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Introduction

Over the last years there has been an increasing interest in the study of
the Hamilton-Jacobi (HJ) equation on networks and related problems.

These problems:

involve a number of subtle theoretical issues;

have a great impact in the applications in
various fields, e.g., to data transmission, traffic
management problems, etc...

While locally, i.e., on each branch (arc) of the network, the study reduces
to the analysis of 1-dimensional problems, the main difficulties arise in:

matching together information converging at the juncture of two or
more arcs;

relating the local analysis at a juncture with the global structure
(topology) of the network.
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Plan of the Talk:

In this talk I shall discuss some works in collaboration with Antonio
Siconolfi (Sapienza, Università di Roma).

I. Global PDE results for (Eikonal) HJ equations on networks (weak KAM)
(A. Siconolfi, A.S., Analysis & PDE, 2018)

Solutions:

existence of a (unique) critical value for which global solutions exist,
determination of a uniqueness set (Aubry set),
Hopf-Lax type representation formulae, etc...

Critical case:

properties, regularity, existence of C 1 critical subsolutions, etc...

Supercritical case:

properties, representation formulae for maximal subsolutions, etc...
Existence and uniqueness of solutions on subsets of the network,
continuously extending admissible data on the complement.
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II. Action-minimizing properties on networks (Aubry-Mather theory)
(A. Siconolfi, A.S., Preprint 2020)

Action-minimizing measures:

Definition, existence and properties of action-minimizing measures
(Mather measures).
Definition of Mather sets and its structural properties (graph property).
Definition and properties of Mather’s α and β functions (effective
Hamiltonian and Lagrangian).

Connection with weak KAM theory.

III. Homogenization on periodic networks (Work in progress)

(Gromov-Hausdorff) Limit of periodic networks (topologycal crystals);

Limit problem and homogenization.
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Main ideas

The main rationale consists in neatly distinguishing between:

1) The local problem on the arcs:

(classical) 1-dimensional viscosity or variational techniques.

2) The global matching on the network:

we associate to the network an abstract graph, encoding all of the
information on the complexity of the network;

we relate the problems to a discrete problems on the graph, to be
studied by means of techniques inspired by weak KAM and
Aubry-Mather theories.

3) Combine:

the global analysis (on the abstract graph)

the local analysis on the arcs of the network.

4 / 39



The Network

An embedded network is a compact subset Γ in (RN , deucl), or in any Riemannian
manifold (M, g), of the form

Γ =
⋃
γ∈E

γ ⊂ RN ,

where E is a finite collection of arcs, i.e., simple
C 1 regular (oriented) curves, that are disjoint,
except at the end-points (called vertices). We
denote the set of vertices by V.

Observe that Γ inherits:

a metric dΓ from the ambient space, hence a topology; we assume that Γ is
path-connected.

a differential structure (vertices are special points).
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The Network

We introduce the following maps:

A fixed-point-free involution : E −→ E that to each arc γ ∈ E
associates the arc γ ∈ E , i.e., the same arc with opposite
orientation(reversed arc).

The map o : E −→ V which associates to each oriented arc γ ∈ E its
initial vertex o(γ) ∈ V (origin).

The map t : E −→ V which associates to each oriented arc γ ∈ E its
final vertex t(γ) ∈ V (end).

In particular, for each γ ∈ E :

t(γ) = o(γ) and t(γ) = o(γ) = o(γ).

It follows from the connectedness assumption on Γ, that the maps o and t
are surjective.
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Hamiltonians on the network

A Hamiltonian on a network Γ is a function H : T ∗Γ −→ R. For each
γ ∈ E , let us denote by Hγ the restriction on the Hamiltonian on T ∗γ
(vertices included); we ask each Hγ to satisfy the following conditions:

Hγ is continuous on T ∗γ;

Hγ is coercive in each fiber T ∗x γ, where x ∈ γ;

Hγ is quasi-convex in each fiber, namely the set {Hγ ≤ a} ∩ T ∗x γ is
convex (if nonempty) for every a ∈ R and x ∈ γ.

