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Homogenization of the Hamilton-Jacobi Equation

Classical Hamilton-Jacobi equation is a first-order nonlinear PDE of the
form

(HJ) : ∂tu(x , t) + H(x , ∂xu(x , t)) = 0 (x , t) ∈ Rn × R

where H : Rn × Rn −→ R is called the Hamiltonian.

This equation has many applications in classical mechanics (e.g., its
solutions are related to the existence of invariant Lagrangian
submanifolds), calculus of variations, optimal control, conservation laws,
classical limits of Schrödinger equation, semi-classical quantum theory,
etc...

This equation can be easily generalized on a general manifold M and in
this case the Hamiltonian H will be defined on the cotangent bundle T ∗M
and u : M × R −→ R.
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Homogenization of Hamilton-Jacobi Equation

Naively speaking, the goal is to describe the macroscopic structure and the
global properties of a problem, by “neglecting” its microscopic oscillations
and its local features.

Pictorially, we want to describe what remains visible to a (mathematical)
observer, as she/he moves her/his (mathematical) point of view further
and further.
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Periodic Homogenization of Hamilton-Jacobi in Rn

Recall the classical result by Lions, Papanicolaou and Varadhan (LPV) in their famous

preprint from 1987.

Let H : Rn × Rn −→ R be a Tonelli Hamiltonian (i.e., C 2, strictly convex
and superlinear in the momentum variable p) + Zn-periodic in the space
variable x .

H can be also seen as the lift of a Tonelli Hamiltonian on T ∗Tn (with
Tn = Rn

Zn ) to its universal cover.

Problem: Consider faster and faster oscillations of the x-variable and study
the associated HJ equations:

(HJε) :

{
∂tu

ε(x , t) + H( xε , ∂xu
ε(x , t)) = 0 x ∈ Rn, t > 0

uε(x , 0) = fε(x)

where ε > 0 and fε : Rn −→ R is some initial datum.
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Periodic Homogenization of Hamilton-Jacobi in Rn

Theorem (Lions, Papanicolaou & Varadhan, 1987)

Let fε : Rn −→ R be Lipschitz and assume that fε
ε→0+

−→ f̄ uniformly.
Then, as ε→ 0+, the unique viscosity solution uε of (HJε) converges
locally uniformly to a function ū : Rn × [0,+∞)→ R, which solves

(HJ) :

{
∂t ū(x , t) + H(∂x ū(x , t)) = 0 x ∈ Rn, t > 0
ū(x , 0) = f̄ (x),

where H : Rn −→ R is called the effective Hamiltonian.

Remarks:

H depends only on H.

As one expects, H is independent of x (due to the limit process).

H is in general not differentiable.

H is convex, but not necessarily strictly convex.
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Periodic Homogenization of Hamilton-Jacobi in Rn

Since H is convex, let us consider its Legendre-Fenchel transform:

L : Rn −→ R
v 7−→ sup

p∈Rn

(
p · v − H(p)

)

L is called the effective Lagrangian (it is also convex and not
necessarily differentiable).

Representation formula for ū:

ū(x , t) = inf
y∈Rn

{
f̄ (y) + tL

(
x − y

t

)}
x ∈ Rn, t > 0.

This follows from the fact that, although H is not differentiable,
characteristic lines of (HJ) are straight lines.
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How to Generalize to a Non-Euclidean Setting?

Main steps in LPV’s Theorem:

Rescale (HJ): for ε > 0 consider the transformation x 7−→ x
ε .

The new Hamiltonian Hε(x , p) = H( xε , p) is still of Tonelli type, but it
becomes εZn-periodic (its oscillations in the space variable become
faster).

Determine the limit problem, i.e., the effective Hamiltonian H and the
limit space in which it is defined (in LPV’s case, this is Rn).

Prove the convergence of solutions to (HJε) to solutions to (HJ), as
ε→ 0+.

Find a representation formula for the solution to (HJ) in terms of the
effective Lagrangian L.

A first generalization of [LPV] to non Euclidean setting has been proved in:

[CIS] - G. Contreras, R. Iturriaga and A. Siconolfi, “Homogenization on arbitrary manifolds”,

Calc. Var. & PDE Vol. 52 (1-2): 237-252, 2015.
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How to Do the Rescaling?

