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Introduction

Aubry - Mather theory

Variational methods based on the Principle of Least Lagrangian Action
(“Nature is thrifty in all its actions”, Pierre Louis Moreau de Maupertuis, 1744).

Serge Aubry & John Mather ’80s: twist maps of the annulus;

John Mather ’90s: Hamiltonian flows of Tonelli type.

Tonelli Hamiltonian

Let M be finite dimensional closed Riemannian manifold.
H ∈ C 2(T ∗M,R) is said to be Tonelli if:

H is strictly convex in each fibre: ∂2
ppH(x , p) > 0;

H is super-linear in each fibre:

lim
‖p‖→+∞

H(x , p)

‖p‖ = +∞ uniformly in x .
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Examples of Tonelli Hamiltonians

Geodesic Flow
Let g be a Riemannian metric on M. The Hamiltonian (or Kinetic
energy)

H(x , p) =
1

2
‖p‖2

x :=
1

2
gx(p, p)

corresponds to the geodesic flow on M.

Hamiltonians from classical mechanics (Kinetic Energy + Potential
Energy):

H(x , p) =
1

2
‖p‖2

x + U(x)

where U : M → R represents the potential energy.

The dynamics associated to any vector field X on M can be embedded
into the flow of a Tonelli Hamiltonian H : T ∗M −→ R:

H(x , p) =
1

2
‖p‖2

x + p · X (x) .

5 / 27



Examples of Tonelli Hamiltonians

Geodesic Flow
Let g be a Riemannian metric on M. The Hamiltonian (or Kinetic
energy)

H(x , p) =
1

2
‖p‖2

x :=
1

2
gx(p, p)

corresponds to the geodesic flow on M.

Hamiltonians from classical mechanics (Kinetic Energy + Potential
Energy):

H(x , p) =
1

2
‖p‖2

x + U(x)

where U : M → R represents the potential energy.

The dynamics associated to any vector field X on M can be embedded
into the flow of a Tonelli Hamiltonian H : T ∗M −→ R:

H(x , p) =
1

2
‖p‖2

x + p · X (x) .

5 / 27



Lagrangian formalism

Let H : T ∗M −→ R a Tonelli Hamiltonian. We can associate to it the
so-called Lagrangian function L : TM −→ R, where

L(x , v) := sup
p∈T∗

x M
(p · v − H(x , p))

Euler-Lagrange equations: d
dt

∂L
∂v = ∂L

∂x −→ Euler-Lagrange flow.

The Hamiltonian flow and the Euler-Lagrange flow are equivalent from a
dynamical system point of view:

TM

L
��

ΦL
t // TM

L
��

T ∗M
ΦH

t

// T ∗M
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Lagrangian formalism

The Euler-Lagrange flow has an interesting variational characterization in
terms of the Lagrangian Action Functional.
If γ : [a, b] −→ M is an abs. cont. curve, we define its action as:

AL(γ) :=

∫ b

a
L(γ(t), γ̇(t)) dt.

γ is a solution of the Euler-Lagrange flow if and only if it is an extremal
for the fixed-end variational problem.
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Lagrangian formalism

These extremals are not necessarily minimisers, although they are local
minimisers, i.e. for very short times.

Example: In the geodesic flow case not all geodesics are length
minimising! But (global) minimising geodesics do exist.

Questions:

Do global minimisers exist?

What are their dynamical/geometric properties?

Does this minimising property translate into some rigid structure?
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These extremals are not necessarily minimisers, although they are local
minimisers, i.e. for very short times.

Example: In the geodesic flow case not all geodesics are length
minimising! But (global) minimising geodesics do exist.

Questions:

Do global minimisers exist? YES (Tonelli Theorem)

What are their dynamical/geometric properties?
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Aubry-Mather theory

Idea:

Study orbits and invariant probability measures that minimise the
Lagrangian action of L

− ηc(x) · v , where ηc is any smooth closed 1-form
on M with cohomology class c .

Observation:
• ηc closed =⇒ L and L− ηc have the same Euler-Lagrange flow.
• The corresponding Hamiltonian is H(x , ηc(x) + p).

Tonelli Hamiltonian systems

(Variational methods)
��

Aubry - Mather theory

(Invariant sets)
��

Minim. Lagrangian actionoo o/ o/ o/

{M̃c}c∈H1(M;R) & {Ãc}c∈H1(M;R) Aubry-Mather setsoo o/ o/ o/ o/ o/
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Aubry-Mather sets

The Aubry-Mather sets are:

non-empty and compact;

invariant under the Hamiltonian flow;

supported on Lipschitz graphs
(Mather’s graph theorem);

(Credits to Dr. Oliver Knill, Harvard)

In particular:

Symplectic invariant ←→ Invariant under the action of simplectomorphisms.

Lagrangian Structure ←→ The are supported on Lipschitz Lagrangian,
graphs of cohomology class c .
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Link to PDEs & Symplectic geometry

Proposition

If Λ is an invariant Lagrangian graph in (T ∗M, ωstand.) with cohomology
class c , then all orbits on Λ (resp. invariant prob. measures supported on
Λ), minimises the action of L− ηc(x) · v , where ηc is any smooth closed
1-form on M, with cohomology class c .

Therefore:

Aubry-Mather sets ←→ Invariant Lagrangian graphs (when they exist)

Invariant Lagrangian graphs are very rare. What if they do not exist?
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Link to PDEs & Symplectic geometry

Proposition

If Λ is an invariant Lagrangian graph in (T ∗M, ωstand.) with cohomology
class c , then Λ = Graph(c + du) and

H(x , c + du(x)) = α(c).

