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ON THE INTEGRABILITY OF TONELLI HAMILTONIANS

ALFONSO SORRENTINO

Abstract. In this article we discuss a weaker version of Liouville’s Theorem
on the integrability of Hamiltonian systems. We show that in the case of
Tonelli Hamiltonians the involution hypothesis on the integrals of motion can
be completely dropped and still interesting information on the dynamics of the
system can be deduced. Moreover, we prove that on the n-dimensional torus
this weaker condition implies classical integrability in the sense of Liouville.
The main idea of the proof consists in relating the existence of independent
integrals of motion of a Tonelli Hamiltonian to the “size” of its Mather and
Aubry sets. As a byproduct we point out the existence of “non-trivial” com-
mon invariant sets for all Hamiltonians that Poisson-commute with a Tonelli

Hamiltonian.

1. Introduction

A classical result in the study of Hamiltonian systems is what is generally called
Liouville’s Theorem (or Arnol’d-Liouville’s Theorem; see [1]), which is concerned
with the integrability of these systems, i.e. the possibility of expressing their solu-
tions in a closed form. Actually, in the case of Hamiltonian systems this notion
assumes a more precise connotation, sometimes specified as integrability in the sense
of Liouville: it refers to the existence of a regular foliation of the phase space by
invariant Lagrangian submanifolds which are diffeomorphic to tori and on which
the dynamics is conjugate to a rigid rotation. Liouville’s Theorem provides suffi-
cient conditions for the existence of such a foliation. Let us state Liouville’s result
in a more precise way. Consider a Hamiltonian system with n degrees of freedom,
given by a Hamiltonian H : V → R defined on a 2n-dimensional symplectic mani-
fold (V, ω) and denote by {·, ·} the associated Poisson bracket, defined as follows:
if f, g ∈ C1(M), then {f, g} = ω(Xf , Xg) = df · Xg, where Xf and Xg denote
the Hamiltonian vector fields associated to f and g (see for instance [1]). An im-
portant role in the study of the dynamics is played by the functions F : V → R

that are in involution with the Hamiltonian, i.e. whose Poisson bracket {H,F} ≡ 0
on V (equivalently we can say that H and F Poisson-commute). Such functions,
whenever they exist, are called integrals of motion (or first integrals) of H. It is
quite easy to check that the condition of being in involution is equivalent to asking
that F be constant along the orbits of the Hamiltonian flow of H and vice versa.
Moreover, this implies that the associated Hamiltonian vector fields XH and XF

commute (see Lemma 4.1). Liouville’s Theorem relates the integrability of a given
Hamiltonian system to the existence of “enough” integrals of motion.
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5072 ALFONSO SORRENTINO

Theorem (Liouville). Let (V, ω) be a symplectic manifold with dimV = 2n and
let H : V −→ R be a Hamiltonian. Suppose that there exist n integrals of motion
F1, . . . , Fn : V −→ R such that:

i) F1, . . . , Fn are independent at each point of V , i.e. dF1, . . . , dFn are linearly
independent as vectors at each point of V ;

ii) F1, . . . , Fn are pairwise in involution, i.e. {Fi, Fj} = 0 for all i, j = 1, . . . , n.

Then, all non-empty level sets Λa :={F1 = a1, . . . , Fn = an}, where a = (a1, . . . , an)
is a vector in R

n, are invariant under the Hamiltonian flow of H and each of
their connected components is a smooth Lagrangian submanifold. Moreover, such
Lagrangian submanifolds are diffeomorphic to n-dimensional tori, and the dynamics
on them are conjugate to rigid rotations on T

n.

See for instance [1, Section 49] for a proof of this theorem.

Remark 1.1. It turns out from the above theorem that having n independent inte-
grals of motion, pairwise in involution, is a very strong assumption with significant
implications on the dynamics of the system and the topology of the underlying con-
figuration space. Observe, in fact, that while the invariance of these Λa’s simply
follows from Fi being integrals of motion (and Lemma 4.1), the fact that these sub-
manifolds are Lagrangian, that they are diffeomorphic to tori and that the motion
on each of them is conjugate to a rigid rotation, strongly relies on these integrals
of motion being pairwise in involution.

Is it possible to weaken the assumptions in Liouville’s Theorem? It is easy to
see that condition i) can be replaced by assuming that the integrals of motion
are not independent everywhere, but in an open dense set of the space. Then,
the same conclusions will continue to hold for all level sets that are not in the
singular set of the integrals of motion. On the other hand, in light of Remark 1.1,
condition ii) is definitely less easy to weaken or to drop. In [15, Theorem 4.1], for
instance, Fomenko and Mishchenko proved a non-commutative version of Liouville’s
Theorem, in which they consider the case in which only a subfamily of the integrals
of motion are pairwise in involution; as a counterbalance, they need to require that
extra independent integrals of motion exist. As we shall point out in Remark 2.6,
this cannot happen for a Tonelli Hamiltonian (unless one excludes the Mather and
Aubry sets from the domain of independence of the integrals). Observe moreover
that the statement in [15] would become trivial if one assumed that none of the
integrals of motion were in involution. In fact, this would require the existence of
2n integrals of motion, exactly as many as the dimension of the phase space.

In this work we would like to address the following question: what happens when
the involution hypothesis on the integrals of motion is completely dropped? Let us
introduce the following definition.

Definition 1.2 (Weak integrability). Let H be a C2 Hamiltonian on (V, ω) and
let dimV = 2n. H is called weakly integrable if there exist n integrals of motion,
which are C2 and independent at each point of V .

Remark 1.3. (i) As far as the regularity of the integrals of motion is concerned, we
need them to be C2 (see for instance the proof of Lemma 3.4). However, with some
technical modifications, our proof could actually work assuming that the integrals
of motion are only C1,1. (ii) As already pointed out, we are assuming that these
integrals of motion are independent everywhere. One could actually require them
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ON THE INTEGRABILITY OF TONELLI HAMILTONIANS 5073

to be independent almost everywhere, but this would require extra assumptions on
their action-minimizing sets. See for instance Remark 2.6.

Certainly, Liouville integrable Hamiltonians are weakly integrable. As we shall
prove in Appendix A (see Proposition A.1), other interesting examples of weakly
integrable Hamiltonians, which are not necessarily integrable in the classical sense,
are provided by geodesic flows associated to left-invariant Riemannian metrics on
compact Lie groups.

In the following we shall show that in the case of Tonelli Hamiltonians - that
is Hamiltonians defined on the cotangent space of a compact connected finite-
dimensional manifold, which are strictly convex and superlinear in each fiber (see
Section 2) - one can deduce interesting information on the dynamics of weakly
integrable Hamiltonian systems. More precisely (see Section 3 for a more precise
statement):

Theorem 3.1 (Weak Liouville’s Theorem). If H : T∗M → R is a weakly integrable
Tonelli Hamiltonian, then for each cohomology class c ∈ H1(M ;R) there exists a
unique smooth invariant Lagrangian graph Λc with cohomology class c, on which
the dynamics are recurrent, i.e. each orbit returns infinitely many times close to its
initial data.

Remark 1.4. (i) The smoothness of these Lagrangian graphs is related to the
smoothness of the integrals of motions Fi (see Lemma 3.6 and Remark 3.5). In
particular, if all integrals of motion are Ck, with k ≥ 2, then these graphs will be
Ck, too. (ii) Observe that this also implies that the associated Hamilton-Jacobi
equation H(x, c + du) = const. admits a (unique) smooth solution for each coho-
mology class c ∈ H1(M ;R).

