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Abstract After presenting a detailed summary of the main analytic properties of B-

splines, we discuss in details the approximation power of the spline space they span.

More precisely, we analyze the distance of any sufficiently smooth function from

the considered spline space. Using the properties of the B-spline basis, we explicitly

construct a (local) quasi-interpolant based on integral averages which achieves the

optimal accuracy for approximating the function and its derivatives, and we deter-

mine the corresponding error bounds.

1 B-splines and piecewise polynomials

This section introduces one of the most powerful tools in CAGD: B-splines. We

present the definition and main properties of the B-spline basis as well as the prop-

erties of the space they span.

1.1 B-splines

We start by defining B-spline functions (in short B-splines) 1 and derive some of

their most fundamental properties. B-splines are piecewise polynomials with a cer-

tain global smoothness. The positions where the pieces meet are known as knots.

Tom Lyche

Department of Mathematics, University of Oslo, Norway

e-mail: tom@math.uio.no

Carla Manni, Hendrik Speleers

Department of Mathematics, University of Rome “Tor Vergata”, Italy

e-mail: manni@mat.uniroma2.it, speleers@mat.uniroma2.it
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1.1.1 Definition and basic properties

In order to define B-splines we need the concept of knot sequences.

Definition 1. A knot sequence ξξξ is a nondecreasing sequence of real numbers,

ξξξ := {ξi}m
i=1 = {ξ1 ≤ ξ2 ≤ ·· · ≤ ξm}, m ∈ N.

The elements ξi are called knots.

Provided that m ≥ p + 2 we can define B-splines of degree p over the knot-

sequence ξξξ .

Definition 2. Suppose for a nonnegative integer p and some integer j that ξ j ≤
ξ j+1 ≤ ·· · ≤ ξ j+p+1 are p+2 real numbers taken from a knot sequence ξξξ . The j-th

B-spline B j,p,ξξξ : R→R of degree p is identically zero if ξ j+p+1 = ξ j and otherwise

defined recursively by 2

B j,p,ξξξ (x) :=
x− ξ j

ξ j+p − ξ j

B j,p−1,ξξξ (x)+
ξ j+p+1 − x

ξ j+p+1 − ξ j+1

B j+1,p−1,ξξξ (x), (1)

starting with

Bi,0,ξξξ (x) :=

{
1, if x ∈ [ξi,ξi+1),

0, otherwise.

Here we used the convention that fractions with zero denominator have value zero.

We start with some preliminary remarks.

• For degree 0 the B-spline B0,p,ξξξ is simply the characteristic function of the half

open interval [ξ j,ξ j+1). This implies that a B-spline is continuous except possi-

bly at a knot ξ . We have B j,p,ξξξ (ξ ) = B j,p,ξξξ (ξ+), where

x+ := lim
t→x
t>x

t, x− := lim
t→x
t<x

t, x ∈ R.

Thus a B-spline is right continuous, i.e., the value at a point x is obtained by

taking limits from the right.

• We also use the notation

B[ξ j, . . . ,ξ j+p+1] := B j,p,ξξξ ,

showing explicitly on which knots the B-spline depends.

2 The recurrence relation is due to Cox, de Boor and Mansfield [6, 2]. However, it appears already

in works by Popoviciu and Chakalov in the 1930’s; see [5] for an account of the early history of

splines. For the modern theory of splines we refer to the seminal papers by Schoenberg [16, 17, 18]

and Curry/Schoenberg [7, 8]. In their works, B-splines were studied using divided differences.
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• We say that a knot has multiplicity µ if it occurs exactly µ times in the knot

sequence. A knot is called simple, double, triple, . . . if its multiplicity is equal

to 1,2,3, . . ., and a multiple knot in general.

Example 3. A B-spline of degree 1 is also called a linear B-spline or a hat function. The recur-

rence relation (1) takes the form

B j,1,ξξξ (x) =
x−ξ j

ξ j+1 −ξ j

B j,0,ξξξ (x)+
ξ j+2 − x

ξ j+2 −ξ j+1

B j+1,0,ξξξ (x),

resulting in

B j,1,ξξξ (x) =





x−ξ j

ξ j+1 −ξ j

, if x ∈ [ξ j,ξ j+1),

ξ j+2 − x

ξ j+2 −ξ j+1
, if x ∈ [ξ j+1,ξ j+2),

0, otherwise.

(2)

The linear B-spline is discontinuous at a double knot and continuous at a simple knot.

Example 4. A B-spline of degree 2 is also called a quadratic B-spline. Using the recurrence

relation (1), the three pieces of the quadratic B-spline B j,2,ξξξ are given by

B j,2,ξξξ (x) =





(x−ξ j)
2

(ξ j+2 −ξ j)(ξ j+1 −ξ j)
, if x ∈ [ξ j,ξ j+1),

(x−ξ j)(ξ j+2 − x)

(ξ j+2 −ξ j)(ξ j+2 −ξ j+1)
+

(x−ξ j+1)(ξ j+3 − x)

(ξ j+2 −ξ j+1)(ξ j+3 −ξ j+1)
, if x ∈ [ξ j+1,ξ j+2),

(ξ j+3 − x)2

(ξ j+3 −ξ j+1)(ξ j+3 −ξ j+2)
, if x ∈ [ξ j+2,ξ j+3),

0, otherwise.

(3)

The general explicit expression for a B-spline quickly becomes complicated. Ap-

plying the recurrence relation repeatedly we find

B j,p,ξξξ (x) =
j+p

∑
i= j

B
{i}
j,p,ξξξ

(x)Bi,0,ξξξ (x), p ≥ 0, (4)

where each B
{i}
j,p,ξξξ

is a polynomial of degree p which is zero if ξi = ξi+1. In particu-

lar, for the nontrivial cases we have

B
{ j}
j,0,ξξξ

(x) = 1, B
{ j}
j,1,ξξξ

(x) =
x− ξ j

ξ j+1 − ξ j

, B
{ j+1}
j,1,ξξξ

(x) =
ξ j+2 − x

ξ j+2 − ξ j+1

.

For p ≥ 2, in the nontrivial cases, it follows from Definition 2 that the first and last

polynomial pieces in (4) are given by
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B
{ j}
j,p,ξξξ

(x) = (x− ξ j)
p
/ p

∏
i=1

(ξ j+i − ξ j),

B
{ j+p}
j,p,ξξξ

(x) = (ξ j+p+1 − x)p
/ p

∏
i=1

(ξ j+p+1 − ξ j+i).

(5)

These expressions are valid for multiple knots. Indeed, if ξk+1 = ξk for some k then

Bk,0,ξξξ = 0 and the corresponding polynomial piece is not used.

Using induction on the recurrence relation (1), we deduce immediately the fol-

lowing basic properties of a B-spline.

• Local support. A B-spline is locally supported on the interval given by the ex-

treme knots used in its definition, i.e.,

B j,p,ξξξ (x) = 0, x /∈ [ξ j,ξ j+p+1). (6)

• Piecewise structure. A B-spline has a piecewise polynomial structure, i.e.,

B
{m}
j,p,ξξξ

∈ Pp, m = j, . . . , j+ p. (7)

• Nonnegativity. A B-spline is nonnegative everywhere, and positive inside its

support, i.e.,

B j,p,ξξξ (x)≥ 0, x ∈ R, and B j,p,ξξξ (x)> 0, x ∈ (ξ j,ξ j+p+1). (8)

• Translation and scaling invariance. A B-spline is invariant under a translation

and/or scaling transformation of its knot sequence, i.e.,

B j,p,αξξξ+β (αx+β ) = B j,p,ξξξ (x), α,β ∈ R, α 6= 0, (9)

where αξξξ +β := (αξ j +β , . . . ,αξ j+p+1 +β ).

Further properties will be considered in the next sections.

1.1.2 Dual polynomials

To each B-spline B j,p,ξξξ of degree p, there corresponds a polynomial ψ j,p,ξξξ of degree

p with roots at the interior knots of the B-spline. We define ψ j,0,ξξξ := 1 and

ψ j,p,ξξξ (y) := (y− ξ j+1) · · · (y− ξ j+p), y ∈ R, p ∈ N. (10)

This polynomial is called dual polynomial. Many of the B-spline properties can be

proved in an elegant way by exploiting a recurrence relation for these dual polyno-

mials.

Theorem 5. For p ∈ N, x,y ∈ R and ξ j+p > ξ j, we have the dual recurrence

relation
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(y− x)ψ j,p−1,ξξξ(y) =
x− ξ j

ξ j+p − ξ j

ψ j,p,ξξξ (y)+
ξ j+p − x

ξ j+p − ξ j

ψ j−1,p,ξξξ (y), (11)

and the dual difference formula

ψ j,p−1,ξξξ (y) =
ψ j−1,p,ξξξ (y)

ξ j+p − ξ j

−
ψ j,p,ξξξ (y)

ξ j+p − ξ j

. (12)

Proof. For fixed y ∈ R let us define the function ℓy : R→ R given by ℓy(x) = y− x.

By linear interpolation, we have

ℓy(x) =
x− ξ j

ξ j+p − ξ j

ℓy(ξ j+p)+
ξ j+p − x

ξ j+p − ξ j

ℓy(ξ j).

Multiplying both sides by ψ j,p−1,ξξξ (y) we obtain (11). Moreover, (12) follows by

differentiating with respect to x in (11). ⊓⊔

Proposition 6. The r-th derivative of the dual polynomial ψ j,p,ξξξ for 0 ≤ r ≤ p can

be bounded as follows:

|Drψ j,p,ξξξ (y)| ≤
p!

(p− r)!
(ξ j+p+1 − ξ j)

p−r, ξ j ≤ y ≤ ξ j+p+1. (13)

Moreover,

|Drψ j,p,ξξξ (y)| ≤
p!

(p− r)!
(ξ j+p − ξ j+1)

p−r, ξ j+1 ≤ y ≤ ξ j+p. (14)

Here we define 00 := 1 if r = p and ξ j+p = ξ j+1.

Proof. Clearly (13) holds for all p ∈ N0 if r = 0. Using induction on r, p and the

product rule for differentiation, we get

|Drψ j,p,ξξξ (y)|= |Dr(ψ j,p−1,ξξξ (y)(y− ξ j+p))|
= |(Drψ j,p−1,ξξξ (y))(y− ξ j+p)+ rDr−1ψ j,p−1,ξξξ (y)|

≤
(

(p− 1)!

(p− 1− r)!
+ r

(p− 1)!

(p− r)!

)
(ξ j+p+1 − ξ j)

p−r,

and (13) follows. The proof of (14) is similar. ⊓⊔

1.1.3 Local Marsden identity and linear independence

In this and the following sections (unless specified otherwise) we will extend the

knots ξ j ≤ ·· · ≤ ξ j+p+1 of B j,p,ξξξ by defining p extra knots at each end, and we will

assume

ξξξ := {ξ j−p ≤ ·· · ≤ ξ j−1 < ξ j ≤ ·· · ≤ ξ j+p+1 < ξ j+p+2 ≤ ·· · ≤ ξ j+2p+1}. (15)
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These extra knots can be defined in any way we like. One possibility is

ξ j−p = · · ·= ξ j−1 := ξ j − 1, ξ j+p+1 + 1 =: ξ j+p+2 = · · ·= ξ j+2p+1. (16)

On such a knot sequence 2p + 1 B-splines Bi,p,ξξξ = B[ξi, . . . ,ξi+p+1], i = j −
p, . . . , j+ p are well defined.

The following identity was first proved by Marsden [13] and simplifies many

dealings with B-splines.

