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Abstract
Fock (1997 (arXiv:dg-ga/9702018v3); Fock et al 2007 Handbook of 
Teichmüller Theory (Zürich: European Mathematical Society)) introduced an 
interesting function ψ(x), x ∈ R related to Markov numbers. We explain its 
relation to Federer–Gromov’s stable norm and Mather’s β-function, and use 
this to study its properties. We prove that ψ and its natural generalisations 
are differentiable at every irrational x and non-differentiable otherwise, by 
exploiting the relation with length of simple closed geodesics on the punctured 
or one-holed tori with the hyperbolic metric and the results by Bangert (1994 
Calculus Variations Partial Differ. Equ. 2 49–63) and McShane–Rivin (1995 
C. R. Acad. Sci. Paris I 320).
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1. Introduction

In 1880, Markov [15] discovered a remarkable relation between the theory of binary quadratic 
forms and the following Diophantine equation known as the Markov equation

x2 + y2 + z2 = 3xyz. (1)

Markov showed that all positive integer solutions (known as Markov triples) can be obtained 
from the obvious (1, 1, 1) by applying the Vieta symmetry
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(x, y, z) �−→ (x, y, 3xy − z) (2)

and permutations. The elements of Markov triples are the famous Markov numbers

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, ...

which play a very important role in number theory [1], in the theory of Frobenius manifolds 
and related Painlevé-VI equation, Teichmüller spaces and algebraic geometry (see [30] and 
references therein).

The Markov numbers can be naturally labelled by rationals x ∈ [0, 1/2] using the Farey 
tree (see figure 1). Recall that at each vertex of the Farey tree we have fractions ab, c

d and their 

Farey mediant a+c
b+d (see e.g. [30]). On the Markov tree the triples at two neighbouring vertices 

are related by the involution (2).

Let m
(

p
q

)
 be the Markov number corresponding to p

q on the Farey tree. The function m( p
q ) 

can be extended to all rationals p
q using the symmetry

m(1 − x) = m(1/x) = m(x).

Following Fock [6], consider the following function ψ(x), x ∈ R. At a rational x = p
q this 

function is defined as

ψ

(
p
q

)
:=

1
q

arcosh
(

3
2

m
(

p
q

))
. (3)

Fock was motivated by Thurston’s approach to Teichmüller theory based on measured lami-
nations [31] and by the link of Markov numbers with hyperbolic geometry discovered by 
Gorshkov and Cohn [4, 8].

Theorem 1 (Fock). Function ψ can be extended to a continuous convex function on the 
whole R.

We will present the proof of this result below, which is essentially equivalent to Fock’s 
original proof.

The main aim of this note is to explain the relation of this result with Aubry–Mather theory, 
more specifically with the so-called Mather’s β-function [19, 20, 29], and Federer–Gromov’s 
stable norm. The latter concept appeared for the first time in Federer [5] and was named stable 
norm in [9].

Combining this theory with the interpretation of Markov numbers in terms of the lengths of 
simple closed geodesics on a punctured torus [4, 8] we prove the following
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Figure 1. The Markov tree and the corresponding branch of the Farey tree.
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Theorem 2. Fock’s function ψ is differentiable at all irrationals and not differentiable at 
any rational.

We show also that these results can be naturally generalised to the solutions of the 
Diophantine equation [30]

X2 + Y2 + Z2 = XYZ + 4 − 4a6, a ∈ N,

which are related to hyperbolic tori with a hole (see theorem 3 in the next section).

2. Markov equation and hyperbolic tori

We explain now in more detail the relation of Markov numbers with the simple closed geode-
sics on the punctured torus with hyperbolic metric, which was found by Gorshkov [8] in his 
thesis in 1953 and, independently, by Cohn [4] (see also [10, 27]).

The punctured torus T 2 is homotopically equivalent to the bouquet of two circles, so its 
fundamental group π1(T 2) is the free group F2. The hyperbolic structure corresponds to a 
realisation of π1(T 2) = F2  as a discrete (Fuchsian) subgroup of SL2(R). Let A, B ∈ SL2(R) 
be the corresponding generators of the group.

We have the classical Fricke identities: for any A, B ∈ SL2(R), C = AB

tr AB + tr AB−1 = tr A tr B,

(tr A)2 + (tr B)2 + (tr C)2 = tr A tr B tr C + tr (ABA−1B−1) + 2, (4)

where tr(·) denotes the trace of a matrix.
The puncture condition means that the commutator of the generators is a parabolic  

element with

tr (ABA−1B−1) = −2,

so (4) implies that the corresponding X = tr A, Y = tr B, Z = tr C satisfy the real Markov 
equation

X2 + Y2 + Z2 = XYZ, X, Y , Z ∈ R. (5)

One can show that the positive component of this surface with X, Y , Z > 0 is the Teichmüller 
space of the punctured tori (see [13]).

