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Introduction

Over the last years there has been an increasing interest in the study of
the Hamilton-Jacobi (HJ) equation on networks and related problems.

These problems:

involve a number of subtle theoretical issues;

have a great impact in the applications in
various fields, e.g., to data transmission, traffic
management problems, etc...

While locally, i.e., on each branch (arc) of the network, the study reduces
to the analysis of 1-dimensional problems, the main difficulties arise in:

matching together information converging at the juncture of two or
more arcs;

relating the local analysis at a juncture with the global structure
(topology) of the network.
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The network

An embedded network is a compact subset Γ in (RN , deucl), or in any Riemannian
manifold (M, g), of the form

Γ =
⋃
γ∈E

γ ⊂ RN ,

where E is a finite collection of arcs, i.e., simple
C 1 regular (oriented) curves γ : [0, 1]→ RN ,
that are disjoint, except at the end-points (called
vertices). We denote the set of vertices by V.

Observe that Γ inherits:

a metric dΓ from the ambient space, hence a topology; we assume that Γ is
path-connected.

the structure of piecewise regular 1-dimensional manifold (vertices are
special points).
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The network

We introduce the following maps:

A fixed-point-free involution : E −→ E that to each arc γ ∈ E
associates the arc γ ∈ E , i.e., the same arc with opposite
orientation(reversed arc).

The map o : E −→ V which associates to each oriented arc γ ∈ E its
initial vertex o(γ) ∈ V (origin).

The map t : E −→ V which associates to each oriented arc γ ∈ E its
final vertex t(γ) ∈ V (end).

In particular, for each γ ∈ E :

t(γ) = o(γ) and t(γ) = o(γ).

It follows from the connectedness assumption on Γ, that the maps o and t
are surjective.
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Hamiltonians on the network

A Hamiltonian on a network Γ is a function H : T ∗Γ −→ R.
Equivalently, H = {Hγ}γ∈E is a family of Hamiltonians, where Hγ denotes
the restriction on the Hamiltonian on T ∗γ (vertices included).

We ask each Hγ to satisfy the following conditions (we use local
coordinates (x , p) ∈ T ∗γ):

Hγ is continuous in x and differentiable in p;
Hγ is strictly convex in p;
Hγ is superlinear in p.

We also ask for the following compatibity condition:

Hγ(x , p) = Hγ(x ,−p) ∀γ ∈ E .

Except for the above compatibility condition, Hamiltonians corresponding
to geometrically different arcs are totally unrelated, even for arcs with
some vertex in common.
No continuity or any mixed conditions at common vertices!
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The Hamilton-Jacobi equation(s) on networks

The stationary HJ equation:

H(x , du) = a on Γ. (HJ)

This notation synthetically indicates the family (for γ varying in E) of

Hamilton–Jacobi equations Hγ(x , dxu) = a on γ \ {o(γ), t(γ)}.

The evolutive HJ equation on networks:

∂tu + H(x , du) = a on Γ× (0,+∞). (HJt)

This notation synthetically indicates the family (for γ varying in E) of
Hamilton–Jacobi equations ∂tu(x , t) + Hγ(x , ∂xu(x , t)) = a for
x ∈ Γ \ {o(γ), t(γ)} and t ∈ (0,+∞).

Homogenization of the HJ equation:

Convergence result for solutions to ε–oscillating time dependent
Hamilton–Jacobi equations on a network, as ε→ 0+.
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Local versus Global

1) The local problem on the arcs:

(classical) 1-dimensional viscosity or variational techniques.

2) The global analysis on the network:

we associate to the network an abstract graph, encoding all of the
information on the complexity of the network;

we relate the problems to discrete problems on the graph, to be
studied by means of techniques inspired by weak KAM and
Aubry-Mather theories.
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The stationary HJ equation on networks

Let us consider the equation

H(x , du) = a on Γ. (HJ)

This notation synthetically indicates the family (for γ varying in E) of

Hamilton–Jacobi equations Hγ(x , dxu) = a on γ \ {o(γ), t(γ)}.