Theorem 7 (Local Marsden identity). For j ≤ m ≤ j+ p and ξm < ξm+1, we have

(y− x)p =
m

∑
i=m−p

ψi,p,ξξξ (y)Bi,p,ξξξ (x), x ∈ [ξm,ξm+1), y ∈ R. (17)

If B
{m}
i,p,ξξξ

is the polynomial which is equal to Bi,p,ξξξ (x) for x ∈ [ξm,ξm+1) then

(y− x)p =
m

∑
i=m−p

ψi,p,ξξξ (y)B
{m}
i,p,ξξξ

(x), x,y ∈ R. (18)

Proof. Suppose x ∈ [ξm,ξm+1). The equality (17) can be proved by induction. It is

clearly true for p = 0. Let us now assume it holds for degree p−1. Then, by means

of the dual recurrence (11) and the B-spline recurrence relation we obtain

(y− x)p = (y− x)(y− x)p−1 = (y− x)
m

∑
i=m−p+1

ψi,p−1,ξξξ (y)Bi,p−1,ξξξ (x)

=
m

∑
i=m−p+1

(
x− ξi

ξi+p − ξi

ψi,p,ξξξ (y)+
ξi+p − x

ξi+p − ξi

ψi−1,p,ξξξ

)
Bi,p−1,ξξξ (x)

=
m

∑
i=m−p

(
x− ξi

ξi+p − ξi

Bi,p−1,ξξξ (x)+
ξi+p+1 − x

ξi+p+1 − ξi+1

Bi+1,p−1,ξξξ (x)

)
ψi,p,ξξξ (y)

=
m

∑
i=m−p

ψi,p,ξξξ (y)Bi,p,ξξξ (x).

Here we used that
x−ξi

ξi+p−ξi
Bi,p−1,ξξξ (x) = 0 for i = m− p,m+ 1. ⊓⊔

The local Marsden identity immediately leads to the following properties, where

we suppose ξm < ξm+1 for some j ≤ m ≤ j+ p.

• Local representation of monomials. We have for p ≥ k,

xk =
m

∑
i=m−p

(
(−1)k k!

p!
Dp−kψ j,p,ξξξ (0)

)
Bi,p,ξξξ (x) x ∈ [ξm,ξm+1). (19)

Proof. Differentiating p− k times with respect to y in (18) results in
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(y− x)k

k!
=

m

∑
i=m−p

(
1

p!
Dp−kψi,p,ξξξ (y)

)
Bi,p,ξξξ (x), x ∈ [ξm,ξm+1), y ∈R,

(20)

for k = 0,1, . . . , p. Setting y = 0 in (20) results in (19). ⊓⊔

• Local partition of unity. Taking k = 0 in (19) gives

m

∑
i=m−p

Bi,p,ξξξ (x) = 1, x ∈ [ξm,ξm+1). (21)

• Local linear independence. The two sets {Bi,p,ξξξ}m
i=m−p and {ψi,p,ξξξ}m

i=m−p form

both a basis for the polynomial space Pp on [ξm,ξm+1).

Proof. From (20) we see that on [ξm,ξm+1) every polynomial of degree at most

p can be written as a linear combination of the p+ 1 polynomials Bi,p,ξξξ (x), i =
m− p, . . . ,m. Since the dimension of the space Pp is p+ 1, these polynomials

must be linearly independent and a basis. The result for {ψi,p,ξξξ}m
i=m−p follows

by symmetry. ⊓⊔

1.1.4 Smoothness, differentiation and integration

The derivative of a B-spline can be expressed by means of a simple difference for-

mula.

Theorem 8 (Differentiation formula). We have

D+B j,p,ξξξ (x) = p

(
B j,p−1,ξξξ (x)

ξ j+p − ξ j
−

B j+1,p−1,ξξξ(x)

ξ j+p+1 − ξ j+1

)
, p ≥ 1, (22)

where fractions with zero denominator have value zero.

Proof. If ξ j+p+1 = ξ j then both sides of (22) are zero, so we can assume ξ j+p+1 >
ξ j. We continue to use the extra knots (15). If x < ξ j or x ≥ ξ j+p+1 then both sides

of (22) are zero. Otherwise x ∈ [ξm,ξm+1) for some m with j ≤ m ≤ j + p and it

is enough to prove (22) for such an interval. Differentiating both sides of (17) with

respect to x gives

−p(y− x)p−1 =
m

∑
i=m−p

DBi,p,ξξξ (x)ψi,p(y), x ∈ [ξm,ξm+1). (23)

On the other hand, using the local Marsden identity (17) for degree p− 1 and the

difference formula for dual polynomials (12) results in
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−p(y− x)p−1 =−p
m

∑
i=m−p+1

ψi,p−1(y)Bi,p−1,ξξξ (x)

= p
m

∑
i=m−p+1

(
ψi,p(y)

ξi+p − ξi

− ψi−1,p(y)

ξi+p − ξi

)
Bi,p−1,ξξξ (x)

=
m

∑
i=m−p

p

(
Bi,p−1,ξξξ (x)

ξi+p − ξi

−
Bi+1,p−1,ξξξ (x)

ξi+p+1 − ξi+1

)
ψi,p(y).

By comparing this with (23) and using the linear independence of the dual poly-

nomials, it follows that (22) holds for i = m− p, . . . ,m. Since m− p ≤ j ≤ m, (22)

holds for i = j. ⊓⊔

Example 9. The differentiation formula (22) for p= 2 together with the expression (2) immediately

gives the piecewise form of the derivative of the quadratic B-spline B j,2,ξξξ :

D+B j,2,ξξξ (x) =





2(x−ξ j)

(ξ j+2 −ξ j)(ξ j+1 −ξ j)
, if x ∈ [ξ j,ξ j+1),

2(ξ j+2 − x)

(ξ j+2 −ξ j)(ξ j+2 −ξ j+1)
− 2(x−ξ j+1)

(ξ j+3 −ξ j+1)(ξ j+2 −ξ j+1)
, if x ∈ [ξ j+1,ξ j+2),

− 2(ξ j+3 − x)

(ξ j+3 −ξ j+1)(ξ j+3 −ξ j+2)
, if x ∈ [ξ j+2,ξ j+3),

0, otherwise.

This is in agreement with taking the derivative of the piecewise expression (3) of B j,2,ξξξ given in

Example 4.

Proposition 10. The r-th derivative of the B-spline B j,p,ξξξ for 0 ≤ r ≤ p can be

bounded as follows. For any x ∈ [ξm,ξm+1) with j ≤ m ≤ j+ p we have

|DrB j,p,ξξξ (x)| ≤ 2r p!

(p− r)!

p

∏
k=p−r+1

1

∆m,k
, (24)

where

∆m,k := min
m−k+1≤i≤m

hi,k, hi,k := ξi+k − ξi, k = 1, . . . , p. (25)

Proof. This holds for r = 0 because of the nonnegativity of B j,p,ξξξ and the partition

of unity property (21). By the differentiation formula (22) and the local support

property (6) we have

DrB j,p,ξξξ (x)

= p





−Dr−1B j+1,p−1,ξξξ (x)/h j+1,p, if m = j+ p,

Dr−1B j,p−1,ξξξ (x)/h j,p−Dr−1B j+1,p−1,ξξξ (x)/h j+1,p, if j < m < j+ p,

Dr−1B j,p−1,ξξξ (x)/h j,p, if m = j.

It follows that
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|DrB j,p,ξξξ (x)| ≤ 2p max
m−p+1≤i≤m

|Dr−1Bi,p−1,ξξξ (x)|/∆m,p,

and by induction on r we obtain (24). ⊓⊔

Note that the upper bound in (24) is well defined since ∆m,k ≥ ξm+1 − ξm > 0.

Theorem 11 (Smoothness property). If ξ is a knot of B j,p,ξξξ of multiplicity µ ≤
p+ 1 then

B j,p,ξξξ ∈Cp−µ(ξ ),

i.e., its derivatives of order 0,1, . . . , p− µ are continuous at ξ .

Proof. Suppose ξ is a knot of B j,p,ξξξ of multiplicity µ . We first consider the smooth-

ness property when µ = p+1. For x ∈ [ξ j,ξ j+p+1) it follows immediately from the

first and last piece in (4) and (5) that

B j,p,ξξξ (x) = (x− ξ j)
p
/
(ξ j+p+1 − ξ j)

p, ξ j < ξ j+1 = · · ·= ξ j+p+1, (26)

B j,p,ξξξ (x) = (ξ j+p+1 − x)p
/
(ξ j+p+1 − ξ j)

p, ξ j = · · ·= ξ j+p < ξ j+p+1. (27)

These two B-splines are discontinuous with a jump of absolute size one at the mul-

tiple knot showing the smoothness property for µ = p+ 1.

Let us now consider the case where B j,p,ξξξ has an interior knot of multiplicity

equal to µ = p, i.e., ξ j < ξ j+1 = · · ·= ξ j+p < ξ j+p+1. For x ∈ [ξ j,ξ j+p+1) it follows

from the first and last pieces in (4) and (5) that

B j,p,ξξξ (x) =
(x− ξ j)

p

(ξ j+p − ξ j)p
B j,0,ξξξ (x)+

(ξ j+p+1 − x)p

(ξ j+p+1 − ξ j+1)p
B j+p,0,ξξξ (x). (28)

The two nontrivial pieces have both value one at the center knot ξ j+1 = ξ j+p, and

B j,p,ξξξ is continuous on R. Moreover, the first derivative has a nonzero jump at the

center knot.

For the remaining cases we use induction on p to show that B j,p,ξξξ ∈ Cp−µ(ξ ).
The case p = 1 follows from Example 3. Suppose for some p ≥ 2 that B j,p−1,ξξξ ∈
Cp−1−µ(ξ ) at a knot ξ of multiplicity µ . For the multiplicity p case ξ = ξ j = · · ·=
ξ j+p−1 < ξ j+p ≤ ξ j+p+1 we use the recurrence relation

B j,p,ξξξ (x) =
x− ξ j

ξ j+p − ξ j

B j,p−1,ξξξ (x)+
ξ j+p+1− x

ξ j+p+1 − ξ j+1

B j+1,p−1,ξξξ (x).

The first term vanishes at x = ξ = ξ j. Since B j+1,p−1,ξξξ has a knot of multiplicity

p− 1 at ξ , it follows from the induction hypothesis that it is continuous there. We

conclude that B j,p,ξξξ is continuous at ξ . The case where the right end knot of B j,p,ξξξ

has multiplicity p is handled similarly. Finally, if µ ≤ p − 1 then both terms in

the differentiation formula (22) has a knot of multiplicity at most µ at ξ and by the

induction hypothesis we obtain D+B j,p,ξξξ ∈Cp−1−µ(ξ ). Moreover, by the recurrence

relation and the induction hypothesis it follows that B j,p,ξξξ is continuous at ξ , and so

we also conclude that B j,p,ξξξ ∈Cp−µ(ξ ) if µ ≤ p− 1. ⊓⊔
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The B-spline B j,p,ξξξ is supported on the interval [ξ j,ξ j+p+1]. Hence, Theorem 11

implies that B j,p,ξξξ is continuous on R whenever ξ j+p > ξ j and ξ j+p+1 > ξ j+1. Simi-

larly, B j,p,ξξξ is Cr-continuous onR whenever ξ j+p−r+i > ξ j+i for each i= 0, . . . ,r+1

and −1 ≤ r < p.

Theorem 12 (Integration formula). We have

γ j,p,ξξξ :=

∫ ξ j+p+1

ξ j

B j,p,ξξξ (x)dx =
ξ j+p+1 − ξ j

p+ 1
. (29)

Proof. This time we define p+ 1 extra knots at each end, and we assume

ξξξ := {ξ j−p−1 = · · ·= ξ j−1 < ξ j ≤ ·· · ≤ ξ j+p+1 < ξ j+p+2 = · · ·= ξ j+2p+2}.

On this knot sequence we consider p+ 1 B-splines Bi,p+1,ξξξ , i = j− p− 1, . . . , j− 1

of degree p+ 1. From Theorem 11 we know that these B-splines are continuous on

R. Therefore, we get for i = j− p− 1, . . . , j− 1,

0 = Bi,p+1,ξξξ (ξi+p+2)−Bi,p+1,ξξξ(ξi) =
∫ ξi+p+2

ξi

D+Bi,p+1,ξξξ (x)dx = Ei −Ei+1,

where by the local support and the differentiation formula (22),

Ei :=
p+ 1

ξi+p+1 − ξi

∫ ξi+p+1

ξi

Bi,p,ξξξ (x)dx, i = j− p− 1, . . . , j.

