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Introduction: Rigidity versus Fragility

In the study of Hamiltonian systems an important role is played by integrable
dynamics.

Integrability appears to be a very fragile property since it
is not expected to persist under generic, yet small,
perturbations.

Understanding which of features of these systems break
or are preserved in the passage from the integrable
regime to non-integrable one is a very natural question,
related to several interesting problems in dynamics.

Phase portrait of the standard map
(Credits: Wikipedia)

In this talk we consider one-parameter families of a twist maps and investigate:

The persistence and the properties of Lagrangian tori foliated by periodic
points (very fragile objects).

The rigidity of integrable twist maps: to which extent it is possible to deform
in a non-trivial way an integrable twist map, preserving some of its features.
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The struggle for persistence of an invariant Lagrangian torus

Starring Tere

Sequoia & Kings Canyon National Park (US), 2018.



Symplectic twist maps of the 2d-dimensional annulus

Definition (Symplectic twist maps)

A symplectic twist map of the 2d-dimensional annulus, d ě 1, is a C 1

diffeomorphism f : Td ˆ Rd ý that admits a lift

F : Rd ˆ Rd ÝÑ Rd ˆ Rd

pq, pq ÞÝÑ pQpq, pq,Ppq, pqq

satisfying:

F pq `m, pq “ F pq, pq ` pm, 0q @m P Zd ;

(Twist condition) the map pq, pq ÞÑ pq,Qpq, pqq is
a diffeomorphism of R2d ;

(Exact symplecticity) There exists a generating function, namely
S : R2d Ñ R such that

‚ PdQ ´ pdq “ dSpq,Qq (ðñ it preserves ω “ dq ^ dp).
‚ Spq `m,Q `mq “ Spq,Qq @m P Zd .
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Example: Completely integrable twist maps

Let us consider a completely integrable symplectic twist map

f pq, pq :“ pq `∇`ppq, pq q P Td , p P Rd

where ` : Rd Ñ R is C 2 and ∇` : Rd Ñ Rd is a C 1 diffeomorphism.

The phase space is completely
foliated by invariant tori
Tp0 :“ Td ˆ tp0u, with p0 P Rd , on
which the dynamics is a translation
by ∇`pp0q.

Let rpp0q :“ rank tν P Zd : xν,∇`pp0qy “ 0u P t0, . . . , du; the closure of
each orbit on Tp0 is a pd ´ rpp0qq-dimensional torus. In particular:

If rpp0q “ 0 (non-resonant), then every orbit is dense on Tp0 ;
if rpp0q “ d ´ 1 (maximally resonant), every orbit on Tp0 is periodic.

The generating function is Spq,Qq :“ hpQ ´ qq, where h is such that
p∇`q´1 “ ∇h (Fenchel-Legendre transform).
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Periodic and completely periodic tori

Let F : Rd ˆ Rd ý be a lift of a symplectic twist map f : Td ˆ Rd ý.

Definition (Periodic and completely periodic graphs)

Let L :“ graphpγq, where γ : Rd ÝÑ Rd be a Zd -periodic and continuous, and
let pm, nq P Zd ˆ N˚ with m and n coprime.

L is a pm, nq-periodic graph of F , if

F npq, γpqqq “ pq `m, γpqqq @ q P Rd .

L is a pm, nq-completely periodic graph of F, if it is pm, nq-periodic and
invariant by F .

L is as regular as F is (twist condition + Implicit function theorem).

For positive symplectic twist maps:
L Lagrangian + pm, nq-periodic ùñ invariant (hence, completely periodic)
(using action-minimizing properties).
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Some non-degeneracy (stronger twist) conditions

Let F : Rd ˆ Rd ý be a lift of a symplectic twist map f : Td ˆ Rd ý.

f is said to be positive if F admits a C 2 generating function
S : Rd ˆ Rd Ñ R and α ą 0 such that

B2
q,QSpq,Qqpv , vq ď ´α}v}

2 @ q,Q, v P Rd .

f is said to be strongly positive if it is positive and there also exists
β ą α ą 0 such that

´β}v}2 ď B2
q,QSpq,Qqpv , vq ď ´α}v}

2 @ q,Q, v P Rd .

