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Abstract. We discuss several symplectic aspects related to the Mañé crit-
ical value cu of the universal cover of a Tonelli Hamiltonian. In particular
we show that the critical energy level is never of virtual contact type
for manifolds of dimension greater than or equal to three. We also show
the symplectic invariance of the finiteness of the Peierls barrier and the
Aubry set of the universal cover. We also provide an example where cu

coincides with the infimum of Mather’s α function but the Aubry set of
the universal cover is empty and the Peierls barrier is finite. A second
example exhibits all the ergodic invariant minimizing measures with zero
homotopy, showing, quite surprinsingly, that the union of their supports
is not a graph, in contrast with Mather’s celebrated graph theorem.
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1. Introduction

Let M be a compact connected manifold of dimension n and let us consider
an autonomous Hamiltonian H : T∗M −→ R, which is C2, strictly convex
(i.e., with positive definite hessian) and superlinear in each fiber, and the
corresponding Lagrangian system L : TM −→ R, which is defined by Fenchel–
Legendre duality. Hamiltonians and Lagrangians of this kind are often said to
be of “Tonelli type”.

Since the seminal works by John Mather [19,20], Ricardo Mañé [16]
and Albert Fathi [13], much effort has been spent in order to study the
dynamics of these systems and their symplectic properties, both using vari-
ational methods—the so-called principle of least action—and their analyt-
ical counterpart, in the form of viscosity solutions and subsolutions of
Hamilton–Jacobi equations. See for instance, just to mention a few references
[3,6,9,12,14,18,21,24].

The energy values on which these methods can be applied are called Mañé
critical values. These values appear in several different contexts and can be
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defined and interpreted in many interesting ways, each reflecting and encoding
a distinct dynamical or symplectic significance (see for instance [2,6,22,26]).

This work aims at advancing further the work in [5], where the authors
thoroughly analyzed the relation between these critical values and the symplec-
tic topology of the corresponding energy hypersurfaces. More specifically, they
focused on understanding how the dynamical, symplectic and contact proper-
ties of the regular energy levels of the Hamiltonian change when one passes
through some Mañé critical value. Here we will focus more on the Peierls bar-
rier and the Aubry set.

1.1. Mañé critical values

In the case of a compact M , a crucial idea behind the definition of these crit-
ical values is the following observation. If one modifies the Lagrangian (and
consequently the corresponding Hamiltonian) by subtracting a closed 1-form,
then it is easy to verify that while this does not affect the Euler–Lagrange
flow of the system, nevertheless it has a substantial impact on its action-
minimizing properties. More specifically, if η denotes a closed 1-form on M ,
and Lη(x, v) := L(x, v)− 〈η(x), v 〉 and Hη(x, p) = H(x, η(x) + p) are respec-
tively the modified Lagrangian and Hamiltonian, then the corresponding Mañé
critical value c(Hη) can be defined in many equivalent ways (see also [25]):
(1) Variational definition I: if ML denotes the set of invariant probability

measures of L (hence of Lη), then:

c(Hη) := − min
μ∈ML

∫
TM

Lη(x, v) dμ ,

i.e., it is the opposite of the minimal average Lη-action of invariant prob-
ability measures of the Euler–Lagrange flow of L (see [19]). A measure
which realizes this minimum is called an action–minimizing (or Mather’s)
measure of cohomology class [η].

(2) Variational definition II: for any absolutely continuous curve (abs. cont.)
γ : [a, b] −→M , we define its L-action as

AL(γ) :=
∫ b

a

L(γ(t), γ̇(t)) dt.

Then (see [7,16]):

c(Hη) := inf{k ∈ R : ALη+k(γ) ≥ 0, ∀ abs. cont. loop γ}
= sup{k ∈ R : ALη+k(γ) < 0 for some abs. cont. loop γ}.

(3) Hamiltonian definition: in [4] Dias Carneiro proved that c(Hη) represents
the energy of action-minimizing measures of cohomology class [η], i.e., the
energy level on which they are supported.

(4) Symplectic definition: it was proved in [22] that c(Hη) represents the infi-
mum of the energy values k’s such that the energy sublevel {H(x, p) ≤ k}
contains a smooth Lagrangian graph of cohomology class [η] ∈ H1(M ; R).
In particular, it corresponds to the smallest energy sublevel containing
Lipschitz Lagrangian graphs of cohomology class [η].
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(5) PDE definition: c(Hη) is the unique k for which Hamilton–Jacobi equation
H(x, η(x) + p) = k admits viscosity solutions [13].

The above definitions (and many others) are all equivalent (in the com-
pact case) and it turns out—as it could be easily evinced for instance from
item (4)—that they only depend on the cohomology class of η and not on
the particular representative that has been chosen. Moreover, these values are
somehow symplectic invariant, in the sense that they are invariant under the
action of exact symplectomorphisms [2]; non-exact symplectomorphisms do
preserve the set of values {c(Hη)}[η]∈H1(M ;R), but they do affect the corre-
sponding cohomology classes: they essentially act as a “translation” in the
parameter (i.e., the cohomology class).
It is rather useful to consider all of these values as a function on H1(M ; R):

α : H1(M ; R) −→ R

c 	−→ c(Hηc
),

where ηc represents any closed 1-form of cohomology class c. This function,
which is usually called Mather’s α-function, turns out to be convex and super-
linear (see [19]) and it surprisingly behaves as a sort of “effective Hamiltonian”
for the system; moreover, its regularity and strict convexity properties encode
many interesting aspects of the dynamics of the system [17,18,26].

The minimum of this function, which is usually denoted by c0(H), is
called Mane’s strict critical value. This value is a symplectic invariant (not
only for exact symplectomorphisms) [22]: it corresponds to the largest energy
sublevel that does not contain in its interior any Lagrangian submanifold
Hamiltonianly isotopic to the zero section. In particular, observe that c0(H)
represents the lowest energy level in which these variational methods (known
as Aubry–Mather theory) can be applied.

In some cases, there is a way to push these methods below the strict
critical value. The main idea consists in lifting the system to a cover space (see
[6]).

Given Π : M̂ −→ M a cover of M , we can consider the corresponding
lifted Hamiltonian Ĥ := H ◦ dΠ and the associated Lagrangian L̂. Following
the variational definition (2) from the compact case, one can define the Mañé
critical value associated to this cover, as

c(H, M̂) := c(Ĥ) = inf{k ∈ R : AL̂+k(γ) ≥ 0, ∀ abs. cont. loop γ}
(observe that a-priori it is not clear whether all previous characterizations that
are valid in the compact case, do still hold for non-compact cover spaces).

It is not difficult to verify that c(H, M̂) ≤ c(H). Moreover, equality holds
if Π : M̂ −→M is a finite cover (see [9, Lemma 2.2]).

Two distinguished covers are the universal cover Πu : M̃ −→ M and
the abelian cover Πa : M −→ M (i.e., the cover of M whose group of deck
transformations is H1(M ; Z)). We shall denote the respective critical values
by
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cu(H) := c(H, M̃) and ca(H) := c(H,M). (1)

Clearly, cu(H) ≤ ca(H) ≤ c0(H). Moreover, in [21] it was proved that
in the case of compact manifolds, ca(H) = c0(H). Therefore, we can conclude
that also in the case of the abelian cover, ca(H) is a symplectic invariant.

Remark 1. In [14] the authors proved that if the fundamental group of M is
amenable, then cu(H) = ca(H). Recall that a discrete group G is said to be
amenable, if there is a left (or right) invariant mean on �∞(G), the space of all
bounded functions on G. For example, all finite groups or abelian groups are
amenable; similarly for finite extensions of solvable groups. On the other hand,
if a group contains a free subgroup of two generators then it is not amenable;
this is the case of the fundamental group of a compact surface of genus g ≥ 2.
In [21], the authors provided an example of a Tonelli Hamiltonian H on a
compact surface of genus two, for which cu(H) < c0(H). See also Sect. 6.

1.2. Main results

Recall that a hypersurface Σ in a symplectic manifold (V 2n, ω) is of contact
type if ω

∣∣
Σ

= dλ for a contact form λ on Σ, i.e., a 1-form such that λ∧ (dλ)n−1

is nowhere vanishing.
A related notion is the notion of virtual contact structure. A hypersurface

Σ is said to be of virtual contact type if π∗ω
∣∣
Σ̃

= dλ, for a contact form λ on
the universal cover π : Σ̃ −→ Σ such that

sup
x∈Σ̃

|λx| ≤ C < +∞ and inf
x∈Σ̃

λ(R) ≥ ε > 0,

where | · | is a metric on Σ and R is a vector field generating Ker(ω|Σ) (both
pulled back to Σ̃). If (Σ, ω) is virtually contact and its fundamental group
π1(Σ) is amenable, then (Σ, ω) is of contact type (this follows from a standard
argument using amenability as in [14,23]).

