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Which game are we playing at?

A mathematical billiard consists of a closed region in the plane (the billiard
table) and a point-mass in its interior (the ball), which moves along
straight lines with constant velocity.

When the ball hits the boundary, it reflects elastically, namely:

angle of incidence = angle of reflection.

And it keeps on moving... Can we describe the evolution of its dynamics?
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What do we wish to study?

Observation: Between two consecutive bounces, the ball moves along a
segment with constant velocity (nothing interesting happens!).
It suffices to know the points where the ball hits the boundary to
reconstruct the whole dynamics!

Let us suppose to start from a point P on the boundary.
Where will the ball hit the boundary next?
It depends on the initial angle ϑ ∈ (0, π)!
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Examples of orbits in a rectangular billiard

Periodic orbit
Number of bounces (period)

= 2

Periodic orbit
Number of bounces (period)

= 4

Non-periodic orbit
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The Billiard Map

The billiard map is a map that to each initial pair (P, ϑ) associates the
point at which the ball will hit the boundary next and the corresponding
angle of incidence:

B : ∂R × (0, π) −→ ∂R × (0, π)

(P, ϑ) −→ (P ′, ϑ′)

4 / 38



Why do we consider only rectangular billiards?

The dynamics inside a billiard is completely determined by its geometry
(i.e., its shape)!

One could choose billiard tables with different shapes:

One could also assume that the domain lies inside a Riemannian manifold
rather than in the Euclidean plane.
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Dynamics inside a general (Euclidean) table

Reflection law: One considers the angle formed with the tangent line

angle of incidence = angle of reflection

In the case of a table lying in a Riemannian manifold, the ball moves along
geodesics instead of straight lines.
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The study of the dynamics of billiards is a very active area of research.
Dynamical behaviours and properties are strongly related to the shape of
the table.

Polygonal billiards:
- Related to the study of the geodesic flow on a
translation surface (with singular points);
- Teichmüller theory.

(Strictly) Convex Billiards:
- Birkhoff billiards (G. Birkhoff, 1927: a paradigm of
Hamiltonian systems).
- The billiard map is a twist map.
- Coexistence of regular (KAM, Aubry-Mather) and
chaotic dynamics.

Concave Billiards (or dispersive):
- Nearby Orbits tend to move apart (exponentially).
- Hyperbolicity and chaotic behaviour (Y. Sinai, 1970).
- Study of statistical properties of orbits.
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Birkhoff Billiards

Let Ω be a strictly convex domain in R2 with C r boundary ∂Ω, with r ≥ 3.
Let ∂Ω be parametrized by arc-length s (fix an orientation and denote by `
its length) and ϑ “shooting” angle (w.r.t. the positive tangent to ∂Ω). The
Billiard map is:

B : R/`Z× (0, π) −→ R/`Z× (0, π)

(s, ϑ) 7−→ (s ′, ϑ′).

This simple model has been first proposed by G.D. Birkhoff (1927) as a
mathematical playground where “the formal side, usually so formidable in
dynamics, almost completely disappears and only the interesting qualitative
questions need to be considered”.
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Properties of Birkhoff billiard maps

B is C r−1(R/`Z× (0, π));

B can be extended continuously up to the boundary:
B(·, 0) = B(·, π) = Id ;
B preserves the area form ω = sinϑ dϑ ∧ ds (symplectic form);
B is a twist map ← (Aubry-Mather theory, KAM theory, etc.);
B has a generating function:

h(s, s ′) := ‖γ(s)− γ(s ′)‖,

i.e., the Euclidean distance between two points on ∂Ω. In particular if
B(s, ϑ) = (s ′, ϑ′), then:{

∂1h(s, s ′) = − cosϑ
∂2h(s, s ′) = cosϑ′ .
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Dynamics and Length

Let us consider the length functional:

L(s1) := h(s0, s1) + h(s1, s2) s1 ∈ (s0, s2).

