with respect to the norm of the diffusion matrix K[p]
G,n when the discretization

parameter n is large, because, after normalization by n2, it will turn out that ‖n−2Z[p]
G,n‖ tends to 0 as n→ ∞ (contrary to

‖n−2K[p]
G,n‖, which remains bounded away from 0 and ∞).

Let us now provide an approximate construction of K[p]
n , M[p]

n , H [p]
n . This is necessary for the GLT analysis of this

section. We only construct the submatrices[
(K[p]

n )i j
]n−1

i, j=p,
[
(H [p]

n )i j
]n−1

i, j=p,
[
(M[p]

n )i j
]n−1

i, j=p, (3.119)

which are determined by the central basis functions (3.111) and by the central Greville abscissae (3.115). Note that the
submatrix [(K[p]

n )i j]
n−1
i, j=p, when embedded in any matrix of size n+ p− 2 at the right place (identified by the row and

column indices p, . . . ,n−1), provides an approximation of K[p]
n up to a low-rank correction. A similar consideration also

applies to the submatrices [(H [p]
n )i j]

n−1
i, j=p and [(M[p]

n )i j]
n−1
i, j=p. A direct computation based on (3.109), (3.111)–(3.113) and

(3.115) shows that, for i, j = p, . . . ,n−1,

(K[p]
n )i j =−n2

φ
′′
[p]

( p+1
2

+ i− j
)
=−n2

φ
′′
[p]

( p+1
2
− i+ j

)
,

(H [p]
n )i j = nφ

′
[p]

( p+1
2

+ i− j
)
=−nφ

′
[p]

( p+1
2
− i+ j

)
,

(M[p]
n )i j = φ[p]

( p+1
2

+ i− j
)
= φ[p]

( p+1
2
− i+ j

)
.

Since their entries depend only on the difference i− j, the submatrices (3.119) are Toeplitz matrices, and precisely

[
(K[p]

n )i j
]n−1

i, j=p = n2
[
−φ
′′
[p]

( p+1
2
− i+ j

)]n−1

i, j=p
= n2 Tn−p( fp), (3.120)

[
(H [p]

n )i j
]n−1

i, j=p = n
[
−φ
′
[p]

( p+1
2
− i+ j

)]n−1

i, j=p
= n iTn−p(gp), (3.121)

[
(M[p]

n )i j
]n−1

i, j=p =

[
φ[p]

( p+1
2
− i+ j

)]n−1

i, j=p
= Tn−p(hp), (3.122)

where

fp(θ) = ∑
k∈Z
−φ
′′
[p]

( p+1
2
− k
)

eikθ =−φ
′′
[p]

( p+1
2

)
−2

bp/2c

∑
k=1

φ
′′
[p]

( p+1
2
− k
)

cos(kθ), (3.123)

gp(θ) =−i ∑
k∈Z
−φ
′
[p]

( p+1
2
− k
)

eikθ =−2
bp/2c

∑
k=1

φ
′
[p]

( p+1
2
− k
)

sin(kθ), (3.124)

hp(θ) = ∑
k∈Z

φ[p]

( p+1
2
− k
)

eikθ = φ[p]

( p+1
2

)
+2

bp/2c

∑
k=1

φ[p]

( p+1
2
− k
)

cos(kθ); (3.125)

note that we used (3.108)–(3.109) to simplify the expressions of fp(θ), gp(θ), hp(θ). It follows from (3.120) that Tn−p( fp)

is the principal submatrix of both n−2K[p]
n and Tn+p−2( fp) corresponding to the set of indices p, . . . ,n−1. Similar results
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follow from (3.121)–(3.122), and so we obtain

n−2K[p]
n = Tn+p−2( fp)+R[p]

n , rank(R[p]
n )≤ 4(p−1), (3.126)

−in−1H [p]
n = Tn+p−2(gp)+S[p]n , rank(S[p]n )≤ 4(p−1), (3.127)

M[p]
n = Tn+p−2(hp)+V [p]

n , rank(V [p]
n )≤ 4(p−1). (3.128)

To better appreciate the above construction, let us see two examples. We only consider the case of the matrix K[p]
n because

for H [p]
n and M[p]

n the situation is the same. In the first example, we fix p = 3. The matrix K[3]
n is given by

K[3]
n =

n2

6



33 −7 −2
−9 15 −6

−6 12 −6
−6 12 −6

. . . . . . . . .
−6 12 −6

−6 12 −6
−6 15 −9
−2 −7 33


.

The submatrix Tn−2( f3) appears in correspondence of the highlighted box and we have

f3(θ) =
1
6
(−6eiθ +12−6e−iθ ) = 2−2cosθ ,

as given by (3.123) for p = 3. In the second example, we fix p = 4. The matrix K[4]
n is given by

K[4]
n =

n2

96



855 −133 −71 −3
−81 243 −63 −27
−36 −36 132 −48 −12

−16 −44 120 −48 −12
−12 −48 120 −48 −12

−12 −48 120 −48 −12
. . . . . . . . . . . . . . .

−12 −48 120 −48 −12
−12 −48 120 −48 −12

−12 −48 120 −44 −16
−12 −48 132 −36 −36

−27 −63 243 −81
−3 −71 −133 855



.