For energy levels Σk := {H(x, p) = k} of Tonelli Hamiltonians we have
the following (assume M compact and, for simplicity, orientable):
(1) for k > c0(H), the energy level Σk is of contact type [10, Theorem B.1];
(2) for M different from the 2-torus and cu(H) < k ≤ c0(H), the energy level

Σk is never of contact type [10, Theorem B.1];
(3) for k > cu(H) the energy level Σk is virtually contact [5] (this was proved

for magnetic Lagrangians with potentials, but it is easy to see that it holds
for any Tonelli Hamiltonian);

(4) in [11, Section 5] the authors provide an example of a Tonelli Lagrangian
on TT

2 for which cu(L) = ca(L) and the corresponding energy level is of
contact type.
Observe, in particular, that if Σk is of contact (or virtual contact) type,

then k is a regular value of the energy function E(x, v) = ∂L
∂v (x, v)·v−L(x, v). In

particular, k > e := maxx∈M E(x, 0) = −minx∈M L(x, 0), which corresponds
by superlinearity to

e = min
{
c ∈ R : π : E−1(c) ⊂ TM −→M is surjective

}
.
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Continuing this analysis, we prove the following result (see Sect. 2).

Theorem A. If dim M ≥ 3 and H : T∗M −→ R is Tonelli, then the energy
level Σcu(H) := {E(x, v) = cu(H)} is never of virtual contact type, where
E(x, v) = ∂L

∂v (x, v) · v − L(x, v) denotes the energy function.

Observe that the hypothesis dimM ≥ 3 is necessary because of the exam-
ple in item (4) above. However it makes sense to ask:

Question I. Is it possible to find examples of Tonelli Hamiltonians on surfaces
of higher genus, for which Σcu(H) is of virtual contact type?

In Sects. 3, 4 and 5 we investigate the symplectic properties of the action-
minimizing objects associated to the lift of the Hamiltonian to the universal
cover. Our main result in this direction is a proof of the symplectic invariance
of cu(H), the finiteness of the Peierls barrier h

H̃
and the Aubry set A∗

H̃
(we

review the definition of these objects in Sect. 3).

Theorem B. Let M be a closed manifold and H : T∗M −→ R a Tonelli
Hamiltonian. Assume Ψ : T ∗M → T ∗M is a symplectic diffeomorphism such
that H ′ := H ◦Ψ is still of Tonelli type. Then

(1) cu(H) = cu(H ′);
(2) The Peierls barrier h

H̃
is finite if and only if h

H̃′ is finite;
(3) The projected Aubry set A

H̃
is empty if and only if the projected Aubry

set A
H̃′ is empty;

(4) A∗
H̃′ = Ψ̃−1(A∗

H̃
), where Ψ̃ is any lift of Ψ to T ∗M̃ .

The main difficulty in this setting is represented by the lack of compact-
ness, which might create quite peculiar aftermaths, like the Peierls barrier
being infinite or the Aubry set (or Peierls set) being empty. Examples of these
occurrences can be found in [8, Section 6], however these examples are unfor-
tunately not lifts of Lagrangians on closed manifolds. We remedy this here
by providing in Sect. 6 two examples. One has cu = c0, finite Peierls barrier
but empty Aubry set in the universal cover and the other has cu < c0, and
also finite Peierls barrier and empty Aubry set. In the latter we find all the
minimizing ergodic invariant measures with zero homotopy thus illustrating
what we are up against.

Question II. Is it possible to find examples of Tonelli Hamiltonians on closed
manifolds for which h

H̃
is infinite?

The proof of the first three items in Theorem B is not difficult (see Propo-
sition 2, Theorems 1 and 2). The proof of item (4) is more involved and for
this we need to adapt Bernard’s methods in [2] to this non-compact setting
(see Theorem 4).
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2. Virtual contact property

In this section we want to prove Theorem A. Let us start by recalling some
definitions and properties. Define the space of continuous functions with at
most linear growth

C0
� (TM) :=

{
f ∈ C0(TM ; R) : sup

(x,v)∈TM

|f(x, v)|
1 + ‖v‖ <∞

}

and consider the set

M� :=
{

μ Borel probability measures on TM s.t.
∫

TM

‖v‖ dμ <∞
}

endowed with the topology: limn μn = μ if and only if limn

∫
f dμn =

∫
f dμ

for any f ∈ C0
� (TM). Observe that M� can be naturally embedded into the

dual space
(
C0

� (TM)
)∗ and its topology coincides with the weak∗-topology on(

C0
� (TM)

)∗. It is also possible to prove that this topology is metrizable.
For any γ : [0, T ] −→ M absolutely continuous curve, let us associate a

Borel probability measure μγ uniformly distributed on γ, i.e.,
∫

TM

f dμγ =
1
T

∫ T

0

f(γ(t), γ̇(t)) dt ∀ f ∈ C0
� (TM).

Since
∫ T

0
‖γ̇(t)‖ dt <∞, then μγ ∈M�. We denote by C(M) the set of μγ gen-

erated by closed absolutely continuous loops γ and consider its closure C(M)
in M�. A measure in C(M) is called a holonomic measure. It is easy to check
that this set is convex and that it contains all invariant probability measures
for any Tonelli Lagrangian L (it is essentially Birkhoff’s theorem). See for
instance [7,16].

Amongst holonomic measures, we want to look at the special ones gen-
erated by contractible loops. More specifically, let

C0(M) := {μγ ∈ C(M) : γ is a contractible abs. cont. loop}
and let us consider its closure H0(M) := C0(M) ⊂ C(M) ⊂M�. We call these
measures “holonomic measures with zero homotopy type”.

Remark 2. Recalling the definition of cu(H) and observing that for any given
μ ∈ H0(M) there exists a sequence μn ∈ C0(M) such that μn → μ and∫

Ldμn −→
∫

Ldμ, then:

cu(H) := − inf
μ∈H0(M)

AL(μ).

Dias Carneiro [4] proved that Mather’s minimizing measures for L have
support contained in the energy level c(H). Our first proposition establishes a
weaker result for the action-minizimizing measure with zero homotopy type.
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Proposition 1. If μ ∈ H0(M) is such that AL(μ) = −cu(H), then∫
E(x, v) dμ = cu(H),

where E(x, v) = ∂L
∂v (x, v) · v − L(x, v) is the energy.

Proof. Let λ ∈ R and consider a new probability measure μλ defined by∫
fdμλ =

∫
f(x, λv)dμ ∀ f ∈ C0

� (TM).

Clearly μλ ∈ H0(M). In fact, since μ ∈ H0, then there exist μγn
→ μ with

γn : [0, Tn]→M contractible loops. Let us define μλ
γn

by
∫

fdμλ
γn

=
1
Tn

∫ Tn

0

f(γn(t), λγ̇n(t))dt=
λ

Tn

∫ Tn
λ

0

f(xn(t), ẋn(t))dt ∀ f ∈ C0
� (TM),

where xn(t) = γn(λt). Clearly xn are contractible and moreover μxn
= μλ

γn
→

μλ since

1
Tn

∫ Tn

0

f(γn(t), λγ̇n(t)) dt −→
∫

f(x, λv)dμ =
∫

fdμλ.

Now, set F (λ) =
∫

Ldμλ =
∫

L(x, λv) dμ and observe that F ′(1) = 0
since μ is action-minimizing in H0. Moreover,

0 = F ′(1) =
∫

∂L

∂v
(x, v) · v dμ

=
∫

(E(x, v) + L(x, v)) dμ

=
∫

E(x, v) dμ− cu(H).

�
This naturally raises:

Question III. Is it true that action minimizing measures with zero homotopy
are supported on the energy level Σcu(H)? In other words: what is the energy
of their ergodic components?

An easy argument with the Tonelli theorem, to be supplied below during
the proof of Theorem A, shows that there always exist minimizing invariant
measures with zero homotopy which are supported on the energy level Σcu(H).
Proof of Theorem A Let us assume by contradiction that Σcu(H) is of virtual
contact type. Then, using Legendre duality:

L(x, v) + cu(H)
∣∣∣
Σcu(H)

= L(x, v) + E(x, v)
∣∣∣
Σcu(H)

=
∂L

∂v
(x, v) · v

= Θ(XE(x, v))
∣∣∣
Σcu(H)
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where XE is the Euler–Lagrange vector field and Θ is the pull-back of the
canonical 1-form λ of T ∗M via the Legendre transform.

Let Σ̃cu(H)
π−→ Σcu(H) be the universal cover. Since dimM ≥ 3, this is

the same as lifting everything to M̃ and consider the energy level cu(H) of
the lifted system (in fact, E−1(k) −→ M̃ is a sphere fibration over a simply
connected manifold with simply connected fibers).

We are assuming that there exists α on Σ̃cu(H) such that dΘ̃ = dα, with
‖α‖C0 <∞ and α(X̃E) ≥ ε. Moreover, since π1(Σ̃cu(H)) = 0, then there exists
a smooth function f : Σ̃cu(H) −→ R such that

Θ̃ = α− df on Σ̃cu(H).

Extend f to a smooth function on TM̃ . Then, Θ̃ + df is defined on all TM̃

and has the property that (Θ̃ + df)(X̃E) ≥ ε on Σ̃cu(H).

Lemma 1. There exists δ > 0 such that Θ̃(X̃E)+df(X̃E) ≥ ε
2 on E−1

(
cu(H)−

δ, cu(H) + δ
)
.