Then:
d

ds
L(s1) = ∂2h(s0, s1) + ∂1h(s1, s2) = cosϑ− cosϑ′.

The real orbit (i.e., ϑ = ϑ′) correspond to s1 ∈ (s0, s2) such that
d
dsL(s1) = 0 (i.e., s1 is a critical point).
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Dynamics and Length

{(sn, ϑn)}n∈Z is an orbit ⇐⇒ {sn}n∈Z is a “critical configuration”

of the Length functional:

L({sn}n) :=
∑
n∈Z

h(sn, sn+1).

Relation between the Dynamics and the length of trajectories (Geometry).
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Dynamics ←→ Geometry

Study of Dynamics: understand the properties of orbits (periodicity,
symmetries, chaos, etc...)

While the dependence of the dynamics on the geometry of the domain is
well perceptible, an intriguing challenge is:

To what extent dynamical information can be used
to reconstruct the shape of the domain.

This apparently naïve question is at the core of different intriguing
conjectures, among the most difficult to tackle in the study of dynamical
systems!
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Example I: Circular billiard



Digression: A Mad Tea-Party

Charles Lutwidge Dodgson (1832-1898)
(better known as Lewis Carroll).

‘But I don’t want to go among mad people’, Alice remarked.
‘Oh, you can’t help that’, said the Cat: ’we’re all mad here.
You’re mad.’ ‘How do you know I’m mad?’, said Alice. ‘You
must be’, said the Cat, ‘or you wouldn’t have come here.’

Lewis Carroll thought of playing billiards on a circular table in 1889 and first
published its rules the following year (and a circular billiard table was actually
made for him!)
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Example I: Circular billiard

The angle remains constant at each bounce: it is an Integral of motion.
This is an example of integrable dynamical system.
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Example I: Circular billiard

If ϑ is a rational multiple of π, then the resulting orbit is periodic:

For every rational p
q ∈ (0, 1

2 ] there exist infinitely many periodic orbits with
q bounces (period) and which turn p times around before closing (winding
number). p

q is called rotation number.
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Example I: Circular billiard

If ϑ is NOT a rational multiple of π, then the orbit hits the boundary on a
dense set of points (Kroenecker’s theorem):

The trajectory does not fill in the table: there is a region (a disc) which is
never crossed by the ball!
Observe that the trajectory is always tangent to a circle (this is an example
of caustic).
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What is true for general Birkhoff billiards?

Do there always exist periodic orbits? How many?

YES! For every rotation number p
q ∈ (0, 1

2 ] there exist at least two distinct
periodic orbits with that rotation number (Birkhoff, 1922).

A variation proof exploits the relation between orbits and
lengths: one of the two orbits maximizes the length
among all configurations with that rotation number,
while the other is obtained via a min-max procedure. (Mountain pass lemma)

Q1 - Do the collection of their lenghts encode any information on Ω?

How often does the existence of caustics occur? Are there other
integrable billiards?

−→ Birkhoff conjecture

Q2 - What does integrability say about the geometry of the table?
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Integrability of billiards

There are several ways to define integrability for Hamiltonian systems:
Liouville-Arnol’d integrability (existence of integrals of motion);
C 0 integrability (existence of a foliation by invariant Lagrangian submflds);

Is it possible to express the integrability of a billiard map in terms of
property of the billiard table?

Integrability ←→ (Part of) the billiard table is foliated by caustics
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Caustics

A convex caustic is a closed C 1 curve in the interior of Ω, bounding itself a
strictly convex domain, with the property that each trajectory that is
tangent to it stays tangent after each reflection.

To a convex caustic in Ω corresponds an invariant circle for the billiard map.
(The converse is not entirely true: invariant curves give rise to caustics, but
they might not be convex, nor differentiable).
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Digression: Caustics and Whispering Galleries

Whispering Gallery in St. Paul Cathedral in London (Lord Rayleigh, 1878 ca.)
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Existence of Caustics

Do there exist other examples of billiards with at least one caustic?