This means that E j = E j−1 = · · · = E j−p−1. Moreover, since ξ j−p−1 = · · · = ξ j−1,

we obtain from (27) that

E j−p−1 =
p+ 1

ξ j − ξ j−p−1

∫ ξ j

ξ j−p−1

(ξ j − x)p

(ξ j − ξ j−p−1)p
dx = 1,

and the integration formula (29) follows. ⊓⊔

1.2 Linear combinations of B-splines

We now analyse linear combinations of a given set of consecutive B-splines and

their properties.

1.2.1 The spline space Sp,ξξξ and some properties

Suppose for integers n > p ≥ 0 that a knot sequence

ξξξ := {ξi}n+p+1
i=1 = {ξ1 ≤ ξ2 ≤ ·· · ≤ ξn+p+1}, n ∈ N, p ∈ N0,



B-Splines and Spline Approximation 11

is given. This knot sequence allows us to define a set of n B-splines of degree p,

namely

{B1,p,ξξξ , . . . ,Bn,p,ξξξ}. (30)

We consider the space

Sp,ξξξ :=

{
s : [ξp+1,ξn+1]→ R : s =

n

∑
j=1

c jB j,p,ξξξ , c j ∈ R

}
. (31)

This is the space of splines spanned by the B-splines in (30) over the interval

[ξp+1,ξn+1], which is called the basic interval.

We now introduce some terminology to identify certain properties of knot se-

quences which are crucial in the study of the space (31).

• A knot sequence ξξξ is called (p+ 1)-regular if ξ j < ξ j+p+1 for j = 1, . . . ,n. By

the local support (6) such a knot sequence ensures that all the B-splines in (30)

are not identically zero.

• A knot sequence ξξξ is called (p+1)-basic if it is (p+1)-regular with ξp+1 < ξp+2

and ξn < ξn+1. As we will show later, the B-splines in (30) defined on a (p+1)-
basic knot sequence are linearly independent on the basic interval [ξp+1,ξn+1].

• A knot sequence ξξξ is called (p+ 1)-open on an interval [a,b] if it is (p+ 1)-
regular and it has end knots of multiplicity p+ 1, i.e.,

a := ξ1 = · · ·= ξp+1 < ξp+2 ≤ ·· · ≤ ξn < ξn+1 = · · ·= ξn+p+1 =: b. (32)

This sequence is often used in practice. In particular, it turns out to be natural to

construct open curves, clamped at two given points.

Some further preliminary remarks are in order here.

• We consider B-splines on a closed basic interval [ξp+1,ξn+1]. In order to avoid

the asymmetry at the right endpoint we define the B-splines to be left continuous

at the right endpoint, i.e., its value at ξn+1 is obtained by taking limits from the

left:

B j,p,ξξξ (ξn+1) := lim
x→ξn+1

x<ξn+1

B j,p,ξξξ (x), j = 1, . . . ,n. (33)

Note that for a (p+ 1)-open knot sequence the end condition (33) means that

Bn,p,ξξξ (ξn+p+1) = 1 and (6) has to be modified for this B-spline.

• We define a multiplicity function µξξξ : R → N0 given by µξξξ (ξi) = µi if ξi ∈ ξξξ

occurs exactly µi ≥ 1 times in ξξξ , and µξξξ (x) = 0 if x /∈ ξξξ . If ξξξ and ξ̌ξξ are two knot

sequences we say that ξξξ ⊆ ξ̌ξξ if µξ (x)≤ µ
ξ̌ξξ
(x) for all x ∈ R.

• Without loss of generality we can always assume that the end knots have multi-

plicity p+ 1. If this is not the case, then we can add extra knots at the ends and

assume the extra B-splines to have coefficients zero. This observation simplifies

many proofs.
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From the properties of B-splines, we immediately conclude the following prop-

erties of the spline representation in (31).

• Smoothness. If ξ is a knot of multiplicity µ then s ∈ Cr(ξ ) for any s ∈ Sp,ξξξ ,

where r + µ = p. This follows from the smoothness property of the B-splines

(Theorem 11). The relation between smoothness, multiplicity and degree is as

follows:

“smoothness+multiplicity = degree”. (34)

• Local support. The local support (6) of the B-splines implies

n

∑
j=1

c jB j,p,ξξξ (x) =
m

∑
j=m−p

c jB j,p,ξξξ (x), x ∈ [ξm,ξm+1), p+ 1 ≤ m ≤ n, (35)

and
n

∑
j=1

c jB j,p,ξξξ (ξm) =
m−1

∑
j=m−p

c jB j,p,ξξξ (ξm), p+ 1 ≤ m ≤ n+ 1. (36)

• Minimal support. From the smoothness properties it can be proved that if the

support of s ∈ Sp,ξξξ is a proper subset of [ξ j,ξ j+p+1] for some j then s = 0.

Therefore, the B-splines have minimal support.

• Coefficient recurrence. For x ∈ [ξp+1,ξn+1], by the recurrence relation (1) we

have
n

∑
j=1

c jB j,p,ξξξ (x) =
n

∑
j=2

c
[1]
j (x)B j,p−1,ξξξ (x), (37)

where

c
[1]
j (x) :=

x− ξ j

ξ j+p − ξ j

c j +
ξ j+p − x

ξ j+p − ξ j

c j−1, (38)

and c
[1]
j (x)B j,p−1,ξξξ (x) = 0 if ξ j+p = ξ j.

• Differentiation formula. By (22) we have

D+

(
n

∑
j=1

c jB j,p,ξξξ

)
=

n

∑
j=2

c
(1)
j B j,p−1,ξξξ , p ≥ 1, (39)

where

c
(1)
j := p

(
c j − c j−1

ξ j+p − ξ j

)
, (40)

and as usual fractions with zero denominator have value zero.

• Linear independence. If ξξξ is (p+ 1)-basic, then the B-splines in (30) are lin-

early independent on the basic interval. Thus, the spline space Sp,ξξξ is a vector

space of dimension n.

Proof. We must show that if s(x) = ∑n
j=1 c jB j,p,ξξξ (x) = 0 for x ∈ [ξp+1,ξn+1]

then c j = 0 for all j. Let us fix 1 ≤ j ≤ n. Since ξξξ is (p+ 1)-regular, there is an
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integer m j with j ≤m j ≤ j+ p such that ξm j
< ξm j+1. Moreover, the assumptions

ξp+1 < ξp+2 and ξn < ξn+1 guarantee that [ξm j
,ξm j+1) can be chosen in the basic

interval. From the local support property (35) we know

s(x) =
m j

∑
i=m j−p

ciBi,p,ξξξ (x) = 0, x ∈ [ξm j
,ξm j+1).

The local linear independence property (see Section 1.1.3) implies cm j−p = · · ·=
cm j

= 0, and in particular c j = 0. ⊓⊔

1.2.2 The piecewise polynomial space Srrr
p(∆)

In this section we focus on the spline space Sp,ξξξ . We prove that such a space is

nothing else than a space of piecewise polynomials of degree p defined by a given

sequence of break points and by some prescribed smoothness. The set of knots ξξξ
must be suitably selected according to the break points and the smoothness condi-

tions. Therefore, the B-splines are a basis of such a space of piecewise polynomials.

Let ∆ be a sequence of distinct real numbers,

∆ := {η0 < η1 < · · ·< ηℓ+1}.

The elements in ∆ are called break points. Moreover, let rrr :=(r1, . . . ,rℓ) be a vector

of integers such that −1 ≤ ri ≤ p for i = 1, . . . , ℓ. The space Srrr
p(∆) of piecewise

polynomials of degree p with smoothness rrr over the partition ∆ is defined by

S
rrr
p(∆) :=

{
s : [η0,ηℓ+1]→R : s ∈ Pp([ηi,ηi+1)), i = 0, . . . , ℓ,

s ∈Cri(ηi), i = 1, . . . , ℓ
}
.

(41)

This space is denoted by S
r
p(∆) when r = r1 = · · ·= rℓ.

Suppose that s{i} ∈ Pp is the polynomial equal to the restriction of a given spline

s ∈ Srrr
p(∆) to the interval [ηi,ηi+1), i = 0, . . . , ℓ. Since s ∈Cri(ηi), we have

s{i}(x)− s{i−1}(x) =
p

∑
j=ri+1

ci, j(x−ηi)
j,

for some coefficients ci, j. It follows that Srrr
p(∆) is spanned by the set of functions

{
1,x, . . . ,xp,(x−η1)

r1+1
+ , . . . ,(x−η1)

p
+, . . . ,(x−ηℓ)

rℓ+1
+ , . . . ,(x−ηℓ)

p
+

}
, (42)

where the truncated power function (·)p
+ is defined by

(x)
p
+ :=

{
xp, x > 0,

0, x < 0,
(43)
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and the value at zero is defined by taking the right limit.

It is easy to see that the functions in (42) are linearly independent. Indeed, let

s(x) :=
p

∑
j=0

c0, j x j +
ℓ

∑
i=1

p

∑
j=ri+1

ci, j(x−ηi)
j
+ = 0, x ∈ [η0,ηℓ+1].

On [η0,η1] we have s(x) = ∑
p
j=0 c0, j x j and it follows that c0,0 = · · · = c0,p = 0.

Suppose for some k ≤ ℓ that ci, j = 0 for i < k. Then, on [ηk,ηk+1] we have s(x) =

∑
p
j=rk+1 ck, j(x−ηk)

j = 0 showing that all ck, j = 0.

This implies that the set of functions in (42) forms a basis for Srrr
p(∆), the so-called

truncated power basis. As a consequence,

dim(Srrr
p(∆)) = p+ 1+

ℓ

∑
i=1

(p− ri).

The next theorem shows that the set of B-splines in (30) defined over a specific knot

sequence ξξξ forms an alternative basis for Srrr
p(∆). This was first proved by Curry and

Schoenberg in [8].

Theorem 13 (Curry–Schoenberg). The piecewise polynomial space Srrr
p(∆) is

characterized in terms of B-splines by

S
rrr
p(∆) = Sp,ξξξ ,

where the knot sequence ξξξ := {ξi}n+p+1
i=1 with n := dim(Srrr

p(∆)) is constructed such

that

ξ1 ≤ ·· · ≤ ξp+1 := η0, ηℓ+1 =: ξn+1 ≤ ·· · ≤ ξn+p+1,

and

ξp+2, . . . ,ξn :=

p−r1︷ ︸︸ ︷
η1, . . . ,η1, . . . ,

p−rℓ︷ ︸︸ ︷
ηℓ, . . . ,ηℓ .

Proof. From the piecewise polynomial and smoothness properties of B-splines it

follows that the space Sp,ξξξ of B-splines restricted to the basic interval [ξp+1,ξn+1]
is a subspace of Srrr

p(∆). Moreover, dim(Sp,ξξξ ) = n since ξ j+p+1 > ξ j for j = 1, . . . ,n
and ξp+2 > ξp+1, ξn+1 > ξn. Since Srrr

p(∆) is spanned by n functions we obtain

Srrr
p(∆) = Sp,ξξξ . ⊓⊔

Note that the knot sequence in the above theorem is (p+ 1)-basic.

Example 14. Consider ∆ := {η0 < η1 < η2 < η3} and the space S
rrr
3(∆) with rrr = (r1, r2) = (2,1).

Then it follows from Theorem 13 that Srrr
3(∆) = S3,ξξξ , where

ξξξ = {ξi}7+3+1
i=1 = {η0 = η0 = η0 = η0 < η1 < η2 = η2 < η3 = η3 = η3 = η3}.

This knot sequence is 4-open.

We now give a characterization for the space spanned by the r-th derivatives of

B-splines for 0 ≤ r ≤ p, i.e.,
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Dr
+Sp,ξξξ :=

{
s : [ξp+1,ξn+1]→ R : s = Dr

+

(
n

∑
j=1

c jB j,p,ξξξ

)
, c j ∈ R

}
.

Theorem 15. Given a knot sequence ξξξ := {ξi}n+p+1
i=1 , we have for 0 ≤ r ≤ p,

Dr
+Sp,ξξξ = Sp−r,ξξξr

,

where ξξξ r := {ξi}n+p+1−r
i=r+1 .

Proof. The result is obvious for r = 0. Let us now consider the case r = 1, for which

we note that

{B1,p−1,ξξξ1
, . . . ,Bn−1,p−1,ξξξ1

}= {B2,p−1,ξξξ , . . . ,Bn,p−1,ξξξ}.