The submatrix Tn−3( f4) appears in correspondence of the highlighted box and we have

f4(θ) =
1

96
(−12e2iθ −48eiθ +120−48e−iθ −12e−2iθ ) =

5
4
− cosθ − 1

4
cos(2θ),

as given by (3.123) for p = 4.
Before passing to the GLT analysis of the collocation matrices A[p]

G,n, we prove the existence of an n-independent bound

for the spectral norms of n−2K[p]
n , n−1H [p]

n , M[p]
n . Actually, one could also prove that the components of n−2K[p]

n , n−1H [p]
n ,

M[p]
n do not depend on n as illustrated above for the matrix n−2K[p]

n in the cases p = 3,4. However, for our purposes it
suffices to show that, for every p≥ 2, there exists a constant C[p] such that, for all n,

‖n−2K[p]
n ‖ ≤C[p], ‖n−1H [p]

n ‖ ≤C[p], ‖M[p]
n ‖ ≤C[p]. (3.129)

To prove (3.129), we note that K[p]
n , H [p]

n , M[p]
n are banded, with bandwidth bounded by 2p+ 1. Indeed, if |i− j| > p,

one can show that (K[p]
n )i j = (H [p]

n )i j = (M[p]
n )i j= 0 by using (3.114), which implies that ξi+1,[p] lies outside or on the
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border of supp(N j+1,[p]), whose intersection with supp(Ni+1,[p]) consists of at most one of the knots tk. Moreover, by
(3.102)–(3.105), for all i, j = 1, . . . ,n+ p−2 we have

|(K[p]
n )i j|= |N′′j+1,[p](ξi+1,[p])| ≤ 4p(p−1)n2,

|(H [p]
n )i j|= |N′j+1,[p](ξi+1,[p])| ≤ 2pn,

|(M[p]
n )i j|= |N j+1,[p](ξi+1,[p])| ≤ 1.

Hence, (3.129) follows from (3.1).

GLT analysis of the B-spline IgA collocation matrices Assuming that the geometry map G possesses some regularity
properties, we show that, for any p ≥ 2, the sequence of normalized IgA collocation matrices {n−2A[p]

G,n}n is a GLT
sequence whose symbol describes both its singular value and spectral distribution.

Theorem 3.12. Let Ω be a bounded open interval of R, let a ∈C1(Ω) and b,c ∈C(Ω). Let p≥ 2 and let G : [0,1]→ Ω

be such that G ∈C2([0,1]) and G′(x̂) 6= 0 for all x̂ ∈ [0,1]. Then

{n−2A[p]
G,n}n ∼GLT fG,p (3.130)

and
{n−2A[p]

G,n}n ∼σ ,λ fG,p, (3.131)

where

fG,p(x̂,θ) = aG(x̂) fp(θ) =
a(G(x̂))
(G′(x̂))2 fp(θ) (3.132)

and fp(θ) is defined in (3.123).

Proof. The proof consists of the following steps. Throughout the proof, the letter C will denote a generic constant
independent of n.

Step 1. We show that
‖n−2K[p]

G,n‖ ≤C (3.133)

and
‖n−2Z[p]

G,n‖ ≤C/n. (3.134)

To prove (3.133), it suffices to use the regularity of G and (3.129):

‖n−2K[p]
G,n‖= ‖n

−2D[p]
n (aG)K

[p]
n ‖ ≤ ‖aG‖∞C[p] ≤ C[p]‖a‖∞

minx̂∈[0,1] |G′(x̂)|2
.

The proof of (3.134) is similar. It suffices to use the fact that G ∈C2([0,1]) and (3.129):

‖n−2Z[p]
G,n‖= ‖n

−2D[p]
n (sG)H

[p]
n +n−2D[p]

n (cG)M
[p]
n ‖ ≤ n−1C[p]

(
‖a‖∞‖G′′‖∞

minx̂∈[0,1] |G′(x̂)|3
+
‖a′‖∞ +‖b‖∞

minx̂∈[0,1] |G′(x̂)|

)
+n−2C[p]‖c‖∞.

Step 2. Define the symmetric matrix
K̃[p]

G,n = Sn+p−2(aG)◦n2 Tn+p−2( fp), (3.135)

where we recall that Sm(v) is the mth arrow-shaped sampling matrix generated by v (see (3.6)), and consider the following
decomposition of n−2A[p]

G,n:

n−2A[p]
G,n = n−2K̃[p]

G,n +
(
n−2K[p]

G,n−n−2K̃[p]
G,n

)
+n−2Z[p]

G,n. (3.136)

We know from Theorem 3.2 that ‖n−2K̃[p]
G,n‖ ≤C and {n−2K̃[p]

G,n}n ∼GLT fG,p(x̂,θ).

Step 3. We show that
‖n−2K[p]

G,n−n−2K̃[p]
G,n‖1 = o(n). (3.137)
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Figure 3.4: Graph of fp/M fp for p = 2, . . . ,10.

Once this is done, the thesis is proved. Indeed, from (3.137) and (3.134) we obtain

‖(n−2K[p]
G,n−n−2K̃[p]

G,n)+n−2Z[p]
G,n‖1 ≤ ‖n−2K[p]

G,n−n−2K̃[p]
G,n‖1 +‖n−2Z[p]

G,n‖n = o(n),

hence {(n−2K[p]
G,n− n−2K̃[p]

G,n)+ n−2Z[p]
G,n}n is zero-distributed by Z 2. Thus, the GLT relation (3.130) follows from the

decomposition (3.136) and GLT 3 – GLT 4, the singular value distribution in (3.131) follows from GLT 1, and the eigen-
value distribution in (3.131) follows from GLT 2.

To prove (3.137), we decompose the difference n−2K[p]
G,n−n−2K̃[p]

G,n as follows:

n−2K[p]
G,n−n−2K̃[p]

G,n = n−2D[p]
n (aG)K[p]

n −Sn+p−2(aG)◦Tn+p−2( fp)

= n−2D[p]
n (aG)K[p]

n −D[p]
n (aG)Tn+p−2( fp) (3.138)

+D[p]
n (aG)Tn+p−2( fp)−Dn+p−2(aG)Tn+p−2( fp) (3.139)

+Dn+p−2(aG)Tn+p−2( fp)−Sn+p−2(aG)◦Tn+p−2( fp). (3.140)

We consider separately the three matrices in (3.138)–(3.140) and we show that their trace-norms are o(n).

• By (3.126), the rank of the matrix (3.138) is bounded by 4(p− 1). By the regularity of G, the inequality (3.129)
and T 3, the spectral norm of (3.138) is bounded by C. Thus, the trace-norm of (3.138) is o(n) (actually, O(1)) by
(3.3).

• By (3.116), the continuity of aG and T 3, the spectral norm of the matrix (3.139) is bounded by CωaG(n
−1), so it

tends to 0. Hence, the trace-norm of (3.139) is o(n) by (3.3).

• By Theorem 3.2, the spectral norm of the matrix (3.140) is bounded by CωaG(n
−1), so it tends to 0. Hence, the

trace-norm of (3.140) is o(n) by (3.3).