Easy to construct by means of the string construction:

Do there exist other examples of billiards with infinitely many caustic?

YES! Lazutkin (1973) proved that by a suitable change of coordinates every
Birkhoff billiard map becomes nearly integrable!
Hence, if the domain is sufficiently smooth, he proved by means of KAM
technique that there exists (at least) a Cantor set of invariant circles near
the boundary (i.e., infinitely many caustics accumulating to the boundary of
the table).

Do there exist other examples of billiards admitting a foliation by caustics?
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Example II: Elliptic billiard

Curiosity: The New York Times (1st July 1964) ran a full-page ad for Elliptipool, played on an elliptical table with a
single pocket at one of the two foci. The ad said that on the following day the game would be demonstrated at
Stern’s department store by movie stars Paul Newman and Joanne Woodward.



Example II: Elliptic billiard

If the trajectory passes through one of the foci, then it always passes
through them, alternatively.
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Example II: Elliptic billiard

If the trajectory does not intersect the segment between the foci, then it
never does and it is tangent to a confocal ellipse (a convex caustic).
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Example II: Elliptic billiard

If the trajectory intersects the segment between the foci, then it always
does and it is tangent to a confocal hyperbola (a non-convex caustic).
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Example II: Elliptic billiard

Some Properties of Elliptic billiards:
For every rational p

q ∈ (0, 1
2) there exist infinitely many periodic orbits

rotation number p
q .

There exist only two periodic orbits of period 2 (i.e., rotation number
1
2): the two semi-axes.
There exist infinitely many convex caustics (and also non-convex
ones).

The ellipse, with the exception of the closed segment between the foci, is
foliated by convex caustics. It is an Integrable billiard.
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Birkhoff conjecture

Conjecture (Birkhoff-Poritsky)
The only integrable billiard maps correspond to billiards inside ellipses.

Although some vague indications of this question can be
found in Birkhoff’s works (1920’s-30’s), its first
appearance was in a paper by Poritsky (1950), who was a
National Research Fellow in Mathematics at Harvard
University, presumably under the supervision of Birkhoff.

It quickly became one of the most famous - and hard to
tackle - questions in dynamical systems.

It is important to consider strictly convex domains!
Mather (1982) proved the non-existence of caustics (hence, some sort of
non-integrability) if the curvature of the boundary vanishes at (at least)
one point. See also Gutkin-Katok (1995).

24 / 38



Birkhoff conjecture

Conjecture (Birkhoff-Poritsky)
The only integrable billiard maps correspond to billiards inside ellipses.

Although some vague indications of this question can be
found in Birkhoff’s works (1920’s-30’s), its first
appearance was in a paper by Poritsky (1950), who was a
National Research Fellow in Mathematics at Harvard
University, presumably under the supervision of Birkhoff.

It quickly became one of the most famous - and hard to
tackle - questions in dynamical systems.

It is important to consider strictly convex domains!
Mather (1982) proved the non-existence of caustics (hence, some sort of
non-integrability) if the curvature of the boundary vanishes at (at least)
one point. See also Gutkin-Katok (1995).
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Previous contributions

Despite its long history and the amount of attention that this conjecture has
captured, it remains still open. Important contributions are the following:

Bialy (1993): If the phase space of the billiard map is completely foliated by
continuous invariant curves which are not null-homotopic, then it is a
circular billiard.

An integral-geometric approach to prove Bialy’s result was proposed by
Wojtkowski (1994), by means of the so-called mirror formula.

Innami (2002) showed that the existence of caustics with rotation numbers
accumulating to 1/2 implies that the billiard is an ellipse; the proof is based
on Aubry-Mather theory (a simpler proof by Arnold-Bialy (2018)).

In a different setting, when there exists an integral of motion that is
polynomial in the velocity (Algebraic Birkhoff conjecture), the fact that the
billiard is an ellipse has been recently proved by Glutsyuk (2018), based on
previous results by Bialy-Mironov (2017).
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Perturbative Birkhoff conjecture

One could restrict the analysis to what happens for domains that are
sufficiently close to ellipses.