Moreover, we shall prove that in some cases (essentially on the torus) this notion
of integrability coincides with the classical one.

Theorem 3.3. Assume dimH1(M ;R) = dimM and let H : T∗M → R be a weakly
integrable Tonelli Hamiltonian with integrals of motion F1, . . . , Fn. Then the system
is integrable in the sense of Liouville. In particular, M is diffeomorphic to T

n.

Observe that this implies that the integrals of motion are pairwise in involution
everywhere, although we had not assumed it a priori.

The main idea behind our approach consists in studying how the existence of
independent integrals of motion of a Tonelli Hamiltonian H relates to the structure
of its action-minimizing sets, namely its Mather and Aubry sets (see Section 2
for a definition). Moreover, using the symplectic structure of the Aubry set (see
(2.1) and Remark 2.1) we shall be able to recover the involution hypothesis at least
on these sets. The key properties that we are going to use can be summarized as
follows:

• the Mather and Aubry sets are invariant under the flow of any integral of
motion of H [Lemma 2.2];

• the existence of k independent integrals of motion implies that the “size”
of each Mather and Aubry set is larger than or equal to k [Proposition 2.4];

• the integrals of motion are locally in involution on the Mather and Aubry
sets [Proposition 2.7].
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As a byproduct of this discussion, we shall also point out some results about
the existence of “non-trivial” common invariant sets (or measures) for Poisson-
commuting Hamiltonians. It will turn out, in fact, that if H is a Tonelli Hamil-
tonian, then there exists a family of “non-trivial” compact invariant subsets which
are also invariant under the flows of all Hamiltonians that Poisson-commute with
H [Proposition 2.8].

The paper is organized as follows. In Section 2, after having briefly recalled
what Mather’s theory is about and introduced the notion of Mather and Aubry
sets, we shall discuss the relation between these sets and the integrals of motion of
the Hamiltonian. In Section 3 we shall prove the main results announced in this
Introduction. In Section 4 we shall prove a fundamental lemma, stated in Section
2, about the symplectic invariance of the Mather and Aubry sets. To conclude, in
Appendix A we shall discuss some examples of weakly integrable Tonelli Hamil-
tonian systems, namely the geodesic flows associated to left-invariant Riemannian
metrics on compact Lie groups.

2. Aubry-Mather sets and integrals of motion

In this section we shall discuss the relation between the Aubry-Mather sets of a
Tonelli Hamiltonian and its integrals of motion, with particular attention to how
their flows act on these sets. Before entering into details, let us try to describe “in
a nutshell” what Mather’s theory is about, in order to help an unaware reader to
understand the concepts and the results that we shall be dealing with, although we
refer her or him to [11, 18, 19, 22] for more exhaustive presentations of the material.

Mather’s theory consists in a variational approach to the study of convex La-
grangian systems, called Tonelli Lagrangians, with particular attention to their
action-minimizing invariant probability measures and their action-minimizing or-
bits. Let M be a compact and connected smooth n-dimensional manifold without
boundary. Denote by TM its tangent bundle and by T∗M the cotangent bundle,
and denote points in TM and T∗M respectively by (x, v) and (x, p). We shall
also assume that the cotangent bundle T∗M is equipped with the canonical sym-
plectic structure, which we shall denote ω. A Tonelli Lagrangian is a C2 function
L : TM → R, which is strictly convex and uniformly superlinear in the fibers; in
particular this Lagrangian defines a flow on TM , known as Euler-Lagrange flow. In-
stead of considering just this Lagrangian L, John Mather [18] proposed to consider
a family of modified Tonelli Lagrangians given by Lη(x, v) = L(x, v) − 〈η(x), v〉,
where η is a closed 1-form on M . These Lagrangians, in fact, all have the same
Euler-Lagrange flow as L, but different action-minimizing orbits and measures, ac-
cording to the cohomology class of η. In this way for each c ∈ H1(M ;R), if we
choose η to be any smooth closed 1-form on M with cohomology class [η] = c
and we consider the Lagrangian Lη, it is possible to define two compact invariant
subsets of TM :

• M̃c(L), the Mather set of cohomology class c, given by the union of the
supports of all invariant probability measures that minimize the action of
Lη (c-action minizimizing measure or Mather’s measures of cohomology
class c);

• Ãc(L), the Aubry set of cohomology class c, given by the union of all regular
global minimizing curves of Lη (or c-regular minimizers); see [19, 11] for a
precise definition.
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ON THE INTEGRABILITY OF TONELLI HAMILTONIANS 5075

These sets are such that M̃c(L) ⊆ Ãc(L), and moreover one of their most important
features is that they are graphs over M (Mather’s graph theorem [18, 19]); namely,

if π : TM → M denotes the canonical projection along the fibers, then π|Ãc(L) is

injective and its inverse
(
π|Ãc(L)

)−1
: π

(
Ãc(L)

)
−→ Ãc(L) is Lipschitz.

In the following we would like to consider the Hamiltonian setting rather than
the Lagrangian one. It is a classical result that, under the above Tonelli conditions,
it is possible to associate to the Lagrangian system a Hamiltonian system H :
T∗M → R, where H(x, p) = supv∈TxM (〈p, v〉 −L(x, v)). It is easy to check that H

is also C2, strictly convex and uniformly superlinear in each fiber: H will be called a
Tonelli (or sometimes optical) Hamiltonian. The important observation is that the
flow on T∗M associated to this Hamiltonian, known as the Hamiltonian flow of H,
is conjugate to the Euler-Lagrange flow of L, via the so-called Legendre transform,
i.e. the diffeomorphism LL : TM −→ T∗M defined by LL(x, v) = (x, ∂L∂v (x, v)).

Therefore, one can define the analogue of the Mather and Aubry sets in the

cotanget space, simply considering M∗
c(H)=LL

(
M̃c(L)

)
and A∗

c(H)=LL

(
Ãc(L)

)
.

These sets still satisfy all the properties mentioned above, including the graph
theorem. Moreover, as it was proved by Carneiro [9], these sets are contained in the
energy level {H(x, p) = αH(c)}, where αH : H1(M ;R) −→ R is called Mather’s α-
function (or Mañé’s critical value or effective Hamiltonian) and −αH(c) represents
the average action of c-action minimizing measures; see [18, 11] for a more precise
definition.

Before concluding this preamble, let us recall that using Fathi’s weak KAM
theory [11] it is possible to obtain a nice characterization of the Aubry set in terms
of critical subsolutions of the Hamilton-Jacobi equation. As above, let η be a closed
1-form with cohomology class c. We shall say that u ∈ C1,1(M) is an η-critical
subsolution if it satisfies H(x, η + dxu) ≤ αH(c) for all x ∈ M . The existence of
such functions has been shown by Bernard [4]. If one denotes by Sη the set of η
critical subsolutions, then

A∗
c(H) =

⋂
u∈Sη

{(x, ηx + dxu) : x ∈ M} .(2.1)

Remark 2.1. Recall that in T∗M , with the standard symplectic form, there is a 1-1
correspondence between Lagrangian graphs and closed 1-forms (see for instance [8]).
Therefore, we could interpret the graphs of these critical subsolutions as Lipschitz
Lagrangian graphs in T∗M . We shall see that the fact that the Aubry set can be
seen as the intersection of these special Lagrangian graphs (see Definition 4.4 and
Remark 4.5) will play a key role in our proof.