By the differentiation formula (39) it is clear that

D+

(
n

∑
j=1

c jB j,p,ξξξ

)
= p

n

∑
j=2

(
c j − c j−1

ξ j+p − ξ j

)
B j,p−1,ξξξ ∈ Sp−1,ξξξ1

.

On the other hand, suppose s ∈ Sp−1,ξξξ1
, represented as s = ∑n

j=2 d jB j,p−1,ξξξ . Then,

by using again the differentiation formula, we can write s = D+

(
∑n

j=1 c jB j,p,ξξξ

)
,

where c1 can be any real number and

c j = c j−1 +
ξ j+p − ξ j

p
d j, j = 2, . . . ,n.

For r > 1 we use the relation Dr
+ = D+Dr−1

+ . ⊓⊔

By combining Theorem 13 and Theorem 15 it follows that for 0 ≤ r ≤ p,

S
rrr−r
p−r(∆) = Dr

+Sp,ξξξ ,

where rrr− r :=
(

max(r1 − r,−1), . . . ,max(rℓ − r,−1)
)

and the knot sequence ξξξ is

constructed as in Theorem 13.

1.2.3 B-spline representation of polynomials

Polynomials can be represented in terms of B-splines of at least the same degree.

We now derive an explicit expression for their B-spline coefficients by using the

dual polynomials and the (local) Marsden identity.

Theorem 16 (Marsden identity). We have

(y− x)p =
n

∑
j=1

ψ j,p,ξξξ (y)B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1], y ∈ R, (44)



16 Tom Lyche, Carla Manni, and Hendrik Speleers

where ψ j,p,ξξξ (y) := (y−ξ j+1) · · · (y−ξ j+p) is the polynomial of degree p that is dual

to B j,p,ξξξ .

Proof. This follows immediately from the local version (17). Indeed, if x∈ [ξp+1,ξn+1)
then x ∈ [ξm,ξm+1) for some p+ 1 ≤ m ≤ n, and by the local support property (35)

we get

(y− x)p =
m

∑
j=m−p

ψ j,p,ξξξ (y)B j,p,ξξξ (x) =
n

∑
j=1

ψ j,p,ξξξ (y)B j,p,ξξξ (x).

Taking into account the left continuity of B-splines at the endpoint ξn+1, see (33),

we arrive at the Marsden identity (44). ⊓⊔

Differentiating p− k times with respect to y in (44) results in the following for-

mula.

Corollary 17. For k = 0,1, . . . , p we have

(y− x)k

k!
=

n

∑
j=1

(
1

p!
Dp−kψ j,p,ξξξ (y)

)
B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1], y ∈ R. (45)

Corollary 17 immediately leads to the following properties.

• Representation of monomials. For k = 0,1, . . . , p we have

xk =
n

∑
j=1

ξ ∗,k
j,p,ξξξ

B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1], (46)

where

ξ ∗,k
j,p,ξξξ

:= (−1)k k!

p!
Dp−kψ j,p,ξξξ (0). (47)

This follows from (45) with y = 0.

• Partition of unity. Taking k = 0 in (46) gives

n

∑
j=1

B j,p,ξξξ (x) = 1, x ∈ [ξp+1,ξn+1]. (48)

Since the B-splines are nonnegative it follows that they form a nonnegative par-

tition of unity on [ξp+1,ξn+1].

• Greville points. Taking k = 1 in (46) gives for p ≥ 1,

x =
n

∑
j=1

ξ ∗
j,p,ξξξ B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1], (49)

where

ξ ∗
j,p,ξξξ := ξ ∗,1

j,p,ξξξ
=

ξ j+1 + · · ·+ ξ j+p

p
. (50)
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The number ξ ∗
j,p,ξξξ

is called a Greville point 3. It is also known as a knot average

or a node.

Example 18. For p = 3 the equation (46) gives

1 =
n

∑
j=1

B j,3,ξξξ ,

x =
n

∑
j=1

ξ j+1 +ξ j+2 +ξ j+3

3
B j,3,ξξξ ,

x2 =
n

∑
j=1

ξ j+1ξ j+2 +ξ j+1ξ j+3 +ξ j+2ξ j+3

3
B j,3,ξξξ ,

x3 =
n

∑
j=1

ξ j+1ξ j+2ξ j+3 B j,3,ξξξ .

We finally present an expression for the B-spline coefficients of a general poly-

nomial.

Proposition 19 (Representation of polynomials). Any polynomial g of degree p

can be represented as

g(x) =
n

∑
j=1

Λ j,p,ξξξ (g)B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1], (51)

where

Λ j,p,ξξξ (g) :=
1

p!

p

∑
r=0

(−1)p−r Drψ j,p,ξξξ (τ j)Dp−rg(τ j), τ j ∈ R. (52)

Proof. The polynomial g can be represented in Taylor form (79) as

g(x) =
p

∑
r=0

(x− τ j)
p−r

(p− r)!
Dp−rg(τ j), τ j ∈R.

The result follows when we apply (45) with k = p− r. ⊓⊔

Note that, if τ j is a root of ψ j of multiplicity µ j then Drψi(τ j) = 0, r =
0,1, . . . ,µ j − 1 and (52) becomes

Λ j,p,ξξξ (g) =
1

p!

p

∑
r=µ j

(−1)p−r Drψ j,p,ξξξ (τ j)Dp−rg(τ j), τ j ∈ R. (53)

Example 20. The polynomial g(x) = ax2 + bx+ c can be represented in terms of quadratic B-

splines:

ax2 +bx+ c =
n

∑
j=1

c j B j,2,ξξξ .

3 An explicit expression of (50) was given by Greville in [10]. According to Schoenberg [18],

Greville reviewed the paper [18] introducing some elegant simplifications.
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From (51)–(52) with ψ j,2,ξξξ (y) := (y−ξ j+1)(y−ξ j+2), we obtain that

c j =Λ j,2,ξξξ (g) =
1

2

[
(τ j −ξ j+1)(τ j −ξ j+2)2a− (2τ j −ξ j+1 −ξ j+2)(2aτ j +b)+2(aτ2

j +bτ j + c)
]

= aξ j+1ξ j+2 +b
ξ j+1 +ξ j+2

2
+ c.

1.2.4 B-spline representation of splines

In the previous section we have derived an explicit expression for the B-spline coef-

ficients of polynomials; see (51). The next theorem extends this result by providing

an explicit expression for the B-spline coefficients of any spline in Sp,ξξξ .

Theorem 21 (Representation of B-spline coefficients). Any element s in the space

Sp,ξξξ can be represented as 4

s(x) =
n

∑
j=1

Λ j,p,ξξξ (s)B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1], (54)

where

Λ j,p,ξξξ (s) :=
1

p!





∑
p
r=µ j

(−1)p−r Drψ j,p,ξξξ (τ j)D
p−r
+ s(τ j), if τ j = ξ j,

∑
p
r=µ j

(−1)p−r Drψ j,p,ξξξ (τ j)Dp−rs(τ j), if ξ j < τ j < ξ j+p+1,

∑
p
r=µ j

(−1)p−r Drψ j,p,ξξξ (τ j)D
p−r
− s(τ j), if τ j = ξ j+p+1,

(55)

and where µ j ≥ 0 is the number of times τ j appears in ξ j+1, . . . ,ξ j+p.

Proof. Suppose ξ j ≤ τ j < ξ j+p+1 and let I j := [ξm j
,ξm j+1) be the interval contain-

ing τ j. The restriction of s to I j is a polynomial and so by Proposition 19 we find

s(x) =
m j

∑
i=m j−p

(
1

p!

p

∑
r=0

(−1)p−r Drψi,p,ξξξ (τ j)D
p−r
+ s(τ j)

)
Bi,p,ξξξ (x), x ∈ I j. (56)

Note that since ξ j ≤ τ j < ξ j+p+1 we have j ≤ m j ≤ j+ p which implies m j − p ≤
j ≤ m j. By taking i = j in (56) and using the local linear independence of the B-

splines, we obtain

Λ j,p,ξξξ (s) :=
1

p!

p

∑
r=0

(−1)p−r Drψ j,p,ξξξ (τ j)D
p−r
+ s(τ j).

Since Drψ j,p,ξξξ (τ j) = 0 for r < µ j we obtain the top term in (55). In the middle term

we can replace D
p−r
+ s(τ j) by Dp−rs(τ j) since s ∈ Cp−µ j(τ j). The proof of the last

term is similar using D− instead of D+. ⊓⊔
4 The number Λ j,p,ξξξ (s) is known as the de Boor–Fix functional [4] applied to s.
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Note that the operator Λ j,p,ξξξ in (53) is identical to Λ j,p,ξξξ in (55). However, in the

spline case we need the restriction τ j ∈ [ξ j,ξ j+p+1].
Because the set of B-splines {B j,p,ξξξ}n

j=1 is a basis for the space Sp,ξξξ , the co-

efficients Λ j,p,ξξξ (s) are uniquely determined for any s ∈ Sp,ξξξ . Thus, the right-hand

side in (55) does not depend on the choice of τ j. This is an astonishing property

considering the complexity of the expression.

For example, one could take the Greville point ξ ∗
j,p,ξξξ

defined in (50) as a valid

choice for the point τ j . It is easy to verify that ξ ∗
j,p,ξξξ

∈ [ξ j,ξ j+p+1], and moreover,

ξ ∗
j,p,ξξξ

∈ (ξ j,ξ j+p+1) if B j,p,ξξξ is a continuous function.

Example 22. We consider the quadratic spline

s(x) =
n

∑
j=1

c jB j,2,ξξξ (x),

and we illustrate that some derivative terms in the expression (55) can be canceled by specific

choices of τ j .

– If τ j is the Greville point ξ ∗
j,2,ξξξ

:= (ξ j+1+ξ j+2)/2, then there is no first derivative term. Indeed,

we have

c j =Λ j,2,ξξξ (s) = s(ξ ∗
j,2,ξξξ )−

(ξ j+2 −ξ j+1)
2

8
D2s(ξ ∗

j,2,ξξξ ).

Moreover, since s ∈ P2 on [ξ j+1,ξ j+2], we can replace D2s(ξ ∗
j,2,ξξξ

) by a difference quotient

D2s(ξ ∗
j,2,ξξξ ) =

(
s(ξ j+2)−2s(ξ ∗

j,2,ξξξ )+ s(ξ j+1)
)/(

ξ j+2 −ξ j+1

2

)2

,

to obtain

c j =−1

2
s(ξ j+1)+2s(ξ ∗

j,2,ξξξ )−
1

2
s(ξ j+2). (57)

– If τ j is equal to ξ j+1 or ξ j+2, then there is no second derivative term. Indeed, we have

c j = Λ j,2,ξξξ (s) = s(τ j)+
ξ ∗

j,2,ξξξ
− τ j

2
Ds(τ j).

A similar property holds for any p: if τ j is chosen as one of the interior knots ξ j+1, . . . ,ξ j+p,

then there is no p-th derivative term in the expression of Λ j,p,ξξξ (s).

1.3 Cardinal B-splines

A particularly interesting case of B-spline functions is obtained when the knot se-

quence is uniformly spaced. Without loss of generality we can assume that the knot

sequence is given by the set of integers Z. It is natural to index the knots as ξ j = j,

j ∈ Z. Due to the translation invariance property (9) we have

B j,p,Z(x) = B0,p,Z(x− j), j ∈ Z. (58)
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Therefore, all the B-splines on the knot sequence Z are integer translates of a single

function. This motivates the following definition.

Definition 23. The function Mp := B[0,1, . . . , p+ 1] is the cardinal B-spline of

degree p.

Cardinal B-splines possess several nice properties.

• Recurrence relation. From Definition 2 we obtain

M0(x) =

{
1, if x ∈ [0,1),

0, otherwise,
(59)

Mp(x) =
x

p
Mp−1(x)+

p+ 1− x

p
Mp−1(x− 1), p ≥ 1. (60)

• Differentiation and integration. The formulas (22) and (29) simplify in the

case of cardinal B-splines to

DMp(x) = Mp−1(x)−Mp−1(x− 1), (61)

and ∫

R

Mp(x)dx = 1. (62)

• Convolution. The convolution of two functions f and g is given by

( f ∗ g)(x) :=

∫

R

f (x− y)g(y)dy.