Birkhoff Conjecture (Perturbative version)
A smooth strictly convex domain that is sufficiently close (w.r.t. some
topology) to an ellipse and whose corresponding billiard map is integrable,
is necessarily an ellipse.

First results in this direction were obtained by:
- Levallois (1993): Non-integrability of algebraic perturbations of
elliptic billiards.
- Delshams and Ramírez-Ros (1996): Non-integrability of entire
symmetric perturbations of ellipses (these perturbations break
integrability near the homoclinic solutions).

Avila, De Simoi and Kaloshin (2016) proved that perturbative version
of Birkhoff conjecture holds true for domains that are nearly circular.
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Main Result: the Perturbative Birkhoff Conjecture

Our main result is that the Perturbative Birkhoff conjecture holds true for
any ellipse.

More specifically:

Theorem [Kaloshin - S., Annals of Math. (2018)]
Let E0 be an ellipse of eccentricity 0 ≤ e0 < 1 and semi-focal distance c ; let
k ≥ 39. For every K > 0, there exists ε = ε(e0, c ,K ) such that the following
holds.
Let Ω be a C k domain such that:

Ω admits integrable rational caustics(∗) of rotation number 1/q, ∀ q ≥ 3,

∂Ω is K -close to E0, with respect to the C k -norm,

∂Ω is ε-close to E0, with respect to the C 1-norm,

then Ω must be an ellipse.

(*) An integrable rational caustic corresponds to a (non-contractible) invariant curve of the

billiard map foliated by periodic points.
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Local integrability and Birkhoff conjecture

One could consider weaker notions of integrability.

For example: what can be said for locally integrable Birkhoff billiards?
Namely, consider integrability in a neighborhood of the boundary of the
billiard table, i.e., for sufficiently small rotation numbers.

The analogous conjecture would be:

Local Birkhoff Conjecture (LBC)
If Ω is a Birkhoff billiard admitting a foliation by caustics with rotation numbers
in (0, δ), for some 0 < δ ≤ 1/2, then Ω must be an ellipse.

For δ = 1/2 it follows from a result by Innami (2002).
For δ = 1/3 from [Kaloshin-S., 2018].
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Local Perturbative Birkhoff conjecture (LPBC)

Let us consider a perturbative version of this conjecture.

Theorem(∗) [Huang, Kaloshin, S., GAFA (2018)]
For any integer q0 ≥ 3, there exist e0 = e0(q0) ∈ (0, 1), m0 = m0(q0),
n0 = n0(q0) ∈ N such that the following holds.
For each 0 < e ≤ e0 and c ≥ 0, there exists ε = ε(e, c , q0) > 0 such that if

E0 is an ellipse of eccentricity e and semi-focal distance c ,

Ω admits integrable rational caustics for all 0 < p
q ≤

1
q0
,

∂Ω is Cm0 domain,

∂Ω is ε-close (in the C n0 topology) to E0,

=⇒ Ω itself is an ellipse.

(*) For q0 ≥ 6, the proof is conditional to checking that q0 − 2 matrices (which are explicitely

described) are invertible.
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From perturbative to global Birkhoff conjecture?

What about a global version of the Birkhoff conjecture?

There are not even solid indications that these theorems should be true!

Possible approach (Speculations...):
Find a geometric flow that:
- preserves (strict) convexity,
- preserves integrability,
- asymptotically transforms any convex domain into an ellipse (up to some
normalization).
Candidates: curvature flow (NO!, it does not preserve integrability,
Damasceno, Dias Carneir, Ramírez-Ros (2017)), affine curvature flow
(maybe?), ... Any other suggestion?
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From billiards to Integrable geodesic flows on the Torus

Birkhoff conjecture can be thought as the analogue, in the case of billiards, of the
following question: classify integrable (Riemannian) geodesic flows on T2.
The complexity of this question depends on the notion of integrability.