In conclusion, ‖n−2K[p]
G,n−n−2K̃[p]

G,n‖1 = o(n).

Remark 3.8 (formal structure of the symbol). We invite the reader to compare the symbol (3.132) with the transformed
problem (3.89). It is clear that the higher-order operator −aG(x̂)û′′(x̂) has a discrete spectral counterpart aG(x̂) fp(θ)
which looks formally the same (as in the FD and FE cases; see Remarks 3.1 and 3.6). To better appreciate the formal
analogy, note that fp(θ) is the trigonometric polynomial in the Fourier variable coming from the B-spline IgA collocation
discretization of the second derivative−û′′(x̂) on the parametric domain [0,1]. Indeed, fp(θ) is the symbol of the sequence
of B-spline IgA collocation diffusion matrices {n−2K[p]

n }n, which arises from the B-spline IgA collocation approximation
of (3.82) in the case where a(x) = 1, b(x) = c(x) = 0 identically, Ω = (0,1) and G is the identity map over [0,1]; note that
in this case (3.82) is the same as (3.89), x = G(x̂) = x̂ and u = û.
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Remark 3.9 (nonnegativity and order of the zero at θ = 0). Figure 3.4 shows the graph of fp(θ) normalized by its
maximum M fp = maxθ∈[−π,π] fp(θ) for p = 2, . . . ,10. Note that f2(θ) = f3(θ) = 2−2cosθ . We see from the figure (and
it was proved in [22]) that fp(θ) is nonnegative over [−π,π] and has a unique zero of order 2 at θ = 0 because

lim
θ→0

fp(θ)

θ 2 = 1.

This reflects the fact that, as observed in Remark 3.8, fp(θ) arises from the B-spline IgA collocation discretization of the
second derivative −û′′(x̂) on the parametric domain [0,1], which is a differential operator of order 2 (and it is nonnegative
on {v ∈C2([0,1]) : v(0) = v(1) = 0}); see also Remarks 3.2, 3.4 and 3.5.

Further properties of the functions fp(θ), gp(θ), hp(θ) can be found in [22, Section 3]. In particular, it was proved
therein that fp(π)/M fp → 0 exponentially as p→∞. Moreover, observing that hp(θ) is defined by (3.125) for all degrees
p≥ 0 (and we have h0(θ) = h1(θ) = 1 identically) provided that we use the standard convention that an empty sum like
∑

0
k=1 φ[1](1− k)cos(kθ) equals 0,3 it was proved in [22] that, for all p≥ 2 and θ ∈ [−π,π],

fp(θ) = (2−2cosθ)hp−2(θ),

(
2
π

)p−1

≤ hp−2(θ)≤ hp−2(0) = 1. (3.141)

3.4.2 Galerkin B-Spline IgA Discretization of Convection-Diffusion-Reaction Equations

Consider the convection-diffusion-reaction problem{
−(a(x)u′(x))′+b(x)u′(x)+ c(x)u(x) = f (x), x ∈Ω,

u(x) = 0, x ∈ ∂Ω,
(3.142)

where Ω is a bounded open interval of R, f ∈ L2(Ω) and a,b,c∈ L∞(Ω). Problem (3.142) is the same as (3.81), except for
the assumptions on a,b,c, f . We consider the isogeometric Galerkin approximation of (3.142) based on uniform B-splines
of degree p ≥ 1. This approximation technique is described below in some detail. For more on IgA Galerkin methods,
see [17, 39].

Isogeometric Galerkin approximation The weak form of (3.142) reads as follows: find u ∈ H1
0 (Ω) such that

a(u,v) = f(v), ∀v ∈ H1
0 (Ω),

where

a(u,v) =
∫

Ω

(
a(x)u′(x)v′(x)+b(x)u′(x)v(x)+ c(x)u(x)v(x)

)
dx,

f(v) =
∫

Ω

f (x)v(x)dx.

In the standard Galerkin method, we look for an approximation u W of u by choosing a finite dimensional vector space
W ⊂H1

0 (Ω), the so-called approximation space, and by solving the following (Galerkin) problem: find u W ∈ W such that

a(u W ,v) = f(v), ∀v ∈ W.

If {ϕ1, . . . ,ϕN} is a basis of W, then we can write u W =∑
N
j=1 u j ϕ j for a unique vector u= (u1, . . . ,uN)

T , and, by linearity,
the computation of u W (i.e., of u) reduces to solving the linear system

Au = f,

where f =
[
f(ϕi)

]N
i=1 and

A = [a(ϕ j,ϕi)]
N
i, j=1 =

[∫
Ω

(
a(x)ϕ ′j(x)ϕ

′
i (x)+b(x)ϕ ′j(x)ϕi(x)+ c(x)ϕ j(x)ϕi(x)

)
dx
]N

i, j=1
(3.143)

3On the contrary, fp(θ) and gp(θ) are defined by (3.123) and (3.124) only for p≥ 2, because φ ′[1](1) and φ ′′[1](1) do not exist.
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is the stiffness matrix.
Now, suppose that the physical domain Ω can be described by a global geometry function G : [0,1]→ Ω, which is

invertible and satisfies G(∂ ([0,1])) = ∂Ω. Let {ϕ̂1, . . . , ϕ̂N} be a set of basis functions defined on the parametric (or
reference) domain [0,1] and vanishing on the boundary ∂ ([0,1]). In the isogeometric Galerkin approach, we find an
approximation u W of u by using the standard Galerkin method, in which the approximation space is chosen as W =
span(ϕ1, . . . ,ϕN), where

ϕi(x) = ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂). (3.144)

The resulting stiffness matrix A is given by (3.143), with the basis functions ϕi defined as in (3.144). Assuming that G
and ϕ̂i, i = 1, . . . ,N, are sufficiently regular, we can apply standard differential calculus to obtain the following expression
for A in terms of G and ϕ̂i, i = 1, . . . ,N:

A =

[∫
[0,1]

(
aG(x̂)ϕ̂ ′j(x̂)ϕ̂

′
i (x̂)+

b(G(x̂))
G′(x̂)

ϕ̂
′
j(x̂)ϕ̂i(x̂)+ c(G(x̂))ϕ̂ j(x̂)ϕ̂i(x̂)

)
|G′(x̂)|dx̂

]N

i, j=1
, (3.145)

where aG(x̂) is the same as in (3.90),

aG(x̂) =
a(G(x̂))
(G′(x̂))2 . (3.146)

In the IgA framework, the functions ϕ̂i are usually B-splines or NURBS. Here, the role of the ϕ̂i will be played by
B-splines over uniform knot sequences.