For a completely integrable map f pq, pq :“ pq `∇`ppq, pq, recall that
Spq,Qq :“ hpQ ´ qq, where h is such that p∇`q´1

“ ∇h. Hence:

f is positive ðñ D α ą 0 such that

D2`ppqpv , vq ě α}v}2
@ p, v P Rd .

f is strongly positive ðñ D β ą α ą 0 such that

β}v}2
ě D2`ppqpv , vq ě α}v}2

@ p, v P Rd .
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Family of maps obtained by perturbing by a potential

Let

f : Td ˆ Rd ý be symplectic twist map,

F : Rd ˆ Rd ý be a lift of f ,

S : Rd ˆ Rd ÝÑ R its generating function.

Given a potential G P C 2pTdq, one can obtain a 1-parameter family of symplectic
twist maps in the following way:

For every ε P R, we consider the maps fε : Td ˆ Rd ý with generating functions

Sεpq,Qq :“ Spq,Qq ` εG pqq.

We denote by tFεuεPR a continuous family of lifts of the family tfεuεPR.

This kind of perturbations are also called perturbations in the sense of Mañé.

These perturbations do not alter the property of being (strongly) positive.
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Persistence of Lagrangian periodic tori

Theorem 1 [Arnaud, Massetti, S. (2022)]

Let f : Td
ˆ Rd

ý be symplectic twist map and let F : Rd
ˆ Rd

ý be a lift of f and
S : Rd

ˆ Rd
ÝÑ R its generating function.

Let G P C 2
pTd
q and tfεuεPR be 1-parameter family of maps with generating functions

Sεpq,Qq :“ Spq,Qq ` εGpqq. Denote by tFεuεPR a continuous family of lifts of tfεuεPR.

Assume that:

F is strongly positive,

F admits a holomorphic extension (satisfying the twist & exact symplecticity
conditions) to Cd

ˆ Cd ,

G admits a holomorphic extension to Cd .

Then, for every pm, nq P Zd
ˆ N˚, with m and n coprime, the set

Σm,n :“ tε P R : Fε has a Lagrangian pm, nq-periodic graphu “

"

R
isolated points.

If, in addition, }B2
qqS}8 and }B2

Q,QS}8 are bounded + G is non-constant, then:

Σm,n consists of at most finitely many points.
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Some comments to Theorem 1

The proof can be adapted to the case in which F (resp., G) admits just a
holomorphic extension to a strip Σ2d

σ , where Σ2d
σ :“ tz P C2d : }Im z} ă σu for

some σ ą 0.

One can deduce the following rigidity result:

(Hypotheses of Theorem 1, including the boundedness of }B2
q,qS}8 and }B2

Q,QS}8)

If for some pm, nq P Zd
ˆ N˚, with m and n coprime, the maps tfεuεPR admit a

Lagrangian pm, nq-periodic torus for infinitely many values of ε P R, then, G must
be constant.

Compare with related results for 2-dimensional Birkhoff billiards concerning the
existence of rational periodic caustics (Kaloshin, Koudjinan, Ke Zhang).

Although Theorem 1 cannot be applied to billiards (due to the nature of the
perturbation), the same techniques could work and prove (in progress):

Given an one-parameter analytic family of Birkhoff billiards, either rational periodic
caustics for a fixed rotation number exist for all members of the family, or it does
appear for at most an isolated set of values of the parameter.
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Rigidity of completely integrable maps

Theorem 2 [Arnaud, Massetti, S. (2022)]

Let f : Td
ˆ Rd

ý be completely integrable symplectic twist map of the form

f pq, pq “ pq `∇`ppq, pq,

and let F : Rd
ˆ Rd

ý denote a lift of f and S : Rd
ˆ Rd

ÝÑ R its generating function.