As observed in [CIS], if uε(x , t) is a solution to{
∂tu

ε(x , t) + H( xε , ∂xu
ε(x , t)) = 0 x ∈ Rn, t > 0

uε(x , 0) = fε(x)

then v ε(x , t) = uε(εx , t) is a solution to

(H̃Jε) :

{
∂tv

ε(x , t) + H(x , 1
ε∂xv

ε(x , t)) = 0 x ∈ Rn, t > 0

v ε(x , 0) = fε(εx) =: f̃ε(x).

If we denote by deuc the Euclidean metric on Rn, then (H̃Jε) can be
interpreted as the Hamilton-Jacobi equation (HJ) associated to H on the
rescaled metric space (Rn, εdeuc).

Rescale the metric, not the space!
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The Effective Hamiltonian and the Cell-Problem

In [LPV], H : Rn −→ R was obtained by means of the cell problem (or
stationary ergodic HJ), namely: for a fixed c ∈ Rn and λ ∈ R one search
for solutions of the following equation

(CPc) : H(x , c + du(x)) = λ x ∈ Tn.

Proposition [LPV]

For any c ∈ Rn, there exists a unique λc ∈ R for which (CPc) admits a
(periodic) viscosity solution.

LPV defined the effective Hamiltonian to be H(c) := λc .

Observe that (CPc) can be also thought of as a nonlinear eigenvalue
problem with H(c) and the solution u playing the roles of the eigenvalue
and the eigenfunction.
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The Effective Hamiltonian and the Cell-Problem

Let M a closed manifold and H : T ∗M −→ R a Tonelli Hamiltonian. Let
H1(M;R) denote the first cohomology group of M (i.e., H1(M;R) ' Rb1(M)).

For every c ∈ H1(M;R), let us choose a smooth closed 1-form ηc of cohomology
class [ηc ] = c . The cell-problem becomes:

(CPc) : H(x , ηc(x) + du(x)) = λ x ∈ M.

Remark: Clearly, the existence of solutions does not depend on the choice of the
representative but only on its cohomology class!

For each c ∈ H1(M;R), there exists a unique λc ∈ R for which (CPc)
admits a viscosity solution.

One can define the effective Hamiltonian as before:

H : H1(M;R) −→ R
c 7−→ H(c) := λc .

Problem: A-priori there is no relation between dimM and dimH1(M;R)!
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The Effective Hamiltonian and Aubry-Mather theory

Notation: Let L : TM → R be the Tonelli Lagrangian associated to H, let ML be the set

of its invariant probability measures and let AL denote the Lagrangian action on curves

associated to L.

It coincides with Mather’s α-function (Mather, 1991):

H(c) = − min
µ∈ML

∫
TM

(L(x , v)− 〈ηc(x), v〉) dµ =: α(c).

It coincides with Mañé’s critical values (Mañé, 1997):

H(c) = inf{k ∈ R : AL−ηc+k(γ) ≥ 0 ∀ abs. cont. loop γ} =: c(L− ηc).

H(c) represents the energy level containing global action-minimizing orbits
or measures of L− ηc (Carneiro,1995).

In terms of Lagrangian graphs: H(c) = inf
u∈C∞(M)

max
x∈M

H(x , ηc + du(x))

(Contreras, Iturriaga, Paternain, Paternain, 1998).

H coincides with the Symplectic Homogenization introduced by Viterbo in
2009 (and also by Monzner, Vichery, Zapolsky, 2012).
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How to generalize?

Let (M, d) closed Riemannian manifold and H : T ∗M −→ R. We would like to

study (H̃Jε) associated to H.

Problems:

We should work in a non-compact metric space, otherwise the rescaling
process becomes trivial!

The effective Hamiltonian is H : H1(M;R) −→ R. But in general M and
H1(M;R) may have drastically different dimensions (e.g., for a surface Σg

of genus g , H1(Σg ;R) ' R2g !)