(compatibity condition) Hγ(x , p) = Hγ(x ,−p) for every (x , p) ∈ T ∗γ.

+ Extra condition related to their critical values (see next slide).

Hamiltonians corresponding to geometrically different arcs are unrelated,
even for arcs with some vertex in common.
No continuity or compatibility conditions at common vertices!
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Critical values for Hγ

We set for any γ ∈ E

aγ := max
x∈γ

min
T∗x γ

Hγ (From compatibility conditions: aγ = aγ)

cγ := min{a ∈ R : Hγ(x , du) = a admits periodic subsolutions}.

By periodic subsolution, we mean subsolution to the equation in γ taking the

same value at the endpoints.

The definition of cγ is well-posed and aγ ≤ cγ for any γ ∈ E .

We define

a0 := max

{
max
γ∈E\E∗

aγ ,max
γ∈E∗

cγ

}
,

where E∗ ⊂ E denotes the subset of arcs which are loops:

E∗ := {γ ∈ E : o(γ) = t(γ)}.

8 / 39



Extra condition on the Hamiltonians

We require a further condition:

Given any γ ∈ E with aγ = a0, the map x ∈ γ 7−→ minT∗x γ Hγ is
constant.

Notice that this condition is automatically satisfied if the Hγ ’s are
independent of the state variable.

The main rôle of this condition is to ensure uniqueness of solutions to the
Dirichlet problem associated to the equation Hγ = aγ for any value
assigned at o(γ), at least for the γ’s with aγ = a0.

Note: The uniqueness property for such kind of problems holds in general
when the equation Hγ = a admits a strict subsolution (for example when
a > aγ), which is not the case at level aγ . This condition ensures that the
family of subsolutions to Hγ = aγ reduces to a singleton up to a constant.
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The Eikonal HJ equation on networks

We consider the equation

H(x , du) = a on Γ. (HJa)

This notation synthetically indicates the family (for γ varying in E) of

Hamilton–Jacobi equations Hγ(x , du) = a on γ \ {o(γ), t(γ)}.

On a single arc, these equations possess infinitely many (viscosity) solutions,
depending on the boundary data at o(γ) and t(γ).
We need to introduce suitable viscosity tests on the vertices so to:

select a unique solution on any arc;

match these (local) solutions in a continuous way at vertices.

Two basic properties are needed (true under our assumptions on Hγ ’s ):
- existence and uniqueness of solutions on any arc, coupled with suitable Dirichlet
boundary conditions at o(γ) and t(γ);
- characterization of the maximal (sub)solution with a given datum at o(γ).
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Notion of (sub)solution in our setting

Definition of subsolution

We say that u : Γ −→ R is subsolution to (HJa) if
i) it is continuous on Γ;
ii) it is (viscosity) subsolution on each γ \ {o(γ), t(γ)}, for any γ ∈ E .

Given a continuous function w on γ, we say that a C 1 function ϕ is a constrained
subtangent to w at t(γ) if w = ϕ at t(γ) and w ≥ ϕ in a sufficiently small open
neighborhood of t(γ) (cfr. Soner, 1986).

Definition of solution

We say that u : Γ −→ R is solution to (HJa) if
i) it is continuous on Γ;
ii) it is a (viscosity) solution on each γ \ {o(γ), t(γ)}, for any γ ∈ E ;
iii) (state constraint boundary conditions) for every vertex x there is an arc γ with
t(γ) = x such that any constrained C 1 subtangent ϕ to u

∣∣γ at t(γ) satisfies
Hγ(x , dϕ(x)) ≥ a.
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Some remarks

In the definition of subsolution no conditions are required on vertices. These
assumptions are minimal. The validity of this approach is supported by the
fact that the notion of solutions can be recovered in terms of maximal
subsolution attaining a specific value at a given point (vertex or internal).

In the definition of solution there are no mixing conditions between
equations on different arcs incident at the same vertex.

The (unique) place where the global topology of Γ plays a rôle is iii).

The constraint boundary condition at t(γ) selects the maximal solution
taking a given value at o(γ). In a sense, it leaves a degree of freedom at
o(γ), which can be exploited to get solutions to the HJ equations on any
arc, that match continuously.

