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Abstract: In this article we develop an analogue of Aubry–Mather theory for a class of
dissipative systems, namely conformally symplectic systems, and prove the existence of
interesting invariant sets, which, in analogy to the conservative case, will be called the
Aubry and theMather sets. Besides describing their structure and their dynamical signif-
icance, we shall analyze their attracting/repelling properties, as well as their noteworthy
role in driving the asymptotic dynamics of the system.

1. Introduction

The aim of this paper is to describe the analogue of Aubry–Mather theory for a class of
dissipative systems.More specifically,we shall consider conformally symplectic systems,
namely flows that do not preserve the symplectic structure, but do alter it up to a constant
scaling factor (see Sect. 1.1 for a precise definition). These systems appear in many
interesting contexts: in physics, geometry, celestial mechanics (e.g., the spin-orbit model
[10]), economics (for example, discounted systems [5,16]), models of transport (see [13,
22]), etc. . . In particular, they describe physical and mechanical systems characterized
by a dissipation proportional to the momentum (or to the velocity), plus the action of a
drifting term [see (8)].

The study of invariant Lagrangian submanifolds for these systems, and in particular
the existence ofKAM tori (i.e., invariant Lagrangian tori onwhich themotion is conjugate
to a rotation), have been thoroughly investigated by several authors and by means of
varied techniques (see, for instance, [7,8,24,28]).

In this article we are mostly focused on understanding what happens after these
invariant Lagrangian submanifolds stop existing or, more generally, what can be said
about the dynamics and the invariant sets of a dissipative system. Although conformally
symplectic systems certainly do not cover the whole spectrum of dissipative systems,
they definitely provide the appropriate setting in which this kind of question can be
meaningfully addressed.
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Inspired by the celebrated Aubry–Mather and weak KAM theories for conservative
(Hamiltonian) systems (see [15,25,29] and references therein), we shall investigate the
existence of Aubry–Mather sets and their dynamical properties (e.g., attractivity or re-
pulsivity). These sets will be constructed by means of variational methods related to
the so-called least action principle. As a result of their action-minimizing properties,
they enjoy a rich structure and many interesting dynamical features: in some sense, they
can be considered as a sort of generalized invariant Lagrangian submanifold, although
not being in general smooth, nor having the structure of a manifold. For a more precise
statement of our results, we refer to the next subsection.

Previous results on Aubry–Mather sets in the dissipative context have been discussed
by Le Calvez [17,19,20] and Casdagli [9] in the case of twist maps of the annulus.
However, the proofs of their results are based on low-dimensional topological techniques,
which makes impossible their extension to a more general setting.

Our work can be considered as a generalization of these results to conformally sym-
plectic flows on any compact manifold. Although we consider flows and not maps, a
discrete version of our ideas and techniques can be easily implemented, so to recover
them.

Finally, let us remark that in the PDE context, related ideas have been recently
exploited to study the vanishing viscosity limit of solutions to the Hamilton–Jacobi
equation (see [12,16]).

1.1. Setting and statement of the main results. Let M be a finite-dimensional compact
and connected smooth manifold, equipped with a smooth Riemannian metric g; we shall
denote by d the induced Riemannian distance. Let T M and T ∗M denote, respectively,
the tangent and cotangent bundles. A point of T M will be denoted by (x, v), where
x ∈ M and v ∈ Tx M , and a point of T ∗M by (x, p), where p ∈ T ∗

x M is a linear form
on the vector space Tx M . With a slight abuse of notation, we shall denote both canonical
projections π : T M −→ M and π : T ∗M −→ M . In the same spirit, ‖ · ‖x will refer
to both the norm induced by g on the fibers Tx M and the dual norm on T ∗

x M .
We denote by ω = −dα the canonical symplectic form on T ∗M , where α is the

Liouville (or tautological) form. Choosing local coordinates (x1, . . . , xn, p1, . . . , pn)

on T ∗M , one has that ω = dx ∧ dp := ∑n
i=1 dxi ∧ dpi and α = pdx := ∑n

i=1 pi dxi .
A smooth vector field X on T ∗M is said to be conformally symplectic (CS) if there exists
λ ∈ R\{0} such that

LXω = λ ω,

where LX denotes the Lie derivative in the direction of X . Clearly, the symplectic case
corresponds to the limit case λ = 0.

Observe that if X is conformally symplectic, also −X is conformally symplectic and
L−Xω = −λ ω. Hence, up to a time-inversion of the flow, one can always choose the
sign of λ. In particular, the case λ < 0 corresponds to the dissipative case.

Hereafter, we shall consider the case in which

LXω = −λ ω for some λ > 0, (1)

and we would be interested in proving the existence of invariant sets and their attracting
properties. Analogously, one could translate these results to the opposite case and prove
the existence of invariant sets with repelling properties.
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Remark 1. Conformally symplectic vector fields are related to the notion of conformal
symplectic structure on a manifold. Roughly speaking, a local conformal symplectic
manifold is equivalent to a symplecticmanifold, but the local symplectic structure is only
well-defined up to scaling by a constant. This notion was first introduced by Vaisman
[30,31] and later studied by several authors, for example by Banyaga [3].

Let us start by studying the properties of conformally symplectic vector fields and by
deriving the differential equations that govern the motion induced by X . Using Cartan’s
formula and the closeness ofω, one obtains, denoting iX the inner product, or contraction,
with X ,

LXω = d(iXω) + iX (dω) = d(iXω).

Hence, the conformally symplectic condition and the exactness of ω = −dα imply

d(iXω − λα) = 0

that is, the 1-form iXω − λα is closed. We define the cohomology class of X to be the
cohomology class of this 1-form; it will be denoted by [X ] ∈ H1(M; R). Observe that
here (as well as in the following) we are tacitly identifying the de-Rham cohomology
groups H1(M; R) and H1(T ∗M; R) by means of the isomorphisms induced by the
projectionmapπ : T ∗M −→ M , which is a homotopy equivalence, and by its homotopy
inverse ι : M −→ T ∗M given by the inclusion of the zero section.

We say that X is exact conformally symplectic if [X ] = 0. In this case, there exists a
smooth function H : T ∗M −→ R such that

iXω − λα = d H. (2)

We call this function an Hamiltonian associated to X . Vice versa, because of the non-
degeneracy of ω, to any function H : T ∗M → R one can associate a unique vector field
X H that solves (2). Observe, in fact, that in local coordinates (x1, . . . , xn, p1, . . . , pn),
relation (2) becomes:

− ṗdx + ẋdp − λpdx = ∂ H

∂x
(x, p)dx +

∂ H

∂p
(x, p)dp,

and therefore the vector field is given (in local coordinates) by:
{

ẋ = ∂ H
∂p (x, p)

ṗ = − ∂ H
∂x (x, p) − λp.

(3)

We shall denote by�t
H,λ the associated flow and the corresponding exact CS vector field

by X H,λ (so to specify both the Hamiltonian and the dissipation). Observe that when
λ = 0, we recover the classical Hamilton’s equations.

We shall dealwithTonelli exact conformally symplectic (TECS) vector fields, namely,
exact conformally symplectic vectorfields that canbegeneratedbyaTonelliHamiltonian.
Recall that a function H : T ∗M −→ R is called a Tonelli (or optical) Hamiltonian if:

(i) H ∈ C2(T ∗M);
(ii) H is strictly convex in each fiber in the C2 sense, i.e., the second partial vertical

derivative ∂2H/∂p2(x, p) is positive definite, as a quadratic form, for any (x, p) ∈
T ∗M ;
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(iii) H is superlinear in each fiber, i.e.,

lim‖p‖x →+∞
H(x, p)

‖p‖x
= +∞ uniformly in x .

Condition (iii) is equivalent to asking that for every A ∈ R there exists B = B(A) ≥ 0
such that

H(x, p) ≥ A‖p‖x − B ∀ (x, p) ∈ T ∗M.

Using the compactness of M , it is possible to check that the property of being Tonelli is
independent of the choice of the Riemannian metric g.

To a Tonelli Hamiltonian we can associate a Lagrangian as its Fenchel transform (or
Legendre–Fenchel transform):

L : T M −→ R

(x, v) 
−→ sup
p∈T ∗

x M
{〈p, v〉x − H(x, p)} (4)

where 〈 ·, · 〉x denotes the canonical pairing between the tangent and cotangent bundles.
Since H is a Tonelli Hamiltonian, it is possible to prove that L is finite everywhere

(as a consequence of the superlinearity of H ), superlinear and strictly convex in each
fiber (in the C2 sense). Moreover, L is also C2. We shall refer to such a Lagrangian as a
Tonelli Lagrangian. One can also check that H can be obtained as the Legendre–Fenchel
transform of L , i.e.,

H(x, p) = sup
v∈Tx M

{〈p, v〉x − L(x, v)}.