In particular: how to define convergence of functions on M to a function on
H1(M;R)?
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The Abelian Cover

Idea: In analogy to what often done in Aubry-Mather theory, in [CIS] the authors
suggest to consider the lift of H to a cover of (M, d), in particular to the
so-called maximal free abelian cover.

The maximal free abelian cover is the covering space pab : M̃ −→ M such that

π1(M̃) ' Ker h and Deck (M̃) ' (Im h)free ' (H1(M;Z))free ' Zb1(M),

where h : π(M) −→ H1(M;R) denotes the Hurewicz homomorphism.

For example, in the case M = Tn this cover M̃ coincides with the universal
one, i.e., Rn.
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Example:

Let us consider a surface Σ3 of
genus 3 and consider a cover
space whose group of Deck
transformations is isomorphic
to Z3.

Remark: This is a free abelian

cover, but not the maximal

one (since b1(Σ3) = 6).
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one, i.e., Rn.

The advantage of this cover is that it has a Zb1(M)-periodic structure given
by the action of the group of Deck transformations.

Heuristically, the rescaled metric space (M̃, εd̃) has a εZb1(M)-structure;
hence, as ε→ 0+, it is reasonable to expect that it “converges” to Rb1(M)

with some metric d∞.
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Homogenization on the Abelian Cover of a Closed Manifold

Theorem (Contreras, Iturriaga & Siconolfi)

Let fε : M̃ −→ R and f̄ : H1(M;R) −→ R be continuous functions, such that f̄ has at
most linear growth and fε converges uniformly to f̄ as ε→ 0+.
Then, the viscosity solution uε : M̃ × [0,+∞) −→ R to{

∂tu
ε(x , t) + H(x , 1

ε
∂xu

ε(x , t)) = 0 x ∈ M̃, t > 0
uε(x , 0) = fε(x),

converges locally uniformly to the viscosity solution ū : H1(M;R) −→ R to{
∂t ū(x , t) + H(∂x ū(x , t)) = 0 x ∈ H1(M;R), t > 0
ū(x , 0) = f̄ (x),

where H : H1(M;R)→ R is the effective Hamiltonian (or Mather’s α function).
Moreover,

ū(x , t) = inf
y∈H1(M;R)

{
f̄ (y) + tL

(x − y

t

)}
x ∈ H1(M;R), t > 0,

where L : H1(M;R)→ R is the effective Lagrangian (or Mather’s β function).
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Why the Abelian Cover?

This very interesting result raises a natural question:

Why has one to consider the abelian cover?

Homogenization must take place on a non-compact covering space of M,
otherwise the rescaling process will lead to a trivial metric space (M is in
fact compact).
Yet there are many other possible (non-compact) covers of M!

From a technical point of view, this choice has the advantage of transferring
the problem (using the homological structure) onto some space resembling
εZb1(M), which in the limit as ε→ 0+ resembles Rb1(M) ' H1(M;R).

This seems to be the right setting to obtain H : H1(M;R) −→ R (Mather’s
α function) as the effective Hamiltonian.
Would it be possible to obtain a different one, in spite of the analogy with
LPV’s case?
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A Different Point of View

Lifting to a cover is equivalent to give a periodicity to the Hamiltonian H and it
determines the structure of the homogenized problem.

In [LPV] the periodicity is given (i.e., Zn) and it determines the limit space
to be Rn (which happens to coincide also with the x-space).

In [CIS] the periodicity is chosen smartly to be Zb1(M) ' (H1(M;Z))free and
this determines the limit space to be Rb1(M) ' H1(M;R).

In both cases periodicity can be interpreted as the invariance of H under the
action of an abelian group (Zb1(M) ' H1(M;R)).

Idea/Problem: Let us consider Hamiltonians on non compact manifolds
which are invariant under the action of a discrete group.

16 / 34



A Different Point of View

Lifting to a cover is equivalent to give a periodicity to the Hamiltonian H and it
determines the structure of the homogenized problem.

In [LPV] the periodicity is given (i.e., Zn) and it determines the limit space
to be Rn (which happens to coincide also with the x-space).

In [CIS] the periodicity is chosen smartly to be Zb1(M) ' (H1(M;Z))free and
this determines the limit space to be Rb1(M) ' H1(M;R).