We shall prove this lemma after completing the proof of Theorem A.
Let us now consider a sequence γn : [0, Tn] −→ M of closed contractible

Tonelli minimizers on M (i.e., each of them minimizes the action among con-
tractible loops with the same time length) such that

0 ≤ 1
Tn

AL+cu(H)(γn) −→ 0.

Each γn has energy kn. By a-priori compactness estimates [7, Lemma 3.2.1],
these kn are bounded. In fact, by superlinearity of L we know that there exists
D > 0 such that L(x, v) ≥ ‖v‖ −D for each (x, v) ∈ TM . Therefore,

0←− AL+cu(H)(γn) ≥ 1
Tn

∫ Tn

0

(‖γ̇n‖ −D + cu(H)) .

Applying the mean value theorem, we conclude that there are tn0 ∈ [0, Tn] such
that ‖γ̇n(tn0 )‖ ≤ K uniformly. Hence, using the fact that the energy is constant
along the orbits of the flow, we can conclude that the sequence kn is bounded.
By passing to a subsequence, if necessary, we can assume that kn → k and

lim
n→+∞

1
Tn

AL(γn) = −cu(H).

Let μ ∈ H0 be a weak∗-limit of μγn
. Clearly supp μ ⊂ E−1(k) and AL(μ) =

−cu(H). By Proposition 1 if follows that k = cu(H), so kn → cu(H).

Remark 3. Observe that we have proved the existence of invariant minimizing
measures with zero homotopy contained in the energy level cu(H).

For n sufficiently large, Γn(t) := (γn(t), γ̇n(t)) ∈ E−1(cu(H)− δ, cu(H)+
δ). Thus,
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1
Tn

AL+cu(H)(γn) =
1
Tn

AL+kn
(γn) + (cu(H)− kn)

=
1
Tn

∫
Γn

Θ(XE) + (cu(H)− kn).

Using Lemma 1, we obtain
1
Tn

AL+cu(H)(γn) ≥ ε

2
+ (cu(H)− kn).

Taking the limit as n goes to +∞, we obtain a contradiction:

0 = lim
n→+∞

1
Tn

AL+cu(H)(γn) ≥ lim
n→+∞

(ε

2
+ (cu(H)− kn)

)
=

ε

2
.

�
Let us now prove Lemma 1.

Proof of Lemma 1 We shall choose δ later. For the moment, let us consider a
neighborhood of Σcu(H) so that the following map is well defined

π : E−1
(
cu(H)− δ, cu(H) + δ

) −→ Σcu(H) s.t. π|E−1(cu(H)) = Id.

Lift this to TM̃ and denote it by π̃. Let us extend f : Σ̃cu(H) −→ R by
considering f ◦ π̃. We want to show that we can choose δ > 0 such that:

Θ̃(X̃E) + df(dπ̃(X̃E)) ≥ ε

2
on E−1(cu(H)− δ, cu(H) + δ).

For this, just note that there exists δ > 0 such that:

|Θ̃(X̃E)(x, v)− Θ̃(X̃E)(π̃(x, v))| ≤ ε

10
|dfπ̃(x,v)(dπ̃(X̃E))(x, v)− dfπ̃(x,v)(X̃E)(π(x, v))| ≤ ε

10
because |df |C0 ≤ K, for some K > 0, from the definition of being virtually
contact.

Thus for (x, v) ∈ Ẽ−1
(
cu(H)− δ, cu(H) + δ

)
we have:

(Θ̃(X̃E) + df(dπ̃(X̃E))(x, v) = Θ̃(X̃E)(x, v)− Θ̃(X̃E)(π̃(x, v))

+dfπ̃(x,v)(dπ̃(X̃E))(x, v)

− dfπ̃(x,v)(X̃E)(π(x, v))

+ Θ̃(X̃E) + df(X̃E)(π(x, v))

≥ − ε

10
− ε

10
+ ε =

8ε

10
>

ε

2
.

�

3. Symplectic invariance of cu(H)

In this section we prove the first item in Theorem B.

Proposition 2. If Ψ : T∗M −→ T∗M is a symplectomorphism such that H ◦
Ψ−1 is still of Tonelli type, then cu(H) = cu(H ◦Ψ−1).
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Proof. Let k < cu(H). It follows from the definition of cu(H) (see Sect. 1.1)
that there exists a closed absolutely continuous contractible curve σ : [0, T ]→
M such that AL+k(σ) < 0. A-priori, this curve might not be an orbit, but
applying Tonelli’s theorem [16,19] we can find a closed contractible minimizer
(and hence an orbit for the flow) γ : [0, T ]→M such that

AL+k(γ) ≤ AL+k(σ) < 0.

Let Γ :=
(
γ, ∂L

∂v (γ, γ̇)
)

denote the image of this orbit in T∗M . Clearly, Γ
is a flow line associated to the Hamiltonian vector field of H. Since Ψ is a
symplectomorphism, then Ψ(Γ) will be a flow line for H ◦ Ψ−1. If we denote
by γ′ := π

(
Ψ(Γ)

)
, where π : T∗M → M is the canonical projection, then

(γ′, γ̇′) is an orbit of the Euler–Lagrange flow of L′, where L′ is the Lagrangian
associated to H ◦Ψ−1, and

Ψ(Γ) =
(

γ′,
∂L′

∂v
(γ′, γ̇′)

)
.

Claim. AL+k(γ) = AL′+k(γ′).

In fact, using Fenchel–Legendre duality and the fact that the Hamiltonian
is constant along the flow lines, we obtain (recall that ω = dλ):

AL′+k(γ′) =
∫ T

0

[L′(γ′, γ̇′) + k] dt

=
∫

Ψ(Γ)

λ +
∫ T

0

[k −H ′(Ψ(Γ)(t))] dt

=
∫

Γ

Ψ∗λ +
∫ T

0

[k −H(Γ(t))] dt

=
∫

Γ

(Ψ∗λ− λ) +
∫

Γ

λ +
∫ T

0

[k −H(Γ(t))] dt

=
∫

Γ

(Ψ∗λ− λ) +
∫ T

0

[L(γ, γ̇) + k] dt

=
∫

Γ

(Ψ∗λ− λ) + AL+k(γ).

Observe now that Ψ is a symplectomorphism, i.e., Ψ∗ω = ω, therefore Ψ∗λ−λ
is a closed 1-form. Hence, using that Γ is contractible, we can conclude that∫
Γ
(Ψ∗λ− λ) = 0. This concludes the proof of the claim.

It follows now from the definition of cu, that cu(H ◦Ψ−1) ≥ cu(H). The
reversed inequality is proved in the same way, using that Ψ is invertible. �

4. Action-minimizing properties in the universal cover

In this section we would like to study the action-minimizing properties of the
energy level corresponding to the Mañé critical value of the universal cover. We
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refer the reader to [7,13,25] for a more comprehensive introduction on Aubry–
Mather–Mañé–Fathi theory in the classical (compact) setting. The main dif-
ference (and difficulty) in this context is that the lift of the energy level to the
universal cover is non-compact anymore (see also [14]).

4.1. Peierls barrier

Let us denote by H̃ the lift of the Hamiltonian to the universal cover, namely
H̃ := H ◦ dΠu. Similarly, L̃ will represent the associated Lagrangian. As done
by Mather [20], we want to study the action-minimizing properties of this
system and define the so-called Peierls barrier associated to H̃.

Given x̃1, x̃2 ∈ M̃ and T > 0, we define:

hT
H̃

(x̃1, x̃2) := inf
∫ T

0

L̃(γ(t), γ̇(t)) dt, (2)

where the infimum is over all absolutely continuous curves γ : [0, T ]→ M̃ such
that γ(0) = x̃1 and γ(T ) = x̃2. It follows from Tonelli theorem (it holds also
in the non-compact case, assuming that L is superlinear [7]) that this infimum
is actually a minimum. The Peierls barrier is defined as follows:

h
H̃

(x̃1, x̃2) := lim inf
T→+∞

[hT
H̃

(x̃1, x̃2) + cu(H)T ]. (3)

One can check that h
H̃

(x̃1, x̃2) > −∞ for any x̃1, x̃2 ∈ M̃ . Whilst in the
compact case this quantity is always finite [13,20], in the non-compact case it
may be infinite. However, it is easy to check that if this barrier is either finite
everywhere, or identically equal to +∞.

Lemma 2. If there exist x̃1, x̃2 ∈ M̃ such that h
H̃

(x̃1, x̃2) < +∞, then h
H̃

is
finite everywhere.

Proof. Let z̃1, z̃2 ∈ M̃ . Consider the shortest unit-speed geodesics connecting
z̃1 to x̃1 and x̃2 to z̃2, and denote them respectively by σi and σf . Moreover,
let

A := sup
‖ṽ‖=1,x̃∈M̃

L̃(x̃, ṽ) = sup
‖v‖=1,x∈M

L(x, v) < +∞.

Since h
H̃

(x̃1, x̃2) < +∞, then there exist γn : [0, Tn] → M̃ , with Tn → +∞,
such that γn(0) = x̃1, γn(Tn) = x̃2 and

AL̃+cu(H)(γn) −→ h
H̃

(x̃1, x̃2) as n→ +∞.