Observe that the supremum in (4) is actually a maximum and it is attained at pmax =
pmax(x, v) ∈ T ∗

x M such that ∂ H
∂p (x, pmax) = v. In particular, pmax = ∂L

∂v
(x, v). This

defines a map

LL : T M −→ T ∗M

(x, v) 
−→
(

x,
∂L

∂v
(x, v)

)

,
(5)

which is called the Legendre transform associated to L (or H ). It follows from the
assumptions on L and H that this map is a global C1 diffeomorphism, whose inverse is
given by

L−1
L : T ∗M −→ T M

(x, p) 
−→
(

x,
∂ H

∂p
(x, p)

)

.
(6)

Using the (inverse) Legendre transform L−1
L we can transport the flow �t

H,λ =
(x(t), p(t)) to the tangent bundle T M and define the corresponding Lagrangian flow

�t
L ,λ = (x(t), v(t)) = L−1

L (x(t), p(t)) =
(

x(t),
∂ H

∂p
(x(t), p(t))

)

,

where, using the equation of motion (3), v(t) = ẋ(t); see also Sect. 2.
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Using the definition of L in (4), one candeduce the following important inequality, known
as Legendre–Fenchel inequality, which will play an important role in our discussion:

L(x, v) + H(x, p) ≥ 〈p, v〉x (7)

for each x ∈ M , v ∈ Tx M and p ∈ T ∗
x M . In particular, this inequality becomes an

equality if and only if (x, p) = LL(x, v).

Remark 2 (Non-exact case). Suppose that X is conformally symplectic and it has co-
homology class [X ] = c ∈ H1(M; R). Let ηc be any smooth closed 1-form on M
with cohomology class c and see it as a 1-form on T ∗M ; in local coordinates it will be
represented by ηc = ηc(x) dx := ∑n

i=1 ηc,i (x)dxi . Hence, we have

iXω − λα = ηc + d H,

which in local coordinates will be:

− ṗdx + ẋdp − (λp + ηc(x))dx = ∂ H

∂x
(x, p)dx +

∂ H

∂p
(x, p)dp.

Therefore, the vector field is given (in local coordinates) by:

{
ẋ = ∂ H

∂p (x, p)

ṗ = − ∂ H
∂x (x, p) − λp − ηc(x) = − ∂ H

∂x (x, p) − λ(p + ηc(x)
λ

).
(8)

In order to keep track of all information, we should denote X by X H,λ,c (observe that
knowing H , λ and c, the representative ηc is identified univocally); the exact case X H,λ

would then correspond to X H,λ,0.

Consider now the change of coordinates (x, P) = (x, p + ηc(x)
λ

)), which is symplec-
tic (but not necessarily exact) due to the closedness of ηc. If we denote Ĥ(x, P) :=
H(x, P − ηc(x)

λ
), we can see that the equations of motion in these new coordinates

become:
{

ẋ = ∂ Ĥ
∂ P (x, P)

Ṗ = − ∂ Ĥ
∂x (x, P) − λP.

Hence, the non-exact case can be transformed into an exact one, modulo a suitable
symplectic change of coordinates (which is of course non-exact). We shall refer to Ĥ as
the Hamiltonian of X . Observe that

H(x, p) = Ĥ(x,
ηx

λ
+ p). (9)

This is analogous to Mather’s idea, in the conservative case, of changing the Lagrangian
(and consequently the Hamiltonian) by subtracting closed 1-forms.

Finally, let us compute the Lagrangian corresponding to the modified Hamiltonian

Hθ (x, p) = H(x, p + θ(x)),
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where θ denotes a closed 1-form on M . It is easy to check, using (4), that:

Lθ (x, v) = sup
p∈T ∗

x M
{〈p, v〉x − Hθ (x, p)}

= sup
p∈T ∗

x M
{〈p, v〉x − H(x, p + θ(x))}

= sup
p∈T ∗

x M
{〈p + θ(x), v〉x − H(x, p + θ(x))} − 〈θ(x), v〉

= L(x, v) − 〈θ(x), v〉.
Hence, the Lagrangian changes by a linear term given by the action of the 1-form θ on
tangent vectors v.

In order to state the main results, let us clarify some notions.
We say that a compact set S is a global attracting set for �H,λ, if for each open neigh-
borhood U ⊃ S and for each (x, p) ∈ T ∗M , there exists t0 = t0(x, p,U) such that
�t

H,λ(x, p) ∈ U for all t ≥ t0. In other words, each orbit, after some time, will get arbi-
trarily close to S (and remain close thereafter); in particular, this means that S contains
the ω-limit set1 of every orbit. Note that an attracting set is clearly forward-invariant,
but it might not be backward-invariant. Hence, we say that a compact set K is a global
attractor if it is a global attracting set and it is also invariant. A global attractor K will
be said to be maximal if it is not properly contained in any other attractor. As a part of
our analysis, we shall show the existence of a maximal global attractor for conformally
symplectic systems and describe its structure and properties.

For more insight on the concept of attractor (and on several other definitions that
appear in the literature), see for example, [11,26,27].

In the statement of the Main Theorem we refer to C1 exact Lagrangian graphs.
The precise definition of Lagrangian submanifolds and their main properties will be
discussed in Sect. 2.2; here we point out that a C1 exact Lagrangian graph can be simply
described as a graph in T ∗M of the form {(x, du) : x ∈ M} where u : M −→ R is a
C2 function.

Let us state our Main Theorem. We state it for Tonelli exact conformally symplec-
tic vector fields, but—as we have pointed out in Remark 2—the results can be easily
rephrased for the non-exact case.

Main Theorem. Let M be a finite-dimensional compact connected smooth Riemannian
manifold without boundary. Let H : T ∗M −→ R be a Tonelli Hamiltonian and L :
T M −→ R the associated Tonelli Lagrangian. For each λ > 0, let us consider the exact
conformally symplectic vector field X H,λ. Then:

(i) There exists the maximal global attractor KH,λ for X H,λ.
(ii) There exists a non-empty compact invariant set A∗

H,λ, called the Aubry set for
X H,λ, with the following properties:
(a) The canonical projection π : T ∗M −→ M restricted to A∗

H,λ is a bi-Lipschitz
homeomorphism (Mather’s graph property).

1 We recall that the ω-limit set of the orbit starting at (x, p), that we denote by �∞(x, p), is defined as
the set of points (x̄, p̄) ∈ T ∗M for which there exists a sequence (tk ), tk → +∞ as k → +∞ such that

lim
k→+∞ �

tk
H,λ

(x, p) = (x̄, p̄)
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(b) A∗
H,λ is supported on the graph of the unique (Lipschitz) solution ūλ of the

λ-discounted Hamilton–Jacobi equation λūλ + H(x, dūλ) = 0.
(c) If there exists an invariant C1 exact Lagrangian graph �, then A∗

H,λ = �.
(d) The following inclusions hold:

A∗
H,λ ⊆ KH,λ ⊆ {(x, p) : λūλ(x) + H(x, p) ≤ 0}.

In particular, A∗
H,λ is the maximal compact invariant set contained in {(x, p) :

λūλ(x) + H(x, p) = 0}.
(e) All orbits in A∗

H,λ are global minimizers for the λ-discounted Lagrange ac-
tion. More specifically, for any (x, p) ∈ A∗

H,λ let us denote γ(x,p)(t) :=
π(�t

H,λ(x, p)). Then, for every continuous piecewise C1 curve σ : [a, b] −→
M such that σ(a) = γ(x,p)(a) and σ(b) = γ(x,p)(b), we have:

∫ b

a
eλt L(γ(x,p)(t), γ̇(x,p)(t)) dt ≤

∫ b

a
eλt L(σ (t), σ̇ (t)) dt.

(iii) Let ML ,λ denote the set of invariant (Borel) probability measures for �L ,λ. We say
that μ ∈ ML ,λ is action-minimizing if

∫

T M
(L − λūλ) dμ = min

ν∈ML ,λ

∫

T M
(L − λūλ) dν.

Let LL denote the Legendre transform associated to L (see (5)) and let us define
the set

M∗
H,λ := LL

(⋃
{suppμ : μ is action-minimizing}

)

.

This set, which is called the Mather set of X H,λ, satisfies the following properties:
(a) It is non-empty, compact, invariant and recurrent.
(b) The restriction of π to M∗

H,λ is a bi-Lipschitz homeomorphism (Mather’s graph
property).

(c) The following inclusion holds:

M∗
H,λ ⊆ A∗

H,λ.

More specifically:

μ is action-minimizing ⇐⇒ suppμ ⊆ L−1
L

(A∗
H,λ

)
.

(d) Let M∗
H be the Mather set for the corresponding conservative flow X H,0. Then,

for every neighborhood U ⊃ M∗
H , the sets M∗

H,λ are definitely contained in U
as λ → 0+.

Remark 3. (i) What we have denoted in themain theoremA∗
H,λ andM∗

H,λ correspond

to the (inverse) Legendre transform of the sets ÃL ,λ and M̃L ,λ that we are going
to define in (18) and (27), by means of variational methods.