On a single arc, these equations possess infinitely many (viscosity) solutions,
depending on the boundary data at o(γ) and t(γ).
We need to introduce suitable conditions on the vertices so to:

select a unique solution on any arc;

match these (local) solutions in a continuous way at vertices, so to obtain
global solutions.
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Notion of solution for (HJ)

Definition of solution

We say that u : Γ −→ R is solution to (HJ) if
i) it is continuous on Γ;
ii) it is a (viscosity) solution on each γ \ {o(γ), t(γ)}, for any γ ∈ E ;
iii) For every vertex x there is at least one arc γ with t(γ) = x such that for any
C 1 function ϕ satisfying

u = ϕ at t(γ),

u ≥ ϕ in a sufficiently small open neighborhood of t(γ),

we have that Hγ(x , dϕ(x)) ≥ a.

Remark: Condition iii) is also called state constraint boundary condition: at t(γ)
it allows to select the maximal solution taking a given value at o(γ).

Any function ϕ as in iii) is called constrained subtangent to u at γ (cfr. Soner,

1986)
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Weak KAM theory on networks

Theorem (A. Siconolfi, A.S., 2018)

(i) (Existence) There exists a unique value c = c(H), called Mañé critical value,
for which the equation H(x , du) = c admits global solutions. In particular,
these solutions are Lipschitz continuous on Γ.

(ii) (Uniqueness) There exists a uniqueness set AΓ := AΓ(H) ⊆ V called the
(projected) Aubry set of H, namely if u and v are two solutions to
H(x , du) = c and coincide on AΓ, then they coincide everywhere.
(It is an intrisic boundary for the Cauchy problem).

(iii) (Hopf–Lax type representation formulae) Explicit representation formulae are
provided both for global solutions and for solutions on subsets of Γ.

Moreover we also discuss: subsolutions, critical subsolutions and their regularity,
etc ...

Among several previous (partial) results, let us recall: Schieborn-Camilli (2013),
Imbert-Monneau (2013, 2016).
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From the network to the abstract graph

The main novelty of our method is to put in relation the HJ equation on the

network to a discrete functional equation on the underlying abstract graph

Γ = (E ,V), where E is the (abstract) set of arcs and V the (abstract) set of

vertices.

When referring to the abstract graph, we think of elements of E as immaterial edges (we
use the same notation).
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From the network to the abstract graph

The subsequent step is to transfer the Hamilton-Jacobi equation from Γ to the
abstract graph, where it will take the form of a discrete functional equation.

For any γ ∈ E and a ≥ aγ := maxx∈γ minT∗
x γ

Hγ , the relevant information to
transfer is

σa(γ) :=

∫
γ

σ+
a,γ(x) dx

where σ+
a,γ(x) = max{p : Hγ(x , p) = a}.

σa(γ) is the value at t(γ) of the maximal subsolution to Hγ(x , du) = a on γ,
vanishing at o(γ).

We say that ξ = (γ1, . . . , γM) is a path linking two vertices x , y ∈ V if

γi ∈ E for every i = 1, . . . ,M,
o(γ1) = x and o(γM) = y ,
t(γi ) = o(γi+1) for every i = 1, . . . ,M − 1.

Then: σa(ξ) :=
∑M

i=1 σa(γi ).

11 / 33



The discrete functional equation

We introduce the following discrete functional equation:

u(x) = min
γ∈E,o(γ)=x

(u(t(γ)) + σa(γ)) ∀ x ∈ V. (DFE )

Remark: Equality is required only at (at least) one arc for each vertex.
Moreover, the formulation of the discrete problem takes somehow into account
the backward character of viscosity solutions.

Theorem

Any solution to (DFE ) can be (uniquely) extended to a solution of (HJ).
Conversely, the trace on V of any solution to (HJ) is solution to (DFE ).