In both cases periodicity can be interpreted as the invariance of H under the
action of an abelian group (Zb1(M) ' H1(M;R)).

Idea/Problem: Let us consider Hamiltonians on non compact manifolds
which are invariant under the action of a discrete group.

16 / 34



A Different Point of View

Lifting to a cover is equivalent to give a periodicity to the Hamiltonian H and it
determines the structure of the homogenized problem.

In [LPV] the periodicity is given (i.e., Zn) and it determines the limit space
to be Rn (which happens to coincide also with the x-space).

In [CIS] the periodicity is chosen smartly to be Zb1(M) ' (H1(M;Z))free and
this determines the limit space to be Rb1(M) ' H1(M;R).

In both cases periodicity can be interpreted as the invariance of H under the
action of an abelian group (Zb1(M) ' H1(M;R)).

Idea/Problem: Let us consider Hamiltonians on non compact manifolds
which are invariant under the action of a discrete group.

16 / 34



A Different Point of View

Lifting to a cover is equivalent to give a periodicity to the Hamiltonian H and it
determines the structure of the homogenized problem.

In [LPV] the periodicity is given (i.e., Zn) and it determines the limit space
to be Rn (which happens to coincide also with the x-space).

In [CIS] the periodicity is chosen smartly to be Zb1(M) ' (H1(M;Z))free and
this determines the limit space to be Rb1(M) ' H1(M;R).

In both cases periodicity can be interpreted as the invariance of H under the
action of an abelian group (Zb1(M) ' H1(M;R)).

Idea/Problem: Let us consider Hamiltonians on non compact manifolds
which are invariant under the action of a discrete group.

16 / 34



A Different Point of View

Lifting to a cover is equivalent to give a periodicity to the Hamiltonian H and it
determines the structure of the homogenized problem.

In [LPV] the periodicity is given (i.e., Zn) and it determines the limit space
to be Rn (which happens to coincide also with the x-space).

In [CIS] the periodicity is chosen smartly to be Zb1(M) ' (H1(M;Z))free and
this determines the limit space to be Rb1(M) ' H1(M;R).

In both cases periodicity can be interpreted as the invariance of H under the
action of an abelian group (Zb1(M) ' H1(M;R)).

Idea/Problem: Let us consider Hamiltonians on non compact manifolds
which are invariant under the action of a discrete group.

16 / 34



Setting

Let X a smooth connected (non-compact) manifold without boundary,
endowed with a complete Riemannian metric d .

Let Γ be a finitely generated (torsion free) group.

Assume Γ acts smoothly by isometries on X (i.e., d is Γ-invariant).

The group action is free, properly discontinuous and cocompact (in other
words, X is a regular cover of the compact manifold X/Γ).

H : T ∗X −→ R is a Tonelli Hamiltonian and it is equivariant for the (lifted)
action of Γ on T ∗X :

H(x , p) = H(γ(x), p ◦ dγ(x)γ
−1)

for all (x , p) ∈ T ∗X and γ ∈ Γ.

Is it possible to prove an homogenization result for HJ in this setting?
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Many Questions Searching for an Answer

Do solutions uε : X × (0,+∞) −→ R to (H̃Jε) converge to any function ū?

In which sense should this convergence be meant?

What is the limit space in which ū is defined?

What is the limit problem that ū satisfies?

Does there exist an effective Hamiltonian and on which space is it defined?

Is there any representation formula for ū in terms of an effective Lagrangian?

A positive answer to these questions profoundly depend on the algebraic nature
of the acting group Γ, more specifically on its rate of growth.

Not surprising: there exists a link between the rate of growth of Γ and the
rate of volume growth of balls in (X , d) (Efremovich, 1953).

This fact makes more evident the leading rôle of Γ (periodicity) in the
homogenization process and not of the fundamental domain X/Γ.
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Rescaling (and Convergence) of Metric Spaces

The rescaling process consists in considering HJ on the rescaled metric space
(X , εd) as ε→ 0+. Does it have a limit? In which sense?