If γ is a loop, we must have in addition u(o(γ)) = u(t(γ)), i.e., periodicity.
This explains why for γ ∈ E∗ we must consider the value cγ .

If the network is augmented by changing the status of a finite number of
intermediate points of arcs in Γ, which become new vertices, then the notion
of solution is not affected.
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From the network to the abstract graph

The main novelty of our method is to put in relation the HJ equation on the

network to a discrete functional equation on the underlying abstract graph

Γ = (E ,V), where E is the (abstract) set of arcs and V the (abstract) set of

vertices.

When referring to the abstract graph, we think of elements of E as immaterial
edges (we use the same notation).

We say that ξ = (γ1, . . . , γM) is a path linking two vertices x , y ∈ V if

γi ∈ E for every i = 1, . . . ,M,
o(γ1) = x and o(γM) = y ,
t(γi ) = o(γi+1) for every i = 1, . . . ,M − 1.
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From the network to the abstract graph

The subsequent step is to transfer the Hamilton-Jacobi equation from Γ to the
abstract graph, where it will take the form of a discrete functional equation.

For any γ ∈ E and a ≥ aγ , the relevant information to transfer is

σa(γ) :=

∫
γ

σ+
a,γ(x) dx

where σ+
a,γ(x) = max{p : Hγ(x , p) = a}.

σa(γ) is the value at t(γ) of the maximal subsolution to Hγ(x , du) = a on γ,
vanishing at o(γ).

This object can be used to define semi-distances on the abstract graph Γ. If
x , y ∈ V and a ≥ a0:

Sa(x , y) := inf{σa(ξ) : ξ is a path in γ linking x to y

where if ξ = (γ1, . . . , γM) then σa(ξ) :=
∑M

i=1 σa(γi ).
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The discrete functional equation

Let a ≥ a0. Let us start by observing the following admissibility condition:

there exists a subsolution on γ attaining the values α and β at, respectively,
o(γ) and t(γ), if and only if −σa(γ) ≤ β − α ≤ σa(γ).

If u : Γ→ R is a subsolution to (HJa), then

u(x) ≤ min
γ∈E,o(γ)=x

(u(t(γ)) + σa(γ)) ∀ x ∈ V.

If u : Γ→ R is a solution to (HJa), then equality holds at each x ∈ V.

We introduce the following discrete functional equation:

u(x) = min
γ∈E,o(γ)=x

(u(t(γ)) + σa(γ)) ∀ x ∈ V. (DFEa)

Note: Equality is required only at (at least) one arc for each vertex!
Moreover, the formulation of the discrete problem takes somehow into account
the backward character of viscosity solutions.
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Relation between (HJa) and (DFEa)

Proposition

Let a ≥ a0. Then:

Any solution to (DFEa) can be (uniquely) extended to a solution of (HJa)
in Γ. Conversely, the trace on V of any solution to (HJa) in Γ is solution to
(DFEa).

Any subsolution to (DFEa) can be ( uniquely) extended to a subsolution of
(HJa) in Γ. Conversely, the trace on V of any subsolution of (HJa) in Γ is
subsolution to (DFEa).

Similar results can be stated for subsets of Γ and, consequently, of V.

Therefore, the study of (HJa) reduces to the study of (DFEa).

Question: For which value(s) of a (if any) do (DFEa) admit solutions?
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Critical Value

Theorem

There exists a unique c = c(H) such that DFEc admits solutions.

c ≥ a0 is called critical value (or Mañé critical value).

c can be characterized in terms of the finiteness of the intrinsic semidistance
Sa(·, ·) or in terms of the the existence of vanishing cycles (i.e., closed path).
More specifically:

Sa(·, ·) 6≡ −∞ if and only if a ≥ c .
There exists a closed path ξ such that σa(ξ) = 0 if and only if a = c
(which is equivalent to say that Sa(x , x) = 0 for some x ∈ V).

