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Introduction

Study of the dynamics of Hamiltonian systems

Order (stability) versus Chaos (instability)

@ Methods from
classical mechanics

@ Perturbative
methods (KAM
theory,...)

@ Variational methods
(Aubry-Mather theory)

o Geometric methods
(Symplectic geometry,
Floer Homology,...)

@ PDE methods
(Hamilton-Jacobi,
weak KAM theory, ...)
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Introduction

Aubry - Mather theory

Variational methods based on the Principle of Least Lagrangian Action
( “Nature is thrifty in all its actions”, Pierre Louis Moreau de Maupertuis, 1744).

@ Serge Aubry & John Mather '80s: twist maps of the annulus;
@ John Mather '90s: Hamiltonian flows of Tonelli type.
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Tonelli Hamiltonian

Let M be finite dimensional closed Riemannian manifold.
H € C?(T*M,R) is said to be Tonelli if:

o H is strictly convex in each fibre: 93 H(x,p) > 0;

@ H is super-linear in each fibre:

H(x, p)
m
lpl—+oo |lpl

= 400 uniformly in x.




Examples of Tonelli Hamiltonians

@ Geodesic Flow
Let g be a Riemannian metric on M. The Hamiltonian (or Kinetic
energy)
1, 5 1
H(x, p) = 5 lIpI == 584(p. )
corresponds to the geodesic flow on M.
@ Hamiltonians from classical mechanics (Kinetic Energy + Potential
Energy):

1
H(x, p) = SlIpl2 + U(x)

where U : M — R represents the potential energy.



Examples of Tonelli Hamiltonians

@ Geodesic Flow
Let g be a Riemannian metric on M. The Hamiltonian (or Kinetic
energy)

1 1
H(x, p) = Slpl% := S&x(P.p)
corresponds to the geodesic flow on M.

@ Hamiltonians from classical mechanics (Kinetic Energy + Potential
Energy):

1
H(x, p) = SlIpl2 + U(x)

where U : M — R represents the potential energy.

The dynamics associated to any vector field X on M can be embedded
into the flow of a Tonelli Hamiltonian H: T*M — R:

1
H(x,p) = 5lIpIIZ +p - X(x).




Lagrangian formalism

Let H: T*M — R a Tonelli Hamiltonian. We can associate to it the
so-called Lagrangian function L: TM — R, where

L(x,v):= sup (p-v— H(x.p))
peTIM

Euler-Lagrange equations: %% = % —— Euler-Lagrange flow.



Lagrangian formalism

Let H: T*M — R a Tonelli Hamiltonian. We can associate to it the
so-called Lagrangian function L: TM — R, where

L(x,v):= sup (p-v— H(x.p))
peTIM

Euler-Lagrange equations: %% = % —— Euler-Lagrange flow.

The Hamiltonian flow and the Euler-Lagrange flow are equivalent from a
dynamical system point of view:

;
™ ——TM

Ll i‘
T*M ——> T*M
[0}
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Lagrangian formalism

The Euler-Lagrange flow has an interesting variational characterization in
terms of the Lagrangian Action Functional.
If v: [a, b] — M is an abs. cont. curve, we define its action as:

b
ALl) = / L(+(8),4(1)) d.

v is a solution of the Euler-Lagrange flow if and only if it is an extremal
for the fixed-end variational problem. J




Lagrangian formalism

These extremals are not necessarily minimisers, although they are local
minimisers, i.e. for very short times.

Example: In the geodesic flow case not all geodesics are length
minimising! But (global) minimising geodesics do exist.
Questions:

@ Do global minimisers exist?

@ What are their dynamical /geometric properties?

@ Does this minimising property translate into some rigid structure?



Lagrangian formalism

These extremals are not necessarily minimisers, although they are local
minimisers, i.e. for very short times.

Example: In the geodesic flow case not all geodesics are length
minimising! But (global) minimising geodesics do exist.
Questions:

@ Do global minimisers exist? YES (Tonelli Theorem)

@ What are their dynamical /geometric properties?