(ii) The inclusions in properties (ii,d) and (iii,c) can be strict; see for instanceExamples 2
and 3 in Sect. 8.

(iii) Observe that although the Aubry and the Mather sets are contained in the maximal
attractor KH,λ, they might not be attractors themselves (see Example 2 in Sect. 8).

(iv) A convergence result similar to property (iii,d) does not hold in general for the
Aubry set; see Remark 15 for more details.
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Organization of the article. The proofs of the results stated in the Main Theorem are
spread throughout the article. In order to help the reader identify them, we list here below
more precise references:

• KH,λ is defined in Sect. 5, more precisely in (24); the proof that it is a maximal
global attractor is in Proposition 10.

• A∗
H,λ is defined in Sect. 4, more precisely in (18). Its properties (a, b, e) are discussed

in items a.1-4) after its definition; property (c) follows from Proposition 8, while
property (d) follows from Proposition 10.

• M∗
H,λ is defined in Sect. 6, more precisely in (27). Its properties (a, b, c) are dis-

cussed in items m.1-3) after its definition; property (d) is proved in Corollary 2 and
Proposition 14.

As far as the rest of the paper is concerned, in Sect. 2 we introduce the λ-discounted
Action Functional and the λ-discounted Hamilton–Jacobi equations proving some of
their properties. Section 3 is dedicated to describing the extension of Weak KAM theory
to the conformally symplectic case. The Aubry set is introduced and studied in Sect. 4.
In Sect. 5, we investigate asymptotic properties of the flow and use them to construct
the global maximal attractor and to study its properties. Action-minimizing probability
measures are studied in Sect. 6 and used to define the Mather set. In Sect. 7, we address
the question of what happens to these objects in the limit from the dissipative to the
conservative case. Finally, we conclude by describing some illustrative examples in
Sect. 8.

2. Discounted Action and Discounted Hamilton–Jacobi Equations

In this section we are going to describe the analog in the conformally symplectic case
of two well-known facts in the conservative (Hamiltonian) framework. Namely the cor-
respondence between the Hamiltonian and the Lagrangian flux and the characterization
of Lagrangian invariant manifold through solutions of the Hamilton–Jacobi equation.

Hereafter we shall consider X = X H,λ to be an exact CS vector field as in (2), where
λ > 0, H : T ∗M −→ R is a Tonelli Hamiltonian and L : T M −→ R the associated
Tonelli Lagrangian.

2.1. Discounted Euler–Lagrange equations and action. Let us start proving that the
orbits of the Lagrangian flow �L ,λ correspond to solutions of the following Euler–
Lagrange equation: {

ẋ = v

d
dt

(
eλt ∂L

∂v

) = eλt ∂L
∂x .

(10)

More precisely, the following holds.

Proposition 1. If (x(t), p(t)) is a solution of (3), then (x(t), v(t)) = L−1
L (x(t), p(t))

is a solution of (10). Conversely, if (x(t), v(t)) is a solution of (10), then (x(t), p(t)) =
LL(x(t), v(t)) is a solution of (3).

Proof. Let us work in a coordinate chart. Using the definitions of LL and L−1
L , one can

check that (see, for instance, [15, Proposition 2.6.3])

ẋ(t) = ∂ H

∂p
(x(t), p(t)) = v(t),
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which provides the first equation in (10), and

∂L

∂x
(x(t), v(t)) = −∂ H

∂x

(

x(t),
∂L

∂v
(x(t), v(t))

)

= −∂ H

∂x
(x(t), p(t)).

Therefore:

ṗ(t) = − ∂ H

∂x
(x(t), p(t)) − λp(t) ⇐⇒ d

dt

(
∂L

∂v
(x(t), v(t))

)

= ∂L

∂x
(x(t), v(t)) − λ

∂L

∂v
(x(t), v(t))

⇐⇒ d

dt

(

eλt ∂L

∂v
(x(t), v(t))

)

= eλt ∂L

∂x
(x(t), v(t)),

which proves that the second equation in (10) is also solved. The converse statement can
be proved similarly. ��
Solutions of (10) have a variational characterization. Let γ : [a, b] −→ M be a contin-
uous piecewise C1 curve with −∞ < a < b < +∞. We define its discounted action to
be

AL ,λ(γ ) =
∫ b

a
eλt L(γ (t), γ̇ (t)) dt.

It is a classical result in the calculus of variations, that solutions to (10) are in 1-1
correspondence with C2 extremal curves of the discounted action functional, for the
fixed-end problem. More precisely we say that a C2 curve γ : [a, b] −→ M is an
extremal of AL ,λ for the fixed endpoint problem (recall that we are assuming L to be at
least C2) if for every C2 variation

� : [a, b] × [−ε, ε] −→ M

(i.e., �(t, 0) = γ (t) for all t ∈ [a, b] and �(t, s) = γ (t) in a neighborhood of (a, 0)
and (b, 0)), we have

d

ds

(∫

eλt L(�(t, s), ∂t�(t, s)) dt

)

|s=0
= 0. (11)

Observe that if γ : [a, b] −→ M is aC2 extremal ofAL ,λ, then for every [a′, b′] ⊂ [a, b]
the restriction γ |[a′, b′] is still a C2 extremal; hence, reducing to a coordinate chart,
one can show that if (11) is satisfied for all C2 variations �, then γ satisfies (in local
coordinates) (10). For a more detailed discussion of these resuts, we refer the reader, for
example, to [1, Chapter 3 §12] or [15, Section 2.1].

Remark 4. In the following we shall be interested in (discounted) action-minimizing
curves. We say that a continuous piecewise C1 curve γ : [a, b] −→ M minimizes the
discounted action if

AL ,λ(γ ) ≤ AL ,λ(σ ),

for every continuous piecewise C1 curve σ : [a, b] −→ M such that σ(a) = γ (a)

and σ(b) = γ (b). Proceeding, for example, as in [15, Proposition 2.3.7 and Corollary
2.2.12]), it is possible to show that γ is a C2 extremal of AL ,λ and satisfies (10).

Analogously, a continuous piecewise C1 curve γ :I−→M , where I is an unbounded
interval, is said to minimize the discounted action, if for every compact subinterval
[a, b] ⊂ I , γ |[a, b] is action-minimizing.
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2.2. Invariant Lagrangian graphs and discounted Hamilton–Jacobi equation. Let us
consider � to be a C1 Lagrangian submanifold of dimension n in T ∗M , namely, if we
denote by i� : � −→ T ∗M the inclusion, we have that i∗�ω ≡ 0, i.e., the symplectic
form vanishes when restricted to the tangent bundle of �.

We are interested in C1 Lagrangian graphs over the zero-section of T ∗M . Recall
that smooth Lagrangian graphs correspond to the graph of closed 1-forms on M ; we
shall refer to the cohomology class of � ∈ H1(M; R) as the cohomology class of the
corresponding 1-form (one can give a more intrinsic definitions, which extends to more
general Lagrangian submanifolds).

We suppose that� is invariant under�H,λ and exact in the sense that its cohomology
class is 0; moreover, let u : M −→ R be a C2 function such that � = Graph(du). The
invariance property translates into the fact that the vector field X H,λ is tangent to � at
any point.

In the conservative case the invariance of a Lagrangian graph can be characterized in
terms of being solution of a PDE, known as Hamilton–Jacobi equation. We would like
to discuss the analogue of this characterization in the dissipative (CS) case.

Let us consider the function F(x, p) = λu(x) + H(x, p). Observe that d F(x, p) =
λdu(x)+d H(x, p). Let W = (Wx , Wp) ∈ T(x,p)� be any tangent vector to� at a point
(x, p) = (x, du(x)). Using the definition of H in (2), the definition of α, the fact that
X H is tangent to � and the fact that � is Lagrangian (so it vanishes when applied to
tangent vectors to �) we obtain:

〈d F(x, p), W 〉 = λ〈du(x), Wx 〉 + 〈d H(x, p), W 〉
= λ〈du(x), Wx 〉 + iX H,λ(x,p)ω(W ) − λ〈α(x, p), W 〉
= λ〈du(x), Wx 〉 − λ〈du(x), Wx 〉 = 0.

It follows that F is constant on �, which gives the λ-discounted Hamilton–Jacobi
Equation (or simply, when there is no risk of ambiguity, discounted Hamilton–Jacobi
Equation)

λu(x) + H(x, du(x)) = c ∀x ∈ M (12)

for some c ∈ R.

Remark 5. (i) Observe that if u is a solution to the Eq. (12), then v = u + k satisfies
λv(x) + H(x, dv(x)) = c + λk. Therefore, the constant does not play—at least in
this context—any important role. Without any loss of generality, it can be assumed
to be equal to 0.

(ii) Once the constant on the right-hand side is fixed, Eq. (12) admits at most one
smooth solution. This follows from the comparison principle in [4, Théorème 2.4]).
Actually, under our assumptions on H , this equation admits exactly one viscosity
solution, as proved in [12, Theorem 2.5].