If one assumes that the whole space space is foliated by invariant Lagrangian
graphs (C 0-integrability), then it follows from Hopf conjecture that the
associated metric must be flat. (Similar to Bialy’s result for billiards.)

This question is still open if one considers integrability only on an open and
dense set (global integrability), or assumes the existence of an open set
foliated by invariant Lagrangian graphs (local integrability).

Example of globally integrable (non-flat) geodesic flows on T2 are those
associated to Liouville-type metrics:

ds2 = (f1(x1) + f2(x2)) (dx2
1 + dx2

2 ).

Folklore conjecture: these metrics are the only globally (resp. locally) integrable
metrics on T2.

IDEA: apply similar ideas to prove a perturbative version of this conjecture.
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Periodic orbits and the (Marked) Length spectrum

What can of information does the set of periodic orbits encode?

We define the Length spectrum of Ω:

L(Ω) := N+ · {lengths of billiard periodic orbits in Ω} ∪ ` · N+.

One could also refine L(Ω). Consider pairs (length, rotation number) and
define the Marked Length spectrumML(Ω).
In particular, for every p/q ∈ (0, 1/2] define:

ML(Ω)(p/q) := max{lenghts of per. orbits of rot. number p/q}.

This is also related to Mather’s β-function for billiards:

β(p/q) := −1
q
ML(Ω)(p/q).
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From the spectrum to the dynamics

What dynamical information doesML(Ω) encode?

Theorem [Huang, Kaloshin, S., Duke Math. Journal (2018)]

For generic billiard domain, it is possible to recover from the (maximal) marked
length spectrum, the Lyapunov exponents of its Aubry-Mather (A-M) orbits), i.e.,
the periodic orbits with maximal length in their rotation number class.

Question: IfML(Ω1) ≡ML(Ω2), are Ω1 and Ω2 isometric?

Affirmative answer if one of the two is a disc (easy).

- What about ellipses? If a domain is “close” to an ellipse and has the same
Marked Length spectrum of an ellipse, then it must be an ellipse [Kaloshin, S.,
2018].

- In Riemannian geometry, similar questions have been studied in the case of
negatively curved surfaces (Guillemin, Kazhdan,Croke, Otal, Fathi, etc...) and
some higher dimensional case (Guillarmou-Lefeuvre, 2019).
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Can you hear the shape of a drum?

Let Ω ⊂ R2 and consider the problem of finding u 6≡ 0 and λ ∈ [0,+∞)
such that: {

∆u + λ2u = 0 in Ω
u = 0 on ∂Ω.

We define the Laplace Spectrum as: Spec(Ω) := {0 < λ1 ≤ λ2 ≤ . . .}.

Kac’s question (1966): Does Spec(Ω) determine Ω up to isometry?

The answer is well-known to be negative (all known
examples are not convex and they are bounded by
curves that are only piecewise analytic).

(Osgood-Phillips-Sarnak) A C∞ isospectral set is
compact. Conjecture (Sarnak): A C∞ isospectral
set consists of isolated points.

(Zelditch, 2009) positive answer for generic analytic
axial-symmetric convex domains.

Counterexample by

Gordon-Webb-Wolpert (1992)
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Laplace Spectrum and Length Spectrum

An easy example:
If Ω = (0, π)× (0, π), then

Spec(Ω) = {
√

n2 + m2 : (n,m) ∈ N× N \ {(0, 0)}}

which corresponds to the lengths of periodic orbits in Ω.

Theorem (Andersson and Melrose, 1977)

The wave trace w(t) := Re
(∑

λn∈Spec(Ω) e
iλnt
)
is well-defined as a distribution

and it is smooth away from the length spectrum:

sing. supp.
(
w(t)

)
⊆ ±L(Ω) ∪ {0}.

Generically, equality holds.