Therefore, the study of (HJ) reduces to the study of (DFE ).

Question: For which value(s) of a (if any) do (DFE ) admit solutions?
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The critical value

Theorem

There exists a unique c = c(H) such that DFE admits solutions.

c = c(H) is called critical value (or Mañé critical value).

c can be characterized in terms of the existence of vanishing cycles (i.e.,
closed path), i.e., there exists a closed path ξ such that σa(ξ) = 0 if and
only if a = c .

We define the Aubry set as

A∗Γ(H) := {γ ∈ E : belonging to some cycle with σc(ξ) = 0}

and the projected Aubry set as the set of vertices in A∗Γ(H).

13 / 33



The evolutive HJ equation on networks

We consider the time-dependent equation

∂tu + H(x , du) = a on Γ× (0,+∞). (HJt)

A solution is a continuous function u : Γ× (0,+∞) such that

u(x , t) is solution to (HJt) on x ∈ γ \ {o(γ), t(γ)} × (0,+∞) ∀ γ ∈ E ;

u(x , t) satisfies suitable additional conditions at the discontinuity interfaces

{(x , t) : x ∈ V, t ∈ (0,+∞)}.

Existence and Uniqueness of the solution with initial continuous datum is
prescribed at t = 0 and flux limiter at any vertex fixed. The flux limiter plays an
essential role in the conditions on the discontinuity interfaces; Imbert-Monneau
(2015), Siconolfi (2022).

Representation formula via Lax-Oleinik: Imbert-Monneau-Zidani (2012), Pozza-
Siconolfi (2023).
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Homogenization

Naively speaking, the goal is to describe the macroscopic structure and the
global properties of a problem, by “neglecting” its microscopic oscillations
and its local features.

Pictorially, we want to describe what remains visible to a (mathematical)
observer, as she/he moves her/his (mathematical) point of view further
and further.
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Periodic Homogenization of Hamilton-Jacobi in Rn

Recall the classical result by Lions, Papanicolaou and Varadhan (LPV) in 1987.

Let H : Rn × Rn −→ R be a Tonelli Hamiltonian1 (i.e., C 2, strictly convex and
superlinear in the momentum variable p) + Zn-periodic in the space variable x .

H can be also seen as the lift of a Tonelli Hamiltonian on T ∗Tn (with Tn = Rn

Zn ) to its
universal cover.

Problem: Consider faster and faster oscillations of the x-variable and study the
associated HJ equations:

(HJε) :

{
∂tuε(x , t) + H( x

ε
, ∂xuε(x , t)) = 0 x ∈ Rn, t > 0

uε(x , 0) = fε(x)

where ε > 0 and fε : Rn −→ R is some initial datum.

1Remark: Actually in LPV H is only asked to be continuous in (x , p) and coercive in
p; no convexity (they use purely PDE techniques).
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Periodic Homogenization of Hamilton-Jacobi in Rn

Theorem (Lions, Papanicolaou & Varadhan, 1987)

Let fε : Rn −→ R be Lipschitz and assume that fε
ε→0+

−→ f̄ locally uniformly.
Then, as ε→ 0+, the unique viscosity solution uε of (HJε) converges locally
uniformly to a function ū : Rn × [0,+∞)→ R, which solves

(HJ) :

{
∂t ū(x , t) + H(∂x ū(x , t)) = 0 x ∈ Rn, t > 0
ū(x , 0) = f̄ (x),

where H : Rn −→ R is called the effective Hamiltonian.

Remarks:

H depends only on H and is independent of x (due to the limit process).

H is in general not differentiable.

H is convex, but not necessarily strictly convex.

Representation formula for ū: ū(x , t) = infy∈Rn

{
f̄ (y) + tL

(
x−y
t

)}
for

x ∈ Rn, t > 0, where L(v) := supp∈Rn

(
p · v − H(p)

)
is the effective Lagrangian.
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How to Generalize to a Non-Euclidean Setting?