(iii) The exactness condition on the Lagrangian graph � is essential in order to define
the function F (we need a primitive of the representing 1-form).

Conversely, if u ∈ C2(M) is a solution to the Eq. (12), then � = Graph(du) is an
invariant exact Lagrangian submanifold. Clearly it is Lagrangian and exact, being the
graph of an exact 1-form.Moreover, ifwe consider the restriction F� := i∗�F = F◦i� ≡
0 and use (2), we obtain
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0 = d F�(x) = i∗�d F = λi∗�du + i∗�d H

= λdu + i∗�(iX H,λ
ω − λα) = λdu + i∗�(iX H,λ

ω) − λdu

= i∗�(iX H,λ
ω).

It follows from this and the fact that the tangent spaces to a Lagrangian submanifold are
maximally isotropic (recall that a vector subspace is isotropic if the symplectic form is
identically zero when restricted on it), that X H,λ must belong to T � and therefore, � is
invariant under the flow.

Summarizing, we have proved

Proposition 2. Let u : M −→ R be a C2 function. The exact Lagrangian graph � =
{(x, du(x) : x ∈ M} is invariant under �H,λ if and only if λu(x) + H(x, du(x)) ≡ c
for some c ∈ R.

3. Action-Minimizing Orbits and Weak KAM Theory for Conformally
Symplectic Systems

As we have seen in the previous section, the existence of exact Lagrangian graphs is
related to the existence of solution (in the classical sense) to the discounted Hamilton–
Jacobi equation (12). However, typically—think, for example, of systems which are not
“close” to an integrable one—these solutions (and hence invariant Lagrangian graphs)
are very unlikely to exist.

Inspired by what happens in the conservative case, we would like to investigate what
can be said about the dynamics of a general conformally symplectic Tonelli system.
More specifically, whether it is possible to identify invariant sets that—in some sense to
be better specified—can be considered as generalization of invariant Lagrangian graphs.
In the conservative case these sets are what are generally called Aubry–Mather sets; see
for example, just to mention a few references, [15,25,29].

In analogy to the classical Aubry–Mather and weak KAM theories, the key idea
in what follows is to study action-minimizing properties of the system (either with
reference to orbits or to invariant probability measures) and to use these to introduce a
suitable notion of weak solution to the discounted Hamilton–Jacobi equation. See also
[12,15,16].

Let us start by defining a continuous analogue of subsolutions of the discounted
Hamilton–Jacobi equation (12).

We say that a function u ∈ C(M) is λ-dominated by L (and denote it by u ≺λ L) if
for every a < b and every continuous piecewise C1 curve γ : [a, b] −→ M one has

eλbu(γ (b)) − eλau(γ (a)) ≤
∫ b

a
eλt L(γ (t), γ̇ (t)) dt. (13)

Observe that this definition is independent on additive constants, in the sense that if
u ≺λ L , then u + k

λ
≺λ L + k for any k ∈ R.

In the C1 case, λ-dominated functions are subsolutions of the discounted Hamilton–
Jacobi equation and vice versa. Actually, suppose that u ∈ C1(M) satisfies λu +
H(x, du(x)) ≤ 0 for all x ∈ M and let γ : [a, b] −→ M be a continuous piece-
wise C1 curve. Using the Legendre–Fenchel inequality:
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eλbu(γ (b)) − eλau(γ (a)) =
∫ b

a

d

dt

(
eλt u(γ (t))

)
dt

=
∫ b

a
eλt (λu(γ (t)) + 〈du(γ (t)), γ̇ (t)〉) dt

≤
∫ b

a
eλt (λu(γ (t))+H(γ (t), du(γ (t)))+L(γ (t), γ̇ (t))) dt

≤
∫ b

a
eλt L(γ (t), γ̇ (t)) dt,

so that u ≺λ L . Vice versa, if u ≺λ L and u ∈ C1(M), then λu + H(x, du(x)) ≤ 0 for
all x ∈ M .

More generally, if u is only continuous, we have (see also [15, Proposition 4.2.2]):

Proposition 3. Let u ≺λ L and assume that du(x0) exists for some x0 ∈ M. Then

λu(x0) + H(x0, du(x0)) ≤ 0.

Proof. Let v ∈ Tx0 M and let γ : [0, 1] −→ M be a C1 curve such that γ (0) = x0 and
γ̇ (0) = v. Since u ≺λ L , we have for all t ∈ (0, 1]

eλt u(γ (t)) − u(x0)

t
≤ 1

t

∫ t

0
eλs L(γ (s), γ̇ (s)) ds.

If we let t → 0+, we obtain

L(x0, v) ≥ d

dt

(
eλt u(γ (t))

)∣
∣t=0

= λu(x0) + 〈du(x0), v〉,

and hence, for all v ∈ Tx0 M ,

λu(x0) + 〈du(x0), v〉 − L(x0, v) ≤ 0.

From this inequality, we conclude that

λu(x0) + H(x0, du(x0)) = λu(x0) + sup
v∈Tx0 M

(〈du(x0), v〉 − L(x0, v))

= sup
v∈Tx0 M

(〈λu(x0) + du(x0), v〉 − L(x0, v)) ≤ 0

��
We define now a continuous analogue of classical solutions of the discounted

Hamilton–Jacobi equation (12).
Let u ≺λ L . We say that a curve γ : [a, b] −→ M is (u, L)-λ-calibrated (or simply

(u, L)-calibrated, when there is no risk of ambiguity) if

eλbu(γ (b)) − eλau(γ (a)) =
∫ b

a
eλt L(γ (t), γ̇ (t)) dt.

Before describing the properties of calibrated curves let us point out the following
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Remark 6. We have

(i) The definition of calibrated curve continues to make sense if a = −∞. In fact,
since the manifold M is compact and u is continuous on M , hence bounded, then
eλau(γ (a)) −→ 0 as a → −∞.

(ii) It is easy to check (for example by contradiction), that if γ : [a, b] −→ M is
(u, L)-calibrated and [a′, b′] ⊂ [a, b], then γ∣∣[a′,b′] is still (u, L)-calibrated.

(iii) The condition of being a calibrated curve is clearly invariant under time-translations.
Namely, it is a straightforward check that if γ : [a, b] −→ M is (u, L)-calibrated,
then γT : [a − T, b − T ] −→ M defined by γT (s) = γ (T + s) is still (u, L)-
calibrated.

(iv) It follows from the definition and the fact that u ≺λ L , that if γ : [a, b] −→ M is
(u, L)-calibrated, then it minimizes the discounted Lagrangian action AL ,λ among
all continuous piecewise C1 curves σ : [a, b] −→ M such that σ(a) = γ (a) and
σ(b) = γ (b). In fact:

AL ,λ(γ ) =
∫ b

a
eλt L(γ (t), γ̇ (t)) dt = eλbu(γ (b)) − eλau(γ (a))

= eλbu(σ (b)) − eλau(σ (a)) ≤
∫ b

a
eλt L(σ (t), σ̇ (t)) dt = AL ,λ(σ ).

In particular, if a = −∞, then γ minimizes the action among all curves defined on
(−∞, b] that ends at γ (b) at time t = b (see Remark 4). Hence, (γ, γ̇ ) is a solution
of (10); in particular, proceeding as in [15, Corollary 2.2.12]), it follows that γ is
C2. Actually, using Proposition 1 and Eq. (8) one can prove that γ is as smooth as
the Lagrangian L (see also Remark 4).

For classical solutions we can prove the following property.

Proposition 4. Let u ∈ C2(M) satisfy λu(x) + H(x, du(x)) = 0 for every x ∈ M, and

let γ (t) = π
(
�t

H,λ(x0, du(x0))
)

for some given x0 ∈ M. Then γ is (u, L)- calibrated

on every time-interval [a, b].
Proof. We have already proved (see Proposition 2), that the corresponding Graph(du)

is invariant under �H,λ. The invariance condition implies that

∂L

∂v
(γ (t), γ̇ (t)) = du(γ (t)) ∀t ∈ R,

hence we have equality in the corresponding Legendre–Fenchel inequality. Using this
and the fact that u solves (12), we obtain:

eλbu(γ (b)) − eλau(γ (a)) =
∫ b

a

d

dt

(
eλt u(γ (t))

)
dt

=
∫ b

a
eλt (λu(γ (t)) + 〈du(γ (t)), γ̇ (t)〉) dt

=
∫ b

a
eλt (λu(γ (t))+H(γ (t), du(γ (t)))+L(γ (t), γ̇ (t))) dt

=
∫ b

a
eλt L(γ (t), γ̇ (t)) dt.

��
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A first step in order to provide ameaningful notion of weak solutions, is the following
observation (see also [15, Theorem 4.3.8] for its analogue in the conservative case).