Hence, at least for generic domains, one can recover the length spectrum from
the Laplace one.
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Can you hear the shape of a billiard?

Ω is called length spectrally rigid if any smooth one-parameter isospectral
deformation {Ωε}|ε|<ε0 with Ω0 = Ω is an isometry.

Question: Which Birkhoff billiard domains are Length spectrally rigid?

Work in Progress [Callis, De Simoi, Kaloshin, S.]
For any r ≥ 9, there is a C r -generic set (open and dense) of strictly convex
axial symmetric domains that are length spectrally rigid.

For axial symmetric domains close to a disk, length spectral rigidity was
proven by De Simoi, Kaloshin and Wei in 2016.
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Thank you
for your attention



Sketch of the proof of Theorem [Kaloshin-S.] 1/5

Consider elliptic coordinates (µ, ϕ):{
x = c coshµ cosϕ
y = c sinhµ sinϕ

describing confocal ellipses (µ = µ0) and hyperbolae
(ϕ = ϕ0); c > 0 represents the semifocal distance.

We express a perturbation of a given ellipse {µ=µ0}
as:

µε(ϕ) = µ0 + εµ1(ϕ) + O(ε2).

(Observe that the coordinate frame depends on the
unperturbed ellipse)
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Sketch of the proof of Theorem [Kaloshin-S.] 2/5
Let us start by considering a rationally integrable deformation Ωε of
Ω0 = E0.

Action-angle coordinates for the billiard map in the ellipse E0. For q ≥ 3,
let ϕq(θ), θ ∈ R/2πZ, denote the parametrization of the boundary induced
by the dynamics on the caustic of rotation number 1/q:

BE0(µ0, ϕq(θ)) = (µ0, ϕq(θ + 2π/q)).

Lemma [Pinto-de-Carvalho, Ramírez-Ros (2013)]
Let Ωε admit a rationally integrable caustic of rotation number 1/q for all
ε. We denote by {ϕk

q}
q
k=0 the periodic orbit of the billiard map in E0 with

rotation number 1/q and starting at ϕ; then L1(ϕ) =
∑q

k=1 µ1(ϕk
q) ≡ cq,

where cq is a constant independent of ϕ.

L1(ϕ) represents the subharmonic Melnikov potential of the elliptic caustic
of rotation number 1/q under the deformation.
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Sketch of the proof of Theorem [Kaloshin-S.] 3/5
Therefore, with respect to the action-angle variables we have that for any
θ ∈ R/2πZ:

q∑
k=1

µ1(ϕq(θ + 2πk/q)) ≡ cq.

If u(x) denotes either cos x and sin x , then∫ 2π

0
µ1(ϕq(θ)) u(q θ) dθ = 0,

which, using the expression for ϕq and by some change of variables, implies:

∫ 2π

0
µ1(ϕ)

u
(

2π q
4K(kq)F (ϕ; kq)

)
√

1− k2
q sin2 ϕ

dϕ = 0.

kq is the eccentricity of the elliptic caustic of rotation number 1/q

F (ϕ, k) the incomplete elliptic integral of the first kind;

K (k) the complete elliptic integral of the first kind, i.e. K (k) = F (π/2, k).
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Sketch of the proof of Theorem [Kaloshin-S.] 4/5

We define a family of dynamical modes {cq, sq}q≥3 given by

cq(ϕ) :=

cos

(
2π q

4K(kq )
F (ϕ; kq)

)
√

1 − k2
q sin2 ϕ

sq(ϕ) :=

sin

(
2π q

4K(kq )
F (ϕ; kq)

)
√

1 − k2
q sin2 ϕ

.

These functions only depend on µ0 and q.