Now that we have recalled most of the definitions that we shall need, we can
start our discussion. Let H be a Tonelli Hamiltonian on T∗M and F be an integral
of motion of H. As we have already mentioned, the main idea behind our approach
consists in understanding how the flow of F acts on the Mather and Aubry sets of
H.

Lemma 2.2. Let H be a Tonelli Hamiltonian on T∗M and F be an integral of
motion of H. Let us denote by ΦH and ΦF the respective flows. Then, the following
holds.
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5076 ALFONSO SORRENTINO

(i) If μ is a c-action minimizing measure of H, then Φt
F ∗μ is still a c-action

minimizing measure of H, for each t ∈ R, where the lower ∗ denotes the
push-forward of the measure.

(ii) The Mather set M∗
c(H) and the Aubry set A∗

c(H) are invariant under the
action of Φt

F , for each t ∈ R and for each c ∈ H1(M ;R). In particular,
for each t ∈ R, Φt

F maps each connected component of M∗
c(H) and A∗

c(H)
into itself.

We postpone the proof of this result to Section 4.

Remark 2.3. It is worthwhile to point out that this result can also be deduced from a
result by Patrick Bernard [3, Theorem in §1.10, page 6] on the symplectic invariance
of the Mather and Aubry sets. In fact for any fixed time t the Hamiltonian flow
Φt

F is an exact symplectomorphism that preserves H. Essentially, in Section 4 we
shall provide a different proof of this result, but in the autonomous case.

Another related result is contained in [16], where the author considers the action
of symmetries of the Hamiltonian, i.e. C1-diffeomorphisms of M that preserve H.
One can deduce from the results therein that the Mather and Aubry sets of H
are invariant under the action of the identity connected component of the group of
such diffeomorphisms. From our point of view, these diffeomorphisms correspond
to integrals of motion depending only on the x-variables.

As recalled in Section 1, Liouville’s Theorem is concerned with independent inte-
grals of motion, i.e. integrals of motion whose differentials are linearly independent,
as vectors, at each point. Let us see how the existence of independent integrals of
motion relates to the “size” of the Mather and Aubry sets of H. In order to make
clear what we mean by “size” of these sets, let us introduce some notion of tan-
gent space. We shall refer to a generalized tangent space to M∗

c(H) (resp. A∗
c(H))

at a point (x, p) as the set of all vectors that are tangent to curves in M∗
c(H)

(resp. A∗
c(H)) at (x, p). We shall denote it by T(x,p)M∗

c(H) (resp. T(x,p)A∗
c(H)),

and we shall define its rank to be the largest number of linearly independent vec-
tors that it contains. Observe that T(x,p)M∗

c(H) ⊆ T(x,p)A∗
c(H). In particu-

lar, if the Mather set does not contain any fixed point (i.e. dH(x, p) �= 0 for all
(x, p) ∈ M∗

c(H)), then rankT(x,p)A∗
c(H) ≥ rankT(x,p)M∗

c(H) ≥ 1. In fact, since
these sets are invariant, the Hamiltonian vector field XH(x, p) �= 0 is tangent to
them.

Proposition 2.4. Let H be a Tonelli Hamiltonian on T∗M and suppose that there
exist k independent integrals of motion. Then, rankT(x,p)M∗

c(H) ≥ k at all points

(x, p) ∈ M∗
c(H) for each c ∈ H1(M ;R).

Proof. It follows from the fact that M∗
c(H) is invariant under the flows of the

k independent integrals of motion (Lemma 2.2). The linear independence of the
corresponding vector fields (which are therefore tangent to this set) follows from the
independence of the integrals of motion and the non-degeneracy of the symplectic
form ω. �

Conversely, some information on the existence of independent integrals of motion
of H can be obtained from the “structure” of the Mather sets. Let us define

λ(H) := min
c∈H1(M ;R)

min
(x,p)∈M∗

c (H)
rankT(x,p)M∗

c(H) .
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This quantity is clearly well-defined, and, if the Mather sets do not contain any
fixed point, it is larger than or equal to 1.

Corollary 2.5. Let H be a Tonelli Hamiltonian on T∗M . Then, there may exist
at most λ(H) independent integrals of motion of H. In particular, if some M∗

c(H)
contain an isolated periodic orbit, then λ(H) = 1, and therefore all integrals of
motion of H are linearly dependent on H on this orbit.

Remark 2.6. (i) Observe that the above results remain true if we assume that the
integrals of motion are defined only locally, i.e. in an open region of the phase space.
In this case, we can still apply the same ideas and get information on the Mather
and Aubry sets contained in this open region. (ii) From Corollary 2.5, it clearly
results in the fact that there may exist at most n integrals of motion (n = dimM)
that are independent in a region containing some part of Mather or Aubry sets.

Another important peculiarity of the Mather and Aubry sets, with respect to
their interplay with the integrals of motion, is that they are not only invariant under
the action of their flows, but they also force the integrals of motion to Poisson-
commute. In fact, using the characterization of the Aubry set in terms of critical
subsolutions of Hamilton-Jacobi (see (2.1)) and its symplectic interpretation (see
Remark 2.1), one can recover the involution property of the integrals of motion, at
least locally.

Proposition 2.7. Let H be a Tonelli Hamiltonian on T∗M and let F1 and F2 be
two C2 integrals of motion. Then for each c ∈ H1(M ;R) we have that

{F1, F2}(x, π̂−1
c (x)) = 0 ∀x ∈ Int

(
Ac(H)

)
,

where π̂c = π|A∗
c(H) and Ac(H) = π

(
A∗

c(H)
)
.

Proof. From weak KAM theory we can deduce that A∗
c(H) is contained in a Lip-

schitz Lagrangian graph Λ (see (2.1) and Remark 2.1), which is the graph of a
Lipschitz closed 1-form η : M → T∗M . Observe that η = π̂−1

c on Ac(H). More-
over, η is differentiable almost everywhere on M , and at all differentiability points
x the tangent space Tη(x)Λ is a Lagrangian subspace. Let x ∈ Int

(
Ac(H)

)
be a

differentiability point of η (observe that η is differentiable at almost every point in
the interior of Ac(H)). Since A∗

c(H) is invariant under the action of both flows ΦF1

and ΦF2
, then the associated vector fields XF1

and XF2
are tangent to Λ on A∗

c(H).
Using the definition of the Poisson-bracket and the fact that Tη(x)Λ is Lagrangian,
we get {F1, F2}(x, η(x)) = ω(XF1

(x, η(x)), XF2
(x, η(x))) = 0. By continuity, this

extends to Int
(
Ac(H)

)
. �

Before concluding this section, let us point out an interesting consequence of
Lemma 2.2. A natural question that someone might ask is the following. Suppose
that we have two Poisson-commuting HamiltoniansH and F on T∗M , i.e. {H,F} =
0. Then, is it possible to find sets or measures that are invariant under the action
of both flows? For instance, it is easy to check that all energy levels of H are also
invariant under the flow of F (and vice versa). However, these “trivial” sets do not
seem to provide a satisfactory answer. Rather, it would be interesting to show the
existence of “non-trivial” common invariant sets, such as, for example, invariant
sets that have positive codimension in a given energy level.