Proposition 5. Let u ≺λ L and γ : [a, b] −→ M a (u, L)-calibrated curve. If for some
t0 ∈ [a, b], the derivative of u at γ (t) exists, then

du(γ (t0)) = ∂L

∂v
(γ (t0), γ̇ (t0)) and λu(γ (t0)) + H(γ (t0), du(γ (t0))) = 0.

Proof. Let assume that a ≤ t0 < b (similarly, one show it for t0 = b) and consider
h > 0 such that t0 < t0 + h < b. Because of the calibration condition, we have

eλ(t0+h)u(γ (t0 + h)) − eλt0u(γ (t0))

h
= 1

h

∫ t0+h

t0
eλs L(γ (s), γ̇ (s)) ds.

If we let h → 0+, we obtain

eλt0 L(γ (t0), γ̇ (t0)) = d

dt

(
eλt u(γ (t))

)∣
∣t=t0

= eλt0λu(γ (t0)) + eλt0〈du(γ (t0)), γ̇ (t0)〉
≤ eλt0

[
λu(γ (t0)) + H(γ (t0), du(γ (t0))) + L(γ (t0), γ̇ (t0))

]
.

(14)

Hence:

λu(γ (t0)) + H(γ (t0), du(γ (t0))) ≥ 0

and using Proposition 3 we can conclude that

λu(γ (t0)) + H(γ (t0), du(γ (t0))) = 0.

Substituting this in (14) and simplifying the common factor eλt0 we get:

〈du(γ (t0)), γ̇ (t0)〉 = L(γ (t0), γ̇ (t0)) + H(γ (t0), du(γ (t0))).

Therefore, the Legendre–Fenchel inequality is in this case an equality, and for what we
have already recalled:

(γ (t0), du(γ (t0))) = LL(γ (t0), γ̇ (t0)) ⇐⇒ du(γ (t0)) = ∂L

∂v
(γ (t0), γ̇ (t0)).

��
It follows that it is important to detect which points of the image of a calibrated

curves are points of differentiability of a λ-dominated function. Observe that in general
these functions are not differentiable everywhere (although, being Lipschitz, they are
differentiable almost everywhere2).

Proposition 6. Let u ≺λ L and γ : [a, b] −→ M a (u, L)-calibrated curve. Then, for
every t ∈ (a, b), the derivative of u at γ (t) exists.

2 Recall that on a smooth Riemannian manifold V (in our case, it will be either V = M , T M or T ∗M) we
say that a set Z has measure zero if it has measure zero for the Riemannian volume measure associated to the
Riemannian metric. In particular, for every coordinate chart ψ : U ⊂ V −→ R

k , the image ψ(U ∩ Z) is a
zero Lebesgue measure set in R

k .
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Proof. The proof is similar to [15, Theorem 4.3.8 ii)]. Fix t ∈ [a, b] and let x := γ (t).
Without any loss of generality, we assume to be working in a coordinate chart ϕ :
U −→ R

n on M and assume that γ ([a, b]) ⊂ U (otherwise, we take a smaller interval
containing t). To simplify notation, we identify U with R

n via ϕ.
For every y ∈ U , we construct a new curve defined on [a, t], such that at time t it

passes through y. Define this curve γy : [a, t] −→ U by

γy(s) = γ (s) +
s − a

t − a
(y − x).

We have that γy(a) = γ (a) and γy(t) = y. Observe that γx coincides with γ on the
interval [a, t]. Since u ≺λ L we obtain:

eλt u(y) − eλau(γy(a)) ≤
∫ t

a
eλs L(γy(s), γ̇y(s))ds

which implies

u(y) ≤ e−λt
(

eλau(γ (a)) +
∫ t

a
eλs L(γy(s), γ̇y(s))ds

)

= e−λt
(

eλau(γ (a)) +
∫ t

a
eλs L

(

γ (s) +
s − a

t − a
(y − x), γ̇ (s) +

y − x

t − a

)

ds

)

=: ψ+(y).

Observe that ψ+ is C1 (actually, since γ is as smooth as L , it is as smooth as L) and that
we have equality at x .

Similarly, for every y ∈ U we construct a curve defined on [t, b] that at time t it
passes through y. Define this curve σy : [a, t] −→ U by

σy(s) = γ (s) +
b − s

b − t
(y − x).

We have that σy(b) = γ (b) and σy(t) = y. Observe that σx coincides with γ on the
interval [t, b]. Since u ≺λ L we obtain:

eλbu(σy(b)) − eλt u(y) ≤
∫ b

t
eλs L(σy(s), σ̇y(s))ds

which implies

u(y) ≥ e−λt
(

eλbu(γ (b)) −
∫ b

t
eλs L(σy(s), σ̇y(s))ds

)

= e−λt
(

eλbu(γ (b)) +
∫ b

t
eλs L

(

γ (s) +
b − s

b − t
(y − x), γ̇ (s) − y − x

b − t

)

ds

)

=: ψ−(y).

Observe that also ψ− is C1 and that we have equality at x .
In conclusion, we have that

ψ−(y) ≤ u(y) ≤ ψ+(y) ∀y ∈ M (15)
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with equality at x . Observe that theC1 functionψ+−ψ− ≥ 0 and vanishes at x , therefore
∇(ψ+ − ψ−)(x) = 0. If we denote p := ∇ψ+(x) = ∇ψ−(x), it is easy to check that u
is differentiable at x and that ∇u(x) = p. In fact, by definition of derivative, using that
ψ−(x) = ψ+(x) = u(x), we have that ψ± = u(x) + p · (y − x) + r±(y − x), where
r(h) = o(h) as h → 0. If we use it to rewrite inequality (15), we obtain:

u(x) + p · (y − x) + r−(y − x) ≤ u(y) ≤ u(x) + p · (y − x) + r+(y − x)

which implies

u(y) = u(x) + p · (y − x) + o(‖y − x‖).
This clearly means that u is differentiable at x and ∇u(x) = p. ��

Using these observations (and keeping in mind the analogy with the conservative
case), we provide the following definition.

A function u : M −→ R is called a weak KAM solution to the λ-discounted
Hamilton–Jacobi equation if:

(i) u ≺λ L;
(ii) for every x ∈ M there exists γ : (−∞, 0] −→ M with γ (0) = x , which is

(u, L)-λ-calibrated.

Remark 7. Suppose that u ≺λ L and that there exists a (u, L)-calibrated curve γ :
(−∞, 0] −→ M such that γ (0) = x0. Then, for all t < 0 we have:

u(x0) − eλt u(γ (t)) =
∫ 0

t
eλs L(γ (s), γ̇ (s)) ds.

If we take the limit as t → −∞, since u is bounded we obtain:

u(x0) =
∫ 0

−∞
eλs L(γ (s), γ̇ (s)) ds.

In particular, since u ≺λ L (see (13))

u(x0) = inf
σ

(∫ 0

−∞
eλs L(σ (s), σ̇ (s)) ds

)

,

where the infimum (which in this case is a minimum) is taken over all continuous
piecewise C1 curves σ : (−∞, 0] −→ M such that σ(0) = x0.

Therefore, if such a weak KAM solution exists, then its value at x0 is determined
uniquely. We shall see in Proposition 7 that there exists a function ūλ satisfying this
condition at each point x ∈ M and, as a consequence of what we have just pointed out,
it is unique.

Inspired by this, we define the following function. For every x ∈ M , let

ūλ(x) = inf
σ

(∫ 0

−∞
eλs L(σ (s), σ̇ (s)) ds

)

, (16)

where the infimum is taken over all continuous piecewiseC1 curvesσ : (−∞, 0] −→ M
such that σ(0) = x .

This function has these important properties, proved in [12, Appendix 2] and refer-
ences therein.
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Proposition 7. Let ūλ be defined as above. Then:

(1) ūλ is well-defined and Lipschitz continuous. In particular, the Lipschitz constant
does not depend on λ but only on L.

(2) ūλ ≺λ L.
(3) For every x, there exists a curve γx : (−∞, 0] −→ M which achieves the infimum

in (16). In particular, γx is (ūλ, L)-calibrated, which implies that for any t < 0:

ūλ(x) = eλt ūλ(γx (t)) −
∫ 0

t
eλs L(γx (s), γ̇x (s))ds.

(4) There exists a constant A (depending on L, but not on λ) such that for all x ∈ M,
‖γ̇x‖∞ ≤ A.

Observe that since ūλ is Lipschitz, by Rademacher’s theorem it is differentiable
everywhere and therefore it satisfies the equation

λūλ + H(x, dūλ(x)) = 0 a.e.

In particular, for λ > 0 this equation satisfies a strong comparison principle (see for
example [4, Théorème 2.4]) and therefore this is the unique solution.

4. The Aubry Set

In this section we are going to define the analogue of the Aubry set in the conformally
symplectic framework.

For every (x, v) ∈ T M let us denote by γ(x,v) the projection on M of the correspond-

ing orbit, i.e., γ(x,v)(t) = π
(
�t

L ,λ(x, v)
)
for all t ∈ R.

We define the following set.