The corresponding mapping class group SL2(Z) acts by permutations of X, Y , Z  and by 
Vieta involution

(X, Y , Z) �−→ (Y , X, XY − Z).

The orbit starting from the symmetric solution (3, 3, 3) simply consists of Markov triples 
multiplied by 3:

X = 3x, Y = 3y, Z = 3z.

It corresponds to the punctured equianharmonic (i.e. rhombic with angle π/3) hyperbolic 
torus with three-fold symmetry, which implies that the Markov numbers are related to the 
lengths l of simple closed geodesics by

m =
2
3
cosh

l
2

(see [4, 8, 10, 27]). The matrices A, B in this particular case can be chosen as
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A =

(
1 1
1 2

)
, B =

(
3 4
2 3

)
 (6)

and generate the commutator subgroup of SL2(Z).
Consider the following generalisation of these matrices proposed in [30] in relation with 

the computation of the Lyapunov exponents of Markov and Euclid trees:

Aa =

(
1 − a + a2 a2

a a + 1

)
, Ba =

(
1 − 2a + 4a2 4a2

2a 2a + 1

)
, a ∈ N.

 

(7)

The trace of the corresponding commutator is 2  −  4a6, so we have a hyperbolic torus with a 
hole of length l = 2 arcosh(2a6 − 1). When a  =  1 we have the punctured torus with l  =  0.

The corresponding traces are solutions of the Diophantine equation

X2 + Y2 + Z2 = XYZ + 4 − 4a6, (8)

which is a particular case of the one studied by Mordell [25]. It has no fully symmetric integer 
solutions, but has a solution with X  =  Y:

X = Y = a2 + 2, Z = 4a2 + 2. (9)

Applying the permutations and Vieta involution we have the following generalisation of the 
Markov tree [30].

Let X( p
q ), where p

q ∈ [0, 1
2 ], be the a-Markov number corresponding to Farey fraction p

q  
(see figure 2). Introduce the a-analogue of Fock function

ψa

(
p
q

)
:=

1
q

arcosh
(

1
2

X
(

p
q

))
. (10)

Theorem 3. The function ψa can be extended to a continuous convex function of real 
x ∈ [0, 1

2 ], which is differentiable at all irrational x and not differentiable at rational x.

We will explain now how to prove both our theorems (theorems 2 and 3) by establishing 
links with known results about the stable norm and Mather β-function.

+ 24 + 2

4 + 9 + 2
4 + 17 + 16 + 216 + 44 + 25 + 2

…
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Figure 2. The a-generalisation of the Markov tree and corresponding Farey fractions.
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3. Stable norm and Mather β-function

3.1. The stable norm on (T2, g)

In this section we introduce Federer–Gromov’s stable norm on H1(T2;R) and state some of 
its properties. We discuss only the case of the two-dimensional torus, which presents several 
simplifications; however, we refer the reader to [3, 9] for a more general presentation.

Let g be a Riemannian metric on T2 := R2/Z2 and let Lg be the associated length functional.
For any integral class h ∈ H1(T2;Z) ⊂ H1(T2;R) we define

�g(h) := min {Lg(γ) : γ is a smooth closed curve representing h} .

Observe that �g(h) = �g(−h), and �g(h) = 0 if and only if h  =  0. It follows from a result 
by Hedlund [11] (see also [3, theorem 8.5.10]) that �g : H1(T2;Z) −→ [0,+∞) is positively 
homogeneous:

�g(n h) = n �g(h) ∀ h ∈ H1(T2;Z) and ∀ n ∈ N;

observe that this result is a peculiarity of the 2-dimensional case.
The stable norm ‖ · ‖s corresponds to the unique norm on H1(T2;R), which coincides with 

�g on H1(T2;Z) (see [3, proposition 8.5.3]). This norm can be actually constructed quite easily 
from �g in the following way:

 –  for every h ∈ H1(T2;Z), we define ‖h‖s := �g(h); 
 –  then, using homogeneity, we extend it to H1(T2;Q) by

‖α h‖s := |α| ‖h‖s ∀ h ∈ H1(T2;Z) and ∀ α ∈ Q.

Thus, we have extended �g to H1(T2;Q) and this new function is positively homogeneous and 
satisfies the triangle inequality:

�g(h1 + h2) � �g(h1) + �g(h2) ∀ h1, h2 ∈ H1(T2;Q).