Lemma 2.2 provides a positive answer to such a question in the case of Tonelli
Hamiltonians. Actually, something more is true.
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5078 ALFONSO SORRENTINO

Proposition 2.8. Let H be a Tonelli Hamiltonian on T∗M . Then there exists
a family of compact invariant sets of H, parametrized over H1(M ;R), which are
invariant under the flows of all integrals of motion of H. These sets are supported
on Lipschitz Lagrangian graphs over M and, if H1(M ;R) is not trivial, each energy
level above Mañé’s strict critical value (i.e. the minimum of Mather’s α-function)
contains at least one of them.

Proof. This family is given by M∗
c(H) and A∗

c(H) for all c ∈ H1(M ;R) (because of
Lemma 2.2). If H1(M ;R) is not trivial, then for each energy value E ∈ R above the
minimum of αH (which is a convex and superlinear function), there exists at least
one c ∈ H1(M ;R) such that αH(c) = E. This energy value will contain M∗

c(H)
and A∗

c(H). �

We can also deduce the following consequence.

Corollary 2.9. Let H be a Tonelli Hamiltonian on T∗M and F be an integral
of motion of H. If H has an invariant Lipschitz Lagrangian graph Λ supporting
an invariant measure μ of full support (i.e. suppμ = Λ), then Λ is also invariant
under the flow of F .

Proof. The proof follows from the fact that if such a Λ exists, then Λ = M∗
cΛ
(H) =

A∗
cΛ(H), where cΛ denotes the cohomology class of Λ (see [12]). �

One could also ask about the existence of common invariant ergodic probability
measures. In general (i) in Lemma 2.2 does not imply Φt

F ∗μ = μ (take for instance
the case of an invariant torus foliated by periodic orbits and choose μ to be a
measure supported on one of these orbits). However, in some cases it is possible to
deduce it.

Corollary 2.10. Let H be a Tonelli Hamiltonian on T∗M and F be an integral of
motion of H. If M∗

c(H) is uniquely ergodic, i.e. H has a unique c-action minimiz-
ing measure μ, then Φt

F ∗μ = μ for all t ∈ R. In other words, μ is also invariant
for F .

Proof. From (i) in Lemma 2.2, it follows that Φt
F ∗μ is still a c-action minimizing

measure ofH for all t ∈ R. The unique ergodicity ofM∗
c(H) implies that necessarily

Φt
F ∗μ = μ. �

Remark 2.11. In [17] Ricardo Mañé showed that for any given Tonelli Hamiltonian
H, there exist residual subsets S(H) ⊆ C2(M) and C(H) ⊆ H1(M ;R) such that
for each V ∈ S(H) and c ∈ C(H), the Mather set M∗

c(H + V ) is uniquely ergodic.
With this in mind one can deduce that for a generic Tonelli Hamiltonian H, all
integrals of motion of H have uncountably many invariant ergodic measures in
common (assuming that H1(M ;R) is not trivial). In particular, these measures are
c-action minimizing measures for H + V , for some c ∈ C(H) (observe that this set
does not depend on V ). Furthermore, for each E ∈ R, infinitely many of these
measures will have energy larger than E (i.e. their supports will be contained in an
energy level of H + V larger that E). However, it is important to point out that
most likely all these integrals of motion will be functionally dependent on H + V
at some point, since the existence of independent integrals of motion is a highly
non-generic situation.
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3. Weak Liouville’s Theorem

In this section we shall prove our weak version of Liouville’s Theorem for Tonelli
Hamiltonians and the other results announced in Section 1. Let us start by stating
our results.

Theorem 3.1 (Weak Liouville’s Theorem). Let M be a compact connected n-
dimensional manifold without boundary and let H : T∗M → R be a weakly integrable
Tonelli Hamiltonian. Then:

i) For each cohomology class c ∈ H1(M ;R) there exists a smooth invariant
Lagrangian graph Λc with cohomology class c, which supports an invariant
measure of full support, i.e. Λc = M∗

c(H) = A∗
c(H). In particular, the

motion on each Λc is recurrent.
ii) These Lagrangian graphs {Λc}c∈H1(M ;R) are disjoint, and any other invari-

ant Lipschitz Lagrangian graph with cohomology class c must coincide with
the corresponding Λc in this family.

iii) Let us denote Λ∗ :=
⋃

c∈H1(M ;R) Λc. Λ
∗ is closed, and if some Λc ⊆ Int(Λ∗),

then Λc is diffeomorphic to an n-dimensional torus and the motion on it is
conjugate to a rotation on T

n; in particular, M is diffeomorphic to T
n. If

Λ∗ is open, then the system is integrable in the classical (Liouville) sense.

Remark 3.2. 1) Observe that point i) of Theorem 3.1 implies that the associated
Hamilton-Jacobi equation H(x, c + du) = αH(c) admits a unique smooth solution
for each cohomology class c ∈ H1(M ;R) (αH(c) is the unique energy value for which
a solution may exist; see for instance [11]).

2) One could assume that the integrals of motion are not independent every-
where, but only in an open dense set of the phase space. In this case, in light of
Remark 2.6, the conclusions i) and ii) of Theorem 3.1 will continue to hold, but
only for those cohomology classes whose Aubry-Mather sets lie in this region.

3) As far as the uniqueness result of point ii) is concerned, it is easy to see
that these graphs are also unique in the class of smooth Lagrangian submanifolds
isotopic to the zero section. It suffices to consider their graph selectors (see [10, 20])
and use the same proof as in ii).

4) Using the disjointness of these Lagrangian graphs, one can conclude that,
as for Liouville integrable systems, αH is strictly convex and its convex conjugate
βH is C1 (Corollary 3.8). Recall that βH(h) := supc∈H1(M ;R)(〈c, h〉 − αH(c)). This
function, also called Mather’s β-function, represents the minimal action of invariant
probability measures with rotation vector h (see [18] for a precise definition).

Now it would be interesting to understand whether or not there are cases in
which this weaker notion of integrability is equivalent to the classical one (in the
sense of Liouville). As remarked in point iii) of Theorem 3.1, the union of these
Lagrangian graphs is not necessarily a foliation of the whole space (and when this
happens, the manifold has to be diffeomorphic to a torus). In fact, if the dimension
of H1(M ;R) is less than the dimension of M , this family of graphs is not sufficient
to foliate T∗M or even to have non-empty interior (for instance, think about the
case in which H1(M ;R) is trivial). What we shall prove is that when this obstacle
is removed, the two notions coincide.
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Theorem 3.3. Let M be a compact connected n-dimensional manifold such that
dimH1(M ;R) = dimM . If H : T∗M → R is a weakly integrable Tonelli Hamil-
tonian, then the system is integrable in the sense of Liouville. In particular, M is
diffeomorphic to T

n.

We shall split the proof of these theorems into several lemmata. Let us start
by observing that Proposition 2.4 allows us to deduce more information on the
structure of the Mather and Aubry sets associated to a weakly integrable Tonelli
Hamiltonian.

Lemma 3.4. Let H be a weakly integrable Tonelli Hamiltonian on T∗M . Then,
for each c ∈ H1(M ;R) we have that M∗

c(H) = A∗
c(H) projects over the whole M ,

and therefore it is an invariant Lipschitz Lagrangian graph.