@ Does this minimising property translate into some rigid structure?



Aubry-Mather theory

Study orbits and invariant probability measures that minimise the
Lagrangian action of L

10/27



Aubry-Mather theory

Study orbits and invariant probability measures that minimise the
Lagrangian action of L — nc(x) - v, where 7. is any smooth closed 1-form
on M with cohomology class c.

Observation:
® 7. closed = L and L — 7. have the same Euler-Lagrange flow.
e The corresponding Hamiltonian is H(x, nc(x) + p).
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Aubry-Mather theory

Study orbits and invariant probability measures that minimise the
Lagrangian action of L — nc(x) - v, where 7. is any smooth closed 1-form
on M with cohomology class c.

Observation:
® 7. closed = L and L — 7. have the same Euler-Lagrange flow.
e The corresponding Hamiltonian is H(x, nc(x) + p).

‘ Tonelli Hamiltonian systems ‘

J{(Variational methods)

’Aubry - Mather theory‘ <~~~ Minim. Lagrangian action

\L(Invariant sets)

Mc}eemumr) & {AVC}CeHl(M;R) <~~~ Aubry-Mather sets
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Aubry-Mather sets

The Aubry-Mather sets are:
@ non-empty and compact;
@ invariant under the Hamiltonian flow:

@ supported on Lipschitz graphs
(Mather's graph theorem);

(Credits to Dr. Oliver Knill, Harvard)
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Aubry-Mather sets

The Aubry-Mather sets are:
@ non-empty and compact;
@ invariant under the Hamiltonian flow:

@ supported on Lipschitz graphs
(Mather's graph theorem);

(Credits to Dr. Oliver Knill, Harvard)

In particular:
@ Symplectic invariant Invariant under the action of simplectomorphisms.
@ Lagrangian Structure The are supported on Lipschitz Lagrangian,

graphs of cohomology class c.
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Link to PDEs & Symplectic geometry

Proposition

If A'is an invariant Lagrangian graph in (T*M, wg,.q ) with cohomology
class ¢, then all orbits on A (resp. invariant prob. measures supported on
A), minimises the action of L — nc(x) - v, where 7. is any smooth closed
1-form on M, with cohomology class c.

Therefore:

Aubry-Mather sets < Invariant Lagrangian graphs (when they exist)

Invariant Lagrangian graphs are very rare. What if they do not exist?
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Link to PDEs & Symplectic geometry

Proposition

If A'is an invariant Lagrangian graph in (T*M, wg.. ) with cohomology
class ¢, then A = Graph(c + du) and

H(x, ¢ + du(x)) = a(c).

Therefore, one can study viscosity solutions and subsolutions of
Hamilton-Jacobi equations:

Aubry-Mather sets < supported on the “graphs” of the differentials of
these weak solutions
(Uniqueness set)

Weak KAM theory <— Homogenization of Hamilton-Jacobi equation
(Albert Fathi '90s) (3 la Lions-Papanicolaou-Varadhan and Evans)

13 /27



A more geometric characterization

For a fixed c, the sets M. and A¢ lie in an energy level {H(x, p) = a(c)}.
The function
a: HY(M;R) — R

is what we call Minimal average action or Effective Hamiltonian.

@ It corresponds to the Homogenized Hamiltonian.
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A more geometric characterization

For a fixed c, the sets M. and A¢ lie in an energy level {H(x, p) = a(c)}.
The function

a: HY(M;R) — R
is what we call Minimal average action or Effective Hamiltonian.

@ It corresponds to the Homogenized Hamiltonian.

This function is also related to what is called Symplectic shape:

e afc) = inf{k : the sublevel {H(x, p) < k} contains Lagrangian
graphs of cohomology class c}.