Assume that:

Strong positivity: D β ą α ą 0 such that

β}v}2
ě D2`ppqpv , vq ě α}v}2

@ p, v P Rd .

` admits a holomorphic extension to Cd .

Let G P C 2
pTd
q and tfεuεPR be a 1-parameter family of maps with generating functions

Sεpq,Qq :“ Spq,Qq ` εGpqq. Denote by tFεuεPR a continuous family of lifts of tfεuεPR.

(*) Assume there exist q1, . . . , qd be a basis of Qd and I1, . . . , Id Ă R open intervals,
such that for every m

n
P
Ťd

j“1 qj Ij XQd , Fε has a Lagrangian pm, nq-periodic graph
for infinitely many values of ε P R, accumulating to 0.

Then, G must be identically constant.
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Some comments to Theorem 2

We do not ask analiticity of G . We shall see that (*) implies that G must
be a trigonometric polynomial (hence Theorem 1 applies).

For a given ε P R, the assumption on Fε in (*) is satisfied if there exists an
open set A Ă Rd such that Fε has a Lagrangian pm, nq- periodic graph for
any m

n P AXQd (weakly rational integrability).

In fact, one can choose q1, . . . , qd P Qd linearly independent, such that the half-lines

σqi ptq “ tqi , for t ě 0, intersect A; for every j “ 1, . . . , d , choose 0 ă aj ă bj such that

σqj ppaj , bj qq Ă A, and let Ij :“ paj , bj q.

Bialy & MacKay (2004) proved that a generalized standard map of Td ˆ Rd

(i.e., `ppq “ 1
2}p}

2) that has no conjugate points corresponds to constant
potential.

The proof uses the fact that the whole 2d-dimensional annulus is completely foliated by

invariant tori (ùñ C0-integrable) and that the phase space is effectively compact (i.e.,

the map can be considered acting on T2d ).

In the case d “ 1, Suris (1989) exhibited examples of generalized standard
maps that are integrable (i.e., they have an integral of motion) for all values
of the parameter for which they are defined.
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Proof of Theorem 2 (Part 1/2)

Lemma 1

(Under the assumptions of Theorem 2) Let pm, nq P Zd
ˆ N˚, with m and n coprime,

and assume that there exist infinitely many values of ε P R, accumulating to 0, for which
Fε has an pm, nq-completely periodic Lagrangian graph. Then, @ ν P Zd

zt0u such that

xν, m
n
y P Z, we have the ν-th Fourier coefficient pGpνq “ 0.

Idea of the proof of Lemma 1:

Let tεkukě1 be the values of ε, accumulating to 0, whose existence is assumed in
the statement.

For q P Rd , denote by tqεkj ujPN the projection of the orbit of Fεk starting at
qεk0 “ q and lying on the Lagrangian pm, nq-periodic graph.

Using a standard Melnikov argument, let us focus on their Lagrangian action:

Aεk
pm.nqpqq :“

n´1
ÿ

j“0

Sεk pq
εk
j , q

εk
j`1q “

n´1
ÿ

j“0

Spqεkj , q
εk
j`1q ` εkGpq

εk
j q ” constant w.r.t. q

“

n´1
ÿ

j“0

S

ˆ

q `
j

n
, q `

j ` 1

n

˙

` εk

n´1
ÿ

j“0

G

ˆ

q `
j

n

˙

loooooooomoooooooon

constant w.r.t. q

` opεkq
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Proof of Theorem 2 (Part 2/2)

řn´1
j“0 Gpq ` j

n
q ” constant w.r.t. q

Integrating it against e´2πixν,qy (ν ‰ 0), we obtain:

0 “
n´1
ÿ

j“0

ż

Td

Gpq ` j
m

n
qe´2πi xν,qy dq “

n´1
ÿ

j“0

ż

Td

Gpuqe´2πi xν,uy du “ n pGpνq.