Galerkin B-spline IgA discretization matrices As in the IgA collocation framework considered in Section 3.4.1,
in the Galerkin B-spline IgA based on (uniform) B-splines, the basis functions ϕ̂1, . . . , ϕ̂N are chosen as the B-splines
N2,[p], . . . ,Nn+p−1,[p] defined in (3.96)–(3.98), i.e.,

ϕ̂i = Ni+1,[p], i = 1, . . . ,n+ p−2.

The boundary functions N1,[p] and Nn+p,[p] are excluded because they do not vanish on ∂ ([0,1]); see also Figure 3.2. The

stiffness matrix (3.145) resulting from this choice of the ϕ̂i will be denoted by A[p]
G,n:

A[p]
G,n =

[∫
[0,1]

(
aG(x̂)N′j+1,[p](x̂)N

′
i+1,[p](x̂)

+
b(G(x̂))

G′(x̂)
N′j+1,[p](x̂)Ni+1,[p](x̂)+ c(G(x̂))N j+1,[p](x̂)Ni+1,[p](x̂)

)
|G′(x̂)|dx̂

]n+p−2

i, j=1
. (3.147)

Note that A[p]
G,n can be decomposed as follows:

AG,n = K[p]
G,n +Z[p]

G,n, (3.148)

where

K[p]
G,n =

[∫
[0,1]

aG(x̂)|G′(x̂)|N′j+1,[p](x̂)N
′
i+1,[p](x̂)dx̂

]n+p−2

i, j=1
(3.149)

is the diffusion matrix, resulting from the discretization of the higher-order (diffusion) term in (3.142), and

Z[p]
G,n =

[∫
[0,1]

(b(G(x̂))
G′(x̂)

N′j+1,[p](x̂)Ni+1,[p](x̂)+ c(G(x̂))N j+1,[p](x̂)Ni+1,[p](x̂)
)
|G′(x̂)|dx̂

]n+p−2

i, j=1
(3.150)

is the matrix resulting from the discretization of the lower-order (convection and reaction) terms. We will see that, as
usual, the GLT analysis of a properly scaled version of the sequence {A[p]

G,n}n reduces to the GLT analysis of its ‘diffusion

part’ {K[p]
G,n}n, because ‖Z[p]

G,n‖ is negligible with respect to ‖K[p]
G,n‖ as n→ ∞.

Let

K[p]
n =

[∫
[0,1]

N′j+1,[p](x̂)N
′
i+1,[p](x̂)dx̂

]n+p−2

i, j=1
, (3.151)

H [p]
n =

[∫
[0,1]

N′j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i, j=1
, (3.152)

M[p]
n =

[∫
[0,1]

N j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i, j=1
. (3.153)
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These matrices will play an important role in the GLT analysis of this section. In particular, it is necessary to under-
stand their approximate structure. This is achieved by (approximately) construct them. We only construct their central
submatrices [

(K[p]
n )i j

]n−1
i, j=p,

[
(H [p]

n )i j
]n−1

i, j=p,
[
(M[p]

n )i j
]n−1

i, j=p, (3.154)

which are determined by the central basis functions in (3.111). For all i, j = p, . . . ,n−1, noting that [−i+ p, n− i+ p]⊇
supp(φ[p]) = [0, p+1] and using (3.109)–(3.110) and (3.112), we obtain

(K[p]
n )i j =

∫
[0,1]

N′j+1,[p](x̂)N
′
i+1,[p](x̂)dx̂ = n2

∫
[0,1]

φ
′
[p](nx̂− j+ p)φ ′[p](nx̂− i+ p)dx̂

= n
∫
[−i+p,n−i+p]

φ
′
[p](t + i− j)φ ′[p](t)dt = n

∫
R

φ
′
[p](t + i− j)φ ′[p](t)dt

=−nφ
′′
[2p+1](p+1+ i− j) =−nφ

′′
[2p+1](p+1− i+ j),

and similarly

(H [p]
n )i j = φ

′
[2p+1](p+1+ i− j) =−φ

′
[2p+1](p+1− i+ j),

(M[p]
n )i j =

1
n

φ[2p+1](p+1+ i− j) =
1
n

φ[2p+1](p+1− i+ j).

Since their entries depend only on the difference i− j, the submatrices (3.154) are Toeplitz matrices. More precisely,[
(K[p]

n )i j
]n−1

i, j=p = n
[
−φ
′′
[2p+1](p+1− i+ j)

]n−1
i, j=p = nTn−p( fp), (3.155)[

(H [p]
n )i j

]n−1
i, j=p =

[
−φ
′
[2p+1](p+1− i+ j)

]n−1
i, j=p = iTn−p(gp), (3.156)[

(M[p]
n )i j

]n−1
i, j=p =

1
n

[
φ[2p+1](p+1− i+ j)

]n−1
i, j=p =

1
n

Tn−p(hp), (3.157)

where

fp(θ) = ∑
k∈Z
−φ
′′
[2p+1](p+1− k)eikθ =−φ

′′
[2p+1](p+1)−2

p

∑
k=1

φ
′′
[2p+1](p+1− k)cos(kθ), (3.158)

gp(θ) =−i ∑
k∈Z
−φ
′
[2p+1](p+1− k)eikθ =−2

p

∑
k=1

φ
′
[2p+1](p+1− k)sin(kθ), (3.159)

hp(θ) = ∑
k∈Z

φ[2p+1](p+1− k)eikθ = φ[2p+1](p+1)+2
p

∑
k=1

φ[2p+1](p+1− k)cos(kθ); (3.160)

note that we used (3.108)–(3.109) to simplify the expressions of fp(θ), gp(θ), hp(θ). It follows from (3.155) that Tn−p( fp)

is the principal submatrix of both n−1K[p]
n and Tn+p−2( fp) corresponding to the set of indices p, . . . ,n−1. Similar results

follow from (3.156)–(3.157), and so

n−1K[p]
n = Tn+p−2( fp)+R[p]

n , rank(R[p]
n )≤ 4(p−1), (3.161)

−iH [p]
n = Tn+p−2(gp)+S[p]n , rank(S[p]n )≤ 4(p−1), (3.162)

nM[p]
n = Tn+p−2(hp)+V [p]

n , rank(V [p]
n )≤ 4(p−1). (3.163)

Let us see two examples. In the case p = 2, the matrix K[2]
n is given by

K[2]
n =

n
6



8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

−1 −2 6 −2 −1
. . . . . . . . . . . . . . .