Summarizing: if µε(ϕ) = µ0 + εµ1(ϕ) + O(ε2) is a deformation of the
ellipse E0 = {µ = µ0} which preserves the integrable caustic of rotation
number 1/q, then

< µ1, cq >L2 = < µ1, sq >L2 = 0

Consider also five extra functions related to elliptic motions: e1, . . . , e5:
they correspond to infinitesimal generators of motions that transform
ellipses into ellipses (translations, rotations, homotheties, hyperbolic
rotations).
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Sketch of the proof of Theorem [Kaloshin-S.] 5/5

Key result: Basis property
{ej}5j=1 ∪ {cq, sq}q≥3 form a basis of L2(T).

Idea: Make them (more) complex!

Consider complex analytic extensions of these functions.

A detailed study of their complex singularities and the size of their maximal
strips of analiticity, allow us to deduce their linear independence (both for
finite and infinite combinations).

By a codimension argument, show that they form a set of generators.

From Deformative to Perturbative Setting:

Annihilation conditions are replaced by smallness condition;

Approximate ∂Ω with its “best” approximating ellipse:

∂Ω = {(µ∗0 + µpert(ϕ), ϕ) : ϕ ∈ [0, 2π)};

Using smallness conditions and Basis property, deduce that ‖µpert‖L2 must
be zero.
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Some (vague) ideas on the proof of spectral rigidity 1/2

Look at simple part of the length spectrum: q-gons (periodic orbits of
rotation number 1/q).

If the domain is axial symmetric, then symmetric q-gons exist (Birkhoff):
Sq(Ω) = {(x (k)

q , ϕ
(k)
q )}q−1

k=0

Ideas of proof of Dynamical Spectral Rigidity

Simple part of the length spectrum: q-gons!
‘Skeleton’ of the dynamics. Birkhoff proved

Lemma
For any convex domain ⌦ and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(⌦). If ⌦ is
axis-symmetric, then Sq can be chosen axis-symmetric.

V. Kaloshin (U of Maryland ) Spectral Rigidity June 20, 2019 16 / 30

Consider isospectral deformation: ∂Ωt := ∂Ω0 + tn(s) + O(t2). Then:

`q(n) :=

q−1∑
k=0

n(x (k)
q ) sinϕ(k)

q = 0 ∀q ≥ 2.

37 / 38



Some (vague) ideas on the proof of spectral rigidity 1/2

Look at simple part of the length spectrum: q-gons (periodic orbits of
rotation number 1/q).

If the domain is axial symmetric, then symmetric q-gons exist (Birkhoff):
Sq(Ω) = {(x (k)

q , ϕ
(k)
q )}q−1

k=0

Ideas of proof of Dynamical Spectral Rigidity

Simple part of the length spectrum: q-gons!
‘Skeleton’ of the dynamics. Birkhoff proved

Lemma
For any convex domain ⌦ and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(⌦). If ⌦ is
axis-symmetric, then Sq can be chosen axis-symmetric.

V. Kaloshin (U of Maryland ) Spectral Rigidity June 20, 2019 16 / 30

Consider isospectral deformation: ∂Ωt := ∂Ω0 + tn(s) + O(t2). Then:

`q(n) :=

q−1∑
k=0

n(x (k)
q ) sinϕ(k)

q = 0 ∀q ≥ 2.

37 / 38



Some (vague) ideas on the proof of spectral rigidity 2/2

Define a linearized isospectral operator:

LΩ : C r
sym(T) −→ `∞

n 7−→ {`q(n)}q

Goal: Show that LΩ is injective, i.e., LΩ(n) = {0}q =⇒ n ≡ 0.

For symmetric perturbations of the disk, this was done by De Simoi,
Kaloshin, Wei (2016). The linearized operator for the disk is upper
triangular with units on the diagonal + Perturbation analysis.

For generic domains, we need to introduce new ingredients:
- For large q’s, it is still a perturbative regime: similar to the circular case (it
follows from Lazutkin’s result).
- For small q’s, we need to find good substitutes.
Candidates: some non-perturbative invariants that we call
Marvizi-Melrose-Lazutkin’s invariants (see [S., DCDS 2015]) and define a
mixed linearized isospectral operator, that we hope to prove it is injective!
(Work in progress...)
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