�̃L ,λ := {
(x, v) ∈ T M s.t. the curve γ(x,v) is (ūλ, L)-calibrated on (−∞, 0]} . (17)

We note that the following properties of �̃L ,λ hold.

s.1) �̃L ,λ �= ∅, as it follows from item (3) inProposition7.More specifically,π(�̃L ,λ) =
M . In general this projection does not need to be injective.

s.2) �̃L ,λ is bounded, as it follows from item (4) in Proposition 7.
s.3) �̃L ,λ is backward-invariant, i.e., �−t

L ,λ(�̃L ,λ) ⊆ �̃L ,λ for all t≥0. Essentially,

this means that if (x, v) ∈ �̃L ,λ, then �−t
L ,λ(x, v) ∈ �̃L ,λ for all t ≥ 0, but

it is straightforward from the calibration condition of γ(x,v) and the fact that
γ�−t

L ,λ(x,v)(s) = γ(x,v)(s − t) for all s ≤ 0 (see Remark 6, item iii)). Actually,

one has that γ�−t
L ,λ(x,v) is calibrated on the larger interval (−∞, t].

s.4) For every t > 0, �−t
L ,λ(�̃L ,λ) is compact. In fact, fix t > 0 and take any sequence

{(xn, vn)}n ⊂ �−t
L ,λ(�̃L ,λ). We consider the corresponding (minimizing) curves

γn = γ(xn ,vn) which are calibrated on (−∞, t], as showed in item s.3. If we
apply [12, Theorem 6.4] (plus a diagonal argument), we obtain that there exists
a subsequence γnk converging to a curve γ̄ : (−∞, t] −→ M uniformly on
compact subsets of (−∞, t]. Since the action-functional is lower semi-continuous
and ūλ is λ-dominated, the curve γ̄ is (ūλ, L)-calibrated on (−∞, t], hence C1.
Therefore (x̄, v̄) = (γ̄ (0), ˙̄γ (0)) ∈ �−t

L ,λ(�̃L ,λ) and clearly, for every s ≤ t ,
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γ̄ = π�s
L ,λ(x̄, v̄) where π : T M → M denotes the canonical projection. Using

Propositions 5 and 6, the properties of the Legendre transform LL and the above
convergence result for γnk , we conclude:

(xnk , vnk ) = (
γnk (0), γ̇nk (0)

) = L−1
L

(
γnk (0), dūλ(γnk (0))

)

nk→+∞−→ L−1
L (γ̄ (0), dūλ(γ̄ (0))) = (x̄, v̄).

Hence, �−t
L ,λ(�̃L ,λ) is compact for any t > 0.

We are now ready to define the analog of the Aubry set as

ÃL ,λ :=
⋂

t≥0

�−t
L ,λ(�̃L ,λ) =

⋂

t>0

�−t
L ,λ(�̃L ,λ), (18)

where the last equality follows from the fact �̃L ,λ is backward-invariant, see item s.3
above.

Let us now describe some properties of ÃL ,λ.

a.1) ÃL ,λ �= ∅ since it is intersection of a decreasing family of compact sets. In partic-
ular, ÃL ,λ is compact.

a.2) ÃL ,λ is invariant.
It is a consequence of its definition (18), using the fact that �̃L ,λ is backward-
invariant. More precisely, ÃL ,λ is backward-invariant being the intersection of
backward-invariant sets. Moreover, we have that for s > 0, �s

L ,λ(ÃL ,λ) ⊆ ÃL ,λ.
In fact:

�s
L ,λ(ÃL ,λ) = �s

L ,λ

⎛

⎝
⋂

t≥0

�−t
L ,λ(�̃L ,λ)

⎞

⎠ =
⋂

t≥0

�−t+s
L ,λ (�̃L ,λ)

=
⋂

t≥−s

�−t
L ,λ(�̃L ,λ) ⊆

⋂

t≥0

�−t
L ,λ(�̃L ,λ) = ÃL ,λ.

In particular, every invariant set � ⊂ �̃L ,λ must be contained in ÃL ,λ. In fact, if
� is invariant and contained in �̃L ,λ, then �t

L ,λ(�) ⊆ �̃L ,λ for all t ≥ 0. Hence,

� ⊆ �−t
L ,λ(�̃L ,λ) for all t ≥ 0. It follows from the definition of ÃL ,λ in (18) that

� ⊆ ÃL ,λ.
a.3) Orbits starting in ÃL ,λ have special calibrating properties.Namely, if (x, v) ∈ ÃL ,λ

then the curve γ(x,v) is (ūλ, L)-calibrated on (−∞,+∞). In fact, observe that if
(x, v) ∈ ÃL ,λ, then (x, v) ∈ �−t

L ,λ(�̃L ,λ) for all t ≥ 0. So, as we have remarked
above in s.3, the curve γ(x,v) is calibrated on (−∞, t]. Since this is true for all
t > 0, then this proves the assertion.
In particular, observe that calibration implies that they are action-minimizers [see
Remark 6, (iv)].

a.4) The projection π : ÃL ,λ −→ M such that π(x, v) = x is injective. In fact,
if (x, v) ∈ ÃL ,λ, then it can be deduced from Propositions 5 and 6, that ūλ is
differentiable at γ(x,v)(0) = x and that (x, v) = L−1

L (x, dūλ(x)); hence, v is
determined uniquely by x . More specifically,

v = ∂ H

∂p
(x, dūλ(x)) ⇐⇒ dūλ(x) = ∂L

∂v
(x, v).
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In particular, if we denote by AL ,λ := π
(ÃL ,λ

)
, then we have that

ÃL ,λ =
{(

x,
∂ H

∂p
(x, dūλ(x)

)

: x ∈ AL ,λ

}

. (19)

Observe that the map du is well-defined on AL ,λ and it coincides with ∂L
∂v

◦
(π∣∣ÃL ,λ

)−1. So it follows from the compactness of ÃL ,λ that this map is Lips-

chitz, with a Lipschitz constant which is independent of λ (this latter property is
a consequence of item 4 in Proposition 7. This can be summarized by saying that
π : ÃL ,λ −→ AL ,λ is a bi-Lipschitz homeomorphism. This is the analogue of
Mather’s graph theorem for the conservative case (see [25, Theorem 2]).

Let us briefly describe the relation between this set and invariant exact Lagrangian
graphs.

Proposition 8. Let � be a C1 invariant exact Lagrangian graph for �H,λ. Then

� = LL(ÃL ,λ).

Proof. Since� is an exactLagrangiangraph, then� = Graph(dv) for somev ∈ C2(M).
It follows from the invariance of �, that v is a classical solution to the λ-discounted
Hamilton–Jacobi equation (see Proposition 2). As we have already remarked before,
for λ > 0 this equation satisfies a strong comparison principle (see for example [4,
Théorème 2.4]) and therefore it admits a unique solution (including weak solutions),
which implies that v = ūλ.

For simplifying the notation, in the following we denote �̃ = L−1
L (�). It follows

from Proposition 4 that �̃ ⊆ �̃ and since it is invariant

�̃ = �t
L ,λ(�̃) ⊆ �t

L ,λ(�̃) ∀ t ∈ R.

In particular, we can conclude from (18) that

ÃL ,λ =
⋂

t≥0

�−t
L ,λ(�̃L ,λ) ⊇ �̃,

and because of the graph property [see item (a.4) after (18)], they must coincide: ÃL ,λ =
�̃. This concludes the proof. ��
Remark 8. In [7,8] the authors studied the persistence ofKAM tori (i.e., smooth invariant
Lagrangian graphs on which the dynamics is conjugated to a rotation) under small
perturbations of conformally symplectic vector fields. Observe that whenever a KAM
torus exists, then it is unique and it coincides with the Aubry set defined above (this
follows from Proposition 8 and Remark 2).

5. Global Behaviour and Attractiveness

In this section we want to discuss global properties of the flow and prove the existence
(and the properties) of an attracting region for the orbits, which contains the Aubry set
ÃL ,λ as the unique invariant set in its “frontier”.
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We consider the following function

Fλ(x, p) = λūλ(x) + H(x, p)

and the following disjoint subsets of T ∗M :

Z0
Fλ

:= {(x, p) ∈ T ∗M : Fλ(x, p) = 0}
Z+

Fλ
:= {(x, p) ∈ T ∗M : Fλ(x, p) > 0}

Z−
Fλ

:= {(x, p) ∈ T ∗M : Fλ(x, p) < 0}.
Remark 9. These three sets form a partition.Moreover,Z0

Fλ
is compact andZ±

Fλ
are open.

It follows from the superlinearity of H that Z+
Fλ

is unbounded, while Z−
Fλ

is bounded.

We are going to use the these sets to study the global dynamics of the system.
To do so, let us investigate the variation of Fλ in the direction of the flow. Recall that

ūλ is only locally Lipschitz continuous, hence, it is differentiable almost everywhere.
Let us denote this measure zero set of non-differentiability by

N := {x ∈ M : ūλ is not differentiable at x}.
Observe that the problem of being non-differentiable for Fλ comes only from the ūλ

component; hence, Fλ is differentiable at (x, p) if and only if x �∈ N (which is also a
measure zero set in T ∗M).