Gromov-Hausdorff (GH) “distance”: Let X̃1 := (X1, d1) and X2 := (X̃2, d2) be

metric spaces. We say that dGH(X̃1, X̃2) < r if there exist a metric space (Z , d)

and two subspaces Z1,Z2 ⊂ Z isometric (respectively) to X̃1 and X̃2, such that
their Hausdorff distance in (Z , d) is dH(Z1,Z2) < r .

[Recall that dH(A,B) = inf{r > 0 : Nr (A) ⊃ B andNr (B) ⊃ A}, where Nr (·) denotes the open

neighborhood of size r ]

Convergence of metric spaces:

One could consider the notion of convergence given by dGH (but it works
well only on compact metric spaces).

For non-compact metric spaces, a more useful notion is the one of pointed
Gromov-Hausdorff (pGH) convergence.

Roughly: (Xn, dn, xn)→ (X , d , x0) if balls of radius r > 0 and centers at xn (in
Xn) converge (in the GH distance) to the ball of radius r and center at x0 (in X ).
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Asymptotic Cone of Metric Spaces

Let (X , d) be a metric space. If there exists any limit (in the (pGH) sense) of
(X , εd) as ε goes to 0+, then this is called an asymptotic cone of (X , d).

An asymptotic cone (X∞, d∞) is a cone, i.e., for every ε > 0 the rescaled space
(X∞, εd∞) is isometric to (X∞, d∞).

Remarks:

Asymptotic cones might not exist. For example, the hyperbolic plane H2

with the Poincaré’s metric has no asymptotic cone. A rough explanation is
that the volume of balls grows too fast as the radius increases.

Asymptotic cones might not be unique (even up to isometry) [Thomas &
Velickovic (2000)]

Spaces at finite GH distance have the same asymptotic cones (if any).
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The Group Γ as a Metric Space

Any orbit of Γ represents a metric space embedded in (X , d) and at finite GH
distance (because the action is cocompact).

Two possible metrics in Γ:

Orbit metric: fix x0 ∈ Γ and define
dΓ,x0 (γ1, γ2) := d(γ1(x0), γ2(x0))

Word metric: Let S = {s1, . . . , sk} be a
symmetric set of generators of Γ. For each
γ ∈ Γ we denote

‖γ‖S := min{n ∈ N : γ ∈ Sn}

and we define dS(γ1, γ2) := ‖γ−1
1 γ2‖S .

These metrics are both left-invariant and they
are all bi-Lipschitz equivalent.

Idea: We study the asymptotic cone of Γ as a metric space.
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Asymptotic Cone of a Group

Let Γ be a finitely generated group with a metric dΓ (one of the metric introduced
before).

Γ abelian: Γ ' Zk ⊕ Γ0, where k = rank Γ and Γ0 is the torsion subgroup (a
finite group). Then, the asymptotic cone is G∞ ' Rk and the asymptotic
distance is related to the stable norm, i.e., the unique norm ‖ · ‖∞ such that
for each γ ∈ Zk :

‖γ‖∞ = lim
n→+∞

dΓ(0, nγ)

n
.

If Γ has polynomial growth, i.e., there exist C > 0 and K > 0 such that

]{γ ∈ Γ : ‖γ‖S ≤ r} ≤ CrK ∀ r > 0

then the asymptotic cone exists and it is unique (Gromov, 1981).

Gromov proved that Γ has polynomial growth if and only if it is virtually
nilpotent, i.e., it contains a nilpotent subgroup of finite index.

Polynomial growth is the optimal condition to ensure both existence and
uniqueness of the asymptotic cone.
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Nilpotent Groups

A finitely generated group Γ is said to be nilpotent if the lower central series ends
after finitely many steps:

Γ(1) := Γ ≥ Γ(2) := [Γ(1), Γ] ≥ . . . ≥ Γ(i+1) := [Γ(i), Γ] ≥ . . . ≥ Γ(r) > Γ(r+1) = {e},

where [·, ·] denotes the commutator subgroup and r is called the nilpotency class
of Γ.