@ « is related to Hofer geometry on the group of Hamiltonian
diffeomorphisms (Sorrentino-Viterbo, Geom& Top 2010)
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| Hamiltonian dynamics|

iati Sympl. Geom.
vananoW lPDE mN

Minim. Lagr. Action Hamilton-Jacobi eq. Lagrangian graphs
g

Weak KAM
Aubry—l\/lam l o Atric methods

| Aubry-Mather sets |
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| Hamiltonian dynamics|

Varitiona] . Sympl. Geom.
arlatloiam/ PDE mN

Minim. Lagr. Action | | Hamilton-Jacobi eq. | | Lagrangian graphs

Weak KAM
Aubry—l\/lam o Atric methods

| Aubry-Mather sets |

Dynamics ; Geometry
Analysis

Stable & Unstable orb. Regularity (sub)sol. Non-remov. Inters.
Displaceability
Hofer geometry
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Research Interests

Structure of these Action-minimizing sets and H-J equation:

v

Properties of the minimal average action:
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Research Interests

Structure of these Action-minimizing sets and H-J equation:

@ Generic topological properties. Symplectic and contact properties.
@ Implications to dynamics and Symplectic geometry;

@ Implications to the regularity of viscosity solutions and subsolutions of
Hamilton-Jacobi equation;

@ Generalised forms of Homogenization of Hamilton-Jacobi equation.

v
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Some results on |

o A. S., On the total disconnectedness of the quotient Aubry set,
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@ A. Fathi, A. Giuliani and A.S., Uniqueness of invariant Lagrangian
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o G. Paternain and A.S., Symplectic and contact properties of Mafé's
energy level on the universal cover, To appear on NoDEA (2014).
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Research Interests

Properties of the minimal average action:

@ Symplectic properties and relation to Hofer geometry.

@ Regularity, lack of regularity and geometric/dynamical implications.
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Some results on |l

@ A.S. and Claude Viterbo Action minimizing properties and distances
on the group of Hamiltonian diffeomorphisms,
Geom. & Topol. 14 (2010), no. 4.

o Daniel Massart and A. S., Differentiability of Mather's average action
and integrability on closed surfaces,
Nonlinearity 24 (2011), no. 6.

o A.S., Computing Mathers beta-function for Birkhoff billiards,
To appear on Discrete and Contin. Dynamical Syst. - Series A (2014).
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Relation to Hofer geometry

Consider the group of (compactly supported) Hamiltonian diffeomorphism
Ham(M, w):

dynamical geometric

Fundamental (unsolved) question

What is the relation between the geometry of this curve and the dynamics of the
system?
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Relation to Hofer geometry

Consider the group of (compactly supported) Hamiltonian diffeomorphism
Ham(M, w):

dynamical geometric

Fundamental (unsolved) question

What is the relation between the geometry of this curve and the dynamics of the
system?

Minimal average action +— Asymptotic distance from Identity

23 /27



Research Projects

@ Generalised forms of Homogenization of Hamilton-Jacobi equation.

Birkhoff Billiards (proposal for a SIR project 2014):

e Rigidity phenomena; (Length) Spectral properties.
@ Integrability and Birkhoff conjecture.
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Playing with Billiards

What is a (mathematical) billiard?

The billiard ball moves on a rectilinear path: when it hits the boundary it
reflects elastically according to the standard reflection law:

angle of reflection = angle of incidence.
This is a conceptually simple model, yet mathematically very complicated,
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Playing with Billiards

In collaborations with Vadim Kaloshin (University of Maryland, USA) we
have an ongoing project aimed at studying two important (and related)
questions:

@ Is it possible to hear the shape of a billiard? Can a planar convex
domain be characterized in terms of the lengths of its periodic orbits,
i.e., its Length spectrum (or Marked length spectrum), as conjectured
by Guillemin and Melrose?

@ Birkhoff conjecture on the integrability of convex billiards. Namely:
the only integrable billiards are billiards in circles and ellipses.
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Thank you

for
your attention!