Let us start by observing how the Hamiltonian varies along the orbits. Using the
equation of motion (3) and the Legendre–Fenchel (in)equality (7), we obtain:

d

dt
H(x(t), p(t)) = ∂ H

∂x
(x(t), p(t)) · ẋ(t) +

∂ H

∂p
(x(t), p(t)) · ṗ(t)

= −λ
〈
p(t),

∂ H

∂p
(x(t), p(t))

〉

= −λ
[
L(L−1

L (x(t), p(t))) + H(x(t), p(t))
]

= −λ
[
L(x(t), ẋ(t)) + H(LL(x(t), ẋ(t)))

]
. (20)

We use it to prove

Lemma 1. For every (x, p) ∈ T ∗M such that x �∈ N , 〈d Fλ(x, p), X H (x, p)〉 ≤
−λFλ(x, p).

Proof. Let x �∈ N , p ∈ T ∗
x M and denote by (x, v) = L−1

L (x, p). Using (20) and the
Legendre–Fenchel inequality, we have:

〈d Fλ(x, p), X H (x, p)〉 = λ〈dūλ(x), v〉 + d

dt
H(�t

H,λ(x, p))∣∣t=0

= λ〈dūλ(x), v〉 − λ[L(x, v) + H(x, p)]
≤ λ [L(x, v) + H(x, dūλ(x)) − L(x, v) − H(x, p)]

= λ [H(x, dūλ(x)) − H(x, p)]

= λ [−λūλ(x) − H(x, p)]

= −λFλ(x, p),

where we used that λūλ(x) + H(x, dūλ(x)) = 0 at points of differentiability of ūλ. ��
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We can now start by studying the set Z0
Fλ
.

Lemma 2. We have that LL(�̃L ,λ) ⊆ Z0
Fλ

; in particular, LL(ÃL ,λ) ⊆ Z0
Fλ

.

Proof. It is enough to prove the first statement, being the second a clear consequence.
Let (x, p) ∈ LL(�̃L ,λ) and let (x, v) = L−1

L (x, p). We denote their respective orbits
by (x(t), p(t)) = �t

H,λ(x, p) and (x(t), v(t)) = �t
L ,λ(x, v) with t ∈ R. Using the

definition of �̃L ,λ in (17), property (20) and the fact that �̃L ,λ is bounded and backward-
invariant (hence, the Hamiltonian is bounded along the backward orbit), we obtain:

λūλ(x) = λ

∫ 0

−∞
eλt L(x(t), v(t)) dt

=
∫ 0

−∞
eλt [λ

(
L(x(t), v(t)) + H(x(t), p(t))

)− λH(x(t), (p(t))
]

dt

= −
∫ 0

−∞
eλt

[
d

dt

(
H(x(t), p(t)

)
+ λH(x(t), p(t))

]

dt

= −
∫ 0

−∞
d

dt

(
eλt H(x(t), p(t)

)
dt

= −H(x, p).

Therefore, Fλ(x, p) = 0. ��
A sort of converse of the previous lemma holds.

Lemma 3. Let (x, p) ∈ Z0
Fλ

. If

lim
t→−∞ eλt H(�t

H,λ(x, p)) = 0, (21)

then (x, p) ∈ LL(�̃L ,λ).
In particular, all invariant sets in Z0 are contained in LL(ÃL ,λ).

Proof. Let (x, p) ∈ Z0
Fλ
, i.e., λūλ(x)+ H(x, p) = 0. Let us denote (x, v) = L−1

L (x, p)

and the respective orbits by (x(t), p(t)) = �t
H,λ(x, p) and (x(t), v(t)) = �t

L ,λ(x, v)

with t ∈ R.
We want to prove that (x, v) ∈ �̃L ,λ. Using hypothesis (21) and property (20), we

can deduce the following estimate:

λūλ(x) = −H(x, p) = −
∫ 0

−∞
d

dt

(
eλt H(x(t), p(t)

)
dt

= −
∫ 0

−∞
eλt

[

λH(x(t), p(t)) +
d

dt

(
H(x(t), p(t)

)]

dt

= −
∫ 0

−∞
eλt [λH(x(t), p(t) − λL(x(t), v(t)) − λH(x(t), (p(t))] dt

= λ

∫ 0

−∞
eλt L(x(t), v(t)) dt.
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Hence, the orbit (x(t), v(t)) for t ∈ (−∞, 0] achieves the minimum in the definition of
ūλ and it is therefore (ūλ, L)-calibrated on (−∞, 0]. It follows from the definition of
�̃L ,λ in (17) that (x, v) ∈ �̃L ,λ.

To prove the last part, let us assume that � ⊆ Z0
Fλ

is an invariant set. Observe that �
being bounded and invariant, then for each (x, p) ∈ � we have that H(�t

H,λ(x, p)) is
bounded for all t . In particular, it follows from the previous part that (x, p) ∈ LL(�̃L ,λ)

and therefore� ⊆ LL(�̃L ,λ). Since all invariant sets in �̃L ,λ are contained in ÃL ,λ [see
item a.2 after (18)], then we can conclude that � ⊆ LL(ÃL ,λ). ��
The function Fλ is a sort of Lyapunov function for the system and it allows to deduce
useful information on the global properties of the flow. Let us first recall some definitions.
We denote by �∞(x, p) the ω-limit set of (x, p) defined as the set of points (x̄, p̄) ∈
T ∗M for which there exists a sequence (tk), tk → +∞ as k → +∞ such that

lim
k→+∞ �

tk
H,λ(x, p) = (x̄, p̄)

Similarly, if E ⊆ T ∗M we denote by �∞(E) the set of future accumulation points of
orbits starting in E .

Proposition 9. For every (x, p) ∈ T ∗M and every t > 0

Fλ(�
t
H,λ(x, p)) ≤ Fλ(x, p)e−λt . (22)

As a consequence, the set Z0
Fλ

∪ Z−
Fλ

is an attracting set. In particular, it is forward
invariant and

�∞(T ∗M) ⊆ Z0
Fλ

∪ Z−
Fλ

,

i.e., the ω-limit points of any orbit are contained in Z0
Fλ

∪ Z−
Fλ

.

Proof. It is sufficient to prove (22). The forward-invariance of Z0
Fλ

∪ Z−
Fλ
, in fact,

follows immediately from (22); moreover, since Fλ is continuous, (22) implies that
�∞(T ∗M) ⊆ Fλ

−1((−∞, 0]) = Z0
Fλ

∪ Z−
Fλ
.

If Fλ was differentiable everywhere, then in order to prove (22) it would be sufficient
to use Lemma 1; however, Fλ is a-priori only locally Lipschitz, so that inequality holds
almost everywhere. This issue can be solved by means of a standard argument (for
example, see also [2, Lemma 1.5 (i)]).

Suppose that (22) does not hold: this means that there exist (x0, p0) ∈ T ∗M and
t > 0 such that

Fλ(�
t
H,λ(x0, p0)) − Fλ(x0, p0)e

−λt =: δ > 0.

Since both Fλ and �t
H,λ are locally Lipschitz, then we can find r > 0 and C > 0 such

that

Fλ(�
t
H,λ(x, p))− Fλ(x, p)e−λt ≥ δ−C d((x, p), (x0, p0)) ∀ (x, p) ∈ Br (x0, p0),

where d denotes the distance function on T ∗M induced by the Riemannian metric and
Br (x0, p0) is the corresponding ball of radius r centered at (x0, p0). By integrating this



Aubry–Mather Theory for Conformally Symplectic Systems

inequality on a ball of radius ρ ≤ r we obtain (Vol denotes the Riemannian volume on
T ∗M):

∫

Bρ(x0,p0)

[
Fλ(�

t
H,λ(x, p)) − Fλ(x, p)e−λt ] d Vol(x, p)

≥ δ Vol(Bρ(x0, p0)) −
∫

Bρ(x0,p0)
C d((x, p), (x0, p0)) d Vol(x, p)

≥ (δ − C ρ) Vol(Bρ(x0, p0)).