Examples:

Abelian groups (r = 1);

Quaternionic group Q8 (r = 2) ← (smallest non-abelian example)

Heisenberg group H2n+1(Z) (r = 2):

H2n+1(Z) = 〈a1, b1, . . . , an, bn, t : [ai , bi ] = t ∀ i = 1, . . . , n and all others brackets = 0〉.

Nilpotent groups have polynomial growth (Wolf, 1968). In particular, Bass (1972)
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Asymptotic Cone of a Nilpotent Group

In order to study the asymptotic cone of a nilpotent group, it would be useful to
embed it into some ambient space (similarly to what happens with Zn and Rn).

Theorem [Malcev, 1951]

Let Γ be a f.g. torsion free nilpotent group. There exists a unique (up to
isomorphisms) simply connected, nilpotent Lie group G , in which Γ can be
embedded as a cocompact discrete subgroup (G is the Malcev closure of Γ).

Idea of the proof:

Γ has a canonical set of generators, namely there exist γ1, . . . , γd such that
every γ ∈ Γ can be written uniquely as γ = γα1

1 · . . . · γ
αd

d , for αi ∈ Z.

The group structure on Γ can be then described in terms of polynomial
relations in the αi ’s −→ new group structure on Zd .

These polynomial relations can be used to define a group structure on Rd ,
which will provide the Malcev closure G .

Remark: d = dimG =
∑r

k=1 rank
(
Γ(k)/Γ(k+1)

)
.
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Stratified Lie Algebra and Dilations

A Lie Algebra g is called a stratified algebra if it admits a stratification, i.e., there
exist vector subspaces V1, . . . ,Vr ⊂ g (called strata) such that

g = V1 ⊕ . . .⊕ Vr

and [Vj ,V1] = Vj+1 for j = 1, . . . , r , with Vr 6= {0} and [Vr ,V1] = {0}
([V ,W ] denotes the subspace generated by commutators).

A graded Lie group G is a simply connected Lie group whose algebra is stratified.

A stratified algebra is nilpotent (some sort of vice-versa is true).

The first stratum V1 completely determines the other strata and it is in
bijection with the abelianization g

[g,g] .

We can define dilations: for each λ ∈ R we define δλ : g −→ g which is an
algebra automorphism defined linearly by imposing δλ(v) = λiv for every
v ∈ Vi , with i = 1, . . . , r . Using the exponential map, we can define the
associated group automorphisms δλ : G −→ G .
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Asymptotic Cone of a Nilpotent Group

If Γ is a finitely generated nilpotent group, not only the asymptotic cone
(G∞, d∞) exists and is unique, but it also enjoys many interesting properties
(Pansu, 1983) −→ G∞ it is related to the Malcev closure of Γ.

G∞ is a simply connected, nilpotent Lie group (with nilpotency class r).

dimG∞ =
∑r

k=1 rank
(
Γ(k)/Γ(k+1)

)
.

Γ embeds in G∞ as a cocompact lattice.

Its Lie algebra g∞ is stratified: g∞ = V1 ⊕ . . .⊕ Vr . Therefore, it has
dilations δλ : g∞ −→ g∞ for each λ > 0 (or, via the exp. map,
δλ : G∞ −→ G∞).

d∞ is a Carnot-Carathéodory distance and d∞(δλ(x̄), δλ(ȳ)) = λd∞(x̄ , ȳ)
for all x̄ , ȳ ∈ G∞ and λ > 0.

Let ∆ ⊂ TG∞ the horizontal distribution induced by V1. There exists a
norm ‖ · ‖∞ on ∆ (obtained similarly to what done for the stable norm)
and d∞ is the sub-Riemannian distance induced by (G∞,∆, ‖ · ‖∞),
i.e., for x̄ , ȳ ∈ G∞ we define:

d∞(x̄ , ȳ) = inf
{∫ T

0
‖γ̇(t)‖∞ : γ : [0,T ]→ G∞is horizontal and︸ ︷︷ ︸

γ̇(t)∈∆ for a.e. t∈[0,T ]

γ(0) = x̄ , γ(T ) = ȳ
}
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for all x̄ , ȳ ∈ G∞ and λ > 0.