Rescaling (HJ): for ε > 0 consider the transformation x 7−→ x
ε

.
The new Hamiltonian Hε(x , p) = H( x

ε
, p) is still of Tonelli type, but it becomes

εZn-periodic (its oscillations in the space variable become faster).

Rescale the metric, not the space!
vε(x , t) := uε(εx , t) is a solution of HJ equation with x ∈ (Rn, εdeuc):

(H̃Jε) :

{
∂tv

ε(x , t) + H(x , 1
ε
∂xv

ε(x , t)) = 0 x ∈ Rn, t > 0

vε(x , 0) = fε(εx) =: f̃ε(x).

Determine the limit problem:

The limit space is related to the periodicity group (Zn,+).
−→ Asymptotic cone: limε→0+ (εZn, εdeuc) = (Rn, ‖ · ‖stable).

The effective Hamiltonian can be interpreted in the context of
Aubry-Mather theory: −→ Mather’s α-function (related to
action-minimizing measures).

Prove convergence of solutions to (HJε) to solutions to (HJ) and obtain
representation formulae in terms of the effective Lagrangian.

See [G. Contreras, R. Iturriaga, A. Siconolfi, 2015] and [A.S., 2015].
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Remark

The dimension of the asymptotic cone is in general very different from the
one of the ambient metric space!

Let us consider a surface Σ3 of
genus 3 and consider a cover
space whose group of Deck
transformations is isomorphic
to Z3.

(One could find a free abelian

cover whose group of Deck

transformations is isomorphic to

Z6... I cannot draw it! )
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Periodic networks

Given a finite network Γ = (E ,V), we would like to “embed” Γ as the fundamental

domain of a periodic network Γ̃ = (Ẽ , Ṽ).

Roughly speaking: there exists a group of symmetries G acting on Γ̃ such that Γ̃/G = Γ.

If G ' ZN , Γ̃ = (Ẽ , Ṽ) is called a N-dimensional topological crystal over Γ = (E ,V).

Given a finite connected network Γ, there always exist N-dimensional topological
crystals. They are related to abelian coverings of Γ. In particular, N ≤ b1(Γ) where:

b1(Γ) :=
1

2
|E| − |V|+ 1.

the first Betti number of Γ (i.e., the rank of the first homology group of Γ, H1(Γ,Z)).

Remark: These notions naturally extends to the associated abstract graphs.
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Homogenization on periodic networks

We consider a maximal tological crystal Γ̃ = (Ẽ , Ṽ) over Γ = (E ,V), i.e., the acting
abelian group has rank N=b1(Γ).

The Hamiltonian H on T ∗Γ can be extended by periodicity to a Hamiltonian on T ∗Γ̃.

Theorem (M. Pozza, A. Siconolfi, A.S., 2023)

Let ε > 0 and let uε : Γ̃× [0,+∞) −→ R be a solution to{
∂tuε + H(x , ∂xuε) = 0 x ∈ (Γ̃, εdΓ̃), t > 0
uε(x , 0) = fε(x)

where fε : (Γ̃, εdΓ̃) −→ R are Lipschitz functions such that fε locally uniformly converge to

f̄ : Rb1(Γ) → R, as ε→ 0+. Then, uε locally uniformly converge to a function
ū : Rb1(Γ) × [0,+∞)→ R, which solves{

∂t ū(z, t) + H(∂z ū(z, t)) = 0 z ∈ Rb1(Γ), t > 0
ū(z, 0) = f̄ (z),

where H : Rb1(Γ) −→ R is convex and superlinear. Moreover:

ū(z, t) = inf
y∈Rb1(Γ)

{
f̄ (y) + tL

(
z − y

t

)}
z ∈ Rb1(Γ), t > 0,

where L(v) := sup
p∈Rb1(Γ)

(
p · v − H(p)

)
.
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A few related contributions in the literature

Imbert, Monneau (2014)
They consider the periodic network ZN ⊂ RN and prove a
homogenization result in their setting with PDE techniques.