We have

Mp(x) = (Mp−1 ∗M0)(x) =

∫ 1

0
Mp−1(x− y)dy, (63)

and

Mp(x) =
(

p+1︷ ︸︸ ︷
M0 ∗ · · · ∗M0

)
(x). (64)

Proof. From (61) we deduce

Mp(x) =

∫ x

0
(Mp−1(y)−Mp−1(y− 1))dy =

∫ x

0
Mp−1(y)dy−

∫ x−1

−1
Mp−1(y)dy

=

∫ x

x−1
Mp−1(y)dy =

∫ 1

0
Mp−1(x− y)dy.

Applying recursively (63) immediately gives (64). ⊓⊔

• Symmetry. The cardinal B-spline Mp is symmetric with respect to the midpoint

of the support, namely (p+ 1)/2. More generally,

DrMp

(
p+ 1

2
+ x

)
= (−1)r DrMp

(
p+ 1

2
− x

)
, r = 0, . . . , p− 1, (65)
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and

D
p
−Mp

(
p+ 1

2
+ x

)
= (−1)p D

p
+Mp

(
p+ 1

2
− x

)
. (66)

Proof. From repeated differentiations, it is sufficient to prove Mp(p+ 1− x) =
Mp(x). We proceed by induction. It is easy to check that it is true for p = 0. As-

suming the symmetry property holds for degree p− 1 and using the convolution

property, we get

Mp(p+ 1− x) =

∫ 1

0
Mp−1(p+ 1− x− t)dt =

∫ 1

0
Mp−1(x− 1+ t)dt

=−
∫ 1

0
Mp−1(x− t)dt =

∫ 1

0
Mp−1(x− t)dt = Mp(x).

⊓⊔

• Fourier transform. The Fourier transform of f ∈ L2(R) is given by

f̂ (θ ) :=

∫

R

f (x)e−iθx dx,

where i :=
√
−1 denotes the imaginary unit. From (59), a direct computation

immediately gives

M̂0(θ ) =
1− e−iθ

iθ
.

An interesting property of the Fourier transform of a convolution is

( f̂ ∗ g)(θ ) = f̂ (θ )ĝ(θ ), ∀ f ,g ∈ L2(R);

see, e.g., [14]. So, the convolution property (63) gives

M̂p(θ ) =
(
M̂0(θ )

)p+1
=

(
1− e−iθ

iθ

)p+1

.

From (58) it follows that the set of integer translates

{
Mp(x− i), i ∈ Z

}
(67)

consists of locally linearly independent functions. They span the space of piecewise

polynomials of degree p and smoothness p− 1 with integer break points, see (41),

and they have the following properties.

• Partition of unity. From (48) and (58) we get

∑
i∈Z

Mp(x− i) = 1, x ∈R.

Due to the local support of cardinal B-splines, the above series reduces to a finite

sum for any x. More precisely, referring to (21), we have
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m

∑
i=m−p

Mp(x− i) = 1, x ∈ [m,m+ 1).

• Greville points. From (50)–(49) and (58) we have

x = ∑
i∈Z

ζ ∗
i,pMp(x− i), x ∈ R,

with

ζ ∗
i,p :=

(1+ i)+ · · ·+(p+ i)

p
=

p+ 1

2
+ i. (68)

We now provide an expression for inner products of the cardinal B-spline and its

translates.

Theorem 24 (Inner product). Given p1, p2 ≥ 0, we have

∫

R

Mp1
(y)Mp2

(y+ x)dy = Mp1+p2+1(p1 + 1+ x) = Mp1+p2+1(p2 + 1− x).

Proof. From the symmetry property (65) with r = 0 and the convolution relation

(63) of cardinal B-splines, we get

∫

R

Mp1
(y)Mp2

(y+ x)dy =

∫

R

Mp1
(y)Mp2

(p2 + 1− y− x)dy

=
(
Mp1

∗Mp2

)
(p2 + 1− x)

=
(

p1+1︷ ︸︸ ︷
M0 ∗ · · · ∗M0∗

p2+1︷ ︸︸ ︷
M0 ∗ · · · ∗M0

)
(p2 + 1− x)

= Mp1+p2+1(p2 + 1− x).

Finally, again by symmetry of cardinal B-splines, we have

Mp1+p2+1(p1 + 1+ x) = Mp1+p2+1(p2 + 1− x),

which completes the proof. ⊓⊔
A generalization towards inner products of derivatives can be found in [9].

Theorem 25 (Inner product of derivatives). Given p1 ≥ r1 ≥ 0 and p2 ≥ r2 ≥ 0,

we have

∫

R

Dr1Mp1
(y)Dr2Mp2

(y+ x)dy = (−1)r1 Dr1+r2Mp1+p2+1(p1 + 1+ x)

= (−1)r2 Dr1+r2Mp1+p2+1(p2 + 1− x).

Due to the relevance of the set (67), the results in Theorem 24 and Theorem 25

are of particular interest when we consider integer shifts, i.e., x ∈ Z. In this case, the

above inner products reduce to evaluations of cardinal B-splines and their deriva-

tives at either integer or half-integer points. Moreover, there is a relation with the

Greville points (68). Indeed, if p1 = p2 = p and x = i in Theorem 24, then
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∫

R

Mp(x)Mp(x+ i)dx = M2p+1(p+ 1+ i) = M2p+1(ζ
∗
i,2p+1).

A similar relation holds for the inner products of derivatives in Theorem 25. Thanks

to the recurrence relation for derivatives (61), the inner products of derivatives of

cardinal B-splines and its integer translates reduce to evaluations of cardinal B-

splines at either integer or half-integer points.

1.4 Condition number

A basis {B j} of a normed space is said to be stable with respect to a vector norm if

there are positive constants KL and KU such that

K−1
L ‖ccc‖ ≤

∥∥∥∥∑
j

c jB j

∥∥∥∥≤ KU‖ccc‖, (69)

for all coefficient vectors ccc := (c j). For simplicity we use the same symbol ‖ · ‖ for

the norm in the space and the vector norm. The number

κ := inf{KLKU : KL and KU satisfy (69)} (70)

is called the condition number of the basis {B j} with respect to ‖ · ‖.

Such condition numbers give an upper bound for how much an error in co-

efficients can be magnified in function values. Indeed, if f = ∑ j c jB j 6= 0 and

g = ∑ j d jB j then it follows immediately from (69) that

‖ f − g‖
‖ f‖ ≤ κ

‖ccc− ddd‖
‖ccc‖ ,

where ccc := (c j) and ddd := (d j). Many other applications are given in [3] and it is

interesting to have estimates for the size of κ .

We consider the Lq-norm for functions and the q-norm for vectors with 1 ≤ q ≤
∞. We focus on a scaled version of the B-spline basis defined on [ξ1,ξn+p+1),

{N j,p,q,ξξξ}n
j=1 := {γ

−1/q

j,p,ξξξ
B j,p,ξξξ}n

j=1, (71)

where γ j,p,ξξξ is defined in (29). Note that the knot sequence ξξξ has to be (p+1)-basic

in order to have linearly independent B-splines. This also ensures that γ j,p,ξξξ > 0.

The q-norm condition number of the basis in (71) will be denoted by κp,q,ξξξ , i.e.,

κp,q,ξξξ := sup
ccc6=0

∥∥∑n
j=1 c j N j,p,q,ξξξ

∥∥
Lq([ξ1,ξn+p+1])

‖ccc‖q

sup
ccc6=0

‖ccc‖q∥∥∑n
j=1 c j N j,p,q,ξξξ

∥∥
Lq([ξ1,ξn+p+1])

.

(72)
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The next theorem shows that the scaled B-spline basis above is stable in any Lq-

norm independently on the knot sequence ξξξ . It also provides an upper bound for the

q-norm condition number which does not depend on ξξξ . To this end, we first state

the Hölder inequality for sums:

n

∑
j=1

|x j y j| ≤ ‖xxx‖q‖yyy‖q′ , (73)

where q,q′ are integers so that

1

q
+

1

q′
= 1, 1 ≤ q ≤ ∞. (74)

In particular, q′ = ∞ if q = 1 and q′ = 2 if q = 2.

Theorem 26. For any p ≥ 0 there exists a positive constant Kp depending only on

p, such that for any vector ccc := (c1, . . . ,cn) and for any 1 ≤ q ≤ ∞ we have

K−1
p ‖ccc‖q ≤

∥∥∥∥
n

∑
j=1

c j N j,p,q,ξξξ

∥∥∥∥
Lq([ξ1,ξn+p+1])

≤ ‖ccc‖q. (75)

Proof. We first prove the upper inequality. Using the nonnegative partition of unity

property of B-splines the upper bound for q = ∞ is straightforward, so we consider

1 ≤ q < ∞ in the following. By applying the Hölder inequality (73) and again the

nonnegative partition of unity property of B-splines, we obtain for x ∈ [ξ1,ξn+p+1),

∣∣∣∣
n

∑
j=1

c j N j,p,q,ξξξ (x)

∣∣∣∣≤
n

∑
j=1

∣∣c j γ
−1/q

j,p,ξξξ
B j,p,ξξξ (x)(x)

1/q
∣∣ ∣∣B j,p,ξξξ (x)

∣∣1−1/q

≤
(

n

∑
j=1

|c j|q γ−1
j,p,ξξξ

B j,p,ξξξ (x)

)1/q( n

∑
j=1

B j,p,ξξξ (x)

)1−1/q

≤
(

n

∑
j=1

|c j|q γ−1
j,p,ξξξ

B j,p,ξξξ (x)

)1/q

.

Raising both sides of this inequality to the q-th power and integrating gives the

inequality

∫ ξn+p+1

ξ1

∣∣∣∣
n

∑
j=1

c j N j,p,q,ξξξ (x)

∣∣∣∣
q

dx ≤
n

∑
j=1

|c j|q γ−1
j,p,ξξξ

∫ ξ j+p+1

ξ j

B j,p,ξξξ (x)dx = ‖ccc‖q
q.

Taking the q-th roots on both sides proves the upper inequality in (75).

We now focus on the lower inequaltity. We extend ξξξ to a (p+ 1)-open knot se-

quence ξ̂ξξ by possibly increasing the multiplicity of ξ1 and ξn+p+1 to p+1. Clearly,

the set of B-splines on ξξξ is a subset of the set of B-splines on ξ̂ξξ , and any linear com-

bination of the B-splines on ξξξ is a linear combination of the B-splines on ξ̂ξξ where
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the extra B-splines have coefficients zero. Therefore, without loss of generality, we

can assume that the knot sequence is open with the basic interval [ξ1,ξn+p+1]. The

lower bound then follows from Lemma 45. ⊓⊔

We define a condition number which is independent of the knot sequence as

follows

κp,q := sup
ξξξ

κp,q,ξξξ . (76)

Theorem 26 shows that

κp,q ≤ Kp < ∞.

It is known that κp,q grows like 2p for all 1 ≤ q ≤ ∞; see [12, 15] where it is proved

that
1

p+ 1
2p−1/2 ≤ κp,q ≤ (p+ 1)2p+1, 1 ≤ q ≤ ∞. (77)

2 Spline approximation

In this section we discuss how well a sufficiently smooth function can be approxi-

mated in the spline space spanned by a given set of B-splines. Exploiting the prop-

erties of the B-spline basis presented in the previous section, we explicitly construct

a spline which achieves optimal approximation accuracy for the function and its

derivatives, and we determine the corresponding error estimates. The construction

method we are going to present is local and linear.

2.1 Preliminaries

The Hölder inequality for integrals is given by

∫ b

a
| f (x)g(x)|dx ≤ ‖ f‖Lq(I)‖g‖Lq′(I)

, (78)

where q,q′ are integers satisfying (74).

The Taylor polynomial of degree p at the point a to a function f ∈W p+1
∞ ([a,b])

is defined by

Ta,p f (x) :=
p

∑
j=0

(x− a) j

j!
D j f (a), (79)

and its approximation error can be expressed in integral form for x ∈ [a,b] as

f (x)−Ta,p f (x) =
1

p!