Proof. Let c ∈ H1(M ;R), consider a connected component U∗ of M∗
c(H) and let

U = π(U∗), where π : T∗M −→ M denotes the canonical projection along the
fibers. Obviously U is closed (π|M∗

c(H) is a bi-Lipschitz homeomorphism; see
Mather’s graph theorem [18]). We would like to show that U is also open; if this
is the case, then U = M (because of the connectedness of M), and therefore, using
the graph property, M∗

c(H) = A∗
c(H). The fact that it is a Lipschitz Lagrangian

graph follows from the weak KAM theory’s characterization of the Aubry set in
terms of subsolutions of the Hamilton-Jacobi equation (see (2.1) and Remark 2.1).

To show that U is open it is sufficient to use the fact that U∗ is contained in an n-
dimensional graph and that it is invariant under the action of n independent vector
fields that commute with XH . Denote by F1, . . . , Fn the n independent integrals
of motion and by ΦF1

, . . . ,ΦFn
their respective flows. These Hamiltonian flows are

well-defined since we are assuming that the integrals of motion Fi’s are C2 (or at
least C1,1). Let us consider a point (x0, p0) ∈ U∗ and define Γ0 := {(x0, p0)}. Now
consider the evolution of Γ0 under the flow ΦF1

. Let ε1 > 0 be sufficiently small
and define Γ1 := {Φt

F1
(x0, p0), |t| ≤ ε1}. In the same way, taking ε2 > 0 sufficiently

small, one can define Γ2 := {Φt
F2
(x, p), (x, p) ∈ Γ1 and |t| ≤ ε2}. This set is fibered

by Γ
(x,p)
2 := {Φt

F2
(x, p), |t| ≤ ε2} for each (x, p) ∈ Γ1. Using the independence of

the vector fields XF1
and XF2

and the smallness assumptions on ε1 and ε2, one can
assume that these fibers are disjoint and intersect Γ1 only once. In the very same
way, one can define Γ3, . . . , Γk, . . . ,Γn and choose ε3, . . . , εn sufficiently small so
that each Γk is fibered over Γk−1 and that all fibers are disjoint and intersect Γk−1

only once. Let us now consider ε < min{ε1, . . . , εn} and define

Θ : [−ε, ε]n −→ U∗,

(t1, . . . , tn) −→ Φtn
Fn

(
. . .Φt2

F2

(
Φt1

F1
(x0, p0)

)
. . .

)
.

Θ is clearly continuous (because of the continuity of the flows), and it is injective.
This allows us to conclude that there exists an open neighborhood of x0 in U , and
consequently each x0 is contained in the interior of U . This concludes the proof.

Alternatively, one can observe that the map Θ is C1 and has injective derivative
at (0, . . . , 0). Therefore its image (which is contained in the Mather set) contains a
piece of an n-dimensional C1 submanifold around (x0, p0). Using Brouwer’s theorem
[5], one can conclude that the projection of the Mather set on M is open, hence it
coincides with the whole manifold M . �
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Remark 3.5. It is also possible to deduce from the above proof (see in particular
the last part) that the Mather set is a Ck manifold N if all Fi’s are Ck, k ≥ 2. In
particular, it is a Ck−1 graph over the base. This follows from the fact that N is
a Lipschitz graph (Mather’s graph theorem [18]), and therefore it is transversal to
the fibers of the cotangent bundle.

Regularity results for the Mather (or Aubry) set can also be deduced using the
following lemma, via the implicit function theorem.

Lemma 3.6. If F : T∗M → R is a Hamiltonian and Λ is a Lipschitz Lagrangian
graph invariant under the flow of F , then F is constant on Λ.

Proof. Let Λ be the graph of a closed 1-form η : M → T∗M . Recall that η is
differentiable almost everywhere and that at differentiability points Tη(x)Λ is a
Lagrangian subspace. Let x1, x2 ∈ M and let γ be an absolutely continuous curve
in M connecting them, such that η is differentiable almost everywhere along γ
(with respect to the 1-dimensional Lebesgue measure). In fact, one can consider
the family Cx1,x2

of all absolutely continuous curves ξ that connect x1 to x2 and
whose length is, for instance, less than 2 dist(x1, x2). If one denotes by U the set
spanned by these curves, it is easy to see that U \{x1, x2} is open, and therefore η is
differentiable almost everywhere in U . Applying Fubini’s theorem one can deduce
the existence in Cx1,x2

of a curve γ as above.
Let us now consider the lift of γ onto Λ, i.e. Γ := η ◦ γ. This curve Γ is

differentiable almost everywhere, and at each differentiability point t0 we have
d
dtF (Γ(t0)) = dF (Γ(t0)) · Γ̇(t0), with Γ̇(t0) ∈ TΓ(t0)Λ. Using the fact that TΓ(t0)Λ is
a Lagrangian subspace and that XF is tangent to Λ at all points (since Λ is invari-

ant), we can conclude that d
dtF (Γ(t0)) = dF (Γ(t0)) · Γ̇(t0) = ω(XF (Γ(t0)), Γ̇(t0)) =

0. Therefore, d
dtF (Γ(t)) = 0 almost everywhere, and integrating along Γ we obtain

that F (η(x1)) = F (η(x2)). �
We shall also need the following classical lemma (for its proof we refer the reader

to [1, Section 49]).

Lemma 3.7. Let Nn be a compact connected differentiable n-dimensional manifold,
on which we are given n pairwise commuting C1 vector fields, linearly independent
at each point. Then Nn is diffeomorphic to an n-dimensional torus.

We can now prove our weak version of Liouville’s Theorem.

Proof of Theorem 3.1 (Weak Liouville’s Theorem). i) The existence of these
smooth Lagrangian graphs follows from Lemmata 3.4 and 3.6. In fact, if we denote
by F1, . . . , Fn the n independent integrals of motion, then for each c ∈ H1(M ;R)
we have that M∗

c(H) = A∗
c(H) coincides with a connected component of {F1 =

a1, . . . , Fn = an} for some (a1, . . . , an) ∈ R
n. Therefore these Lagrangian graphs

are smooth, and each of them supports an action-minimizing measure of full sup-
port and with a certain rotation vector h(c) ∈ H1(M ;R) (see [18] for a precise
definition of a rotation vector). Observe, in fact, that it is always possible to find

a c-action minimizing measure whose support is the whole Mather set M̃c(L) (we
consider the Lagrangian setting on TM and then use the Legendre transform LL to
push everything forward to T∗M). In fact, since the space of probability measures
on TM is a separable metric space, one can take a countable dense set {μn}∞n=1

of c-action minimizing measures and consider the new measure μ̃ =
∑∞

n=1
1
2nμn.
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This measure is still invariant and c-action minimizing, and supp μ̃ = M̃c(L). The
rotation vector h(c) will be the rotation vector of such a measure μ̃. Moreover,
because of the graph property, the Mather set corresponding to this rotation vector
h(c) must also coincide with Λc, i.e. Mh(c)∗(H) = Λc (see [18] for a definition of
this set).

ii) From the fact that each Λc coincides with Mh(c)∗(H) for some h(c) ∈
H1(M ;R), we can deduce that these Lagrangian graphs cannot intersect. In fact,
if Λc ∩ Λc′ �= 0, then Mh(c)∗(H) ∩ M∗

c′(H) �= 0, but this would imply that

Mh(c)∗(H) ⊆ M∗
c′(H) and therefore Λc ⊆ Λc′ (see for instance [12]). Since they

are both graphs over M , then Λc = Λc′ and necessarily c = c′ (they must have the
same cohomology class). Moreover, if Λ is another invariant (Lipschitz) Lagrangian
graph with cohomology class c, then it must contain the Aubry set A∗

c(H) = Λc

(see (2.1) and Remark 2.1); therefore Λ must coincide with Λc.
iii) Let us now consider the union of these Lagrangian graphs, namely Λ∗ :=⋃

c∈H1(M ;R) Λc. Clearly Λ∗ is closed. In fact, Λc are equi-Lipschitz graphs, as can

be deduced from Mather’s graph theorem [18, Theorem 2] (even if not explicitly
stated, the Lipschitz constant C can be chosen to be the same for cohomology
classes in a given compact region; see [18, Lemma on page 186]). Alternatively,
one can say that these Λc are the graphs of the differentials of classical solutions
of Hamilton-Jacobi, which are locally equi-C1,1, hence their differentials are locally
equi-Lipschitz (see [11]).