Camilli (2023)
He also considers the periodic network ZN ⊂ RN and provides
estimates on the convergence rate.

Other related results with applications to traffic models: Galise,
Imbert, Monneau (2015), Forcadel and several coauthors, etc...
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Convergence of spaces: limε→0+(Γ̃, εdΓ̃) = (Rb1(Γ), d̄)

Gromov-Hausdorff (GH) “distance”: Let X̃1 := (X1, d1) and X̃2 := (X2, d2) be metric spaces.

We say that dGH(X̃1, X̃2) < r if there exist a metric space (Z , d) and two subspaces Z1,Z2 ⊂ Z

isometric (respectively) to X̃1 and X̃2, s.t. their Hausdorff distance in (Z , d) is dH(Z1,Z2) < r .

[Recall that dH (A, B) = inf{r > 0 : Nr (A) ⊃ B andNr (B) ⊃ A}, where Nr (·) denotes the open neighborhood of size r ]

Intuitively: (Xn, dn, xn)→ (X , d , x0) if balls of radius r > 0 and centers at xn (in Xn)
converge (in the GH distance) to the ball of radius r and center at x0 (in X ).

Main ideas:

Metric spaces at finite GH distance have the same limit when rescaled;

Γ̃ and its set of vertices Ṽ are at finite GH distance;

Ṽ can be identified with V × Zb1(Γ);

The map F : V × Zb1(Γ) → Rb1(Γ) defined as F (x , h) := h is a quasi-isometry.

A map F : (X , dX )→ (Y , dY ) is called a quasi–isometry if ∃ k ≥ 1, A ≥ 0:

k−1dX (x1, x2)− A ≤ dY (F (x1), F (x2)) ≤ kdX (x1, x2) + A ∀x1, x2 ∈ X .
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The map F : V × Zb1(Γ) → Rb1(Γ) defined as F (x , h) := h is a quasi-isometry.

A map F : (X , dX )→ (Y , dY ) is called a quasi–isometry if ∃ k ≥ 1, A ≥ 0:

k−1dX (x1, x2)− A ≤ dY (F (x1), F (x2)) ≤ kdX (x1, x2) + A ∀x1, x2 ∈ X .
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Convergence of functions

For ε > 0 let us define the rescaling maps:

Fε : V × Zb1(Γ) −→ Rb1(Γ)

(x , h) 7−→ ε h.

We say that a sequence vε : V ×Zb1(Γ) → R locally uniformly converges to v : Rb1(Γ) → R
if for any subsequence {(xεn , hεn )}n, where εn → 0+ and Fεn (hεn ) = εnhεn → h̄, we have

lim
n→+∞

vεn (xεn , hεn ) = v(h̄).

Remark: This convergence extends to functions defined on Γ̃ and not just on vertices,
using the fact that they are a finite GH distance.
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The limit Hamiltonian: an action-minimizing approach

Let us consider the Lagrangian on a network Γ, namely L = {Lγ}γ∈E where each Lγ is

the Fenchel-Legendre trasnform of Hγ . Extend it by periodicity to Γ̃.

Solutions uε have a Lax-Oleinik representation formula (Pozza-Siconolfi, 2022):

uε(x , t) = inf

{
fε(ξ(0)) + ε

∫ t
ε

0

L(ξ(s), ξ̇(s)) ds

}
(The infimum taken over the absolutely continuous curves ξ from [0, t

ε
] to Γ̃ satisfying ξ( t

ε
) = x)

Consider the minimal action

Φ(x , y , t) := inf

{∫ t

0

L(ξ(s), ξ̇(s)) ds : ξ(0) = x , ξ(t) = y

}
and investigate the asymptotic problem

lim
ε→0+

εΦ(xε, yε, t/ε)

for suitable sequences {xε}ε, {yε}ε in Γ̃.

