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Which game are we playing at?

A mathematical billiard consists of a closed region in the plane (the billiard
table) and a point-mass in its interior (the ball), which moves along
straight lines with constant velocity.

When the ball hits the boundary, it reflects elastically, namely:

angle of incidence = angle of reflection.

And it keeps on moving... Can we describe the evolution of its dynamics?
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What do we wish to study?

Observation: Between two consecutive bounces, the ball moves along a
segment with constant velocity (nothing interesting happens!).
It suffices to know the points where the ball hits the boundary to
reconstruct the whole dynamics!

Let us suppose to start from a point P on the boundary.
Where will the ball hit the boundary next?
It depends on the initial angle ϑ ∈ (0, π)!
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Examples of orbits in a rectangular billiard

Periodic orbit
Number of bounces (period)

= 2

Periodic orbit
Number of bounces (period)

= 4

Non-periodic orbit
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The Billiard Map

The billiard map is a map that to each initial pair (P, ϑ) associates the
point at which the ball will hit the boundary next and the corresponding
angle of incidence:

B : ∂R × (0, π) −→ ∂R × (0, π)

(P, ϑ) −→ (P ′, ϑ′)
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A Mathematical Billiard is an example of Dynamical System

What is a Dynamical System?
It is a system whose state evolves in time.
Goal: To study and describe its evolution in time.

State: “features” of the system that identify uniquely its state at a
given time (e.g., for the billiard one can choose (P, ϑ)).
- The sequence of states achieved by the system is called orbit.
- The set of possible states is called −→ state space

(for the billiard it is ∂R × (0, π)).
Evolution: the law/map that allows one to deduce the “next” state, by
knowing the current one (e.g., for the billiard, the map B).
Time: it can be continuous (at every time we want to know the state
of the ball) or discrete (we want to know the state of the ball only
when it hits the boundary).

5 / 24



A Mathematical Billiard is an example of Dynamical System

What is a Dynamical System?
It is a system whose state evolves in time.
Goal: To study and describe its evolution in time.

State: “features” of the system that identify uniquely its state at a
given time (e.g., for the billiard one can choose (P, ϑ)).
- The sequence of states achieved by the system is called orbit.
- The set of possible states is called −→ state space

(for the billiard it is ∂R × (0, π)).

Evolution: the law/map that allows one to deduce the “next” state, by
knowing the current one (e.g., for the billiard, the map B).
Time: it can be continuous (at every time we want to know the state
of the ball) or discrete (we want to know the state of the ball only
when it hits the boundary).

5 / 24



A Mathematical Billiard is an example of Dynamical System

What is a Dynamical System?
It is a system whose state evolves in time.
Goal: To study and describe its evolution in time.

State: “features” of the system that identify uniquely its state at a
given time (e.g., for the billiard one can choose (P, ϑ)).
- The sequence of states achieved by the system is called orbit.
- The set of possible states is called −→ state space

(for the billiard it is ∂R × (0, π)).
Evolution: the law/map that allows one to deduce the “next” state, by
knowing the current one (e.g., for the billiard, the map B).

Time: it can be continuous (at every time we want to know the state
of the ball) or discrete (we want to know the state of the ball only
when it hits the boundary).

5 / 24



A Mathematical Billiard is an example of Dynamical System

What is a Dynamical System?
It is a system whose state evolves in time.
Goal: To study and describe its evolution in time.

State: “features” of the system that identify uniquely its state at a
given time (e.g., for the billiard one can choose (P, ϑ)).
- The sequence of states achieved by the system is called orbit.
- The set of possible states is called −→ state space

(for the billiard it is ∂R × (0, π)).
Evolution: the law/map that allows one to deduce the “next” state, by
knowing the current one (e.g., for the billiard, the map B).
Time: it can be continuous (at every time we want to know the state
of the ball) or discrete (we want to know the state of the ball only
when it hits the boundary).

5 / 24



Why do we consider only rectangular billiards?

The dynamics inside a billiard is completely determined by its geometry
(i.e., its shape)!

One could choose billiard tables with different shapes:

One could also assume that the domain lies inside a Riemannian metric
rather than the Euclidean plane.
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Dynamics inside a general (Euclidean) table

Reflection law: One considers the angle formed with the tangent line

angle of incidence = angle of reflection

In the case of a table lying in a Riemannian manifold, the ball moves along
geodesics instead of straight lines.

7 / 24



Dynamics inside a general (Euclidean) table

Reflection law: One considers the angle formed with the tangent line

angle of incidence = angle of reflection

In the case of a table lying in a Riemannian manifold, the ball moves along
geodesics instead of straight lines.