Let T̃n := Tn + d(x̃1, z̃1) + d(x̃2, z̃2). We define new curves σn : [0, T̃n] → M̃
connecting z̃1 to z̃2, by σn := σi ∗ γn ∗ σf . Then:
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hT̃n

H̃
(z̃1, z̃2) + cu(H)T̃n ≤ AL̃+cu(H)(σn)

= AL̃+cu(H)(σi) + AL̃+cu(H)(γn) + AL̃+cu(H)(σf )

≤ AL̃+cu(H)(γn) + [A + cu(H)](d(x̃1, z̃1) + d(x̃2, z̃2)).

Therefore:

h
H̃

(z̃1, z̃2) ≤ lim inf
n→∞ (hT̃n

H̃
(z̃1, z̃2) + cu(H)T̃n)

≤ lim inf
n→∞ (AL̃+cu(H)(γn) + [A + cu(H)](d(x̃1, z̃1) + d(x̃2, z̃2)))

= h
H̃

(x̃1, x̃2) + [A + cu(H)](d(x̃1, z̃1) + d(x̃2, z̃2)) <∞.

�

Remark 4. It is not difficult to construct an example of a Tonelli Lagrangian on
a non-compact manifold, whose Peierls barrier is identically +∞. For example
(see [7] for more details) one could consider

L : TR
2 −→ R

(x, v) 	−→ 1
2
‖v‖2 + U(x)

where ‖ · ‖ denotes the euclidean norm on R
2 and U(x) is a smooth function

such that U(x) ≥ 0 for all x, U(x) = 1
‖x‖ for ‖x‖ ≥ 2 and U(x) = 2 for

0 ≤ ‖x‖ ≤ 1. However this Lagrangian is not a lift of a Lagrangian on a closed
surface (see also Question II in the Introduction).

Let us prove that the property of having a finite Peierls barrier is some-
how simplectically invariant. Namely, if Ψ : T∗M −→ T∗M is a symplecto-
morphism such that H ′ := H ◦ Ψ−1 is still of Tonelli type, and we denote
by H̃ ′ and L̃′ respectively the lifts of this Hamiltonian and the corresponding
Lagrangian to the universal cover, then the following is true.

Theorem 1. h
H̃

is finite if and only if h
H̃′ is finite.

Proof. It suffices to prove that h
H̃

being finite implies that h
H̃′ is also finite.

Using the invertibility of Ψ, one can similarly prove the other implication.
Suppose that there exist x̃1, x̃2 ∈ M̃ such that h

H̃
(x̃1, x̃2) < +∞. Then,

we can find γn : [0, Tn]→ M̃ , with Tn → +∞, such that γn(0) = x̃1, γn(Tn) =
x̃2 and

AL̃+cu(H)(γn) −→ h
H̃

(x̃1, x̃2) as n→ +∞. (4)

Up to applying Tonelli theorem, we can assume that each γn is a Tonelli
minimizer and hence an orbit of the flow. In particular, since they have
bounded actions, using [7, Lemma 3-2.1] one can deduce that their veloci-
ties are bounded, i.e., ‖γ̇n(t)‖ ≤ C for all n and for all t ∈ [0, Tn]. Let us now
consider the corresponding flow lines for the lifted Hamiltonian:

Γn(t) :=
(

γn(t),
∂L

∂v
(γn(t), γ̇n(t))

)
.
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Since Ψ̃ is a symplectomorphism, then Γ′
n := Ψ̃(Γn) is still an orbit of H̃ ′.

In particular, since γ̇n(0) and γ̇n(Tn) all lie in a compact region, then the
endpoints Γ′

n(0) and Γ′
n(Tn) lie in a compact region of T∗M̃ . Therefore, up to

extracting a convergent subsequence, we can assume that the endpoints of the
projected curves γ′

n := πΓ′
n converge as n→ +∞:

γ′
n(0)→ z̃1 and γ′

n(Tn)→ z̃2. (5)

Let us now consider the shortest unit-speed geodesics connecting z̃1 to γ′
n(0)

and γ′
n(Tn) to z̃2, denoting them respectively σn,i and σn,f . Let T̃n := Tn +

d(γ′
n(0), z̃1) + d(γ′

n(Tn), z̃2) and define a new sequence of curves σn : [0, T̃n]→
M̃ connecting z̃1 to z̃2, by σn := σn,i∗γ′

n∗σn,f . Then (using also Proposition 2):

hT̃n

H̃′(z̃1, z̃2) + cu(H ′)T̃n ≤ AL̃′+cu(H′)(σn)

= AL̃′+cu(H′)(σn,i)+AL̃′+cu(H′)(γ
′
n)+AL̃′+cu(H′)(σn,f )

≤ AL̃′+cu(H′)(γ
′
n) + [A + cu(H ′)](d(γ′

n(0), z̃1)

+d(γ′
n(Tn), z̃2)),

where

A := sup
‖ṽ‖=1,x̃∈M̃

L̃(x̃, ṽ) = sup
‖v‖=1,x∈M

L(x, v) < +∞.

Let λ̃ denote the lift of the Liouville form λ to T∗M̃ . Observe that since
Ψ̃ is a symplectomorphism, then Ψ̃∗λ̃ − λ̃ = dF̃ for some F : T∗M̃ → R. We
want to show that

AL̃′+cu(H′)(γ
′
n) = AL̃+cu(H)(γn) + F (Γn(Tn))− F (Γn(0)).

Using that the Hamiltonian is constant along the orbits and that Γn(Tn)
and Γn(0) all lie in the same compact region, we obtain:

AL̃′+cu(H′)(γ
′
n) =

∫ Tn

0

(L̃′(γ′
n, γ̇n

′) + cu(H ′)) dt

=
∫

Γ′
n

λ̃ +
∫ Tn

0

(cu(H ′)− H̃ ′(Γ′
n(t))) dt

=
∫

Γn

Ψ̃∗λ̃ +
∫ Tn

0

(cu(H)− H̃(Γn(t))) dt

=
∫

Γn

(Ψ̃∗λ̃− λ̃) +
∫

Γn

λ̃ +
∫ Tn

0

(cu(H)− H̃(Γn(t))) dt

=
∫

Γn

(Ψ̃∗λ̃− λ̃) +
∫ Tn

0

(L̃(γn, γ̇n) + cu(H)) dt

=
∫

Γn

(Ψ̃∗λ̃− λ̃) + AL̃+cu(H)(γn)

= AL̃+cu(H)(γn) + F (Γn(Tn))− F (Γn(0))

≤ AL̃+cu(H)(γn) + const.
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Then, using (4), (5) and Proposition 2, we can conclude:

h
H̃′(z̃1, z̃2) ≤ lim inf

n→∞ (hT̃n

H̃′(z̃1, z̃2) + cu(H ′)T̃n)

= lim inf
n→∞ (AL̃′+cu(H′)(γ

′
n) + [A + cu(H ′)](d(γ′

n(0), z̃1)

+d(γ′
n(Tn), z̃2)))

≤ lim inf
n→∞ (AL̃+cu(H)(γn) + const)

= h
H̃

(x̃1, x̃2) + const < +∞.

�
4.2. Aubry set

In the study of the dynamics of the system and its action-minimizing prop-
erties, a very important rôle is played by the set in which the Peierls barrier
vanishes:

A
H̃

:= {x̃ ∈ M̃ : h
H̃

(x̃, x̃) = 0}.
This set is usually called projected Aubry set (or Peierls set) of H̃ (see [13,16,
20]).

It is important to point out that while in the compact case this set is
always non-empty, in the non-compact case A

H̃
might be empty, even if the

Peierls barrier is finite, as it is shown in Sect. 6.

Remark 5. It is straightforward to check the following behaviour under cov-
erings p : M1 →M2: c1 ≤ c2, h1 ≥ h2 and pA1 ⊂ A2, where ci, hi and Ai are
respectively the critical value, the Peierls barrier and the Aubry set in Mi.

We want to show that being empty or not, is also a symplectic invariant
property of the system, in the same sense as we explained above.

Theorem 2. Let Ψ : T∗M −→ T∗M be a symplectomorphism such that H ′ :=
H ◦Ψ−1 is still of Tonelli type. Then, A

H̃
�= ∅ if and only if A

H̃′ �= ∅.
Proof. We shall prove that A

H̃
�= ∅ implies A

H̃′ �= ∅. Using the invertibility
of Ψ, one can similarly prove the other implication. Suppose that x̃ ∈ A

H̃
,

i.e., there exists x̃ ∈ M̃ such that h
H̃

(x̃, x̃) = 0. Then, we can find closed loops
αn : [0, Tn]→ M̃ , with Tn → +∞, such that αn(0) = x̃ and

AL̃+cu(H)(αn) −→ 0 as n→ +∞.

These curves αn are not necessarily closed orbits. Therefore, for any given Tn,
we can apply Tonelli Theorem for closed contractible loops in M with period
Tn and obtain closed orbits that we can lift to M̃ . We shall denote these new
orbits by γn : [0, Tn] → M̃ . Observe that since they are Tonelli minimizers in
their respective class, then

0 ≤ AL̃+cu(H)(γn) ≤ AL̃+cu(H)(αn) −→ 0 as n→ +∞. (6)

It is important to notice that it is not true anymore that γn(0) = x̃, but we
can nevertheless assume that these “end-points” are all contained in a compact
region of M̃ . In particular, since they have bounded actions, using [7, Lemma
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3-2.1] one can deduce that their velocities are bounded, i.e., ‖γ̇n(t)‖ ≤ C for
all n and for all t ∈ [0, Tn]. Let us now consider the corresponding flow lines
for the lifted Hamiltonian:

Γn(t) :=

(
γn(t),

∂L̃

∂v
(γn(t), γ̇n(t))

)
.