Let ∆ ⊂ TG∞ the horizontal distribution induced by V1. There exists a
norm ‖ · ‖∞ on ∆ (obtained similarly to what done for the stable norm)
and d∞ is the sub-Riemannian distance induced by (G∞,∆, ‖ · ‖∞),
i.e., for x̄ , ȳ ∈ G∞ we define:

d∞(x̄ , ȳ) = inf
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for all x̄ , ȳ ∈ G∞ and λ > 0.

Let ∆ ⊂ TG∞ the horizontal distribution induced by V1. There exists a
norm ‖ · ‖∞ on ∆ (obtained similarly to what done for the stable norm)
and d∞ is the sub-Riemannian distance induced by (G∞,∆, ‖ · ‖∞),
i.e., for x̄ , ȳ ∈ G∞ we define:
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Main Theorem (Part 1/3)

Let H : T ∗X −→ R be a Γ-invariant Tonelli Hamiltonian and let L : TX −→ R be the
associated Γ-invariant Tonelli Lagrangian.

For ε > 0, let Xε denote the rescaled metric spaces (X , dε := εd) and consider the
rescaled Hamilton-Jacobi equation:

(H̃Jε)

{
∂tu

ε(x , t) + H(x , 1
ε
∂xu

ε(x , t)) = 0 x ∈ Xε, t > 0
uε(x , 0) = fε(x),

where fε : Xε −→ R are equiLipschitz with respect to the metrics dε and, as ε goes to
zero, they converge uniformly on compact sets to a function f̄ : G∞ −→ R with at most
linear growth.

Then:

1. The rescaled solutions (for x ∈ Xε and T > 0)

uε(x ,T ) = inf

{
fε(γ(0)) +

∫ T

0
L(γ(t), εγ̇(t)) dt

∣∣ γ ∈ C1([0,T ],Xε), γ(T ) = x

}
converge uniformly on compact sets of G∞ × (0,+∞) to a function
ū : G∞ × (0,+∞)→ R.
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ū : G∞ × (0,+∞)→ R.

27 / 34



Main Theorem (Part 2/3)

2. For x̄ ∈ G∞ and T > 0:

ū(x̄ ,T ) = inf
ȳ∈G∞

{
f̄ (ȳ) + TL

(
δ1/T (ȳ−1x̄)

)}
,

where L : G∞ −→ R depends only on the Hamiltonian H, it is superlinear, i.e.,

∀ A > 0 ∃ B = B(A) ≥ 0 : L(x̄) ≥ A d∞(e, x̄)− B ∀ x̄ ∈ G∞

and convex, namely

L
(
δλ(x̄) · δ1−λ(ȳ)

)
≤ λL(x̄) + (1− λ)L(ȳ) ∀ λ ∈ (0, 1) and ∀ x̄ , ȳ ∈ G∞.

We shall call this function Generalized Mather’s β-function.

3. For each x̄ ∈ G∞

L(x̄) := inf
σ∈Hx̄

∫ 1

0

β(π̄(σ̇(s))) ds,

where Hx̄ denotes the set of absolutely continuous horizontal curves
σ : [0, 1] −→ G∞ connecting e to x̄ , β : H1(X/Γ;R) −→ R is Mather’s β-function
associated to the Lagrangian L projected on T (X/Γ), and
π̄ : g∞ −→ g∞

[g∞,g∞]
↪−→ H1(X/Γ;R).
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Main Theorem (Part 3/3)

ū is the unique viscosity solution to the following problem:{
∂t ū(x̄ , t) + H(∇Hū(x̄ , t)) = 0 (x̄ , t) ∈ G∞ × (0,∞)
ū(x̄ , 0) = f̄ (x̄) x̄ ∈ G∞,

where ∇Hū(x̄ , t) denotes the horizontal gradient of ū(·, t) (with respect to the

x̄-component) and H :
(

g∞
[g∞,g∞]

)∗
−→ R is the convex conjugate of β restricted

to the subspace π̄(g∞) ⊆ H1(X/Γ;R).
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Some Ideas on the Proof: Rescaling Maps

Note: For simplifying the presentation, let us assume that G∞ coincides with the
Malcev closure of Γ.