−1 −2 6 −2 −1
−1 −2 6 −2 −1

−1 −2 6 −1
−1 −1 8


.

CIME, Cetraro (Cosenza), Italy, July 3–7, 2017 Page 39 of 48



C. Garoni and S. Serra-Capizzano GLT Sequences

The submatrix Tn−2( f2) appears in correspondence of the highlighted box and we have

f2(θ) =
1
6
(−e2iθ −2eiθ +6−2e−iθ − e−2iθ ) = 1− 2

3
cosθ − 1

3
cos(2θ),

as given by (3.158) for p = 2. In the case p = 3, the matrix K[3]
n is given by

K[3]
n =

n
240



360 9 −60 −3
9 162 −8 −47 −2

−60 −8 160 −30 −48 −2
−3 −47 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −48 −2
−2 −48 −30 160 −30 −48 −2

. . . . . . . . . . . . . . . . . . . . .
−2 −48 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −48 −2
−2 −48 −30 160 −30 −47 −3

−2 −48 −30 160 −8 −60
−2 −47 −8 162 9

−3 −60 9 360



.

The submatrix Tn−3( f3) appears in correspondence of the highlighted box and we have

f3(θ) =
1

240
(−2e3iθ −48e2iθ −30eiθ +160−30e−iθ −48e−2iθ −2e−3iθ ) =

2
3
− 1

4
cosθ − 2

5
cos(2θ)− 1

60
cos(3θ),

as given by (3.158) for p = 3.

Remark 3.10. For every degree q ≥ 1, the functions fq(θ), gq(θ), hq(θ) defined by (3.158)–(3.160) for p = q coincide
with the functions f2q+1(θ), g2q+1(θ), h2q+1(θ) defined by (3.123)–(3.125) for odd degree p = 2q+1.

GLT analysis of the Galerkin B-spline IgA discretization matrices Assuming that the geometry map G is regular,
i.e., G ∈C1([0,1]) and G′(x̂) 6= 0 for every x̂ ∈ [0,1], we show that, for any p≥ 1, {n−1A[p]

G,n}n is a GLT sequence whose
symbol describes both its singular value and spectral distribution.

Theorem 3.13. Let Ω be a bounded open interval of R and let a,b,c ∈ L∞(Ω). Let p≥ 1 and let G : [0,1]→ Ω be such
that G ∈C1([0,1]) and G′(x̂) 6= 0 for all x̂ ∈ [0,1]. Then

{n−1A[p]
G,n}n ∼GLT fG,p (3.164)

and
{n−1A[p]

G,n}n ∼σ ,λ fG,p, (3.165)

where

fG,p(x̂,θ) = aG(x̂)|G′(x̂)| fp(θ) =
a(G(x̂))
|G′(x̂)|

fp(θ) (3.166)

and fp(θ) is defined in (3.158).

Proof. We follow the same argument as in the proof of Theorem 3.10. Throughout the proof, the letter C will denote a
generic constant independent of n.

Step 1. We show that
‖n−1K[p]

G,n‖ ≤C (3.167)

and
‖n−1Z[p]

G,n‖ ≤C/n. (3.168)
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To prove (3.167), we note that K[p]
G,n is a banded matrix, with bandwidth at most equal to 2p+ 1. Indeed, due to the

local support property (3.100), if |i− j|> p then the supports of Ni+1,[p] and N j+1,[p] intersect in at most one point, hence

(K[p]
G,n)i j = 0. Moreover, by (3.100) and (3.104), for all i, j = 1, . . . ,n+ p−2 we have

|(K[p]
G,n)i j|=

∣∣∣∣∫
[0,1]

aG(x̂)|G′(x̂)|N′j+1,[p](x̂)N′i+1,[p](x̂)dx̂
∣∣∣∣= ∣∣∣∣∫

[ti+1, ti+p+2]

a(G(x̂))
|G′(x̂)|

N′j+1,[p](x̂)N′i+1,[p](x̂)dx̂
∣∣∣∣

≤ 4p2n2‖a‖L∞

minx̂∈[0,1] |G′(x̂)|

∫
[ti+1, ti+p+2]

dx̂≤ 4p2(p+1)n‖a‖L∞

minx̂∈[0,1] |G′(x̂)|
,

where in the last inequality we used the fact that tk+p+1− tk ≤ (p+ 1)/n for all k = 1, . . . ,n+ p; see (3.94)–(3.95). In
conclusion, the components of the banded matrix n−1K[p]

G,n are bounded (in modulus) by a constant independent of n, and
(3.167) follows from (3.1).

To prove (3.168), we follow the same argument as for the proof of (3.167). Due to the local support property (3.100),
Z[p]

G,n is banded and, precisely, (Z[p]
G,n)i j = 0 whenever |i− j| > p. Moreover, by (3.100) and (3.102)–(3.104), for all

i, j = 1, . . . ,n+ p−2 we have

|(Z[p]
G,n)i j|=

∣∣∣∣∫
[ti+1, ti+p+2]

(b(G(x̂))
G′(x̂)

N′j+1,[p](x̂)Ni+1,[p](x̂)+ c(G(x̂))N j+1,[p](x̂)Ni+1,[p](x̂)
)
|G′(x̂)|dx̂

∣∣∣∣
≤ 2p(p+1)‖b‖L∞ +

(p+1)‖c‖L∞‖G′‖∞

n
,

and (3.168) follows from (3.1).