∫ b

a
(x− y)p

+Dp+1 f (y)dy. (80)
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Every polynomial g ∈ Pp can be written in Taylor form as g = Ta,pg.

Theorem 27. Let f ∈ W p+1
∞ ([a,b]) with 1 ≤ q ≤ ∞, and let Ta,p f be the Taylor

polynomial of degree p to f at the point a. Then, for any x ∈ [a,b] and 0 ≤ r ≤ p,

|Dr( f −Ta,p f )(x)| ≤ (b− a)p+1−r−1/q

(p− r)!
‖Dp+1 f‖Lq([a,b]), (81)

and

‖Dr( f −Ta,p f )‖Lq([a,b]) ≤
(b− a)p+1−r

(p− r)!
‖Dp+1 f‖Lq([a,b]). (82)

Proof. By differentiating the integral form of the Taylor approximation error (80)

and using the Hölder inequality (78), we obtain

|Dr( f −Ta,p f )(x)| = 1

(p− r)!

∫ b

a
(x− y)p−r

+ Dp+1 f (y)dy

≤ 1

(p− r)!

[∫ b

a
(x− y)

(p−r)q′
+ dy

]1/q′

‖Dp+1 f‖Lq([a,b])

≤ (b− a)p−r+1/q′

(p− r)!((p− r)q′+ 1)1/q′ ‖Dp+1 f‖Lq([a,b]).

Since 1/q+1/q′ = 1 and (p− r)q′ ≥ 0, we obtain (81). Finally, taking the Lq-norm

shows (82). ⊓⊔
For the sake of simplicity one can use the following weaker, but simpler upper

bound

‖Dr( f −Ta,p f )‖Lq([a,b]) ≤ (b− a)p+1−r‖Dp+1 f‖Lq([a,b]). (83)

2.2 Spline quasi-interpolation

In general, a spline approximating a function f can be written in terms of B-splines

as

Q f (x) :=
n

∑
j=1

λ j f B j,p,ξξξ (x) (84)

for suitable coefficients λ j f . The spline in (84) will be referred to as a quasi-

interpolant to f whenever it provides a “reasonable” approximation to f .

Both interpolation and least squares are examples of quasi-interpolation methods.

They are global methods since we have to solve an n by n system of linear equations

to find the coefficients λ j f . It follows that the value of the spline (84) at a point

depends on all the data. In this section we focus on local linear methods, i.e.,

methods where each λ j is a linear functional only depending on the values of f

“near” the support of B j,p,ξξξ . This implies that the value of the spline approximation

Q f at a point depends only on the data in a local neighborhood of the point.
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In order to deal with point evaluator functionals we assume in this section that

f ∈C−1([a,b]), where [a,b] is a bounded interval. We consider a spline space Sp,ξξξ ,

where the knot sequence ξξξ is (p+ 1)-basic and the basic interval [ξp+1,ξn+1] is

equal to [a,b].

2.2.1 Definition and basic approximation properties

In view of constructing a spline quasi-interpolant with optimal accuracy, we present

some basic approximation properties of quasi-interpolants of the form (84). Since

we are interested in local methods, we start with the following definition.

Definition 28. We say that a linear functional λ : C−1([a,b])→R is supported on

a nonempty set S ⊂ [a,b] if λ f = 0 for any f ∈C−1([a,b]) which vanishes on S .

Note that the set S in this definition is not uniquely defined and is not necessary

minimal.

To construct our quasi-interpolant we use linear functionals which are supported

on intervals consisting of a few knot intervals, where few means independent on

the dimension n of the spline space, but can depend on the degree p. This will

ensure that Q f only depends locally on f . To ensure a good approximation power

we require polynomial reproduction up to a given degree. Moreover, to bound the

error a boundedness assumption on the linear functionals is needed. This leads to

the following definitions.

Definition 29. The quasi-interpolant Q given by (84) is called a local quasi-

interpolant if

(i) each λ j is supported on the interval I j, where

I j := [ξ j−νL
,ξ j+p+1+νU

]∩ [a,b], (85)

for some integers νL,νU ≥−p such that I j has nonempty interior;

(ii) the λ j are chosen so that (84) reproduces Pl , i.e.,

Qg(x) = g(x) for all x ∈ [a,b] and all g in Pl , (86)

for some l with 0 ≤ l ≤ p.

Note that the number of knot intervals in I j is bounded above by νL +νU + p+1.

Definition 30. A local quasi-interpolant Q is called bounded in an Lq-norm, 1 ≤
q ≤ ∞, if there is a constant CQ such that for each λ j we have

|λ j f | ≤CQh
−1/q

j,p,ξξξ
‖ f‖Lq(I j ) for all f ∈C−1(I j), (87)

where

h j,p,ξξξ := max
max( j,p+1)≤k≤min(n, j+p)

ξk+1 − ξk. (88)
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Note that h j,p,ξξξ is the largest length of a knot interval in the intersection of the ba-

sic interval with the support of B j,p,ξξξ . The requirement (85) ensures that the spline in

(84) provides a local approximation to f . The polynomial reproduction as stated in

(86) coupled with the boundedness of the linear functionals are the main ingredients

to prove the approximation power of any bounded local quasi-interpolant.

We now give both a local and a global version of the approximation power of

bounded local quasi-interpolants. To turn a local bound into a global bound we first

state the following lemma.

Lemma 31. Suppose that f ∈ Lq([ξp+1,ξn+1]) for some q, 1 ≤ q < ∞, and that

mi1 , . . . ,mi2 are integers with mi1 < · · · < mi2 , ξp+1 ≤ ξmi1
and ξmi2

+k ≤ ξn+1 for

some positive integer k and integers i1 ≤ i2. Then

( i2

∑
j=i1

‖ f‖q

Lq([ξm j
,ξm j+k])

)1/q

≤ k1/q‖ f‖Lq([ξp+1,ξn+1])
. (89)

Proof. With the stated assumptions each knot interval in [ξp+1,ξn+1] is counted

at most k times and moreover all the local intervals [ξm j
,ξm j+k] are contained in

[ξp+1,ξn+1]. The definition of the Lq-norm gives immediately (89). ⊓⊔
Theorem 32. Let Q be a bounded local quasi-interpolant in an Lq-norm, 1≤ q≤∞,

as in Definitions 29 and 30. Let l, p be integers with 0 ≤ l ≤ p. Suppose ξm < ξm+1

for some p+ 1 ≤ m ≤ n and let f ∈W l+1
q (Jm) with

Jm := [ξm−p−νL
,ξm+p+1+νU

]∩ [a,b].

Then,

‖ f −Q f‖Lq([ξm,ξm+1]) ≤
(2p+νL+νU + 1)l+1

l!
(1+CQ)hl+1

m,ξξξ
‖Dl+1 f‖Lq(Jm), (90)

where hm,ξξξ is the largest length of a knot interval in Jm. Moreover, if f ∈W l+1
q ([a,b])

then

‖ f −Q f‖Lq([a,b]) ≤
(2p+νL +νU + 1)l+1+1/q

l!
(1+CQ)hl+1

ξξξ
‖Dl+1 f‖Lq([a,b]), (91)

where

hξξξ := max
p+1≤ j≤n

ξ j+1 − ξ j.

Proof. Note that f is continuous since l ≥ 0. Suppose x ∈ [ξm,ξm+1). By the local

partition of unity (21) and by (87) we have

|Q f (x)| ≤ max
m−p≤ j≤m

|λ j f | ≤CQ max
m−p≤ j≤m

h
−1/q

j,p,ξξξ
‖ f‖Lq(I j).

Since ξm+1 − ξm ≤ minm−p≤ j≤m h j,p,ξξξ and Jm = ∪m−p≤ j≤mI j we find

‖Q f‖Lq([ξm,ξm+1]) ≤CQ‖ f‖Lq(Jm). (92)
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¿From (86) we know that Q reproduces any polynomial g ∈ Pl , and so the triangle

inequality gives

‖ f −Q f‖Lq([ξm,ξm+1]) ≤ ‖ f − g‖Lq([ξm,ξm+1])+ ‖Q( f − g)‖Lq([ξm,ξm+1]).

Since νL,νU ≥−p we have [ξm,ξm+1]⊂ Jm. Therefore, by (92) for any g ∈ Pl ,

‖ f −Q f‖Lq([ξm,ξm+1]) ≤ (1+CQ)‖ f − g‖Lq(Jm). (93)

Let us now choose g := Tξm−p−νL
,l f , where Tξm−p−νL

,l f is the Taylor polynomial of

degree l defined in (79) with a = ξm−p−νL
. Then, by (82) with r = 0 we have

‖ f − g‖Lq(Jm) ≤
(2p+νL+νU + 1)l+1

l!
hl+1

m,ξξξ
‖Dl+1 f‖Lq(Jm). (94)

Combining the inequalities (93) and (94) gives the local bound.

Since each Jm is contained in the basic interval [a,b] the global bound follows

immediately from the local one and Lemma 31. ⊓⊔

Example 33. Let ξξξ be a (p+1)-open knot sequence. The Schoenberg operator

Vp,ξξξ f (x) :=
n

∑
j=1

f (ξ ∗
j,p,ξξξ )B j,p,ξξξ (x), (95)

where ξ ∗
j,p,ξξξ

is the j-th Greville point of degree p, see (50), is a bounded local quasi-interpolant

in the L∞-norm with l = 1 and CQ = 1. Since ξ ∗
j,p,ξξξ

belongs to a knot interval [ξm j
,ξm j+1) of

[ξ j+1,ξ j+p] we can choose νL = νU = 0 in (85). Therefore, Theorem 32 implies for any f ∈
W 2

∞([a,b]),
‖ f −Vp,ξξξ f ‖L∞([a,b]) ≤ 2(2p+1)2h2

ξξξ ‖D2 f ‖L∞([a,b]). (96)

The next proposition can be used to find the degree l of polynomials reproduced

by a linear quasi-interpolant. We will formulate another condition in Proposition 38.

Proposition 34. Let

{ϕ j,0, . . . ,ϕ j,l}, j = 1, . . . ,n, 0 ≤ l ≤ p (97)

be n sets of basis functions for Pl and let

ϕ j,r =
n

∑
m=1

c j,r,mBm,p,ξξξ (98)

be their B-spline representations. The linear quasi-interpolant (84) reproduces Pl

provided the corresponding linear functionals satisfy

λ j(ϕ j,r) = c j,r, j, j = 1, . . . ,n, r = 0, . . . , l. (99)

Proof. Any g ∈ Pl can be written both in terms of the B-splines and the ϕ’s, say
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g =
n

∑
m=1

bmBm,p,ξξξ =
l

∑
r=0

b j,rϕ j,r, j = 1, . . . ,n. (100)

By (98) and (100) for j = 1, . . . ,n,

g =
l

∑
r=0

b j,r

(
n

∑
m=1

c j,r,mBm,p,ξξξ

)
=

n

∑
m=1

(
l

∑
r=0

b j,rc j,r,m

)
Bm,p,ξξξ =

n

∑
m=1

bmBm,p,ξξξ .

By linear independence of the B-splines and choosing i = m we obtain

bm =
l

∑
r=0

bm,rcm,r,m. (101)

Similarly, for Qg using (100) with j = m,

Qg :=
n

∑
m=1

λm(g)Bm,p,ξξξ =
n

∑
m=1

λm

(
l

∑
r=0

bm,rϕm,r

)
Bm,p,ξξξ .

¿From the linearity of λm and (99), (101) and finally (100) again we obtain

Qg =
n

∑
m=1

l

∑
r=0

bm,rλm(ϕm,r)Bm,p,ξξξ =
n

∑
m=1

l

∑
r=0

bm,rcm,r,mBm,p,ξξξ =
n

∑
m=1

bmBm,p,ξξξ = g.

⊓⊔

The next proposition gives a sufficient condition for a quasi-interpolant to re-

produce the whole spline space. We will formulate another sufficient condition in

Proposition 40.