This is related to the so-called Aubry-Mather theory, i.e., the study of curves or
probability measures that minimize the Lagrangian action.
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Aubry-Mather theory on graphs (A. Siconolfi, A.S, 2022)

Let us first define the discrete Hamiltonian/Lagrangian on the abstract graph.

Recall that for any γ ∈ E and a ≥ aγ := maxx∈γ minT∗
x γ

Hγ , we have defined

σ(γ, a) := σa(γ) =

∫
γ

σ+
a,γ(x) dx

where σ+
a,γ(x) = max{p : Hγ(x , p) = a}.

The function a 7−→ σ(γ, a) from [aγ ,R) is continuous and strictly increasing.

We define the discrete Hamiltonian H : E × R −→ R as

H(γ, p) :=

{
σ−1(γ, p) if p ≥ σ(γ, aγ)
σ−1(γ, p) if p ≤ σ(γ, aγ).

For every γ ∈ E , H(γ, ·) : R −→ R is convex, differentiable and superlinear.
In particular:

H(γ, p) = H(γ,−p) for every γ ∈ E and p ∈ R;

aγ = H(γ, pγ) where pγ := σ(γ, aγ).
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Discrete Lagrangian on the abstract graph

We define the discrete Lagrangian on the graph to be the function
L : E × [0,+∞) −→ R obtained by convex duality:

L(γ, q) := max
p∈R

(q p −H(γ, p)) = max
a≥aγ

(q σ(γ, a)− a)

L(γ, ·) is strictly convex and superlinear;

L(γ, 0) = L(γ, 0) = −aγ = −aγ (because of the compatibility conditions).

L(γ, q) has an interpretation on the network in terms of “optimal cost”.

For every γ ∈ E , let Lγ : Tγ −→ R be the Lagrangian on the arc γ associated to the
Hamiltonian Hγ (via the Legendre transform). Then, for q > 0

L(γ, q) = q ·min

{∫ 1
q

0

Lγ(ξ(t), ξ̇(t))dt : ξ abs. cont. param. of γ on [0, 1/q]

}
.
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Parametrized path on the abstract graph

A parametrized path on Γ = (E ,V) is a sequence ξ = {(γi , qi ,Ti )}Mi=1 such that:

γi ∈ E for i = 1, . . . ,M;

If qi > 0, then Ti = 1/qi ; otherwise, if qi = 0, then
Ti can be any positive number.
qi must be meant as an average velocity.

Concatenation condition:

if qi > 0, then o(γi+1) = t(γi );
if qi = 0, then o(γi+1) = o(γi ).

•

-67

•

8 ' •
86

82• •

•

85
83 •

• 8h

We call Tξ :=
∑

i Ti the total time of the parametrization of ξ.

The (discrete) action of ξ is defined as

AL(ξ) :=
M∑
i=1

Ti L(γi , qi ).
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Discrete measures on the abstract graph

We introduce the set M = M(Γ) of discrete probability measures on Γ, consisting of
probability measures on E × [0,+∞) with finite first momentum:

µ =
∑
γ∈E

λγ µγ

with λγ > 0,
∑
γ λγ∈E = 1, µγ prob. measures on [0,+∞) with

∫ +∞
0

q dµγ < +∞.

Examples:

δ(γ,T ) the Dirac delta measure on the copy of [0,+∞) indexed by γ,
concentrated at T ≥ 0. It follows from compatibility condition that
δ(γ, 0) = δ(γ, 0) for every γ ∈ E .

Given a parametrized closed path ξ = {(γi , qi ,Ti )}Mi=1 we define the occupation
measure supported on ξ:

µξ :=
1

Tξ

M∑
i=1

Ti δ(γi , qi ).
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Homology of a graph

0-chain group C0(Γ,R): the free abelian group on V with coefficients in R.

1-chain group C1(Γ,R): the free abelian group on E with coefficients in R and
with the relation γ = −γ.