Step 2. Consider the linear operator K[p]
n (·) : L1([0,1])→ R(n+p−2)×(n+p−2),

K[p]
n (g) =

[∫
[0,1]

g(x̂)N′j+1,[p](x̂)N
′
i+1,[p](x̂)dx̂

]n+p−2

i, j=1
.

By (3.149), we have K[p]
G,n = K[p]

n (aG|G′|). The next three steps are devoted to show that

{n−1K[p]
n (g)}n ∼GLT g(x̂) fp(θ), ∀g ∈ L1([0,1]). (3.169)

Once this is done, the theorem is proved. Indeed, by applying (3.169) with g = aG|G′| we immediately obtain the relation
{n−1K[p]

G,n}n ∼GLT fG,p(x̂,θ). Since {n−1Z[p]
G,n}n is zero-distributed by Step 1, (3.164) follows from the decomposition

n−1A[p]
G,n = n−1K[p]

G,n +n−1Z[p]
G,n (3.170)

and from GLT 3 – GLT 4; and the singular value distribution in (3.165) follows from GLT 1. If b(x) = 0 identically, then
n−1A[p]

G,n is symmetric and also the spectral distribution in (3.165) follows from GLT 1. If b(x) is not identically 0, the
spectral distribution in (3.165) follows from GLT 2 applied to the decomposition (3.170), taking into account what we
have seen in Step 1.

Step 3. We first prove (3.169) in the constant-coefficient case g(x̂) = 1. In this case, we note that K[p]
n (1) = K[p]

n . Hence,
the desired GLT relation {n−1K[p]

n (1)}n ∼GLT fp(θ) follows from (3.161) and GLT 3 – GLT 4, taking into account that
{R[p]

n }n is zero-distributed by Z 1.

Step 4. Now we prove (3.169) in the case where g ∈C([0,1]). As in Step 4 of Section 3.3.1, the proof is based on the fact
that the B-spline basis functions N2,[p], . . . ,Nn+p−1,[p] are ‘locally supported’. Indeed, the width of the support [ti+1, ti+p+2]
of the ith basis function Ni+1,[p] is bounded by (p+1)/n and goes to 0 as n→ ∞. Moreover, the support itself is located
near the point i

n+p−2 , because

max
x̂∈[ti+1, ti+p+2]

∣∣∣∣x̂− i
n+ p−2

∣∣∣∣≤ Cp

n
(3.171)

for all i = 2, . . . ,n+ p−1 and for some constant Cp depending only on p. By (3.104) and (3.171), for all i, j = 1, . . . ,n+
p−2 we have∣∣∣(K[p]

n (g))i j− (Dn+p−2(g)K
[p]
n (1))i j

∣∣∣= ∣∣∣∣∫
[0,1]

[
g(x̂)−g

( i
n+ p−2

)]
N′j+1,[p](x̂)N

′
i+1,[p](x̂)dx̂

∣∣∣∣
≤ 4p2n2

∫
[ti+1, ti+p+2]

∣∣∣g(x̂)−g
( i

n+ p−2

)∣∣∣dx̂≤ 4p2(p+1)nωg

(Cp

n

)
.
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It follows that each entry of Zn = n−1K[p]
n (g)− n−1Dn+p−2(g)K

[p]
n (1) is bounded in modulus by Cωg(1/n). Moreover,

Zn is banded with bandwidth at most 2p+ 1, due to the local support property of the B-spline basis functions Ni,[p].
By (3.1) we conclude that ‖Zn‖ ≤ Cωg(1/n)→ 0 as n→ ∞. Thus, {Zn}n ∼σ 0, which implies (3.169) by Step 3 and
GLT 3 – GLT 4.

Step 5. Finally, we prove (3.169) in the general case where g ∈ L1([0,1]). By the density of C([0,1]) in L1([0,1]), there
exist continuous functions gm ∈C([0,1]) such that gm→ g in L1([0,1]). By Step 4,

{n−1K[p]
n (gm)}n ∼GLT gm(x̂) fp(θ).

Moreover,
gm(x̂) fp(θ)→ g(x̂) fp(θ) in measure.

We show that
{n−1K[p]

n (gm)}n
a.c.s.−→ {n−1K[p]

n (g)}n.

Using (3.104) and (3.4), we obtain

‖K[p]
n (g)−K[p]

n (gm)‖1 ≤
n+p−2

∑
i, j=1

∣∣∣(K[p]
n (g))i j− (K[p]

n (gm))i j

∣∣∣
=

n+p−2

∑
i, j=1

∣∣∣∣∫
[0,1]

[
g(x̂)−gm(x̂)

]
N′j+1,[p](x̂)N

′
i+1,[p](x̂)dx̂

∣∣∣∣
≤
∫
[0,1]
|g(x̂)−gm(x̂)|

n+p−2

∑
i, j=1

|N′j+1,[p](x̂)| |N
′
i+1,[p](x̂)|dx̂

≤ 4p2n2
∫
[0,1]
|g(x̂)−gm(x̂)|dx̂

and
‖n−1K[p]

n (g)−n−1K[p]
n (gm)‖1 ≤ 4p2n‖g−gm‖L1 .

Thus, {n−1K[p]
n (gm)}n

a.c.s.−→ {n−1K[p]
n (g)}n by ACS 3. The relation (3.169) now follows from GLT 7.

Remark 3.11 (formal structure of the symbol). Problem (3.142) can be formally rewritten as in (3.82). If, for any u :
Ω→R, we define û : [0,1]→R as in (3.88), then u satisfies (3.82) if and only if û satisfies the corresponding transformed
problem (3.89), in which the higher-order operator takes the form −aG(x̂)û′′(x̂). It is then clear that, similarly to the
collocation case (see Remark 3.8), even in the Galerkin case the symbol fG,p(x̂,θ) = aG(x̂)|G′(x̂)| fp(θ) preserves the
formal structure of the higher-order operator associated with the transformed problem (3.89). However, in this Galerkin
context we notice the appearance of the factor |G′(x̂)|, which is not present in the collocation setting; cf. (3.166) with
(3.132).