7 / 24



Dynamics inside a general (Euclidean) table

Reflection law: One considers the angle formed with the tangent line

angle of incidence = angle of reflection

In the case of a table lying in a Riemannian manifold, the ball moves along
geodesics instead of straight lines.

7 / 24



Dynamics inside a general (Euclidean) table

Reflection law: One considers the angle formed with the tangent line

angle of incidence = angle of reflection

In the case of a table lying in a Riemannian manifold, the ball moves along
geodesics instead of straight lines.

7 / 24



The study of the dynamics of billiards is a very active area of research.
Dynamical behaviours and properties are strongly related to the shape of
the table.

Polygonal billiards:
- Related to the study of the geodesic flow on a
translation surface (with singular points);
- Teichmüller theory.

(Strictly) Convex Billiards:
- Birkhoff billiards (G. Birkhoff, 1927: paradigmatic
example of Hamiltonian systems).
- The billiard map is a twist map.
- Coexistence of regular (KAM, Aubry-Mather) and
chaotic dynamics.

Concave Billiards (or dispersive):
- Nearby Orbits tend to move apart (exponentially).
- Hyperbolicity and chaotic behaviour (Y. Sinai, 1970).
- Study of statistical properties of orbits.
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Reflecting... helps!

IDEA: Instead of reflecting the ball... Let us reflect the table!
“Though this be madness, yet there is method in ’t” (Hamlet, Act II, Scene II)
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From a polygonal billiard to a surface

Billiard in a rectangle −→ Geodesic (linear) flow on the Torus
Periodic orbits −→ Closed Geodesics
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From a polygonal billiard to a surface

IDEA(Katok, Zemlyakov): the same reasoning can be applied to other
polygons whose angles are of the form pi

qi
π, pi , qi ∈ N (Rational Billiards).

Example (Right triangle with one angle of π
8 ):
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Birkhoff Billiards

Let Ω be a strictly convex domain in R2 with smooth boundary ∂Ω (fix an
orientation). Let ϑ the shooting angle (w.r.t. the positive tangent to ∂Ω).
The Billiard map is:

B : ∂Ω× (0, π) −→ ∂Ω× (0, π)

(s, ϑ) 7−→ (s ′, ϑ′).

This simple model has been first proposed by G.D. Birkhoff
(1927) as a mathematical playground where “the formal side,
usually so formidable in dynamics, almost completely disappears
and only the interesting qualitative questions need to be
considered”. George D. Birkhoff

(1884-1944)
14 / 24



Dynamics ←→ Geometry

Study of Dynamics: understand the properties of orbits (periodicity,
symmetries, chaos, etc...)

While the dependence of the dynamics on the geometry of the domain is
well perceptible, an intriguing challenge is:

To what extent dynamical information can be used
to reconstruct the shape of the domain.

This apparently naïve question is at the core of different intriguing
conjectures, among the most difficult to tackle in the study of dynamical
systems!
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Example I: Circular billiard



Digression: A Mad Tea-Party

Charles Lutwidge Dodgson (1832-1898)
(better known as Lewis Carroll).

‘But I don’t want to go among mad people’, Alice
remarked. ‘Oh, you can’t help that’, said the Cat:
’we’re all mad here. You’re mad.’ ‘How do you
know I’m mad?’, said Alice. ‘You must be’, said
the Cat, ‘or you wouldn’t have come here.’

Lewis Carroll thought of playing billiards on a circular table in 1889 and first
published its rules the following year (and a circular billiard table was actually
made for him!)
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Example I: Circular billiard

The angle remains constant at each bounce: it is an Integral of motion.
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Example I: Circular billiard

If ϑ is a rational multiple of π, then the orbit is periodic.

If ϑ is NOT a rational multiple of π, then the orbit hits the boundary on a
dense set of points:

The trajectory does not fill in the table: there is a region (a disc) which is
never crossed by the ball!
The trajectory is always tangent to a circle (this is an example of caustic).

The disc is foliated by convex caustics −→ Integrable billiard.

18 / 24
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Caustics

A convex caustic is a closed C 1 curve in the interior of Ω, bounding itself a
strictly convex domain, with the property that each trajectory that is
tangent to it stays tangent after each reflection.

To a convex caustic in Ω corresponds an invariant circle for the billiard map.
(The converse is not entirely true: invariant curves give rise to caustics, but
they might not be convex, nor differentiable).
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Caustics and Whispering Galleries

Whispering Gallery in St. Paul Cathedral in London (Lord Rayleigh, 1878 ca.)
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Existence of Caustics

Do there exist other examples of billiards with at least one caustic?