From Proposition 2.7, it follows that the integrals of motion are in involution
on Λ∗. Therefore, using Lemma 3.7 (and Remark 4.2), one can deduce that all
Λc ⊆ Int(Λ∗) are diffeomorphic to n-dimensional tori. Proceeding as in the usual
proof of Liouville’s Theorem (see for instance [1, Sections 49–50]) one can show that
the motion on each Λc is conjugate to a rotation on T

n (with rotation vector h(c)),
i.e. in an open neighborhood of Λc there exists a symplectic change of coordinates
that transforms Λc into T

n × {0} and the motion on it into a rigid rotation on
T
n × {0}.
If Λ∗ is open, then it coincides with T∗M (because of the connectedness of T∗M),

and hence the system would be integrable in the classical sense. In fact, in this case
the integrals of motion would be in involution everywhere. �

From the properties of these Lagrangian graphs, in particular the fact that they
are disjoint, we can also conclude the following regularity result for αH and its
convex conjugate βH , as pointed out in Remark 3.2.

Corollary 3.8. If H is a weakly integrable Tonelli Hamiltonian, then Mather’s
α-function αH is strictly convex and βH is C1.

Proof. It is easy to deduce that αH is strictly convex from the disjointness of the
above Lagrangian graphs (i.e. the Aubry sets). In fact, suppose by contradiction
that there exist λ ∈ (0, 1) and c, c′ ∈ H1(M ;R) such that αH(λc + (1 − λ)c′) =
λαH(c)+(1−λ)αH(c′), and let μλ be a (λc+(1−λ)c′)-action minimizing measure.
Let us denote by ηc and ηc′ two closed 1-forms with cohomology classes, respectively,
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c and c′. Then

−αH(λc+ (1− λ)c′) =

∫ (
L− ληc − (1− λ)ηc′

)
dμλ

= λ

∫ (
L− ηc

)
dμλ + (1− λ)

∫ (
L− ηc′

)
dμλ

≥ −λαH(c)− (1− λ)αH(c′) = −αH(λc+ (1− λ)c′).

Therefore all above inequalities are equalities, and this implies that μλ is also
c-action minimizing and c′-action minimizing. Obviously this contradicts the dis-
jointness of the Mather and Aubry sets (i.e. the Λc’s). As far as the differentiability
of βH is concerned, it also follows from the disjointness of the Λc’s: if c, c

′ ∈ ∂βH(h)
for some h ∈ H1(M ;R), then the corresponding Mather sets M∗

c and M∗
c′ would

contain Mh∗, and therefore Λc and Λc′ would intersect.
Observe that the differentiability of βH can also be deduced as a consequence of

the strict convexity of αH and of basic properties of the Fenchel-Legendre transform.
�

Now, let us prove Theorem 3.3.

Proof of Theorem 3.3. Let us identify H1(M ;R) with R
n. For each cohomology

class c ∈ R
n let us consider the unique Lagrangian graph Λc = {(x, c + duc) :

x ∈ M} given by Theorem 3.1, where uc : M → R is a smooth function. In
particular, it follows from Lemma 3.6 that Λc ⊆ {F1 = a1(c), . . . , Fn = an(c)} for
some �a(c) = (a1(c), . . . , an(c)) ∈ R

n. This allows us to define the following function:

F : Rn −→ R
n,

c −→ �a(c) = (a1(c), . . . , an(c)).

This function is clearly well-defined (because of the uniqueness of the Λc’s). We
want to show that it is also continuous; actually it is locally Lipschitz. Let K be a
compact subset of Rn. It is easy to check that

⋃
c∈K Λc is contained in a compact

region of T∗M , and let us denote by C(K) > 0 a common Lipschitz constant for
F1, . . . , Fn in such a region. Let us now consider c, c′ ∈ K and observe that there
exists at least one point x0 ∈ M such that dx0

uc = dx0
uc′ . In fact, the function

uc − uc′ is a smooth function on a compact manifold, hence it has critical points.
Then

‖F(c)−F(c′)‖∞ = ‖�a(c)− �a(c′)‖∞
≤ max

i=1,...,n
‖Fi(x0, c+ dx0

uc)− Fi(x0, c
′ + dx0

uc′)‖

≤ C(K)‖(c+ dx0
uc)− (c′ + dx0

uc′)‖
= C(K)‖c− c′‖ .

Let us show that F is locally injective. Since Λc is compact and F = (F1, . . . , Fn)
is a submersion constant on Λc, we can find N → Λc a tubular neighborhood of
Λc and ε > 0 such that on each fiber of N , the map F is a diffeomorphism onto
the ball B(�a(c), ε), where �a(c) ∈ R

n is the value of F on Λc. This implies that the
levels of F intersect N in a connected set diffeomorphic to Λc. For c′ close to c,
we have Λc′ ⊂ N , and hence Λc′ is equal to the intersection of F−1(F(c′)) with N .
Observe that so far we have not used the fact that dimH1(M ;R) = n. The above
argument makes perfect sense even if dimH1(M ;R) < n.
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Now, if we assume that dimH1(M ;R) = n, then local injectivity of F implies
that it is a local homeomorphism. Then the argument above shows that a neigh-
borhood of Λc is contained in Λ∗ :=

⋃
c Λc, from which integrability follows. �

4. Proof of Lemma 2.2

The proof of Lemma 2.2 will follow from the following lemmata. First of all, let
us recall this classical result in Hamiltonian dynamics, whose proof can be found,
for instance, in [1].

Lemma 4.1. Let H and F be two Hamiltonians on T∗M . Then:

H is constant on the orbits of F ⇐⇒ F is constant on the orbits of H

⇐⇒ {H,F} = 0 .

Moreover, if {H,F} = 0, then the two flows ΦH and ΦF commute, i.e. Φt
H ◦Φs

F =
Φs

F ◦ Φt
H for all s, t ∈ R.

Remark 4.2. Observe that if {H,F} = 0 in an open region, then ΦH and ΦF will
commute in that region. This condition is sufficient, but not necessary. One can
show that [XH , XF ] = −X{H,F}, where [·, ·] denotes the commutator between two
vector fields and XG the Hamiltonian vector field associated to a Hamiltonian G.
Therefore it is easy to check that ΦH and ΦF commute if and only if {H,F} is
locally constant (see [1]).

Lemma 4.3. If H and F are two commuting Hamiltonians and μ is an invariant
measure of ΦH , then, for each t ∈ R, Φt

F ∗μ is still ΦH-invariant.

Proof. Let μ̃t := Φt
F ∗μ denote the push-forward of μ. We want to show that for

each s ∈ R, Φs
H∗μ̃t = μ̃t. In fact, since Φt

H and Φs
F commute (because {H,F} = 0)

and μ is ΦH -invariant (i.e. Φs
H∗μ = μ), we have:

Φs
H∗μ̃t = Φs

H∗
(
Φt

F ∗μ
)
= Φt

F ∗ (Φ
s
H∗μ) = Φt

F ∗μ = μ̃t .