We define the Aubry set as

A∗Γ(H) := {γ ∈ E : belonging to some cycle with σc(ξ) = 0}

and the projected Aubry set as

AΓ(H) := {x ∈ V : Sc(x , x) = 0}.
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Main results I

I. Global Solutions

(i) (Existence) There exists a unique value c = c(H) ≥ a0 – called Mañé
critical value – for which the equation H(x , du) = c admits global solutions.
In particular, these solutions are Lipschitz continuous on Γ.

(ii) (Uniqueness) There exists a uniqueness set AΓ := AΓ(H) ⊆ V called the
(projected) Aubry set of H, such that the following holds. Given any
admissible trace g on AΓ, i.e., a function g : AΓ −→ R such that for every
x , y ∈ AΓ

g(x)− g(y) ≤ Sc(y , x),

there exists a unique global solution u ∈ C (Γ,R) to H(x , du) = c agreeing
with g on AΓ:

u(x) = min{g(y) + σc(ξ) : y ∈ AΓ, ξ path linking x to y}

Conversely, for any solution u to H(x , du) = c , the function g = u|AΓ
gives

rise to an admissible trace on AΓ.

(iii) (Hopf–Lax type representation formulae) Explicit representation formulae are
provided both for global solutions and for solutions on subsets of Γ.

18 / 39



Main results II

II. Subsolutions

(i) (Maximal subsolutions) For a ≥ c , y ∈ Γ, the maximal subsolution to (HJa)
taking an assigned value at y is solution in Γ \ {y}.

(ii) (PDE characterization of the Aubry set) Let A∗Γ = A∗Γ(H) ⊂ Γ be the Aubry
set (on the network). The maximal subsolution to (HJc) taking a given
value at a point y ∈ Γ is a solution on the whole network if and only if
y ∈ A∗Γ.

(iii) (Regularity of critical subsolutions) Any subsolution v : Γ→ R to
H(x , du) = c is of class C 1(A∗Γ \ V) and they all possess the same
differential on A∗Γ \ V.

(iv) (Existence of C 1 critical subsolutions) Given an admissible trace g : V −→ R
there exists a critical subsolution v on Γ, with v = g on V, which is of class
C 1 on Γ \ V.
In addition, there exists a critical subsolution v of class C 1(Γ \ V) which is
strict outside A∗Γ.

(v) (Hopf–Lax type representation formulae) Explicit representation formulae are
provided both for critical and supercritical subsolutions.
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Advantages and novelties

Global analysis that goes beyond what happens at a single juncture.

The Network is only assumed to be finite and connected
−→ multiple arcs between two vertices and loops are allowed.

Hamiltonians are assumed continuous, quasi-convex and coercive.
−→ No compatibility conditions at the vertices are required.

We prove uniqueness and comparison principles in a simple way

−→ completely bypassing the difficulties involved in the Crandall-Lions
doubling variable method, in favor of a more direct analysis of a
discrete equation.

We identify an intrinsic boundary (Aubry set) on which admissible
traces can be assigned to get unique global solutions

−→ Formulating boundary problems on the network and determining
“natural” subsets on which to assign boundary data is a subtle issue,
yet not well settled in the literature.
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Comparison with previous literature

Large amount of literature related to differential equations on networks, or others

non-regular geometric structures (ramified/stratified spaces), in various contexts:

hyperbolic problems, traffic flows, evolutionary equations, (regional) control

problems, Hamilton-Jacobi equations, etc...

Some references closer related to our work:

Schieborn-Camilli (2013):

PDE approach;
Eikonal equation in the supercritical case;
restrictions on the topology of the network;
they require a-priori existence of a regular strict subsolution;
continuity of Hamiltonians at vertices (and, accordingly, mixed
conditions on the test functions at vertices).

Other related contributions by: Achdou, Cutŕı, Marchi, Oudet and Tchou.
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Comparison with previous literature

Imbert-Monneau (2013, 2016):
rather different point of view and techniques from ours;
local analysis at a juncture;
they use the doubling variable method by introducing an extra
parameter (flux limiter), a companion equation (junction condition)
and by using special vertex test functions.

Other related contributions in collaborations with Galise and Zidani.

Lions-Souganidis (2016):
one dimensional junction-type problems for non convex discounted HJ
equations;
we adopt the same notion of solution.