Proposition 35. The linear quasi-interpolant (84) reproduces the whole spline

space, i.e.,

Qs(x) = s(x), s ∈ Sp,ξξξ , x ∈ [ξp+1,ξn+1), (102)

if Q reproduces Pp and each linear functional λ j is supported on one knot interval 5

[ξ+
m j
,ξ−

m j+1]⊂ [ξ j,ξ j+p+1], with ξm j
< ξm j+1. (103)

In other words, Q is a projector onto the spline space Sp,ξξξ .

Proof. Let j with 1 ≤ j ≤ n be fixed. By the linearity it suffices to prove that

λ j(Bi,p,ξξξ ) = δi, j for i = 1, . . . ,n. On the interval [ξ+
m j
,ξ−

m j+1] the local support prop-

erty implies that λ j(Bi,p,ξξξ ) = 0 for i /∈ {m j − p, . . . ,m j}. This follows because we

use the left limit at ξm j+1 if necessary. Since Bi,p,ξξξ ∈ Pp on this interval, we have

5 This notation means that if λ j f uses the value of f or one its derivatives at ξm j
(or ξm j+1) then

this value is obtained by taking the one sided limit from the right (or left).
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Bi,p,ξξξ (x) = Q(Bi,p,ξξξ )(x) =
m j

∑
k=m j−p

λk(Bi,p,ξξξ )Bk,p,ξξξ (x), x ∈ [ξm j
,ξm j+1),

and by local linear independence of the B-splines we obtain λk(Bi,p,ξξξ ) = δk,i for

k = m j − p, . . . ,m j. In particular, it holds for k = i since the condition (103) implies

that m j − p ≤ j ≤ m j. ⊓⊔
Example 36. Let p = 2 and let ξξξ be a 3-open knot sequence. We consider the operator in Exam-

ple 22 in the form

Q2,ξξξ f (x) :=
n

∑
j=1

(
α2,0 f (ξ j+1)+α2,1 f (ξ ∗

j,2,ξξξ )+α2,2 f (ξ j+2)
)
B j,2,ξξξ (x),

where ξ ∗
j,2,ξξξ

= (ξ j+2 + ξ j+1)/2 is the j-th Greville point of degree 2. We know that if we choose

α2,0 = α2,2 =−1/2 and α2,1 = 2 then Q2,ξξξ reproduces P2, i.e., l = 2. Proposition 35 even implies

that it is a projector on the spline space S2,ξξξ . Moreover,

∣∣∣− 1

2
f (ξ j+1)+2 f (ξ ∗

j,2,ξξξ )−
1

2
f (ξ j+2)

∣∣∣ ≤ 3‖ f ‖L∞([ξ j+1,ξ j+2]).

It follows that Q2,ξξξ is a bounded local quasi-interpolant in the L∞-norm with l = 2 and CQ = 3

and that νL = νU = 0 in (85). In this case Theorem 32 implies for any f ∈W 3
∞([a,b]),

‖ f −Q2,ξξξ f ‖L∞([a,b]) ≤ 4
53

2!
h3

ξξξ ‖D3 f ‖L∞([a,b]),

showing that the error is O(h3
ξξξ
).

2.2.2 A general construction

We now describe a general recipe for constructing a wide class of local quasi-

interpolants.

Recipe 37. For fixed k, the value of λk f is determined as follows:

(i) Choose an interval Îk := [ξmL,k
,ξmU,k

]⊂ [a,b] such that

(ξmL,k
,ξmU,k

)∩ (ξk,ξk+p+1) 6= /0,

and mU,k −mL,k is bounded independently of n.

(ii) Choose some linear approximation method Qk which can be written in B-

spline form as

Qk f (x) =

mU,k−1

∑
j=mL,k−p

b jB j,p,ξξξ (x) for x ∈ (ξmL,k
,ξmU,k

),

and has the following local polynomial reproduction property

Qkg(x) = g(x) for all g ∈ Pl and x ∈ (ξmL,k
,ξmU,k

), (104)
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for some fixed l with 0 ≤ l ≤ p.

(iii) Set λk f := bk.

Note that λk f in (iii) is well defined because Îk intersects the interior of the sup-

port of Bk,p,ξξξ and therefore mL,k − p ≤ k ≤ mU,k − 1. Since the number of knot

intervals in Îk is bounded independently of n, it is always possible to find an interval

Ik that satisfies (85) containing Îk. We now show that the local polynomial reproduc-

tion property (104) leads to global reproduction of Pl as required in Definition 29.

Proposition 38. The spline approximation operator Q f determined by Recipe 37

has the property that Qg(x) = g(x) for all g ∈ Pl and x ∈ [a,b].

Proof. Given g ∈ Pl , suppose that g(x) = ∑n
j=1 c jB j,p,ξξξ (x) for certain coefficients

(c j)
n
j=1 and x ∈ [a,b]. We must show that if Qg(x) = ∑n

j=1 λ jgB j,p,ξξξ (x) then λ jg =

c j. We note that g(x) = ∑
mU,k−1

j=mL,k−p c jB j,p,ξξξ (x) for x ∈ (ξmL,k
,ξmU,k

). Therefore, by

(104) we have

mU,k−1

∑
j=mL,k−p

b jB j,p,ξξξ (x) = Qkg(x) = g(x) =

mU,k−1

∑
j=mL,k−p

c jB j,p,ξξξ (x), x ∈ (ξmL,k
,ξmU,k

),

so by local linear independence we have b j = c j for j = mL,k − p, . . . , mU,k −1, and

in particular bk = ck. Since λkg = bk we have λkg = ck, as required. ⊓⊔
Example 39. The Schoenberg operator in Example 33 can be obtained by Recipe 37 as follows.

First, choose Îk := [ξmk
,ξmk+1] such that the interval [ξmk

,ξmk+1) contains ξ ∗
k,p,ξξξ

. Then, choose Qk

as the linear interpolant to f at the Greville point ξ ∗
k,p,ξξξ

and an additional point ξ in Îk . This gives

Qk f (x) =
x−ξ ∗

k,p,ξξξ

ξ −ξ ∗
k,p,ξξξ

f (ξ )+
ξ − x

ξ −ξ ∗
k,p,ξξξ

f (ξ ∗
k,p,ξξξ ) =: g1(x).

By (48) and (49) we have for x ∈ (ξmk
,ξmk+1),

g1(x) =
mk

∑
j=mk−p

b jB j,p,ξξξ (x), where b j := g1(ξ
∗
j,p,ξξξ ).

Finally, set λk f := g1(ξ
∗
k,p,ξξξ

) = f (ξ ∗
k,p,ξξξ

). This is indeed in agreement with (95).

With a suitable choice of Qk we can even obtain that Q is a projector onto the

spline space Sp,ξ , i.e.,

Qs = s for all s ∈ Sp,ξξξ .

For this it is sufficient to replace the local polynomial reproduction property in (104)

by the local spline reproduction property

Qks(x) = s(x) for all s ∈ Sp,ξξξ and x ∈ (ξmL,k
,ξmU,k

). (105)

Indeed, with the same line of arguments as in Proposition 38 it follows that the local

spline reproduction implies the global spline reproduction as stated in the following

proposition; see also [11].
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Proposition 40. The spline approximation operator Q f determined by Recipe 37

is a projector onto the spline space Sp,ξξξ provided that we replace (104) by (105).

In view of Proposition 35, a simple way to obtain a local spline projector Qk is

to consider a local polynomial projector as in (104) with l = p and Îk restricted to

be a single knot interval.

2.3 Approximation power of splines

In this section we want to understand how well a function can be approximated

by a spline. In order words, we want to investigate the distance between a gen-

eral function f and the piecewise polynomial space S
rrr
p(∆) defined in (41). ¿From

Theorem 13 we know that Srrr
p(∆) = Sp,ξξξ for a suitable choice of the knot sequence

ξξξ := {ξi}n+p+1
i=1 . In particular, ξξξ can be chosen to be (p+1)-open. Therefore, with-

out loss of generality, we consider the distance between a general function f and the

spline space Sp,ξξξ of degree p over the (p+ 1)-open knot sequence ξξξ . For a given

f ∈ Lq([ξp+1,ξn+1]) with 1 ≤ q ≤ ∞, we define

distq( f ,Sp,ξξξ ) := inf
s∈Sp,ξξξ

‖ f − s‖Lq([ξp+1,ξn+1])
. (106)

We are also interested in estimates for the distance between derivatives of f and

derivative spline spaces. To this end, in this section we use the simplified notation

Drs := Dr
+s for the derivatives of a spline s ∈ Sp,ξξξ with the usual convention of left

continuity at the right endpoint of the basic interval. Note that with such a nota-

tion we ensure that Drs(x) exists for all x. In the same spirit, we use the notation

Dr
Sp,ξξξ := Dr

+Sp,ξξξ for the r-th derivative spline space. We recall from Section 1.2.2

that this derivative space is a piecewise polynomial space of degree p− r with a

certain smoothness, i.e.,

S
rrr−r
p−r(∆) = Dr

Sp,ξξξ ,

where the partition ∆ consists of the distinct break points in the knot sequence ξξξ
and the smoothness rrr is related to the multiplicity of the knots, according to the rule

in (34). This leads to the following more general definition of distance. For a given

f ∈W r
q ([ξp+1,ξn+1]) with 1 ≤ q ≤ ∞ and 0 ≤ r ≤ p, we define

distq(D
r f ,Dr

Sp,ξξξ ) := inf
s∈Sp,ξξξ

‖Dr( f − s)‖Lq([ξp+1,ξn+1]). (107)

We will derive the following upper bound for distq(D
r f ,DrSp,ξξξ ).

Theorem 41. For any 0 ≤ r ≤ l ≤ p and f ∈W l+1
q ([ξp+1,ξn+1]) with 1 ≤ q ≤ ∞ we

have

distq(D
r f ,Dr

Sp,ξξξ )≤ K(hξξξ )
l+1−r‖Dl+1 f‖Lq([ξp+1,ξn+1]),

where hξξξ := maxp+1≤ j≤n(ξ j+1 − ξ j) and K is a constant depending only on p.



34 Tom Lyche, Carla Manni, and Hendrik Speleers

This will be shown by explicitly constructing a suitable spline quasi-interpolant

which achieves this order of approximation; see Theorem 48. For l = p the upper

bound behaves like (hξξξ )
p+1−r for sufficiently smooth f .

2.3.1 A spline quasi-interpolant

Given an integer p ≥ 0 and a (p+ 1)-open knot sequence ξξξ , we define a specific

spline approximant of degree p over ξξξ to a given function f . Let [ξm j,p ,ξm j,p+1] be

a knot interval of largest length in [ξ j,ξ j+p+1] for any j = 1, . . . ,n and h j,p,ξξξ :=
ξm j,p+1 − ξm j,p > 0. The spline approximant to f is constructed as

Qp,ξξξ f (x) :=
n

∑
j=1

L j,p,ξξξ f B j,p,ξξξ (x), (108)

where

L j,p,ξξξ f :=
1

h j,p,ξξξ

∫ ξm j,p+1

ξm j,p

( p

∑
i=0

α j,i

(
x− ξm j,p

h j,p,ξξξ

)i)
f (x)dx, (109)

and the coefficients α j,i, i = 0, . . . , p are such that

L j,p,ξξξ

(
x− ξm j,p

h j,p,ξξξ

)i

= c j,i, j, i = 0, . . . , p, (110)

where

(
x− ξm j,p

h j,p,ξξξ

)i

=
m j,p

∑
k=m j,p−p

c j,i,kBk,p,ξξξ (x), x ∈ [ξm j,p ,ξm j,p+1), i = 0, . . . , p. (111)

In the next lemmas we collect some properties for the spline approximation

(108).