Boundary operator ∂ : C1(Γ,R)→ C0(Γ,R) by setting for any arc
∂γ = t(γ)− o(γ).

Example: Let ξ = {γi}Mi=1 be a path, i.e., o(γi+1) = t(γi ) for every i = 0, . . . ,M − 1.
Then: [ξ] :=

∑M
i=1 γi ∈ C1(Γ,R). Observe that ξ is closed if and only if ∂[ξ] = 0.

The First Homology group of Γ with coefficients R is defined as

H1(Γ,R) := Ker ∂ ' Rb1(Γ).

An element of H1(Γ,R) is called a 1-cycle.

Remark: A 1-chain
∑
γ∈E aγγ is a 1-cycle if and only if for every x ∈ V:∑

γ∈E, t(γ)=x

aγ =
∑

γ∈E, o(γ)=x

aγ .
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Closed measures

Let µ =
∑
γ∈E λγ µγ . We can associate to an element of C1(Γ,R):

[µ] :=
∑
γ∈E

(
λγ

∫ +∞

0

q dµγ

)
γ.

We say that µ ∈M is a closed measure if ∂[µ] = 0. In particular, [µ] ∈ H1(Γ,R)
is called homology class of µ (or rotation vector).

We denote the space of closed measures on Γ by M0 = M0(Γ).

Example: If µξ is the occupation measure supported on a parametrized closed

path ξ = {(γi , qi ,Ti )}Mi=1, then µξ is a closed measure and [µξ] = [ξ]
Tξ

, where

[ξ] =
∑

i : qi 6=0 γi .

Occupation measures are dense in M0 w.r.t. the Wasserstein topology.

−→ For every h ∈ H1(Γ,R), there exists µ ∈M0 with [µ] = h.
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Action-Minimizing measures (or Mather measures)

We define the Action functional AL

M0 −→ R

µ :=
∑
γ∈E

λγ µγ 7−→
∫
L dµ :=

∑
γ∈E

aγ

∫ +∞

0

L(γ, q) dµγ(q).

We define the minimal average action with homology h ∈ H1(Γ,R) as

β(h) := inf
[ν]=h

∫
L dν.

It is a minimum and minimizers are called Mather measures with homology h.

We call the function β : H1(Γ,R) −→ R Mather’s β function (or effective
Lagrangian). It is convex and superlinear.

We call α : H1(Γ,R) −→ R its Fenchel-Legendre transform

α(c) = max
h∈H1(Γ,R)

(〈c, h〉 − β(h)) .

α is called Mather’s α function (or effective Hamiltonian). It is also convex and
superlinear.

Remark: −α can be also obtained as the minimal values of the action of suitable
modified Lagrangians.
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A glimpse on how to prove the homogenization result

Key convergence result
Let tε > 0 be a sequence of times converging to τ > 0 and let

x̃ε := (xε, hε), ỹε := (yε, `ε) ∈ Ṽ ' V × Zb1(Γ) ∀ ε > 0

such that limε→0+ ε hε = h ∈ Rb1(Γ) and limε→0+ ε `ε = ` ∈ Rb1(Γ).

Identifying H1(Γ,R) ' Rb1(Γ), we conclude:

lim
ε→0+

εΦ
(
x̃ε, ỹε,

tε

ε

)
= τ β

(
`− h

τ

)
.

One can then prove the convergence of solutions, via the Lax-Oleinik representation formula:

uε(x , t) = inf
y∈Γ̃

{
fε(y) + εΦ(y , x ,

t

ε
)

}
x ∈ Γ̃, t > 0

and showing that for the limit problem:

Effective Lagrangian L ←→ β : H1(Γ,R) ' Rb1(Γ) −→ R

Effective Hamiltonian H ←→ α : H1(Γ,R) ' Rb1(Γ) −→ R

with limit solution ū(z, t) = inf
p∈Rb1(Γ)

{
f̄ (p) + tβ( z−p

t
)
}
.
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Thank you for your attention.
Any question?