Discrete weak KAM and Aubry Mather theories:
Bernard-Buffoni (2006-2007): optimal transport maps.
Zavidovique (2010-2012): more systematic development.

Other related contributions by: Gomes (2005), Iturriaga-Sánchez Morgado

(2017), Su-Thieullen (2016).
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From weak KAM to Aubry-Mather theory

From a dynamical systems point of view, if H : T ∗M −→ R is a
Hamiltonian on a closed Riemannian manifold (M, g) then:

Regular solutions to H(x , du) = k ←→ invariant (exact) Lagrangian
graph in (T ∗M, ωstand.):

Λ := {(x , d(x)) ∈ T ∗M : x ∈ M}.

Weak solutions of H-J ←→ Aubry sets

A∗ ⊆ {(x , d(x)) ∈ T ∗M : x ∈ M u is differentiable at x}.

(Credits to Dr. Oliver Knill, Harvard)
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A variational approach: Aubry-Mather theory

Aubry - Mather theory

Variational methods based on the Principle of Least Lagrangian Action
(“Nature is thrifty in all its actions”, Pierre Louis Moreau de Maupertuis, 1744).

Serge Aubry & John Mather ’80s: twist maps of the annulus;

John Mather ’90s: Hamiltonian flows of Tonelli type.

Let us introduce:

the Lagrangian function L : TM −→ R:
L(x , v) := supp∈T∗x M (p · v − H(x , p)) ,

the Euler-Lagrange equations: d
dt
∂L
∂v = ∂L

∂x .

The Hamiltonian flow in T ∗M and the
Euler-Lagrange flow in TM are dynamically
equivalent.

TM

L
��

ΦL
t // TM

L
��

T ∗M
ΦH

t

// T ∗M
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A variational approach: Aubry-Mather theory

The Euler-Lagrange flow has an interesting variational characterization in terms
of the Lagrangian Action Functional. If γ : [a, b] −→ M is an abs. cont. curve,
we define its action as:

AL(γ) :=

∫ b

a

L(γ(t), γ̇(t)) dt.

γ is a solution of the Euler-Lagrange flow if and only if it is an
extremal for the fixed-end variational problem. ÷ET '

These extremals are not necessarily minimizers, although they are local
minimizers, i.e. for very short times.

Aubry-Mather theory is concerned with the study of global action-minimizing
orbits or (invariant) probability measures.

−→ Construct invariant sets: Mather and Aubry sets.

Remark: Orbits/Invariant probability measures on invariant Lagrangian graphs are
global action-minimizers. 25 / 39



Discrete Lagrangian on the abstract graph

For every γ ∈ E , let Lγ : Tγ −→ R be the Lagrangian on the arc γ associated to
the Hamiltonian Hγ :

Lγ(x , v) := sup
p∈T∗x γ

(p · v − Hγ(x , p)) .

We want to define a discrete Lagrangian on the abstract graph Γ = (E ,V),
namely L : E × [0,+∞) −→ R defined as (for q > 0):

L(γ, q) = q ·min

{∫ 1
q

0

Lγ(ξ(t), ξ̇(t))dt : ξ abs. cont. param. of γ on [0, 1/q]

}
.

L(γ, q)→ −aγ as q → 0+;

L(γ, 0) = L(γ, 0) (because of the compatibility conditions).

L(γ, ·) is strictly convex and L(γ, q)→ +∞ as q → +∞.

One can consider the associated discrete Hamiltonian H : E × [pγ ,+∞)→ R
(defined by convex duality), where pγ := max ∂qL(γ, 0). In paticular, pγ = −pγ .
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Parametrized path on the abstract graph

A parametrized path on Γ = (E ,V) is a sequence ξ = {(γi , qi ,Ti )}Mi=1 such that:

γi ∈ E for i = 1, . . . ,M;

t(γi ) = o(γi+1) for i = 1, . . . ,M − 1
(concatenation);

If qi > 0, then Ti = 1/qi ; otherwise, if qi = 0, then
Ti can be any positive number.