Lemma 42. The above spline approximation is well defined and reproduces poly-

nomials, i.e., for any polynomial g ∈ Pp we have

Qp,ξξξ g(x) = g(x), x ∈ [ξp+1,ξn+1]. (112)

Moreover, it is a projector onto the spline space Sp,ξξξ , i.e., for any spline s ∈ Sp,ξξξ we

have

Qp,ξξξ s(x) = s(x), x ∈ [ξp+1,ξn+1], (113)

and, in particular,

s(x) =
n

∑
j=1

(L j,p,ξξξ s)B j,p,ξξξ (x), x ∈ [ξp+1,ξn+1]. (114)



B-Splines and Spline Approximation 35

Proof. By applying L j,p,ξξξ to the polynomials
(

x−ξm j,p

h j,p,ξξξ

)r

, r = 0, . . . , p, the coeffi-

cients α j,i are given by the solution of the linear system

Hp+1ααα j = ccc j, (115)

where ααα j := (α j,0, . . . ,α j,p)
T , ccc j := (c j,0, j, . . . ,c j,p, j)

T , and Hp+1 is a (p+1)×(p+
1) matrix with elements

(Hp+1)i+1,r+1 :=
1

h j,p,ξξξ

∫ ξm j,p+1

ξm j,p

(
x− ξm j,p

h j,p,ξξξ

)r+i

dx =
1

i+ r+ 1
, i,r = 0, . . . , p.

This is the well-known Hilbert matrix which is nonsingular and it follows that the

spline approximation (108) is well defined. By Proposition 34 we deduce that (112)

holds.

Since we only integrate over one subinterval when we define L j,p,ξξξ , we conclude

that it reproduces not only polynomials but also splines, and (113) follows from

Proposition 35. ⊓⊔

Lemma 43. For p ≥ 0 and 1 ≤ q ≤ ∞ we have for any f ∈ Lq([ξm j,p ,ξm j,p+1]),

|L j,p,ξξξ f | ≤Ch
−1/q

j,p,ξξξ
‖ f‖Lq([ξm j,p

,ξm j,p+1]), j = 1, . . . ,n, (116)

where C is a constant depending only on p.

Proof. By (20), (10) and (13) we have

|c j,i, j|=
i!

p!

∣∣∣∣
Dp−iψ j,p,ξξξ (ξm j,p)

hi
j,p,ξξξ

∣∣∣∣≤
(

ξ j+p+1 − ξ j

h j,p,ξξξ

)i

≤ (p+ 1)i, i = 0, . . . , p.

Here we used that [ξm j,p ,ξm j,p+1] is a knot interval of largest length in [ξ j,ξ j+p+1].

Since 0 ≤ x−ξm j,p

h j,p,ξξξ
≤ 1 for x ∈ [ξm j,p ,ξm j,p+1], we get from (109),

|L j,p,ξξξ f | ≤ (p+ 1)h−1
j,p,ξξξ

‖ααα j‖∞ ‖ f‖L1([ξm j,p
,ξm j,p+1])

≤ (p+ 1)h−1
j,p,ξξξ

‖H−1
p+1‖∞‖ccc j‖∞‖ f‖L1([ξm j,p ,ξm j,p+1]).

This gives |L j,p,ξξξ f | ≤Ch−1
j,p,ξξξ

‖ f‖L1([ξm j,p ,ξm j,p+1]), where C := ‖H−1
p+1‖∞(p+ 1)p+1

only depends on p. By the Hölder inequality (78) we arrive at (116). ⊓⊔

We now give a bound for the derivative of Qp,ξξξ f . For this we recall from (25)

that

∆m,k := min
m−k+1≤i≤m

hi,k, hi,k := ξi+k − ξi, k = 1, . . . , p,

and that ∆m,k > 0 for all k.
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Lemma 44. For 0 ≤ r ≤ p and 1 ≤ q ≤ ∞ we have for any f ∈ Lq([ξm−p,ξm+p+1])
with p+ 1 ≤ m ≤ n,

‖Dr(Qp,ξξξ f )‖Lq([ξm,ξm+1]) ≤C

( p

∏
k=p−r+1

1

∆m,k

)
‖ f‖Lq([ξm−p,ξm+p+1]),

where ∆m,k is defined in (25) and C is a constant depending only on p.

Proof. ¿From the quasi-interpolant definition (108), the local support property (35)

and Lemma 43, we have for x ∈ [ξm,ξm+1),

|Dr(Qp,ξξξ f )(x)|=
∣∣∣∣

m

∑
j=m−p

L j,p,ξξξ ( f )DrB j,p,ξξξ (x)

∣∣∣∣

≤ max
m−p≤ j≤m

|DrB j,p,ξξξ (x)|
m

∑
j=m−p

|L j,p,ξξξ ( f )|

≤ (p+ 1) max
m−p≤ j≤m

|DrB j,p,ξξξ (x)| max
m−p≤ j≤m

h
−1/q

j,p,ξξξ
‖ f‖Lq([ξm−p,ξm+p+1])

.

Since [ξm,ξm+1] ⊂ [ξ j,ξ j+p+1] and h j,p,ξξξ is the length of the largest knot inter-

val in [ξ j,ξ j+p+1] we have ξm+1 − ξm ≤ h j,p,ξξξ for j = m − p, . . . ,m. Replacing

|DrB j,p,ξξξ (x)| by the upper bound given in Proposition 10 and taking the Lq-norm

complete the proof. ⊓⊔
The next lemma will complete the proof of Theorem 26 related to the condition

number. Note that [ξp+1,ξn+1] = [ξ1,ξn+p+1] because the knot sequence ξξξ is open.

Lemma 45. For any p ≥ 0, there exists a positive constant Kp depending only on p

such that for any vector ccc := (c1, . . . ,cn) and for any 1 ≤ q ≤ ∞ we have

‖ccc‖q ≤ Kp

∥∥∥∥
n

∑
j=1

c j N j,p,q,ξξξ

∥∥∥∥
Lq([ξp+1,ξn+1])

, (117)

where N j,p,q,ξξξ := γ
−1/q

j,p,ξξξ
B j,p,ξξξ and γ j,p,ξξξ := (ξ j+p+1 − ξ j)/(p+ 1).

Proof. Let s := ∑n
j=1 γ

−1/q

j,p,ξξξ
c jB j,p,ξξξ . Observe that (114) and (116) imply

|γ−1/q

j,p,ξξξ
c j|= |L j,p,ξξξ s| ≤Ch

−1/q

j,p,ξξξ
‖s‖Lq([ξm j,p

,ξm j,p+1]).

Since γ j,p,ξξξ/h j,p,ξξξ ≤ 1 we obtain

|c j| ≤C‖s‖Lq([ξm j,p ,ξm j,p+1]) ≤C‖s‖Lq([ξ j ,ξ j+p+1]).

Raising both sides to the q-th power and summing over j gives

n

∑
j=1

|c j|q ≤Cq
n

∑
j=1

∫ ξ j+p+1

ξ j

|s(x)|q dx ≤ (p+ 1)Cq‖s‖q

Lq([ξp+1,ξn+1])
.
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When taking the q-th roots we arrive at the lower inequality in (75) with Kp =
(p+ 1)C depending only on p. ⊓⊔

2.3.2 Distance to a function

The quasi-interpolant Qp,ξξξ f described in the previous section can be used to obtain

an upper bound for the distance between a given function f and the spline space

Sp,ξξξ for p ≥ 0, n > p+ 1 and ξξξ := {ξ j}n+p+1
j=1 , see Theorem 48. We recall that the

knot sequence ξξξ is (p+1)-open. We start by giving a local and global upper bound

for (the derivatives of) the difference between f and Qp,ξξξ f .

Proposition 46. Suppose ξm < ξm+1 for some p+1≤m≤ n, and let f ∈W l+1
q ([ξm−p,ξm+p+1])

with 0 ≤ l ≤ p and 1≤ q≤ ∞. If Qp,ξξξ f is defined as in (108) then, for any 0 ≤ r ≤ l,

‖Dr( f −Qp,ξξξ f )‖Lq([ξm,ξm+1]) ≤ Km(ξm+p+1 − ξm−p)
l+1−r‖Dl+1 f‖Lq([ξm−p,ξm+p+1]).

Here,

Km := 1+C

p

∏
k=p−r+1

ξm+p+1 − ξm−p

∆m,k
,

∆m,k is defined in (25) and C is a constant depending only on p.

Proof. ¿From Lemma 42 we know that Qp,ξξξ reproduces any polynomial in Pl , and

so the triangle inequality gives

‖Dr( f −Qp,ξξξ f )‖Lq([ξm,ξm+1])

≤ ‖Dr( f − g)‖Lq([ξm,ξm+1])+ ‖Dr
Qp,ξξξ ( f − g)‖Lq([ξm,ξm+1]),

for any g ∈ Pl . Let us now set g := Tξm,l f , where Tξm,l f is the Taylor polynomial

of degree l defined in (79) with a = ξm, b = ξm+1. Then, Theorem 27 implies

‖Dr( f − g)‖Lq([ξm,ξm+1])
≤ (ξm+1 − ξm)

l+1−r‖Dl+1 f‖Lq([ξm,ξm+1])
.

On the other hand, since f −g ∈C([ξm−p,ξm+p+1]), it follows from Lemma 44 that

‖Dr
Qp,ξξξ ( f − g)‖Lq([ξm,ξm+1]) ≤C

( p

∏
k=p−r+1

1

∆m,k

)
‖ f − g‖Lq([ξm−p,ξm+p+1]),

where C is a constant depending only on p. Combining the above three inequalities

gives the result. ⊓⊔

We know that the ratio
ξm+p+1−ξm−p

∆m,k
is well defined because ∆m,k > 0. For a uni-

form knot sequence
ξm+p+1 − ξm−p

∆m,k
=

2p+ 1

k
.
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For a general knot sequence it is related to the “local mesh ratio”, i.e., the ratio

between the lengths of the largest and smallest knot intervals in a neighborhood of

ξm.

The local error bound in Proposition 46 can be turned into a global one as in the

following proposition.

Proposition 47. Let f ∈W l+1
q ([ξp+1,ξn+1]) with 0≤ l ≤ p and 1≤ q≤ ∞. If Qp,ξξξ f

is defined as in (108) then, for any 0 ≤ r ≤ l,

‖Dr( f −Qp,ξξξ f )‖Lq([ξp+1,ξn+1]) ≤ Khl+1−r
ξξξ

‖Dl+1 f‖Lq([ξp+1,ξn+1]), (118)

where hξξξ := maxp+1≤ j≤n(ξ j+1 − ξ j), and

K := (2p+ 1)l+2−r

[
1+C max

p+1≤m≤n

p

∏
k=p−r+1

ξm+p+1 − ξm−p

∆m,k

]
,

where ∆m,k is defined in (25) and C is a constant depending only on p.

Proof. For q = ∞ the result follows immediately from Proposition 46 by taking into

account that ξξξ can be assumed to be a (p+1)-open knot sequence. We now assume

1 ≤ q < ∞. Since

max
p+1≤m≤n

(ξm+p+1 − ξm−p)≤ (2p+ 1)hξξξ ,

the result follows from Lemma 31 and the local error bound in Proposition 46. ⊓⊔
The expression K in the upper bound in Proposition 47 depends on the position

of the knots for r > 0. However, for any knot sequence ξξξ , it is possible to construct a

coarser knot sequence ξξξ
♯

such that the corresponding K only depends on p. This can

be obtained by a clever thinning process. The idea of thinning out a knot sequence

to get a quasi-uniform sequence is credited to [19]. Since ξξξ
♯

is a subsequence of ξξξ ,

we have that S
p,ξξξ ♯ is a subspace of Sp,ξξξ . In particular, for any f ∈ L∞([ξp+1,ξn+1])

the spline approximation

sp := Q
p,ξξξ ♯ f

as defined in (108) belongs to the spline space Sp,ξξξ . This spline quasi-interpolant

leads to the following important result.

Theorem 48. Let f ∈W l+1
q ([ξp+1,ξn+1]) with 1 ≤ q≤∞ and 0≤ l ≤ p. Then, there

exists sp ∈ Sp,ξξξ such that

‖Dr( f − sp)‖Lq([ξp+1,ξn+1]) ≤ Khl+1−r
ξξξ

‖Dl+1 f‖Lq([ξp+1,ξn+1]), 0 ≤ r ≤ l, (119)

where hξξξ := maxp+1≤ j≤n(ξ j+1 − ξ j) and K is a constant depending only on p.

The constant K in Theorem 48 grows exponentially with p. However, this de-

pendency on p can be removed in some cases, see [1, Theorem 2] for details. Theo-

rem 48 immediately leads to the distance result in Theorem 41.
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