Fix x0 ∈ X and choose a fundamental domain Ω of the action of Γ in G∞, such
that x0 ∈ Ω.

Rescaling maps: For each ε > 0 we define a map hε : G∞ −→ Γ in the
following way. If x̄ ∈ G∞, then hε(x̄) = γ such that δ 1

ε
(x̄) ∈ γ · Ω.

Properties:

1. For each R > 0, there exists θ(ε)→ 0 as ε→ 0+, such that hε maps
the ball Bd∞

R (e) into Bdε
R+θ(ε)(x0).

2. δε(hε(x̄)) −→ x̄ in G∞ and if x̄ 6= ȳ then δε(hε(x̄)hε(ȳ)−1) −→ x̄ ȳ−1

in G∞.
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Some Ideas on the Proof: Notion of Convergence

Convergence: Let Fε : Xε → R and F : G∞ → R. We say that:

1. Fε → F poinwise as ε→ 0+, if for each x̄ ∈ G∞ we have

lim
ε→0+

Fε(hε(x̄) · x0) = F (x̄).

2. Fε → F locally uniformly as ε→ 0+, if for each R > 0 we have

lim
ε→0+

sup
Bd∞
R (e)

∣∣Fε(hε(x̄) · x0)− F (x̄)
∣∣ = 0.

Note: If Fε are equicontinuous, also this notion is independent of x0.
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Some Ideas on the Proof: Rescaled Mañé potential

Recall the representation formula for the solution to (H̃Jε):

uε(x ,T ) = inf
{
fε(γ(0)) +

∫ T

0
L(γ(t), εγ̇(t)) dt

∣∣ γ ∈ C1([0,T ],Xε), γ(T ) = x
}

We define the Mañé potential associated to Lε(x , v) = L(x , εv) as (let x , y ∈ X
and T > 0):

Φε(x , y ,T ) := inf

{∫ T

0
L(γ(t), εγ̇(t)) dt

∣∣ γ ∈ C1([0,T ],Xε), γ(0) = x , γ(T ) = y

}
= inf

{∫ T/ε

0
L(γ(t), γ̇(t)) dt

∣∣ γ ∈ C1([0,T/ε],X ), γ(0) = x , γ(T/ε) = y

}
.

Note: We are assuming that the Mañé critical value of L : T (X/Γ)→ R is zero.
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Mañé potential

∣∣ γ ∈ C1([0,T ],Xε), γ(T ) = x
}
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Some Ideas on the Proof: Limit of Rescaled Mañé potential

Let us define the following function

Fε : G∞ × (0,+∞) −→ R
(x̄ ,T ) 7−→ Φε(x0, hε(x̄) · x0,T ).

Rescaling property: Fε(x̄ ,S) = S
T F T

S ε
(δ T

S
(x̄),T ) for all x̄ ∈ G∞ and S ,T > 0.

Proposition

For all x̄ ∈ G∞ and T > 0

∃ lim
ε→0+

Fε(x̄ ,T ) =: β̂(x̄ ,T ).

Clearly, β̂(x̄ ,S) = S
T β̂(δ T

S
(x̄),T ) for all x̄ ∈ G∞ and S ,T > 0.

The effective Lagrangian is defined as L(x̄) := β̂(x̄ , 1). It has an explicit
expression in terms of Mather’s β function (see statement of the theorem).
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Some Ideas on the Proof: Convergence

Then one can show that uε→ ū locally uniformaly in G∞ × (0,+∞) as ε goes to
zero, where

ū(x̄ ,T ) = inf
ȳ∈G∞

{
f̄ (ȳ) + TL

(
δ1/T (ȳ−1x̄)

)}
.

Moreover, from this Hopf-like representation formula & a result by Balogh,
Calogero and Pini (2014), we can deduce that ū solves a Hamilton-Jacobi
equation associated to some specific effective Hamiltonian H (see the statement
of the theorem):{

∂t ū(x̄ , t) + H(∇Hū(x̄ , t)) = 0 (x̄ , t) ∈ G∞ × (0,∞)
ū(x̄ , 0) = f̄ (x̄) x̄ ∈ G∞,
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Thank you for your attention!