•

-67

•

8 ' •
86

82• •

•

85
83 •

• 8h

We say that a parametrized path is singular if there exists γi such that qi = 0,
otherwise we say that it is non-singular.

We call Tξ :=
∑

i Ti the total time of the parametrization of ξ.

The (discrete) action of ξ is defined as

AL(ξ) :=
M∑
i=1

Ti L(γi , qi ).
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Discrete measures on the abstract graph

We introduce the set M = M(Γ) of discrete probability measures on Γ, consisting of
probability measures on E × [0,+∞) with finite first momentum:

µ =
∑
γ∈E

λγ µγ

with λγ > 0,
∑
γ λγ∈E = 1, µγ prob. measures on [0,+∞) with

∫ +∞
0

q dµγ < +∞.

Examples:

δ(γ,T ) the Dirac delta measure on the copy of [0,+∞) indexed by γ,
concentrated at T ≥ 0. It follows from compatibility condition that
δ(γ, 0) = δ(γ, 0) for every γ ∈ E .

Given a parametrized closed path ξ = {(γi , qi ,Ti )}Mi=1 we define the holonomic
measure supported on ξ:

µξ :=
1

Tξ

M∑
i=1

Ti δ(γi , qi ).

We say that µξ is singular if the corresponding parametrized path is singular.

28 / 39



Crash course on algebraic topology on a graph

0-chain group C0(Γ,R): the free abelian group on V with coefficients in R.

1-chain group C1(Γ,R): the free abelian group on E with coefficients in R and
with the relation γ = −γ.

boundary operator ∂ : C1(Γ,R)→ C0(Γ,R) by setting for any arc ∂γ = t(γ)− o(γ).

First Homology group of Γ with coefficients R: H1(Γ,R) := Ker ∂.
An element of H1(Γ,R) is called a 1-cycle. In particular, a 1-chain

∑
γ∈E aγγ is a

1-cycle if and only if for every x ∈ V:
∑
γ∈E, t(γ)=x aγ =

∑
γ∈E, o(γ)=x aγ .

0-cochain group C0(Γ,R): the space of functions from V to R.

1-cochain group C1(Γ,R): the space of functions ω : E → R such that
ω(γ) = −ω(γ).

coboundary operator (differential) d : C0(Γ,R)→ C1(Γ,R) by setting for any
f ∈ C0(Γ,R) df (γ) = f (t(γ))− f (o(γ)).

First Cohomology group of Γ with coefficients R: H1(Γ,R) := C1(Γ, ∗)/Im d .

Pairing between C1(Γ,R) and C1(Γ,R): 〈ω,
∑
γ∈E aγγ〉 :=

∑
γ∈E aγω(γ).
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Closed measures

Let µ =
∑
γ∈E λγ µγ . Given ω ∈ C1(Γ,R), we define:

∫
ω dµ :=

∑
γ∈E

λγ

∫ +∞

0

〈ω, q γ〉 dµγ =

〈
ω,
∑
γ∈E

[
λγ

∫ +∞

0

q dµγ

]
γ︸ ︷︷ ︸

[µ]∈C1(Γ,R)

〉
.

We say that µ ∈M is a closed measure if ∂[µ] = 0. In particular, [µ] ∈ H1(Γ;R)
is called homology class of µ (or rotation vector).

We denote the space of closed measures on Γ by M0 = M0(Γ).

Example: If µξ is the holonomic measure supported on a parametrized closed

path ξ = {(γi , qi ,Ti )}Mi=1, then µξ is a closed measure and [µξ] = [ξ]
Tξ

, where

[ξ] =
∑

i : qi 6=0 γi .

30 / 39



Action-Minimizing measures (or Mather’s measures)

We define the Action functional:

AL : M0 −→ R

µ 7−→
∫
L dµ

µ ∈ M0 is a Mather measure (or action-minimizing measure) with homology
h ∈ H1(Γ,R) if

AL(µ) = min
[ν]=h

∫
L dν =: β(h).

We denote the subset of these measures by Mh.

We define the Mather set of homology h as the set

M̃h :=
⋃
µ∈Mh

⋃
γ∈supp Eµ

{γ} × suppµγ

(for a given µ we denote by µγ its restriction on the edge γ).