Since Ψ̃ is a symplectomorphism, then Γ′
n := Ψ̃(Γn) is still a closed orbit of

H̃ ′. In particular, since all γ̇n(0) lie in a compact region, then all Γ′
n(0) lie in a

compact region of T∗M̃ . Therefore, up to extracting a convergent subsequence,
we can assume that

γ′
n(0)→ z̃ as n→ +∞ , (7)

where γ′
n := πΓ′

n. Let us now consider the shortest unit-speed geodesics
connecting z̃ to γ′

n(0) and γ′
n(0) to z̃, denoting them respectively σn,i and

σn,f . Let T̃n := Tn + 2d(γ′
n(0), z̃) and define a new sequence of closed curves

σn : [0, T̃n]→ M̃ , by σn := σn,i ∗ γ′
n ∗ σn,f . Then (using also Proposition 2):

hT̃n

H̃′(z̃, z̃) + cu(H ′)T̃n ≤ AL̃′+cu(H′)(σn)

= AL̃′+cu(H′)(σn,i) + AL̃′+cu(H′)(γ
′
n) + AL̃′+cu(H′)(σn,f )

≤ AL̃′+cu(H′)(γ
′
n) + 2[A + cu(H ′)]d(γ′

n(0), z̃) ,

where

A := sup
‖ṽ‖=1,x̃∈M̃

L̃(x̃, ṽ) = sup
‖v‖=1,x∈M

L(x, v) < +∞.

If as before λ̃ denotes the lift of the Liouville form λ to T∗M̃ and F :
T∗M̃ → R is such that Ψ̃∗λ̃− λ̃ = dF̃ , then we want to prove that:

AL̃′+cu(H′)(γ
′
n) = AL̃+cu(H)(γn).

Using in fact that the Hamiltonian is constant along the orbits, we obtain:

AL̃′+cu(H′)(γ
′
n) =

∫ Tn

0

(L̃′(γ′
n, γ̇n

′) + cu(H ′)) dt

=
∫

Γ′
n

λ̃ +
∫ Tn

0

(cu(H ′)− H̃ ′(Γ′
n(t))) dt

=
∫

Γn

Ψ̃∗λ̃ +
∫ Tn

0

(cu(H)− H̃(Γn(t))) dt

=
∫

Γn

(Ψ̃∗λ̃− λ̃) +
∫

Γn

λ̃ +
∫ Tn

0

(cu(H)− H̃(Γn(t))) dt

=
∫

Γn

(Ψ̃∗λ̃− λ̃) +
∫ Tn

0

(L̃(γn, γ̇n) + cu(H)) dt

=
∫

Γn

dF̃ + AL̃+cu(H)(γn)

= AL̃+cu(H)(γn).
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Then, using (6), (7) and Proposition 2, we can conclude:

0 ≤ h
H̃′(z̃, z̃) ≤ lim inf

n→∞ (hT̃n

H̃′(z̃, z̃) + cu(H ′)T̃n)

= lim inf
n→∞ (AL̃′+cu(H′)(γ

′
n) + 2 [A + cu(H ′)]d(γ′

n(0), z̃))

= lim inf
n→∞ AL̃+cu(H)(γn) = 0.

Therefore, z̃ ∈ A
H̃′ . �

This concludes the proof of the first three items in Theorem B.

The projected Aubry set is closely related to the existence and the prop-
erties of viscosity solutions and subsolutions of Hamilton–Jacobi equation, as
pointed out by Fathi [13]. Let us recall the notion of viscosity subsolution,
supersolution and solution.

Let U be an open set of M . We shall say that a continuous function
u : U −→ R is a viscosity subsolution (resp. supersolution) of H̃(x, dxu) = k,
if for each C1 function φ : U −→ R satisfying φ ≥ u (resp. φ ≤ u), and
each point x0 ∈ U satisfying φ(x0) = u(x0), we have H̃(x, dx0φ) ≤ k (resp.
H̃(x, dx0φ) ≥ k). A function is a viscosity solution if it is both a viscosity
subsolution and a viscosity supersolution. Observe, that since H̃(x, p) is convex
and superlinear in p, it is well-know (see for instance [1]), that a function
u : U −→ R is a viscosity subsolution of H̃(x, dxu) = k if and only if it is
Lipschitz and H̃(x, dxu) ≤ k almost everywhere in U .

Remark 6. It turns out that cu(H) is the infimum of the k’s for which
H̃(x, dxu) = k admits a subsolution and the unique energy value in which
viscosity solutions exist [6,13]. In particular, a subsolution corresponding to
k = cu(H) is often called critical subsolution.

The relation between subsolutions and the projected Aubry set is
explained by the following result.

Theorem 3. (Fathi–Siconolfi [12]) For a point x0 ∈ M̃ , the following conditions
are equivalent:
i) the point x0 is in A

H̃
;

ii) every critical subsolution is differentiable at x0;
iii) there does not exist a critical subsolution u which is strict at x0,

i.e., H̃(x0, dx0u) < cu(H).

In particular, it is easy to deduce from the above theorem that on the
projected Aubry set the differential of critical subsolutions is prescribed.

Corollary 1. All critical subsolutions have the same differential on the projected
Aubry set.
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Proof. Suppose by contradiction that there exist two critical subsolutions u1

and u2, whose differentials do not coincide at some point x0 ∈ AH̃
, i.e., dx0u1 �=

dx0u2. Using the convexity in the fibers of H̃, it is easy to check that u1+u2
2 is

also a critical subsolutions. However, using the fact the strict convexity of H
in the fibers, we deduce that:

H̃

(
x0, dx0

(
u1 + u2

2

))
<

1
2
H̃ (x0, dx0u1) +

1
2
H̃ (x0, dx0u1) ≤ cu(H).

Therefore, u1+u2
2 is a critical subsolution which is strict at x0 ∈ AH̃

. This
clearly contradicts item (iii) in Theorem 3. �

Hence, if we denote by S
H̃

the set of critical subsolutions of H̃(x, dxu) =
cu(H), then we can consider the following intersection:

A∗
H̃

=
⋂

u∈S
H̃

{(x, dxu) : u is differentiable at x}.

This set is what is usually called the Aubry set. It follows from the above
discussion that π(A∗

H̃
) = A

H̃
, where π : T∗M̃ −→ M̃ denotes the canonical

projection. Therefore, it is a graph over the projected Aubry set and hence it
is non-empty if and only if A

H̃
is non-empty. Moreover, if it is non-empty, it

is closed (since the Peierls barrier is continuous) and invariant.

It is possible to provide a better description of the Aubry set, just in
terms of the Peierls barrier. In fact, it was proved by Fathi [13] that if h

H̃
is

finite, then for every x ∈M , hx
H̃

(·) := h
H̃

(x, ·) is a global viscosity solution of

H̃(x, dxu) = cu(H). Therefore, the Aubry set can be equivalently defined as:

A∗
H̃

=
{
(x, ∂2h(x, x)) : x ∈ A

H̃

}
.

We shall prove that this set is symplectically invariant in Sect. 5 (item
(4) in Theorem B).

5. Barrier in phase space

In this section we prove that A∗
H̃

is simplectically invariant thus completing
the proof of Theorem B. In the compact case this has been proven by Patrick
Bernard in [2]. In the following, we adapt his approach to this setting and
prove the following result.

Theorem 4. If Ψ : T∗M −→ T∗M is a symplectomorphism such that H ′ :=
H ◦Ψ is still of Tonelli type, then A∗

H̃′ = Ψ̃−1
(
A∗

H̃

)
.

As before, M̃ denotes the universal cover of M (compact connected
smooth manifold) and H̃ : T∗M̃ −→ R is the lift of a Tonelli Hamiltonian
H : T∗M −→ R, while ΦH̃

t is its Hamiltonian flow. As done in [2], let us define
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a Peierls barrier in the phase space. First of all, let us introduce the notion of
pre-orbit.

Definition 1. (Pre-orbit) Given X0,X1 ∈ T∗M̃ , we say that a sequence of
curves Y = (Yn), where Yn : [0, Tn]→ T∗M̃ , is a pre-orbit between X0 and X1

if:
i) for each n the curve Yn has a finite number Nn of discontinuities T i

n ∈
(0, Tn), such that T i

n < T i+1
n for all 1 ≤ i ≤ Nn. Moreover, we shall denote

T 0
n := 0 and TNn+1

n := Tn.
ii) For each n and for each s ∈ [0, T i+1

n − T i
n), Yn(T i

n + s) = ΦH̃
s (Yn(T i

n)).
We denote by Yn(T i+1

n −) := ΦH̃
T i+1

n −T i
n

(Yn(T i
n)) and we ask that Yn(Tn) =

Yn(TNn+1
n −).

iii) Tn −→ +∞ as n→ +∞.
iv) Yn(0) −→ X0 and Yn(Tn) −→ X1 as n → +∞. Moreover, if we denote

Δ(Yn) :=
∑Nn

i=1 dist (Yn(T i
n−), Yn(T i

n)), then Δ(Yn) −→ 0 as n → +∞
(dist (·, ·) denotes the distance on T ∗M̃ induced by the Riemannian metric
on M).

v) All curves Yn have equi-bounded energy, i.e., there exists K = K(Y ) ∈ R

such that H̃(Yn(s)) ≤ K for all n and for all s ∈ [0, Tn].