Moreover it is a Lipschitz function on H1(T2;Q) � Q2 ⊂ R2 with respect to the Euclidean 
norm ‖ · ‖; indeed, if h = (x1, x2) ∈ Q2 we have

�g(h) � �g((x1, 0)) + �g((0, x2)) � K(|x1|+ |x2|) � 2K‖x‖,

where K := max{�g((1, 0)), �g((0, 1))}.
Since H1(T2;Q) is dense in H1(T2;R), this function has a unique continuous extension to 

a semi-norm ‖ · ‖s on H1(T2;R), which turns out to be a norm.
The unit ball B1 := {h ∈ H1(T2;R) : ‖h‖s � 1} is strictly convex, namely its boundary 

does not contain straight line segments. Equivalently, if h1 and h2 are linearly independent, then

‖h1 + h2‖s < ‖h1‖s + ‖h1‖s

(see for example [3, exercise 8.5.15]).
The following theorem was proven by Bangert [2, theorem 5.3] (see also related results by 

Mather [19, sections 2 and 3] for twist maps by Massart-Sorrentino [18, corollaries 2 and 3] 
for Lagrangian flows on surfaces and by Klempnauer–Schröder [12, main theorem 1.6] for the 
case of Finsler metrics).

Theorem 4 (Bangert). Let h = (h1, h2) ∈ H1(T2;R) \ {0}, then

 –  If h2 �= 0 and h1/h2 ∈ R \Q, then ‖ · ‖s is differentiable at h.
 –  If h2  =  0 or h2 �= 0 and h1/h2 ∈ Q, then ‖ · ‖s is differentiable at h if and only if there 
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exists a foliation of T2 by shortest closed geodesics in the same homotopy class, which is 
the primitive element in H1(T2;Z) ∩ {R · h}.

For more properties of minimal geodesics at irrational directions and their asymptotic 
behaviour, see [26, main theorem 1.7].

3.2. Mather’s β-function

The stable norm is related to the so-called Mather’s minimal average action (or Mather’s 
β function) [20]. Hereafter we provide a brief introduction; we refer the reader to  
[29, section 3.3] for a more comprehensive one.

Let us consider the Lagrangian associated to the geodesic flow on (T2, g):

L : TT2 −→ R

(x, v) �−→ 1
2

gx(v, v).

Let M(L) be the set of Borel probability measures µ on TT2 that are invariant under the 
Euler–Lagrange flow of L (i.e. the geodesic flow). To each element µ ∈ M(L), we can associ-
ate its homology ρ(µ) ∈ H1(T2;R) (also called Schwartzman asymptotic cycle) in the follow-
ing way (see [20, 29] for more details): it is the unique element of H1(T2;R) for which

〈[η], ρ(µ)〉 =
∫

TT2
η(x, v) dµ(x, v), (11)

where η is any closed 1-form on T2, η(x, v) denotes the 1-form η computed at a tangent vector 
(x, v), [η] ∈ H1(T2;R) represents its cohomology, and 〈·, ·〉 is the canonical pairing between 
(real) cohomology and homology groups. Observe that the integral on the right-hand side of 
(11) only depends on the cohomology class of η (see for example [20, Lemma on p 176]). One 
can prove that ρ : M(L) −→ H1(T2;R) is surjective and continuous [29, proposition 3.2.2].

We define Mather’s β function as

βg : H1(T2;R) −→ R

h �−→ βg(h) := min
µ∈ρ−1(h)

∫

TT2
Lg(x, v)dµ.

There is the following relation with the stable norm [16, proposition 1.4.2] (see also [17]):

βg(h) =
1
2
‖h‖2

s .

4. Fock’s function and stable norm of punctured and one-holed tori

We want to discuss how to prove theorem 2 by extending the above results on Mather’s β 
function and the stable norm, to hyperbolic punctured and one-holed tori.

Let us consider first a punctured torus T 2, namely a surface homeomorphic to T2 \ {point}, 
equipped with a complete hyperbolic metric g of finite area. The puncture corresponding to 
the removed point will be called cusp and hereafter denoted by C.

The definition of the stable norm can be done as above. For each primitive homology class 
h ∈ H1(T 2;Z), define �g(h) to be the length of the unique simple geodesic with homology 
class h (see [22, corollary 1]). For a non-primitive homology class h there exists n ∈ N and 
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ĥ primitive such that h = nĥ and we have �g(h) = n�g(ĥ). One can prove that �g satisfies the 
triangle inequality (which is strict when we sum linearly independent cycles). The stable norm 
‖ · ‖s can be then defined exactly as above: firstly, it coincides with �g on H1(T 2;Z); then, 
it is extended homogeneously along lines of rational slopes, and by continuity to the whole 
H1(T 2;R).

The following theorem has been stated, without proof, in [22] (we slightly rephrase its 
statement and provide a proof).