Remark 3.12 (the case p = 1). For p = 1, the symbol fp(θ) in (3.158) is given by f1(θ) = 2−2cosθ . This should not
come as a surprise, because the Galerkin B-spline IgA approximation with p = 1 (and G equal to the identity map over
[0,1]) coincides precisely with the linear FE approximation considered in Section 3.3.1; the only (unessential) difference
is that the discretization step in Section 3.3.1 was chosen as h = 1

n+1 , while in this section we have h = 1
n . In particular,

the B-spline basis functions of degree 1, namely N2,[1], . . . ,Nn,[1], are the hat-functions; cf. (3.98) (with p = 1) and (3.61).

Remark 3.13. The matrix A[p]
G,n in (3.147), which we decomposed as in (3.148), can also be decomposed as follows,

according to the diffusion, convection and reaction terms:

A[p]
G,n = K[p]

G,n +H [p]
G,n +M[p]

G,n,

where the diffusion, convection and reaction matrices are given by

K[p]
G,n =

[∫
[0,1]

a(G(x̂))
|G′(x̂)|

N′j+1,[p](x̂)N
′
i+1,[p](x̂)dx̂

]n+p−2

i, j=1
, (3.172)

H [p]
G,n =

[∫
[0,1]

b(G(x̂))|G′(x̂)|
G′(x̂)

N′j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i, j=1
, (3.173)

M[p]
G,n =

[∫
[0,1]

c(G(x̂))|G′(x̂)|N j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i, j=1
; (3.174)
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note that the diffusion matrix is the same as in (3.149). Let Ω be a bounded open interval of R and let p ≥ 1. Then, the
following results hold.

(a) Suppose
a(G(x̂))
|G′(x̂)|

∈ L1([0,1]);

then {n−1K[p]
G,n}n ∼GLT fG,p and {n−1K[p]

G,n}n ∼σ ,λ fG,p, where

fG,p(x̂,θ) =
a(G(x̂))
|G′(x̂)|

fp(θ) (3.175)

and fp(θ) is defined in (3.158); note that fG,p(x̂,θ) is the same as in (3.166).

(b) Suppose
b(G(x̂))|G′(x̂)|

G′(x̂)
∈C([0,1]);

then {−iH [p]
G,n}n ∼GLT gG,p and {−iH [p]

G,n}n ∼σ ,λ gG,p, where

gG,p(x̂,θ) =
b(G(x̂))|G′(x̂)|

G′(x̂)
gp(θ) (3.176)

and gp(θ) is defined in (3.159).

(c) Suppose
c(G(x̂))|G′(x̂)| ∈ L1([0,1]);

then {nM[p]
G,n}n ∼GLT hG,p and {nM[p]

G,n}n ∼σ ,λ hG,p, where

hG,p(x̂,θ) = c(G(x̂))|G′(x̂)|hp(θ) (3.177)

and hp(θ) is defined in (3.160).

While the proof of (b) requires some work, the proofs of (a) and (c) can be done by following the same argument as in the
proof of Theorem 3.13. The proofs of (a)–(c) can be found in [33, solution to Exercise 10.5].

3.4.3 Galerkin B-Spline IgA Discretization of Second-Order Eigenvalue Problems

Let R+ be the set of positive real numbers. Consider the following second-order eigenvalue problem: find eigenvalues
λ j ∈ R+ and eigenfunctions u j, for j = 1,2, . . . ,∞, such that{

−(a(x)u′j(x))′ = λ jc(x)u j(x), x ∈Ω,

u j(x) = 0, x ∈ ∂Ω,
(3.178)

where Ω is a bounded open interval of R and we assume that a,c ∈ L1(Ω) and a,c > 0 a.e. in Ω. It can be shown that
the eigenvalues λ j must necessarily be real and positive. This can be formally seen by multiplying (3.178) by u j(x) and
integrating over Ω:

λ j =
−
∫

Ω
(a(x)u′j(x))

′u j(x)dx∫
Ω

c(x)(u j(x))2dx
=

∫
Ω

a(x)(u′j(x))
2dx∫

Ω
c(x)(u j(x))2dx

> 0.

Isogeometric Galerkin approximation The weak form of (3.178) reads as follows: find eigenvalues λ j ∈ R+ and
eigenfunctions u j ∈ H1

0 (Ω), for j = 1,2, . . . ,∞, such that

a(u j,w) = λ j(cu j,w), ∀w ∈ H1
0 (Ω),

where

a(u j,w) =
∫

Ω

a(x)u′j(x)w
′(x)dx,

(cu j,w) =
∫

Ω

c(x)u j(x)w(x)dx.
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In the standard Galerkin method, we choose a finite dimensional vector space W ⊂ H1
0 (Ω), the so-called approximation

space, we let N = dim W and we look for approximations of the eigenpairs (λ j,u j), j = 1,2, . . . ,∞, by solving the
following discrete (Galerkin) problem: find λ j,W ∈ R+ and u j,W ∈ W, for j = 1, . . . ,N, such that

a(u j,W ,w) = λ j,W(cu j,W ,w), ∀w ∈ W. (3.179)

Assuming that both the exact and numerical eigenvalues are arranged in non-decreasing order, the pair (λ j,W ,u j,W) is
taken as an approximation to the pair (λ j,u j) for all j = 1,2, . . . ,N. The numbers λ j,W/λ j−1, j = 1, . . . ,N, are referred
to as the (relative) eigenvalue errors. If {ϕ1, . . . ,ϕN} is a basis of W, we can identify each w ∈ W with its coefficient
vector relative to this basis. With this identification in mind, solving the discrete problem (3.179) is equivalent to solving
the generalized eigenvalue problem

Ku j,W = λ j,WMu j,W , (3.180)

where u j,W is the coefficient vector of u j,W with respect to {ϕ1, . . . ,ϕN} and

K =

[∫
Ω

a(x)ϕ ′j(x)ϕ
′
i (x)dx

]N

i, j=1
, (3.181)