Lemma 2

Let q1, . . . , qd P Qd be linearly independent vectors over R and let 0 ă ai ă bi ,
i “ 1, . . . , d . Then, the set

tν P Zd s.t. xν, λ qiy R Z @ λ P pai , bi q XQ @ i “ 1, . . . , du

is finite.

Lemma 1 + Lemma 2 + Assumption (*) ùñ G is a trigonometric polynomial.

Hence, Theorem 2 follows from Theorem 1.
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Proof of Theorem 1 (Part 1/6)

Let K “ R or C. Fix pm, nq P Zd
ˆ N˚, with m and n coprime, and let tFεuεPK be a

continuous family of lifts of tfεuεPK, as in the assumptions.

Introduce the following sets (π1 denotes the projection on the first component):

The set of radially transformed points:

Rpm,nqpKq :“ tpε, q, pq P KˆKd
ˆKd : π1 ˝ F

n
ε pq, pq “ q `mu.

The set of non-degenerate radially transformed points:

R˚pm,nqpKq :“ tpε, q, pq P Rpm,nqpKq : det
`

Bppπ1 ˝ F
n
ε pq, pq

˘

‰ 0u.

We denote by Rε
pm,nqpKq and Rε,˚

pm,nqpKq when we freeze ε P K.

The set of parameters for which Rε,˚
pm,nqpRq contains a Zd -periodic graph:

J ˚pm,nqpRq :“ tε P R : Rε,˚
pm,nqpRq contains a Zd -periodic graphu.

Lemma 3

(i) R˚pm,nqpKq is a pd ` 1q-dimensional submanifold of KˆKd
ˆKd , which is as

regular as F is and it locally coincides with the graph of a function
Γm,n : Vpm,nq Ă KˆKd

Ñ Kd defined for pε, qq in some open set Vpm,nq Ă KˆKd .

(ii) J ˚pm,nqpRq is an open subset of R.
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Proof of Theorem 1 (Part 2/6)

Similarly:

The set of periodic points:

Ppm,nqpKq :“ tpε, q, pq P KˆKd
ˆKd : F n

ε pq, pq “ q `mu

The set of non-degenerate periodic points:

P˚pm,nqpKq :“ Ppm,nqpKq XR˚pm,nqpKq.

We denote by Pεpm,nqpKq and Pε,˚
pm,nqpKq when we freeze ε P K.

The set of parameters for which Pε,˚
pm,nqpRq contains a Lagrangian invariant torus:

I˚pm,nqpRq :“ tε P R : Pε,˚
pm,nqpRq contains a Zd -periodic Lagr. graph and Fε-invar.u.

Lemma 4

(i) Σpm,nq ” I˚pm,nqpRq and it is closed.

(ii) For every ε P I˚pm,nqpRq, Fε has exactly one Lagrangian pm, nq-completely periodic
graph, denoted graphpγεq.

The map pε, qq P I˚pm,nqpRq ˆ Rd
ÞÑ γεpqq is as regular as the map

pε, q, pq ÞÑ Fεpq, pq is (in Whitney’s sense), and Zd -periodic in the q-variable.
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Proof of Theorem 1 (Part 3/6)

Lemma 5
The set Σm,n has empty interior or is the whole R.

Idea of the proof:

Let Σm,n ‰ R with a connected component A that is not a single point. Then:

Γ :“ tpε, q, γεpqqq : ε P A, q P Rd
u Ď R˚pm,nqpCq

is connected and let V the connected component of R˚pm,nqpCq that contains it.

Define (π2 denotes the projection on the p-component):

∆ : V ÝÑ Cd

pε, q, pq ÞÝÑ π2 ˝ F
n
ε pq, pq ´ p,

The map ∆ is holomorphic and vanishes on Γ ùñ ∆ vanishes on V
(The real dimension of Γ is d ` 1 and the complex dimension of V is d ` 1).
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Proof of Theorem 1 (Part 4/6)

Define

χ : V ÝÑ C2d rX s

pε, q, pq ÞÝÑ det
`

X I2d ´ DF n
ε pq, pq

˘

,

where C2d rX s is the set of complex polynomials with degree ď 2d and I2d denotes the
2d-identity matrix.