We call the function β : H1(Γ,R) −→ R Mather’s β function (or effective
Lagrangian). It is convex and coercive.
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Action-Minimizing measures (or Mather’s measures)

We say that a measure µ ∈ M0 is a Mather measure (or action-minimizing
measure) with cohomology c ∈ H1(Γ,R) if

AL−ωc (µ) = min
ν∈M0

∫
(L − ωc) dν =: −α(c).

Being µ closed, this notion does not depend on the choice of the representative
ωc , but only on its cohomology class (we mean that ωc(γ, q) := 〈ωc , qγ〉).
We denote the subset of these measures by Mc .

We define the Mather set of cohomology c as the set

M̃c :=
⋃
µ∈Mc

⋃
γ∈supp Eµ

{γ} × suppµγ

(for a given µ we denote by µγ its restriction on the edge γ).

We call the function α : H1(Γ,R) −→ R Mather’s α function (or effective
Hamiltonian). It is convex and coercive.

α and β are convex conjugate to each other:

α(c) = max
h∈H1(Γ,R)

(〈c, h〉 − β(h)) and β(h) = max
c∈H1(Γ,R)

(〈c, h〉 − α(c)) .
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Properties of Mather sets

Structural properties of Mather’s measures

If µ ∈Mc , then µγ = δ(γ, qγ), qγ ≥ 0, for every γ ∈ supp Eµ. In other words, the
restriction of a Mather measure to any arc in its support is a Dirac delta measure.

If µ, ν ∈Mc and γ ∈ suppEµ ∩ suppEν, then there exists a unique α ≥ 0 such
that µγ = νγ = δ(γ, α).

(As usual, µγ and νγ denote the restriction of µ and ν to the arc γ.)

Properties of Mather’s sets

M̃h ⊆ M̃c if and only if h ∈ ∂α(c) (if and only if c ∈ ∂β(h)).

In particular: M̃c =
⋃

h∈∂α(c) M̃
h.

(Graph property) Let πE : E × [0,+∞) −→ E denote the projection. Then:

πE |M̃c : M̃c −→ E and πE |M̃h : M̃h −→ E

are injective maps for every c ∈ H1(Γ,R) and h ∈ H1(Γ,R).
The same is true if we consider πE+ : E × [0,+∞) −→ E+, where E+ is an
orientation (i.e., we choose an element for each pair γ, γ).

33 / 39



Relation between weak KAM and Aubry-Mather theories

Mañé’s critical value c(H) coincides with α(0).
Note: For any c ∈ H1(Γ,R), α(c) corresponds to the critical value for the
modified Hamilton-Jacobi equation H(x , ηc + du) = k, for some closed 1-form ηc
on the network with cohomology class c.

Aubry set and Mather set: πE(M̃0) = A∗Γ .

Note: Similarly, for any c ∈ H1(Γ,R), πE(M̃c) coincides with the Aubry set A∗Γ,c
corresponding to the modified Hamilton-Jacobi equation H(x , ηc + du) = k, for
some closed 1-form ηc on the network with cohomology class c.

Graph property and (sub)solutions. Let π−1
0 : πE(M̃0) −→ M̃0. If γ ∈ πE(M̃0),

the value π−1
0 (γ) is univocally determined by the condition

〈du, γ〉π−1
0 (γ) = H(γ, 〈du, γ〉) + L(γ, π−1

0 (γ)),

where u is any critical subsolution of the Hamilton–Jacobi equation on the network.
Note: Similarly, as above, one can extend this result to any c ∈ H1(Γ,R) by
considering the modified Hamiltonian and Lagrangian.
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Per aspera ad... Homogenization

Naively speaking, the goal is to describe the macroscopic structure and the
global properties of a problem, by “neglecting” its microscopic oscillations
and its local features.

Pictorially, we want to describe what remains visible to a (mathematical)
observer, as she/he moves her/his (mathematical) point of view further
and further.

35 / 39



Per aspera ad... Homogenization

Naively speaking, the goal is to describe the macroscopic structure and the
global properties of a problem, by “neglecting” its microscopic oscillations
and its local features.