Remark 7. Observe that condition (v) in the above definition is different from
the one in [2]: it is needed because of the lack of compactness.

Let us now define what we mean by action of a pre-orbit. Let Y = (Yn)
be a pre-orbit. Then, the action of Y is given by:

A
H̃

(Y ) := lim inf
n→∞ A

H̃
(Yn),

where

A
H̃

(Yn) :=
∫ Tn

0

[λ̃Yn(t)(Ẏn(t))− H̃(Yn(t))] dt.

Lemma 3. If there exists a pre-orbit between X0 and X1, then H̃(X0) = H̃(X1).

Proof. Let Y = (Yn) be such a pre-orbit. Then, observing that H̃(Yn(T i
n)) =

H̃(Yn(T i+1
n −)), since the energy is constant along the orbits, we obtain:

H̃(X1)− H̃(X0) = lim
n→+∞ H̃(Yn(Tn))− H̃(Yn(0))

= lim
n→+∞

Nn∑
i=0

H̃(Yn(T i+1
n ))− H̃(Yn(T i

n))

= lim
n→+∞

Nn∑
i=0

H̃(Yn(T i+1
n ))− H̃(Yn(T i+1

n −))

= lim
n→+∞

Nn∑
i=1

H̃(Yn(T i
n))− H̃(Yn(T i

n−)),
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where in the last equality we used that Yn(TNn+1
n ) = Yn(Tn) = Yn(TNn+1

n −).
Since these orbits have bounded energy, then the Hamiltonian H̃ will be Lip-
schitz in this region (the region itself is not compact, but the value of H̃ here
depends only on the value of H on the projection of this region to T∗M , which
is compact). Then, denoting this Lipschitz constant by C we get:

H̃(X1)− H̃(X0) = lim
n→+∞

Nn∑
i=1

H̃(Yn(T i
n))− H̃(Yn(T i

n−))

≤ lim
n→+∞

Nn∑
i=1

C dist (Yn(T i
n), Yn(T i

n−))

= lim
n→+∞ C Δ(Yn) = 0.

�

Let us now define the equivalent of Peierls barrier (see [20]), but in the
phase space T∗M̃ . Given X0,X1 ∈ T∗M̃ let us denote by Y

H̃
(X0,X1) the set

of pre-orbits between X0 and X1. Notice that this set is empty if X0 and X1

are not in the same energy level. Then:

B
H̃

: T∗M̃ × T∗M̃ −→ R ∪ {+∞}
(X0,X1) 	−→ inf

Y ∈Y
H̃

(X0,X1)
A

H̃
(Y ),

setting B
H̃

(X0,X1) = +∞, whenever Y
H̃

(X0,X1) = ∅.

Proposition 3. For each t > 0 and X0,X1 ∈ T∗M̃ , the following equality holds:

B
H̃

(X0, X1) = B
H̃

(ΦH̃
t (X0), X1) +

∫ t

0

[λ̃
ΦH̃

s (X0)
(X

H̃
(ΦH̃

s (X0))) − H̃(ΦH̃
s (X0))] ds

and

B
H̃

(X0, Φ
H̃
t (X1)) = B

H̃
(X0, X1) +

∫ t

0

[λ̃
ΦH̃

s (X1)
(X

H̃
(ΦH̃

s (X1))) − H̃(ΦH̃
s (X1))] ds,

where X
H̃

(·) denotes the Hamiltonian vector field associated to H̃ and λ̃ the
lift of the Liouville form to T∗M̃ .

Proof. We only prove the first equality, since the second one can be proved
similarly. To each pre-orbit Y between X0 and X1, we associate the pre-orbit
Z between ΦH̃

t (X0) and X1 defined by

Zn : [0, Tn − t] −→ T∗M̃
s 	−→ Yn(s + t).

We obtain:

A
H̃

(Y ) = A
H̃

(Z) +
∫ t

0

[λ̃
ΦH̃

s (X0)
(X

H̃
(ΦH̃

s (X0)))− H̃(ΦH̃
s (X0))] ds.
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This implies that

B
H̃

(ΦH̃
t (X0), X1) ≤ B

H̃
(X0, X1) −

∫ t

0

[λ̃
ΦH̃

s (X0)
(X

H̃
(ΦH̃

s (X0))) − H̃(ΦH̃
s (X0))] ds.

In a similar way, we associate to each pre-orbit Z between ΦH̃(X0) and X1, the
pre-orbit Y between X0 and X1 defined by Yn(s) := ΦH̃

s−t(Zn(0)) for s ∈ [0, t]
and by Yn(s) := Zn(s− t) for s ∈ [t, Tn + t]. We obtain:

A
H̃

(Y ) = A
H̃

(Z) +
∫ t

0

[λ̃
ΦH̃

s (X0)
(X

H̃
(ΦH̃

s (X0)))− H̃(ΦH̃
s (X0))] ds.

This implies that

B
H̃

(X0, X1) ≤ B
H̃

(ΦH̃
t (X0), X1) +

∫ t

0

[λ̃
ΦH̃

s (X0)
(X

H̃
(ΦH̃

s (X0))) − H̃(ΦH̃
s (X0))] ds

and hence we conclude that equality holds. �

Proposition 4. Let Ψ : T∗M −→ T∗M be a symplectomorphim such that H ◦Ψ
is still of Tonelli type and let Ψ̃ : T∗M̃ −→ T∗M̃ be its lift to the universal
cover. Ψ̃ is exact and let us denote by S : T∗M̃ −→ R a primitive for Ψ̃∗λ̃− λ̃,
where λ̃ is the lift of the Liouville form of T∗M to T∗M̃ . Then,

B
H̃◦Ψ̃

(X0,X1) = B
H̃

(Ψ̃(X0), Ψ̃(X1)) + S(X0)− S(X1).

Proof. First of all, observe that Y = (Yn) is a pre-orbit of H̃ ◦ Ψ̃ between X0

and X1 if and only if Z := Ψ̃(Y ) = (Ψ̃(Yn)) is a pre-orbit of H̃ between Ψ̃(X0)
and Ψ̃(X1). As a consequence, it is enough to prove that

A
H̃◦Ψ̃

(Y ) = A
H̃

(Z) + S(X0)− S(X1). (8)

In fact, using the same notation as in Definition 1:

A
H̃

(Zn) =
Nn∑
n=0

∫ T i+1
n

T i
n

[λ̃Zn(t)(Żn(t))− H̃(Zn(t))] dt

=
Nn∑
n=0

∫ T i+1
n

T i
n

[(Ψ̃∗λ̃)Yn(t)(Ẏn(t))− (H̃ ◦ Ψ̃)(Yn(t))] dt

=
Nn∑
n=0

(∫ T i+1
n

T i
n

[λ̃Yn(t)(Ẏn(t))− (H̃ ◦ Ψ̃)(Yn(t))] dt

+
∫ T i+1

n

T i
n

(Ψ̃∗λ̃− λ̃)Yn(t)Ẏn(t) dt

)

= A
H̃◦Ψ̃

(Yn) +
Nn∑
n=0

∫ T i+1
n

T i
n

dSYn(t)(Ẏn(t)) dt

= A
H̃◦Ψ̃

(Yn) +
Nn∑
n=0

S(Yn(T i+1
n −))− S(Yn(T i

n))

= A
H̃◦Ψ̃

(Yn)+S(Yn(Tn))−S(Yn(0))+
Nn∑
n=1

S(Yn(T i
n−)−S(Yn(T i

n)).
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It is now sufficient to observe that the last term in the sum goes to zero
as n goes to infinity. In fact, using conditions (iv) and (v) in Definition 1, we
can conclude that there exists C > 0 such that:∣∣∣∣∣

Nn∑
n=1

S(Yn(T i
n−)− S(Yn(T i

n))

∣∣∣∣∣ ≤ CΔ(Yn) n→+∞−→ 0 ,

and this, together with the fact that Yn(Tn)→ X1 and Yn(0)→ X0, allows us
to conclude (8) and hence the proof of the proposition. �

Let us see how we can recover the original definition of Peierls barrier
(see (3)) from this barrier in the phase space. Recall the definitions of cu(H)
introduced in (1) and let us define

hk(x̃1, x̃2) := lim inf
T→+∞

(hT (x̃1, x̃2) + kT ) .

It follows from (3) that h = hcu(H). Then,

Proposition 5. For any q, q′ ∈ M̃ ,

hk(q, q′) = min
P ∈ T∗

qM̃

P ′ ∈ T∗
q′M̃

B
H̃−k

(P, P ′). (9)

In addition, when k = cu(H), if the minimum is reached at (P, P ′),
then P is a superdifferential of the function h(·, q′) at a point q and −P ′ is a
superdifferential of the function h(q, ·) at a point q′.