M =

[∫
Ω

c(x)ϕ j(x)ϕi(x)dx
]N

i, j=1
. (3.182)

The matrices K and M are referred to as the stiffness and mass matrix, respectively. Due to our assumption that a,c > 0
a.e., both K and M are symmetric positive definite, regardless of the chosen basis functions ϕ1, . . . ,ϕN . Moreover, it is
clear from (3.180) that the numerical eigenvalues λ j,W , j = 1, . . . ,N, are just the eigenvalues of the matrix

L = M−1K. (3.183)

In the isogeometric Galerkin method, we assume that the physical domain Ω is described by a global geometry
function G : [0,1]→ Ω, which is invertible and satisfies G(∂ ([0,1])) = ∂Ω. We fix a set of basis functions {ϕ̂1, . . . , ϕ̂N}
defined on the reference (parametric) domain [0,1] and vanishing on the boundary ∂ ([0,1]), and we find approximations
to the exact eigenpairs (λ j,u j), j = 1,2, . . . ,∞, by using the standard Galerkin method described above, in which the
approximation space is chosen as W = span(ϕ1, . . . ,ϕN), where

ϕi(x) = ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂). (3.184)

The resulting stiffness and mass matrices K and M are given by (3.181)–(3.182), with the basis functions ϕi defined as in
(3.184). If we assume that G and ϕ̂i, i = 1, . . . ,N, are sufficiently regular, we can apply standard differential calculus to
obtain for K and M the following expressions:

K =

[∫
[0,1]

a(G(x̂))
|G′(x̂)|

ϕ̂
′
j(x̂)ϕ̂

′
i (x̂)dx̂

]N

i, j=1
, (3.185)

M =

[∫
[0,1]

c(G(x̂))|G′(x̂)|ϕ̂ j(x̂)ϕ̂i(x̂)dx̂
]N

i, j=1
. (3.186)

GLT analysis of the Galerkin B-spline IgA discretization matrices Following the approach of Sections 3.4.1–3.4.2,
we choose the basis functions ϕ̂i, i = 1, . . . ,N, as the B-splines Ni+1,[p], i = 1, . . . ,n+ p− 2. The resulting stiffness and
mass matrices (3.185)–(3.186) are given by

K[p]
G,n =

[∫
[0,1]

a(G(x̂))
|G′(x̂)|

N′j+1,[p](x̂)N
′
i+1,[p](x̂)dx̂

]n+p−2

i, j=1
,

M[p]
G,n =

[∫
[0,1]

c(G(x̂))|G′(x̂)|N j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i, j=1
,

and it is immediately seen that they are the same as the diffusion and reaction matrices in (3.172) and (3.174). The
numerical eigenvalues will be henceforth denoted by λ j,n, j = 1, . . . ,n + p− 2; as noted above, they are simply the
eigenvalues of the matrix

L[p]
G,n = (M[p]

G,n)
−1K[p]

G,n.
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Theorem 3.14. Let Ω be a bounded open interval of R and let a,c∈ L1(Ω) with a,c > 0 a.e. Let p≥ 1 and let G : [0,1]→
Ω be such that

a(G(x̂))
|G′(x̂)|

∈ L1([0,1]).

Then
{n−2L[p]

G,n}n ∼GLT eG,p(x̂,θ) (3.187)

and
{n−2L[p]

G,n}n ∼σ ,λ eG,p(x̂,θ), (3.188)

where

eG,p(x̂,θ) = (hG,p(θ))
−1 fG,p(θ) =

a(G(x̂))
c(G(x̂))(G′(x̂))2 ep(θ), (3.189)

ep(θ) = (hp(θ))
−1 fp(θ), (3.190)

and fp(θ), hp(θ), fG,p(x̂,θ), hG,p(x̂,θ) are given by (3.158), (3.160), (3.175), (3.177), respectively.

Proof. We have a(G(x̂))/|G′(x̂)| ∈ L1([0,1]) by assumption and c(G(x̂))|G′(x̂)| ∈ L1([0,1]) because c ∈ L1(Ω) by as-
sumption and ∫

[0,1]
c(G(x̂))|G′(x̂)|dx̂ =

∫
Ω

c(x)dx.

Hence, by Remark 3.13,
{n−1K[p]

G,n}n ∼GLT fG,p, {nM[p]
G,n}n ∼GLT hG,p,

and the relations (3.187)–(3.188) follow from Theorem 3.1, taking into account that hG,p(x̂,θ) 6= 0 a.e. by our assumption
that c(x)> 0 a.e. and by the positivity of hp(θ); see (3.141) and Remark 3.10.

For p = 1,2,3,4, Eq. (3.190) gives

e1(θ) =
6(1− cosθ)

2+ cosθ
,

e2(θ) =
20(3−2cosθ − cos(2θ))

33+26cosθ + cos(2θ)
,

e3(θ) =
42(40−15cosθ −24cos(2θ)− cos(3θ))

1208+1191cosθ +120cos(2θ)+ cos(3θ)
,

e4(θ) =
72(1225−154cosθ −952cos(2θ)−118cos(3θ)− cos(4θ))

78095+88234cosθ +14608cos(2θ)+502cos(3θ)+ cos(4θ)
.

These equations are the analogs of formulas (117), (130), (135), (140) obtained by engineers in [40]; see also formulas
(32), (33) in [18], formulas (23), (56) in [41], and formulas (23), (24) in [46]. We may therefore conclude that (3.189) is
a generalization of these formulas to any degree p≥ 1.

Remark 3.14. Contrary to the B-spline IgA discretizations investigated herein and in [40], the authors of [18, 41, 46]
considered NURBS IgA discretizations. However, the same formulas are obtained in both cases. This can be easily
explained in view of the results of [32], where it is shown that the symbols fp, gp, hp in (3.158)–(3.160) are exactly the
same in the B-spline and NURBS IgA frameworks.

For an extension of the results obtained in this section, we refer the reader to the engineering paper [28].
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[36] GRENANDER U., SZEGŐ G. Toeplitz Forms and Their Applications. Second Edition, AMS Chelsea Publishing, New York
(1984).

[37] HIGHAM N. J. Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008).
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