Pictorially, we want to describe what remains visible to a (mathematical)
observer, as she/he moves her/his (mathematical) point of view further
and further.

35 / 39



Per aspera ad... Homogenization

Naively speaking, the goal is to describe the macroscopic structure and the
global properties of a problem, by “neglecting” its microscopic oscillations
and its local features.

Pictorially, we want to describe what remains visible to a (mathematical)
observer, as she/he moves her/his (mathematical) point of view further
and further.

35 / 39



Periodic Homogenization of Hamilton-Jacobi in Rn

Recall the classical result by Lions, Papanicolaou and Varadhan (LPV) in their famous

preprint from 1987.

Let H : Rn × Rn −→ R be a Tonelli Hamiltonian (i.e., C 2, strictly convex
and superlinear in the momentum variable p) + Zn-periodic in the space
variable x .

H can be also seen as the lift of a Tonelli Hamiltonian on T ∗Tn (with
Tn = Rn

Zn ) to its universal cover.

Problem: Consider faster and faster oscillations of the x-variable and study
the associated HJ equations:

(HJε) :

{
∂tu

ε(x , t) + H( xε , ∂xu
ε(x , t)) = 0 x ∈ Rn, t > 0

uε(x , 0) = fε(x)

where ε > 0 and fε : Rn −→ R is some initial datum.
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Periodic Homogenization of Hamilton-Jacobi in Rn

Theorem (Lions, Papanicolaou & Varadhan, 1987)

Let fε : Rn −→ R be Lipschitz and assume that fε
ε→0+

−→ f̄ uniformly.
Then, as ε→ 0+, the unique viscosity solution uε of (HJε) converges locally uniformly
to a function ū : Rn × [0,+∞)→ R, which solves

(HJ) :

{
∂t ū(x , t) + H(∂x ū(x , t)) = 0 x ∈ Rn, t > 0
ū(x , 0) = f̄ (x),

where H : Rn −→ R is called the effective Hamiltonian.

Remarks:

H depends only on H and is independent of x (due to the limit process).

H is in general not differentiable.

H is convex, but not necessarily strictly convex.

Representation formula for ū: ū(x , t) = infy∈Rn

{
f̄ (y) + tL

(
x−y
t

)}
for

x ∈ Rn, t > 0, where L(v) := supp∈Rn

(
p · v − H(p)

)
is the effective Lagrangian.
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How to Generalize to a Non-Euclidean Setting?

Main steps in LPV’s Theorem:

Rescale (HJ): for ε > 0 consider the transformation x 7−→ x
ε

.
The new Hamiltonian Hε(x , p) = H( x

ε
, p) is still of Tonelli type, but it becomes

εZn-periodic (its oscillations in the space variable become faster).

Determine the limit problem, i.e., the effective Hamiltonian H and the limit space
in which it is defined (in LPV’s case, this is Rn).

Prove the convergence of solutions to (HJε) to solutions to (HJ), as ε→ 0+.

Find a representation formula for the solution to (HJ) in terms of the effective
Lagrangian L.

A first generalization of [LPV] to non Euclidean setting has been proved in:

G. Contreras, R. Iturriaga and A. Siconolfi, 2015 (in the “abelian case”)).

A.S., 2015 (Inspired by the work by Gromov, Pansu et al. on asymptotic cones).
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A glimpse of our strategy

Rescaling ←→ Rescale the distance, not the space!
One has to consider a non-compact space: consider
the maximal free abelian covering of Γ (i.e., the
Deck transformation group is given by the free part
of H1(Γ,Z)). In otherwords, we introduce
periodicity (or invariance) under a suitable action of
a group.

Limit space (in the Gromov-Hausdorff sense) ←→
H1(Γ,R) (first homology group).
This corresponds to the asymptotic cone of
H1(Γ,Z).

Effective Hamiltonian ←→ α : H1(Γ,R) −→ R

Effective Lagrangian ←→ β : H1(Γ,R) −→ R

... Prove the convergence of solutions.
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Thank you for your attention

... And keep safe!