Proof. Let us first prove that if q, q′ ∈ M̃ , then B
H̃−k

(P, P ′) ≥ hk(q, q′) for

all P ∈ T∗
qM̃ and P ′ ∈ T∗

q′M̃ . If B
H̃−k

(P, P ′) = +∞, then there is nothing
to prove. Otherwise if B

H̃−k
(P, P ′) ∈ R (resp. B

H̃−k
(P, P ′) = −∞), for any

ε > 0 there exists a pre-orbit Y = (Yn)n, Yn : [0, Tn] −→ T∗M̃ such that
A

H̃−k
(Y ) ≤ B

H̃−k
(P, P ′) + ε (resp. A

H̃−k
(Y ) ≤ − 1

ε ).

Let us consider qn(s) := π(Yn(s)), where π : T∗M̃ −→ M̃ denotes the
canonical projection, and let hT (q, q′) := minγ∈CT (q,q′) AL̃(γ) be the finite
time potential as defined in (2), i.e., the minimal Lagrangian action of curves
in M̃ that connect q to q′ in time T > 0. These functions are equi-Lipschitz
on compact regions of M̃ [7, Proposition 3-4.1]. Then, we have:

A
H̃−k

(Yn) =
Nn∑
n=0

∫ T i+1
n

T i
n

(L(qn(s), q̇n(s)) + k) ds

≥
Nn∑
n=0

hT i+1
n −T i

n
(qn(T i

n), qn(T i+1
n −)) + k(T i+1

n − T i
n).

Let σi
n be a unit-speed shortest geodesic connecting qn(T i

n−) and qn(T i
n) and

let δi
n := dist (qn(T i

n−), qn(T i
n)). Adding and subtracting the action of these

geodesics, we obtain:
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A
H̃−k

(Yn) ≥
Nn∑
n=0

(hT i+1
n −T i

n
(qn(T i

n), qn(T i+1
n −)) + k(T i+1

n − T i
n)

±
∫ δn

0

(L̃ + k)(σi+1
n , σ̇i+1

n ) ds)

≥ hTn+
∑Nn

n=1 δi
n
(qn(0), qn(Tn)) + k(Tn +

Nn∑
n=1

δi
n)

+
Nn∑
n=1

∫ δn

0

(L̃ + k)(σi+1
n , σ̇i+1

n ) ds.

Therefore,

A
H̃−k

(Y ) = lim inf
n→+∞ A

H̃−k
(Yn) ≥ · · · ≥

≥ hk(q, q′) + lim inf
n→+∞

Nn∑
n=1

∫ δn

0

(L̃ + k)(σi+1
n , σ̇i+1

n ) ds.

Observe now that limn→+∞
∣∣∑Nn

n=1

∫ δn

0
(L̃ + k)(σi+1

n , σ̇i+1
n ) ds

∣∣ = 0. As usual,
this follows from property (iv) in Definition 1. This concludes the proof
of this inequality. Conversely, suppose that Tn → +∞ and hk(q, q′) =
limn→+∞ (hTn

(q, q′) + kTn). Let qn : [0, Tn] −→ M̃ be a Tonelli minimizer
and therefore one can consider the associated orbit of the Hamiltonian flow of
H̃, Yn(s) := (qn(s), pn(s)). Since the actions of these orbits are bounded, then
there exists a compact subset of T∗M̃ containing the images of these curves.
Up to extracting a subsequence, we can assume that:

Yn(0) −→ P ∈ T∗
qM̃ and Yn(Tn) −→ P ′ ∈ T∗

q′M̃.

Hence, the sequence Y = (Yn) is a pre-orbit between P and P ′. Moreover,

A
H̃−k

(Y ) = lim
n→+∞ A

H̃−k
(Yn) = lim

n→+∞

∫ Tn

0

(L(qn, q̇n) + k) ds = hk(q, q′)

and therefore B
H̃−k

(P, P ′) ≤ hk(q, q′) and this completes the proof of (9).

Suppose now that P ∈ T∗
qM̃ and P ′ ∈ T∗

q′M̃ are two points such that
h

H̃
(q, q′) = B

H̃−cu(H)
(P, P ′) and denote by q(s) the projection to M̃ of the

orbit ΦH̃
s (P ). Using Proposition 3 and the properties of h

H̃
, we obtain:

B
H̃−cu(H)

(P, P ′) = θ
H̃−cu(H)

(ΦH̃
s (P ), P ′)

+
∫ s

0

(
λ̃

ΦH̃
s (P )

(
X

H̃
(ΦH̃

s (P ))
)
− H̃(ΦH̃

s (P ) + cu(H))
)

dt

≥ h
H̃

(q(s), q′) +
∫ s

0

(
L̃(q(t), q̇(t)) + cu(H)

)
dt

≥ h
H̃

(q, q′) = B
H̃−cu(H)

(P, P ′).



Vol. 21 (2014) Symplectic and contact properties 701

Therefore, all the above inequalities are equalities and consequently our
curve is an action-minimizing curve:

h
H̃

(q, q′) = min
s

(h
H̃

(q(s), q′) +
∫ s

0

(L̃(q(t), q̇(t)) + cu(H)) dt).

It follows from Fathi’s work [13] that −P is then a superdifferential of the
function h

H̃
(·, q′) at q. Similarly for the other property. �

Let us denote now m̃(H) = infX∈T∗M B
H̃

(X,X). It is easy to check that
m̃(H) ∈ {−∞} ∪ [0,+∞].

Proposition 6. cu(H) = sup{k ∈ R : m̃(H − k) > −∞} = inf{k ∈ R :
m̃(H − k) ≥ 0}.

The proof simply follows from the definition of cu(H) (see Sects. 1.1 and
(1)) and Proposition 5.

Proposition 2, i.e., the symplectic invariance of cu(H), can now be proved
in a different way using this new characterization of cu(H) and Proposition 4.

Let us prove now the following result.

Proposition 7. A∗
H̃

= {P ∈ T∗M̃ : B
H̃−cu(H)

(P, P ) = 0}.

Remark 8. Observe that now Theorem 4 will follow from this proposition and
Proposition 4.

Proof. [⊇] Let P ∈ T∗M̃ such that B
H̃−cu(H)

(P, P ) = 0 and let us denote by
q = π(P ). Hence, h

H̃
(q, q) ≤ 0 and therefore h

H̃
(q, q) = 0. This implies that

q ∈ A
H̃

and consequently h
H̃

(q, ·) is differentiable at q and (q, ∂2hH̃
(q, q)) ∈

A∗
H̃

. Now, recall from Proposition 5 that since B
H̃−cu(H)

(P, P ) = h
H̃

(q, q),
then P is a superdifferential of h

H̃
(q, ·) at q and hence P = ∂2hH̃

(q, q).
[⊆] Let P ∈ A∗

H̃
, then h

H̃
(q, q) = 0, where q = π(P ), and h

H̃
(q, ·) and

h(·, q) are both differentiable at q. Therefore, P = ∂2hH̃
(q, q) = −∂1hH̃

(q, q).
In particular we know from Proposition 5 that if X,X ′ ∈ T∗M̃ are such that
B

H̃−cu(H)
= h

H̃
(q, q), then −X is a superdifferential of h

H̃
(q, ·) at q and X ′ is

superdifferential of h
H̃

(·, q) at q. Hence, X = X ′ = ∂2hH̃
(q, q), which concludes

the proof. �

Question IV. Similar questions might be also asked for the Mañé set associated
to H̃: is it true that it is symplectic invariant? The main problem in proving
this is represented by the fact that, differently from what happens in the compact
case, in our setting the Aubry set might be empty. However, if the Aubry set
is non-empty, then the proof would follow essentially what already done in
Bernard’s article [2, Section 2.10 and Corollary 3.7].
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6. Some examples

In this section we determine the Aubry set of the universal cover in some
examples. We also exhibit invariant measures with zero homotopy in cases
where cu < ca. Before we describe the examples it is convenient to state and
prove a simple lemma that will allow us to compute the Peierls barrier.

Let M be a closed manifold with a Tonelli Lagrangian L and fix T > 0.
By Tonelli’s theorem, there exists a closed contractible orbit τ : [0, T ] → M
which minimizes the action AL over the free loop space of closed contractible
curves defined on [0, T ]. As before let Πu : M̃ →M be the universal cover.

Lemma 4. Let x ∈ M̃ be such that Πu(x) ∈ τ([0, T ]). Then

hT
H̃

(x, x) = AL(τ).

Proof. If γ : [0, T ] → M̃ is an absolutely continuous loop based at x, then
obviously Πu ◦ γ is a closed contractible curve in M and

AL(γ) ≥ AL(τ).

Since τ lifts to a closed loop based at x, then the lemma follows
immediately. �

All the Lagrangians considered here have the form

L(x, v) =
1
2
|v|2x + θx(v)

for some Riemannian metric | · |x and a smooth 1-form θ. The correspond-
ing Hamiltonian is H(x, p) = 1

2 |p − θx|2x. These examples have already been
considered in [5] but their Aubry sets and Peierls barriers were not computed
there.