χ is holomorphic and χ ” pX ´ 1q2d on Γ.
For ε P A, the graph of γε is analytic, Lagrangian and F n

ε restricted to it coincides with

the mappq, pq ÞÑ pq `m, pq. Since F n
ε is symplectic, then at every point of graphpγεq all

the eigenvalues of DF n
ε must be equal to 1.

ùñ χ ” pX ´ 1q2d on the whole V.

Let β :“ supA and prove that β “ `8. Assume β ă `8:

β P Σn,m
loomoon

closed set

“ I˚n,mpRqĂ J ˚n,mpRq
looomooon

open set

.

Let I be the connected component of J ˚pm,nqpRq that contains β and consider the

connected subset of R˚pm,nqpCq

U :“
ď

εPI

tεu ˆ graphpηεq Ď V.
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Define

χ : V ÝÑ C2d rX s

pε, q, pq ÞÝÑ det
`

X I2d ´ DF n
ε pq, pq

˘

,

where C2d rX s is the set of complex polynomials with degree ď 2d and I2d denotes the
2d-identity matrix.

χ is holomorphic and χ ” pX ´ 1q2d on Γ.
For ε P A, the graph of γε is analytic, Lagrangian and F n

ε restricted to it coincides with

the mappq, pq ÞÑ pq `m, pq. Since F n
ε is symplectic, then at every point of graphpγεq all

the eigenvalues of DF n
ε must be equal to 1.

ùñ χ ” pX ´ 1q2d on the whole V.

Let β :“ supA and prove that β “ `8. Assume β ă `8:
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Proof of Theorem 1 (Part 5/6)

∆ vanishes on U ùñ the graphs of ηε for ε P I are pm, nq-periodic.

χ ” pX ´ 1q2d on U ùñ the graphs of ηε for ε P I are Lagrangian.

If L “ graphpγq is a pm, nq-periodic graph of F such that for all q P Rd

det
´

Bppπ1 ˝ F
nqpq, γpqqq

¯

‰ 0 and det
´

X I2d ´ DF npq, γpqq
¯

“ pX ´ 1q2d ,

then L is C1 and Lagrangian.

The graphs of ηε are also invariant.

Let f : Td ˆ Rd ý be a positive twist map and let F : Rd ˆ Rd ý be a lift of f . Every
Lipschitz Lagrangian pm, nq-periodic graph of F is invariant.

(It follows from the fact that each orbit starting on this graph is action-minimizing + a

graph property à la Mather).

ùñ I Ď Σn,m and β P I o, which is contradicts the fact that A is a connected
component of Σn,m. Therefore: β “ supA “ `8.

Similarly one can deduce that inf A “ ´8 and therefore A “ R, which contradicts our

assumption.
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Proof of Theorem 1 (Part 6/6)

Lemma 6
If Σm,n has an accumulation point ε̄, then D δ ą 0 such that pε̄´ δ, ε̄` δq Ă Σm,n.

(Similar ideas as in Lemma 5, using the the analyticity of the maps ∆ and χ)

ùñ (using Lemma 4) Σm,n consists of isolated points or it is the whole R.

Assume now that }B2
qqS}8 and }B2

Q,QS}8 are bounded + G is non-constant.

Lemma 7

There exists Λ ą 0 such that for all ε P R such that |ε| ě Λ, fε does not admit any C 1

Lagrangian invariant graph.

See also: - Mather (1984), in the case of the standard map in dimension 1;
- Herman (unpublished note) in any dimension, for maps with generating functions

of the form Spq,Qq “ hpQ ´ qq, where h is a positive definite quadratic form.

Lemma 7 ùñ Σm,n is bounded and therefore it is at most finite.
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Per molts anys Tere!
(...and more fun & maths to come!)