�
In the following, it will be convenient to consider this characterization of c-action

minizimizing measures that was proved in [12]. First of all, we need to recall the
definition of a c-subcritical Lagrangian graph (also introduced in [12]).

Definition 4.4 (c-subcritical Lagrangian graph). Given a Lipschitz Lagrangian
graph Λ with cohomology class c, we shall say that Λ is c-subcritical for a Tonelli
Hamiltonian H if

Λ ⊂ {(x, p) ∈ T∗M : H(x, p) ≤ αH(c)},
where αH : H1(M ;R) −→ R is Mather’s α-function associated to H. We shall call
its critical part Λcrit = {(x, p) ∈ Λ : H(x, p) = αH(c)}.
Remark 4.5. The interest in such graphs comes from the fact that {H(x, p) ≤
αH(c)} is the smallest energy sublevel of H containing Lipschitz Lagrangian graphs
of cohomology class c. It follows from the results in [11, 4] that they do always exist.
As we have already recalled in (2.1), A∗

c(H) can be characterized as the intersection
of all the c-subcritical Lagrangian graphs of H or equivalently of all their critical
parts. Therefore, the critical part of these Lagrangian graphs is always non-empty
and contains the Aubry set A∗

c(H). Moreover, there always exists a c-subcritical

Lagrangian graph Λ̃ such that Λ̃crit = A∗
c(H) (see again [11]).
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In [12] we proved the following characterization of c-action minimizing measures.

Lemma 4.6. Let μ be an invariant probability measure for a Tonelli Hamiltonian
H on T∗M . μ is a c-action minimizing measure if and only if suppμ is contained in
the critical part of a c-subcritical Lagrangian graph of H. In particular, any invari-
ant probability measure μ, whose support is contained in an invariant Lagrangian
graph of H with Liouville class c, is c-action minimizing.

We have now recalled all the needed ingredients for the proof of Lemma 2.2.

Proof of Lemma 2.2. First of all, let us observe that it is enough to show the results
for |t| ≤ ε0, for some sufficiently small ε0 > 0. (i) From Lemma 4.3, we know that
μ̃t := Φt

F ∗μ is still invariant under the action of ΦH . We need to show that it
is still c-action minimizing. In light of Lemma 4.6, it will be sufficient to prove
that supp μ̃t is contained in the critical part of a c-subcritical Lagrangian graph of
H. Hence, let Λ be any c-subcritical Lagrangian graph of H. This graph contains
suppμ in its critical part because μ is c-action minimizing and M∗

c(H) ⊆ A∗
c(H)

(see Remark 4.5). Now consider Λ̃ := Φt
F (Λ). This is also a Lagrangian manifold

of cohomology class c (since Φt
F is an exact symplectomorphism), and using the

fact that Λ is Lipschitz, it is easy to see that there exists ε0 = ε0(F,Λ) > 0 such

that Λ̃ is still a graph for all |t| ≤ ε0. Moreover, it follows from Lemma 4.1 that Λ̃
is still c-subcritical for H. In order to conclude the proof, it is enough to observe
that supp μ̃ is contained in the critical part of Λ̃ (it also follows from Lemma 4.1).
(ii) The invariance of the Mather set follows immediately from (i) and its definition
(it is the union of all c-action minimizing measures). To prove that the A∗

c(H) is
invariant under Φt

F , we proceed exactly as before, using the fact that, as recalled
in Remark 4.5, A∗

c(H) can be obtained by intersecting all c-subcritical Lagrangian
graphs of H. In particular, there exists a c-subcritical Lagrangian graph Λ such
that A∗

c(H) = Λcrit. For |t| ≤ ε0, as in (i), let us consider Λ̃ := Φ−t
F (Λ). As we have

already observed, this is still a c-subcritical Lagrangian graph of H and therefore
A∗

c(H) ⊆ Λ̃crit; moreover, it follows from Lemma 4.1 that Λ̃crit = Φ−t
F (Λcrit). This

is enough to conclude the proof. In fact,

Φt
F (A∗

c(H)) ⊆ Φt
F

(
Λ̃crit

)
= Λcrit = A∗

c(H) .

Furthermore, it is clear from the proof that each connected component of these sets
is mapped into itself. �

To conclude let us observe that part (i) of Lemma 2.2 can also be showed in a
more direct way using the following lemma, without passing through Lemma 4.6.
However, in order to show the symplectic invariance of the Aubry set, extra tools
are necessary.

Lemma 4.7. Let μ be an invariant probability measure for a Tonelli Hamiltonian H
on T∗M and let Φ : T∗M −→ T∗M be an exact symplectomorphism that preserves
H, i.e. H ◦ Φ = H. Then∫ [

p
∂H

∂p
(x, p)−H(x, p)

]
dμ =

∫ [
p
∂H

∂p
(x, p)−H(x, p)

]
dΦ∗μ.

Recall that a symplectomorphism Φ : T∗M −→ T∗M is said to be exact if
Φ∗(pdx)− pdx is an exact 1-form.
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Remark 4.8. Part (i) of Lemma 2.2 simply follows by choosing Φ = Φt
F and using the

definition of action-miniziming measures (see Section 2) and the relation between
Hamiltonian and Lagrangian (Fenchel-Legendre transform).

Proof. If we denote by λ(x, p) the Liouville form pdx and by XH(x, p) the Hamil-
tonian vector field, then∫ [

p
∂H

∂p
(x, p)−H(x, p)

]
dμ =

∫ (
λ(x, p)[XH(x, p)]−H(x, p)

)
dμ .

Therefore, using the fact that | detDΦ| = 1 and Φ∗λ− λ = df (since Φ is an exact
symplectmorphism) and that H is preserved by Φ, we obtain∫ [

p
∂H

∂p
(x, p)−H(x, p)

]
dΦ∗μ =

∫ (
λ(x, p)[XH(x, p)]−H(x, p)

)
dΦ∗μ

=

∫ (
Φ∗λ(x′, p′)[XH◦Φ(x

′, p′)]−H(Φ(x′, p′))
)
dμ

=

∫ (
λ(x′, p′)[XH(x′, p′)]−H(x′, p′)

)
dμ+

∫
df(x′, p′)[XH(x′, p′)] dμ

=

∫ (
p′
∂H

∂p
(x′, p′)−H(x′, p′)

)
dμ.

In the last equality we used the fact that
∫
df(x′, p′)[XH(x′, p′)] dμ = 0, as it follows

easily from the invariance of μ. In fact, let us assume that μ is ergodic (otherwise
consider each ergodic component). Using the ergodic theorem and the compactness
of M , we obtain that for a generic point (x0, y0) in the support of μ,∫

df(x′, p′)[XH(x′, p′)] dμ = lim
N→+∞

1

N

∫ N

0

df(Φt
H(x0, p0))[XH(Φt

H(x0, p0))] dt

= lim
N→+∞

f(ΦN
H(x0, p0))− f(x0, p0)

N
= 0 .