6.1. Example with cu = ca but AH̃ = ∅
Let G be the 3-dimensional Heisenberg group of matrices⎛

⎝ 1 x z
0 1 y
0 0 1

⎞
⎠ ,

where x, y, z ∈ R. If we identify G with R
3, then the product is

(x, y, z) � (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′).

We let Γ be the lattice of those matrices with x, y, z ∈ Z. Then M = Γ \G is
a closed 3-dimensional nilmanifold. We consider the Lagrangian

L =
1
2
(ẋ2 + ẏ2 + (ż − xẏ)2) + ż − xẏ.

It is easy to check that L is invariant under the left action of G, hence it
descends to M . Various properties of this systems were proved in [5]. Here we
need:
(1) cu = ca = 1/2 ([5, Lemma 6.8]);



Vol. 21 (2014) Symplectic and contact properties 703

(2) there is a closed contractible orbit with energy k > 0 if and only if k < 1/2.
Moreover the (prime) closed contractible orbits with energy k have AL+k-
action equal to 2π(1 − √1− 2k) and period T = 2π/(

√
1− 2k), see [5,

Lemma 6.7] (with the notation of [5], Ω(v) corresponds precisely to the
AL+k-action, as it is easy to check).

We now show:

Lemma 5. For any x ∈ R
3, h

H̃
(x, x) = 2π.

Proof. Since G acts transitively, the function x 	→ h
H̃

(x, x) is constant.
Let τT be one of the prime closed orbits described in item (2) above.

Then

AL+1/2(τT ) = AL+k(τT ) + (1/2− k)T = 2π
(
1− π

T

)
.

Using item (2) above, we can list all closed contractible orbits with period T :

• constant curves defined on [0, T ];
• τT ;
• iterates nτT/n where n is a positive integer such n ≤ T/2π (the reason

for this latter condition comes from the fact that, as remarked before, only
energy levels with k < 1/2 contain such orbits and their periods are deter-
mined by the energy itself).

The constant curves have AL+1/2-action equal to T/2 and the iterates
have action AL+1/2(nτT/n) = 2πn

(
1− nπ

T

)
. Hence for T large the τT are the

Tonelli minimizers of the action on the free loop space; in fact, if T is large,
2πn

(
1− nπ

T

)
> 2π

(
1− π

T

)
for 1 < n ≤ T/2π. By Lemma 10 we conclude

that for all T large

hT
H̃

(x, x) + T/2 = 2π
(
1− π

T

)

and the lemma follows by letting T go to infinity. �

Besides showing that h
H̃

< ∞ this also shows that A
H̃

= ∅ as claimed.
On the other hand, on the abelian cover M , we have:

Lemma 6. AH = M .

Proof. Let Z ⊂ Γ be the center of Γ. It consists of all elements of the form
(0, 0, n) for n ∈ Z. Then the abelian cover M = Z \G. Note that

L + 1/2 =
1
2
(ẋ2 + ẏ2 + (ż − xẏ + 1)2)

hence the curves t 	→ (x, y, z−t) are solutions to the Euler–Lagrange equations
and have energy 1/2. They project to closed curves in M with period 1 and
have zero AL+1/2-action. It follows that hH(p, p) = 0 for all p ∈M . �
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6.2. Example with cu < ca and AH̃ = ∅
In [21] the authors provided an example of a Tonelli Lagrangian on a closed
orientable surface of genus two for which cu < ca. It is possible to construct
many other examples of this kind also in higher dimension, as it was shown in
[5]. Here we discuss a homogeneous example considered in [5, Section 6.3].

We identify PSL(2, R) with SH, the unit sphere bundle of the hyperbolic
plane H := R × (0,+∞) with the usual Poincaré metric of curvature −1,
given by: ds2 = 1

y2 (dx2 + dy2). We consider a cocompact lattice Γ and we let
M := Γ\PSL(2, R).

We consider coordinates (x, y, θ) in SH, where (x, y) represents points
in H, while θ parametrizes the circle fibres. Moreover, we endow SH with its
Sasaki metric:

ds2 =
1
y2

(dx2 + dy2 + (ydθ + dx)2).

The 1-form dθ + dx
y is left-invariant, hence the following Lagrangian is also

left-invariant

L =
1

2y2
(ẋ2 + ẏ2 + (yθ̇ + ẋ)2) + θ̇ +

ẋ

y

and therefore it descends to M .
Various properties of this systems were proved in [5]. Here we need:

(1) cu = 1/4 and ca = 1/2 ([5, Lemma 6.11]);
(2) there is a closed contractible orbit with energy k > 0 if and only if k < 1/4.

Moreover the (prime) closed contractible orbits with energy k have AL+k-
action equal to π(1 − √1− 4k) and period T = 2π/(

√
1− 4k), see [5,

Lemma 6.14].
Observe that PSL(2, R) = SH is not simply connected; this will cause

no problem though.
We now show:

Lemma 7. For any x ∈ S̃H, h
H̃

(x, x) = π.

Proof. Since P̃SL(2, R) acts transitively, the function x 	→ h
H̃

(x, x) is con-
stant.

Let τT be one of the prime closed orbits described in item (2) above.
Then

AL+1/4(τT ) = AL+k(τT ) + (1/4− k)T = π − π
√

1− 4k

2
= π − π2

T
.

Using item (2) above we can list all closed contractible orbits with period T :
• constant curves defined on [0, T ];
• τT ;
• iterates nτT/n where n is a positive integer such n ≤ T/2π (the reason

for this latter condition comes from the fact that, as remarked before, only
energy levels with k < 1/4 contain such orbits and their periods are deter-
mined by the energy itself).
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The constant curves have AL+1/4-action equal to T/4 and the iterates
have action AL+1/4(nτT/n) = nπ(1 − nπ

T ). But, for T large, nπ(1 − nπ
T ) >

π(1− π
T ) for 1 < n ≤ T/2π. Hence for T large the τT are the Tonelli minimizers

of the action on the free loop space and by Lemma 10 we conclude that for all
T large

hT
H̃

(x, x) + T/4 = π(1− π

T
)

and the lemma follows by letting T go to ∞. �
As in the previous example, besides showing that h

H̃
<∞ this also shows

that A
H̃

= ∅ as claimed.

Minimizing measures with zero homotopy We now describe, in this specific
example, all ergodic minimizing invariant measures with zero homotopy. Let
μ be such a measure. Since cu = 1/4 and μ is ergodic, its support must be
contained in the energy level E = 1/4 (cf. Proposition 1). Recall that the
corresponding Hamiltonian vector field is given by (see [5, Section 6.3]):

XH =

⎧⎨
⎩

ẋ = y(ypx − pθ), ṗx = py,
ẏ = y2py, ṗy = (−ypx + pθ)(px + 1/y)− yp2

y,

θ̇ = 2pθ − ypx, ṗθ = 0.

Then, the function f = θ̇ + ẋ/y is clearly a first integral of the system
hence it must be a constant a on the support of μ. Using that μ is minimizing
and the explicit form of L = E + f we deduce

AL(μ) = −1/4 = 1/4 + a

and thus a = −1/2. To describe the flow for k = 1/4 and a = −1/2 it is easier
to pass to the Hamiltonian setting and introduce left-invariant coordinates
(x, y, θ, pα, pβ , pγ) in T ∗PSL(2, R) as in [5, Section 6.3]. If we let

pα = (ypx − pθ) cos θ + ypy sin θ,

pβ = −(ypx − pθ) sin θ + ypy cos θ,

pγ = pθ

then

H =
1
2
(pα

2 + pβ
2 + (pγ − 1)2).

In terms of these left-invariant coordinates, the Hamiltonian vector field
becomes (see [5, Section 6.3]):

XH =

⎧⎨
⎩

ẋ = y(pα cos θ − pβ sin θ), ṗα = 2pβpγ + pβ ,
ẏ = y(pα sin θ + pβ cos θ), ṗβ = −2pαpγ − pα,

θ̇ = pγ − pα cos θ + pβ sin θ, ṗγ = 0.

Using the above expressions, a simple calculation now shows that −a =
pγ = 1/2 and that pα and pβ must be constant if k = 1/4 and pγ = 1/2.
Hence the orbits of H for k = 1/4 and pγ = 1/2 are orbits of the right
action of 1-parameter subgroups of PSL(2, R) determined by (pα, pβ , 1/2) such
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that pα
2 + pβ

2 = 1/4. It is straightforward to check that these 1-parameter
subgroups are all parabolic (i.e., horocycle flows). These flows are known to
be uniquely ergodic (as proved by H. Furstenberg in [15]), and the unique
invariant probability measure is the normalised Lebesgue measure μpα,pβ

on
Γ \ PSL(2, R). It is easy to check that these measures have zero homotopy:
they are weak limits of the probability measures supported on the closed orbits
τT as k → 1/4 (or equivalently as T →∞). Hence our measure μ = μpα,pβ

for
some (pα, pβ). Observe that we get a whole circle worth of minimizing measures
with zero homotopy and the union of their supports is not a graph (the support
of each ergodic component is a graph though). This, quite surprisingly, is in
contrast with Mather’s celebrated graph theorem [19].
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