Theorem 5 (McShane and Rivin). Let ‖ · ‖s be the stable norm of (T 2, g) and let 
h = (h1, h2) ∈ H1(T 2;R) \ {0}. Then the following hold true:

 (i)  If h2 �= 0 and h1/h2 ∈ R \Q, then ‖ · ‖s is differentiable at h
 (ii)  If h2  =  0 or h2 �= 0 and h1/h2 ∈ Q, then ‖ · ‖s is not differentiable.

Proof. Let us now describe how this result could be obtained from Bangert’s results for T2. 
The idea is simply to ‘plug the hole’ in a smooth way, which does not affect the minimizing 
properties of the metric.

Recall that any minimal compact lamination on a punctured torus does not intersect small 
cusp regions (namely, a neighbourhood of the cusp bounded by a horocycle); this result goes 
back at least to Poincaré, although a sharper version was proven by McShane [21, lemma 
1.3.2] (see also [23, theorems 1.1 and 1.2]).

Proposition 1. Let ε > 0. Any punctured torus has a cusp region with bounding curve of 
length 4 − ε and this bound is optimal. No simple closed geodesic intersects a cusp region 
with a boundary curve of length 4 − ε.

Therefore, we proceed as follows (see [14], proof of corollary 1.7). First, remove from T 2 
a cusp region of length, for example, equals to 1; then, glue a Euclidean hemisphere of equator 
length 1. In this way, we obtain a two dimensional torus and the minimum length geodesics 
on this torus do not enter the added hemisphere. Therefore, the two metrics have the same 
stable norm.

Now applying Bangert’s theorem (theorem 4) we have a McShane–Rivin result. Indeed, 
there cannot be a foliation of T2 consisting of homologous closed geodesics since due to the 
hyperbolicity of the flow there exists at most one simple closed geodesic in each homology 
class. □ 

Now let us consider a special case of hyperbolic equianharmonic punctured torus T 2.  
In this case the lengths of simple closed geodesics are given by

l = 2 arcosh
3
2

m,

where m is the corresponding Markov number. Comparing the definition of the stable norm 
with the definition of Fock’s function we have

Theorem 6. Fock’s function (3) is the half of the restriction of the corresponding stable 
norm on H1(T 2,R) = R2( p, q) to the line p = x, q = 1.

By a general fact, the restriction of the norm to an affine line is a convex function on the 
line, so we have a proof of Fock’s result (theorem 1) (which is essentially the same as his 
own).

We can now prove theorem 2, namely that Fock’s function ψ is differentiable at all irration-
als and not differentiable at any rational.
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Proof [Theorem 2]. Applying theorem 6, these properties automatically follow from the 
above results of Bangert (theorem 4) and McShane–Rivin (theorem 5). □ 

The same arguments work for the hyperbolic tori with a hole (see [14]) and we can prove a 
similar result for the function ψa, introduced in (10).

Proof [Theorem 3]. We can cut the hyperbolic torus with a hole along the simple geodesic 
around the hole and glue the Euclidean hemisphere of the same equator length. It is geometri-
cally evident that any shortest simple closed geodesic on such ‘filled torus’ cannot cross the 
hemisphere (see [14]), so the stable norm remains the same.

It is known (essentially after Fricke, see Goldman [7], section 3) that the hyperbolic struc-
tures on one-holed torus are parametrized by the positive real component of the cubic surface

X2 + Y2 + Z2 − XYZ = c, c < 0, (12)

where the geodesic length of the hole is given by

l = 2 arcosh
2 − c

2
.

A natural action of the corresponding mapping class group SL2(Z) is generated by the Vieta 
involutions (X, Y , Z) �−→ (Y , X, XY − Z) and cyclic permutations. This allows us to compute 
the corresponding stable norm recursively in the same way as for the Markov numbers.

Applying all this to the specific one-holed torus corresponding to the integer orbit (9),  
and proceeding as in the proof of theorem 2, we complete the proof. □ 

Remark 1. These arguments clearly work for any orbit of SL2(Z) on the real Markov sur-
face (12), so theorem 3 can be straightforwardly extended to the equation (12) with negative 
c and arbitrary positive initial data.

5. Concluding remarks

Let us mention some natural questions that would need further investigation.
The picture of the unit ball for the corresponding stable norm from McShane–Rivin [22] 

suggests that it has ‘corners’ at every rational points. Can we make this more quantitative? 
What can we say about the left and right derivatives of Fock’s function at rational points, in 
particular at the symmetry point x = 1

2? Since the function is convex they do exist. What are 
the corresponding values? Can we compute the derivatives of Fock’s function at quadratic 
irrationals x, in particular, at Markov–Hurwitz ‘most irrational’ numbers (see e.g. [1, 30])? 

A generalisation to a higher genus case is another natural direction, where one can use 
Bowen–Series symbolic coding [28]. An interesting example of similar coding for the octagon 
tesselation of hyperbolic disc was studied in detail by Smillie and Ulcigrai [24].
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