Easy to construct by means of the string construction:

Do there exist other examples of billiards with infinitely many caustic?

YES! Lazutkin (1973) proved that every Birkhoff billiard admits infinitely
many caustics accumulating to the boundary of the table!

Do there exist other examples of billiards admitting a foliation by caustics?
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Example II: Elliptic billiard

Curiosity: The New York Times (1st July 1964) ran a full-page ad for Elliptipool, played on an elliptical table with a
single pocket at one of the two foci. The ad said that on the following day the game would be demonstrated at
Stern’s department store by movie stars Paul Newman and Joanne Woodward.



Example II: Elliptic billiard

If the trajectory passes through one of the foci, then it always passes
through them, alternatively.
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Example II: Elliptic billiard

If the trajectory does not intersect the segment between the foci, then it
never does and it is tangent to a confocal ellipse (a convex caustic).
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Example II: Elliptic billiard

If the trajectory intersects the segment between the foci, then it always
does and it is tangent to a confocal hyperbola (a non-convex caustic).
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Example II: Elliptic billiard

The elliptic billiard is also foliated by convex caustics (with the exception of
the segment between the two foci).
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Birkhoff conjecture

Conjecture (Birkhoff-Poritsky)
The only integrable billiard maps correspond to billiards inside ellipses.

Although some vague indications of this question can be found in
Birkhoff’s works (1920’s-30’s), its first appearance was in a paper by
Poritsky (1950), who was a National Research Fellow in Mathematics at
Harvard University, presumably under the supervision of Birkhoff.

It quickly became one of the most famous - and hard to tackle - questions
in dynamical systems.

J. Mather (1982): non-existence of caustics if the curvature of the
boundary vanishes at (at least) one point.

M. Bialy (1993): If the phase space of the billiard map is completely
foliated by continuous invariant curves which are not null-homotopic, then
it is a circular billiard.

23 / 24



Birkhoff conjecture

Conjecture (Birkhoff-Poritsky)
The only integrable billiard maps correspond to billiards inside ellipses.

Although some vague indications of this question can be found in
Birkhoff’s works (1920’s-30’s), its first appearance was in a paper by
Poritsky (1950), who was a National Research Fellow in Mathematics at
Harvard University, presumably under the supervision of Birkhoff.

It quickly became one of the most famous - and hard to tackle - questions
in dynamical systems.

J. Mather (1982): non-existence of caustics if the curvature of the
boundary vanishes at (at least) one point.

M. Bialy (1993): If the phase space of the billiard map is completely
foliated by continuous invariant curves which are not null-homotopic, then
it is a circular billiard.

23 / 24



Birkhoff conjecture

Conjecture (Birkhoff-Poritsky)
The only integrable billiard maps correspond to billiards inside ellipses.

Although some vague indications of this question can be found in
Birkhoff’s works (1920’s-30’s), its first appearance was in a paper by
Poritsky (1950), who was a National Research Fellow in Mathematics at
Harvard University, presumably under the supervision of Birkhoff.

It quickly became one of the most famous - and hard to tackle - questions
in dynamical systems.

J. Mather (1982): non-existence of caustics if the curvature of the
boundary vanishes at (at least) one point.

M. Bialy (1993): If the phase space of the billiard map is completely
foliated by continuous invariant curves which are not null-homotopic, then
it is a circular billiard.

23 / 24



Perturbative Birkhoff conjecture

One could restrict the analysis to what happens for domains that are
sufficiently close to ellipses.

Birkhoff Conjecture (Perturbative version)
A smooth strictly convex domain that is sufficiently close (w.r.t. some
topology) to an ellipse and whose corresponding billiard map is integrable,
is necessarily an ellipse.

In a recent work in collaboration with Vadim Kaloshin (Univ. of Maryland,
USA), we proved that this version of the conjecture holds TRUE!

V. Kaloshin, A. Sorrentino,
“On the local Birkhoff conjecture for convex billiards”
Annals of Mathematics 188 (1): 315–380, 2018.

(Advertisement: For more details, come tomorrow to the Analysis Seminar, Palazzo Campana, Sala S, 9:30 am)
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topology) to an ellipse and whose corresponding billiard map is integrable,
is necessarily an ellipse.

In a recent work in collaboration with Vadim Kaloshin (Univ. of Maryland,
USA), we proved that this version of the conjecture holds TRUE!

V. Kaloshin, A. Sorrentino,
“On the local Birkhoff conjecture for convex billiards”
Annals of Mathematics 188 (1): 315–380, 2018.
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Thank you
for your attention

Guido Fubini-Ghiron
(1879-1943)

... and for the prize!