Therefore, one can study viscosity solutions and subsolutions of
Hamilton-Jacobi equations:

Aubry-Mather sets ←→ supported on the “graphs” of the differentials of
these weak solutions

(Uniqueness set)

Weak KAM theory ←→ Homogenization of Hamilton-Jacobi equation
(Albert Fathi ’90s) (à la Lions-Papanicolaou-Varadhan and Evans)
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A more geometric characterization

For a fixed c , the sets Mc and Ac lie in an energy level {H(x , p) = α(c)}.
The function

α : H1(M;R) −→ R

is what we call Minimal average action or Effective Hamiltonian.

It corresponds to the Homogenized Hamiltonian.

This function is also related to what is called Symplectic shape:

α(c) = inf{k : the sublevel {H(x , p) ≤ k} contains Lagrangian
graphs of cohomology class c}.
α is related to Hofer geometry on the group of Hamiltonian
diffeomorphisms (Sorrentino-Viterbo, Geom&Top 2010)
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Hamiltonian dynamics

Variational meth.

uujjjjjjjjjjjjjjj

PDE meth.
��

Sympl. Geom.

))SSSSSSSSSSSSSS

Minim. Lagr. Action

Aubry-Mather theory ))TTTTTTTTTTTTTTT
Hamilton-Jacobi eq.

Weak KAM
��

Lagrangian graphs

Geometric methodsuukkkkkkkkkkkkkk

Aubry-Mather sets

Stable & Unstable orb. Regularity (sub)sol. Non-remov. Inters.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Displaceability

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Hofer geometry
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Research Interests

Structure of these Action-minimizing sets and H-J equation:

Generic topological properties. Symplectic and contact properties.

Implications to dynamics and Symplectic geometry;

Implications to the regularity of viscosity solutions and subsolutions of
Hamilton-Jacobi equation;

Generalised forms of Homogenization of Hamilton-Jacobi equation.

Properties of the minimal average action:

Symplectic properties and relation to Hofer geometry.

Regularity, lack of regularity and geometric/dynamical implications.

Birkhoff Billiards (proposal for a SIR project 2014):

Rigidity phenomena; (Length) Spectral properties.

Integrability and Birkhoff conjecture.
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Relation to Hofer geometry

Consider the group of (compactly supported) Hamiltonian diffeomorphism
Ham(M, ω):

84 5 The minimal action and Hofer’s geometry

Definition 5.1.5. Let (M, ω) be a symplectic manifold and H ∈ H an admis-
sible Hamiltonian. Then H is said to generate a minimal geodesic if

d(id, ϕ1
H) = #(H).

Hofer’s geometry allows also the notions of geodesics, conjugate points,
etc. We refer to [12, 54, 84, 85, 92] for further definitions and results.

We want to pursue the following idea here. A Hamiltonian dynamical sys-
tem corresponds to one single path in the Hamiltonian di  eomorphism group,
and vice versa. Therefore, this path contains all information about the Hamil-
tonian dynamical system (like periodic orbits, heteroclinic connections, etc.).
The group Ham(M, ω), on the other hand, is equipped with a geometry com-
ing from Hofer’s metric, and the path has certain properties with respect
to this geometry (like being a geodesic, etc.). What kind of relations exist
between the (finite–dimensional) dynamics of the Hamiltonian flow and the
(infinite–dimensional) Hofer geometry of the corresponding path? In particu-
lar, what kind of information about Hofer’s geometry can be retrieved from
the classical dynamics? Take a look at Fig. 5.1 to see the two viewpoints of a
Hamiltonian system, the dynamical and the geometric one.

M
Ham(M, )!

id

"

d y n a m i c a l g e o m e t r i c

Fig. 5.1. Two viewpoints of a Hamiltonian system

In the following, we go back to the phase space of classical mechanics
and consider the cotangent bundle T ∗Tn with its canonical symplectic form
ω0 = dλ. In order to include Hamiltonians satisfying the Legendre condition
(see Sect. 2.1.1) into the framework of Hofer’s geometry, we have to restrict
them to a compact part of T ∗Tn; otherwise, they would violate the compact

Fundamental (unsolved) question

What is the relation between the geometry of this curve and the dynamics of the
system?

Minimal average action ←→ Asymptotic distance from Identity
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Research Projects

Structure of these Action-minimizing sets and H-J equation:

Generic topological properties. Symplectic and contact properties.

Implications to dynamics and Symplectic geometry;

Implications to the regularity of viscosity solutions and subsolutions of
Hamilton-Jacobi equation.

Generalised forms of Homogenization of Hamilton-Jacobi equation.

Properties of the minimal average action:

Symplectic properties and relation to Hofer geometry.

Regularity, lack of regularity and geometric/dynamical implications.

Birkhoff Billiards (proposal for a SIR project 2014):

Rigidity phenomena; (Length) Spectral properties.

Integrability and Birkhoff conjecture.
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Playing with Billiards

What is a (mathematical) billiard?

The billiard ball moves on a rectilinear path: when it hits the boundary it
reflects elastically according to the standard reflection law:

angle of reflection = angle of incidence.

This is a conceptually simple model, yet mathematically very complicated,
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Playing with Billiards

In collaborations with Vadim Kaloshin (University of Maryland, USA) we
have an ongoing project aimed at studying two important (and related)
questions:

Is it possible to hear the shape of a billiard? Can a planar convex
domain be characterized in terms of the lengths of its periodic orbits,
i.e., its Length spectrum (or Marked length spectrum), as conjectured
by Guillemin and Melrose?

Birkhoff conjecture on the integrability of convex billiards. Namely:
the only integrable billiards are billiards in circles and ellipses.
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Thank you

for
your attention!
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