Alternatively, without using the ergodic theorem, one can observe that

f(Φt
H(x′, p′))− f(x′, p′) =

∫ t

0

df(Φt
H(x′, p′))(XH(Φt

H(x′, p′))) dt

and integrate with respect to μ. Then, the result follows by applying Fubini’s
theorem and using the invariance of μ by Φt

H . �

Appendix A. Examples of weakly integrable Hamiltonians

In this appendix we would like to exhibit an interesting class of weakly inte-
grable Tonelli Hamiltonians, namely the geodesics flows associated to left-invariant
Riemannian metrics on Lie groups. These flows have been extensively studied in
classical mechanics. In fact they represent, in some sense, a natural generalization
of Eulerian motions of a rigid body (this point of view can be dated back at least
to Henri Poincaré’s article [21]).

In the following, we shall mainly follow [1, Appendix 2], but we also refer the
reader to [2, Chapter VI, 1.B] and [14, 21] for more details on the subject.

Let us consider a compact Lie group G and denote by g its Lie algebra, i.e. the
tangent space to the group at the identity element. A Riemannian metric on G is
said to be left-invariant if it is preserved by all left translations Lg : h → gh, i.e. the
derivatives of all left translations map every vector in ThG into a vector of the same

Licensed to Universita Degli Studi Roma Tre. Prepared on Tue May 13 12:30:59 EDT 2014 for download from IP 193.205.142.115.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON THE INTEGRABILITY OF TONELLI HAMILTONIANS 5087

length in TghG. Obviously it is sufficient to specify the metric at one point of the
group, for instance the identity element e ∈ G, and therefore there are as many
left-invariant metrics on G as there are euclidean structures on g, i.e. symmetric
positive definite operators from the algebra to its dual space: A : g → g∗.

We would like to consider the geodesic flow associated to such a left-invariant
metric space (G,A). Sometimes this flow is also referred to as a motion of a
generalized rigid body with configuration space G. In classical mechanics, in fact,
G = SO(3) - i.e. the group of rotation of a 3-dimensional euclidean space - can
be regarded as the configuration space of a rigid body fixed at a point (while the
Lie algebra g represents the 3-dimensional space of angular velocities of all possible
rotations), and the motion of the body can be described by curves g = g(t) in G
that correspond to geodesics of a left-invariant metric. Let us see what happens
with a generic Lie group G. First of all observe that the euclidean structure A can
be extended to all fibers:

Ag : TgG −→ T∗
gG,

ġ −→ L∗
g−1ALg−1∗ġ,

where L∗
g−1 and Lg−1∗ are respectively the maps induced by the left translation Lg−1

to the cotangent and the tangent space of G. The operator Ã(g, ġ) := (g,Ag(ġ))
is called the moment of intertia operator. This allows us to define the Lagrangian
associated to the geodesic flow on (G,A):

L : TG −→ R,

(g, ġ) −→ 1

2
〈Agġ, ġ〉 ;

in other words, this represents the kinetic energy of the system. It is easy to check
that the associated Hamiltonian is:

H : T∗G −→ R,

(g, p) −→ 1

2
〈p,A−1

g p〉 .

Such a Hamiltonian is a Tonelli Hamiltonian on T∗G. Let us study its integrals of
motion. First, observe that each angular momentum p ∈ T∗

gG can be carried to g∗

by both left and right translation: pb = L∗
gp and ps = R∗

gp (Rg denotes the right
translation h → hg). In classical mechanics these two vectors are called respectively
angular momentum relative to the body and relative to the space. Euler showed (in
the case G = SO(3), but the same proof works for a general G) that the motions
of these two angular momenta satisfy the following equations (known as Euler’s
equations for the rigid body):

dps
dt

= 0 and
dpb
dt

= ad∗A−1pb
pb ,

where ad∗ξ : g∗ → g∗ denotes the so-called co-adjoint representation of the group.
In particular, the second equation determines a flow ϕt : g

∗ → g∗, which describes
the motion of the angular momentum relative to the body (observe that it does
not depend on the position of the body in the space). If one defines the map
π : T∗G → g∗ given by π(g, p) = L∗

gp, it is not difficult to see that this map is

a factorization of the Hamiltonian flow (T∗G,Φt
H) over the flow (g∗, ϕt), i.e. the
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following diagram commutes:

T∗G

π

��

Φt
H �� T∗G

π

��
g∗

ϕt
�� g∗.

From this and the conservation law for the vector of angular momentum relative
to the space (in particular, each of its components is conserved), we obtain a set of
integrals of motion for H. Observe that to each element of the Lie algebra g there
corresponds a linear functional on the space g∗ and therefore an integral of motion
of H. Of course, of all these integrals of motion at most n can be functionally
independent. For instance, one can take the ones obtained by n linear functionals
on g∗ which form a basis in g. This proves the following.

Proposition A.1. All Tonelli Hamiltonians corresponding to geodesic flows as-
sociated to left-invariant Riemannian metrics on compact Lie groups are weakly
integrable.

Remark A.2. Observe that in general these geodesic flows are not necessarily inte-
grable in the sense of Liouville (in the form stated in Section 1). The problem of the
non-integrability in the sense of Liouville is extremely subtle and tricky, and may
depend on the regularity class in which we are looking for the integrals of motion
(analytic, smooth, etc.) or on which sense of independence we ask (independent
everywhere, on an open dense set, etc.). See for instance [6, 7] and the references
therein.
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on compact manifolds. Ann. Sci. École Norm. Sup., 40 (3): 445–452, 2007. MR2493387
(2009m:37179)

[5] Luitzen E. J. Brouwer. Zur invarianz des n-dimensionalen Gebiets. Math. Ann., 72 (1): 55–56,
1912. MR1511685

[6] Leo T. Butler. Geometry and real-analytic integrability. Regul. Chaotic Dyn., 11 (3): 363–369,
2006. MR2286566 (2007j:37094)

[7] Leo T. Butler and Gabriel P. Paternain. Collective geodesic flows. Ann. Inst. Fourier (Greno-
ble), 53 (1): 265–308, 2003. MR1973073 (2004m:37054)

[8] Ana Cannas da Silva. Lectures on symplectic geometry. Lecture Notes in Mathematics, 1764.
Springer-Verlag, Berlin, 2001. xii+217 pp. MR1853077 (2002i:53105)

Licensed to Universita Degli Studi Roma Tre. Prepared on Tue May 13 12:30:59 EDT 2014 for download from IP 193.205.142.115.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=997295
http://www.ams.org/mathscinet-getitem?mr=997295
http://www.ams.org/mathscinet-getitem?mr=1612569
http://www.ams.org/mathscinet-getitem?mr=1612569
http://www.ams.org/mathscinet-getitem?mr=2309170
http://www.ams.org/mathscinet-getitem?mr=2309170
http://www.ams.org/mathscinet-getitem?mr=2493387
http://www.ams.org/mathscinet-getitem?mr=2493387
http://www.ams.org/mathscinet-getitem?mr=1511685
http://www.ams.org/mathscinet-getitem?mr=2286566
http://www.ams.org/mathscinet-getitem?mr=2286566
http://www.ams.org/mathscinet-getitem?mr=1973073
http://www.ams.org/mathscinet-getitem?mr=1973073
http://www.ams.org/mathscinet-getitem?mr=1853077
http://www.ams.org/mathscinet-getitem?mr=1853077


ON THE INTEGRABILITY OF TONELLI HAMILTONIANS 5089

[9] Mario J. Dias Carneiro. On minimizing measures of the action of autonomous Lagrangians.
Nonlinearity, 8 (6): 1077–1085, 1995. MR1363400 (96j:58062)
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