Therefore, if 0 < ρ < δ
C we have

∫

Bρ(x0,p0)

[
Fλ(�

t
H,λ(x, p)) − Fλ(x, p)e−λt ] d Vol(x, p) > 0. (23)

On the other hand, using Tonelli’s Theorem, the fact that the function s 
−→ Fλ(�
s
H,λ

(x, p)) is locally Lipschitz continuous (hence, differentiable almost everywhere), and
the chain rule for Lipschitz continuous maps, we obtain:

∫

Bρ(x0,p0)

[
Fλ(�

t
H,λ(x, p)) − Fλ(x, p)e−λt ] d Vol(x, p)

= e−λt
∫

Bρ(x0,p0)

[
eλt Fλ(�

t
H,λ(x, p)) − Fλ(x, p)

]
d Vol(x, p)

= e−λt
∫

Bρ(x0,p0)

[∫ t

0

d

ds

(
eλs Fλ(�

s
H,λ(x, p))

)
ds

]

d Vol(x, p)

= e−λt
∫ t

0

[∫

Bρ(x0,p0)

d

ds

(
eλs Fλ(�

s
H,λ(x, p))

)
d Vol(x, p)

]

ds

= e−λt
∫ t

0
eλs

[∫

Bρ(x0,p0)

(
λFλ(�

s
H,λ(x, p)) +

d

ds

(
Fλ(�

s
H,λ(x, p))

))
d Vol(x, p)

]

ds

= e−λt
∫ t

0
eλs

[∫

Bρ(x0,p0)

(
λFλ(�

s
H,λ(x, p)) + 〈d Fλ, X H 〉∣∣(�s

H,λ(x,p))

)
d Vol(x, p)

]

ds

≤ 0

where the last step follows from the fact that, in the light of Lemma 1, the integrand is
non positive almost everywhere. This conclusion is in contradiction with (23). ��
Corollary 1. (1) If �∞(x, p) ⊆ Z0

Fλ
, then �∞(x, p) ⊆ LL(ÃL ,λ).

(2) If there exists t0 such that �t
H,λ(x, p) ∈ Z+

Fλ
∪Z0

Fλ
for all t ≥ t0, then �∞(x, p) ⊆

LL(ÃL ,λ).
(3) If there exists a sequence {tn}n≥0 such that tn → +∞ and �

tn
H,λ(x, p) ∈ Z+

Fλ
∪Z0

Fλ

for all n ≥ 0, then �∞(x, p) ⊆ LL(ÃL ,λ).
(4) If Fλ(x, p) ≥ 0 for all (x, p) ∈ T ∗M, then �∞(T ∗M) ⊆ LL(ÃL ,λ). In particular,

ÃL ,λ is a global attractor.



S. Marò, A. Sorrentino

Proof. (1) If �∞(x, p) ⊆ Z0
Fλ
, then using Lemma 3 and the fact that �∞(T ∗M) is

invariant, we can deduce that �∞(x, p) ⊆ LL(�̃L ,λ). In particular, we have proved
(see item a.2 after (18)) that all invariant sets in LL(�̃L ,λ) must be contained in
LL(ÃL ,λ) and this completes the proof.

(2) If follows from the fact that �t
H,λ(x, p) ∈ Z+

Fλ
∪ Z0

Fλ
for all t ≥ t0, from Proposi-

tion 9 and from the continuity of Fλ, that

0 ≤ Fλ(�
t
H,λ(x, p)) ≤ Fλ(�

t0
H,λ(x, p)) e−λ(t−t0) ∀ t ≥ t0,

and therefore �∞(x, p) ⊆ Z0
Fλ
. The conclusion follows from part (1).

(3) Proceeding as in item (2), we obtain

0 ≤ Fλ(�
tn
H,λ(x, p)) ≤ Fλ(�

tn
H,λ(x, p)) e−λ(tn−t0) n→+∞−→ 0

and therefore �∞(x, p) ⊆ Z0
Fλ
. The conclusion follows again from part (1).

(4) It follows easily from item (2). ��
We are now ready to define the set:

KH,λ :=
⋂

t≥0

�t
H,λ(Z0

Fλ
∪ Z−

Fλ
). (24)

and prove the following proposition.

Proposition 10. The set KH,λ is the maximal global attractor for X H,λ and

LL(ÃL ,λ) ⊆ KH,λ.

In particular, LL(ÃL ,λ) = KH,λ ∩ Z0
Fλ

.

Proof. First of all, it follows from the definition that KH,λ is compact. Moreover, using
an argument similar to the one in Sect. 4, item a.2, we can conclude that it is invariant;
in fact if s < 0 then

�s
H,λ(KH,λ) =

⋂

t≥s

�t
H,λ(Z0

Fλ
∪ Z−

Fλ
) ⊆

⋂

t≥0

�t
H,λ(Z0

Fλ
∪ Z−

Fλ
) = KH,λ,

while if s > 0 (since Z0
Fλ

∪ Z−
Fλ

is forward-invariant, see Proposition 9):

�s
H,λ(KH,λ) =

⋂

t≥0

�t+s
H,λ(Z0

Fλ
∪ Z−

Fλ
)

=
⋂

t≥0

�t
H,λ(�

s
H,λ(Z0

Fλ
∪ Z−

Fλ
))

⊆
⋂

t≥0

�t
H,λ(Z0

Fλ
∪ Z−

Fλ
) ⊆ KH,λ.

Moreover, it contains the Aubry set as a consequence of Lemma 2, so it is not
empty. We prove that LL(ÃL ,λ) = KH,λ ∩ Z0

Fλ
. In fact, clearly LL(ÃL ,λ) ⊆ Z0

Fλ
(see

Lemma 2). On the other hand, if (x, p) ∈ KH,λ ∩ Z0
Fλ
, then it follows from Lemma 3

and the invariance of KH,λ that (x, p) ∈ LL(ÃL ,λ).



Aubry–Mather Theory for Conformally Symplectic Systems

In order to prove that KH,λ is a global attractor, we need to prove that it is a global
attracting set. Recall that Proposition 9 implies that

�∞(T ∗M) ⊆ Z0
Fλ

∪ Z−
Fλ

.

Moreover, it follows from (24) and the fact that �∞(T ∗M) is invariant (i.e., �t
H,λ

(�∞(T ∗M)) = �∞(T ∗M) for every t), that

�∞(T ∗M) =
⋂

t≥0

�t
H,λ(�∞(T ∗M)) ⊆

⋂

t≥0

�t
H,λ(Z0

Fλ
∪ Z−

Fλ
) = KH,λ.

Therefore, using the definition of attracting set, it is easy to conclude that KH,λ is an
attracting set and hence, being invariant, a global attractor. Maximality follows from the
facts that all compact invariant sets for �H,λ must be contained in Z0

Fλ
∪ Z−

Fλ
, and that

because of its definition (24), KH,λ is the maximal invariant set in Z0
Fλ

∪ Z−
Fλ
. ��

6. Action-Minimizing Measures and Mather Set

In order to define an analogue of the Mather set in the conformally symplectic case,
we need first to generalize the notion of Mather measure or action-minimizing measure
(we refer to [23,25] for the conservative case). Let us denote by ML ,λ the set of Borel
probability measures on T M that are invariant under�L ,λ (i.e., (�t

L ,λ)∗μ = μ for every
t ∈ R) and such that ∫

T M
‖v‖dμ < +∞. (25)

Hereafter, we shall consider this set endowedwith the topology given by limn→+∞ μn =
μ if and only if

lim
n→+∞

∫

T M
f (x, v)dμn =

∫

T M
f (x, v)dμ

for all f ∈ C�(T M), i.e., functions f : T M −→ R having at most linear growth:

sup
(x,v)∈T M

| f (x, v)|
1 + ‖v‖ < +∞.

ML ,λ can be seen as a subset of the dual space (C�)
∗. This topology is also called vague

topology and it is well-known that it is metrizable.

Remark 10. The set ML ,λ = ML ,λ(L) is non-empty. In fact, since the set ÃL ,λ is
compact and invariant under �L ,λ, then it follows from Krylov–Bogolyubov’s theorem
(see, for example, [25, Sec. 2]) that there exists at least an invariant (Borel) probability
measure μ, which clearly satisfies condition (25) since it is supported on a compact set.
Alternatively, one can construct invariant probability measures in the following way. For
every x ∈ M , consider the minimizing (ūλ, L)-calibrated orbit γx : (−∞, 0] −→ M
such that γx (0) = x . If one considers the probability measure μT evenly distributed on
γx |[0,T ], then every limit point of the family {μT }T >0, as T goes to +∞, is an invariant
probability measure for�L ,λ and it follows from item (4) in Proposition 7 that condition
(25) holds; it turns out that it is supported on ÃL ,λ.
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We can prove the following property of invariant probability measures. In order to
simplify notation, we shall denote by L + H : T M −→ R the function (L + H)(x, v) =
L(x, v) + H(LL(x, v)).

Proposition 11. Let μ ∈ ML ,λ; then,
∫

T M
(L + H)(x, v) dμ(x, v) = 0.

Proof. Let us start noting that suppμ is compact, since it is contained in �∞(T M) ⊆
L−1

L (KH,λ). To prove the result is sufficient to consider the case in which μ is ergodic.
Then, using the ergodic theorem and (20), for a generic point (x, v) ∈ suppμ:

∫

T M
(L + H)(x, v) dμ(x, v)

= lim
T →+∞

1

T

∫ T

0
(L + H)(x(t), ẋ(t)) dt

= −λ−1 lim
T →+∞

1

T

∫ T

0

d

dt
H(LL(x(t), ẋ(t))) dt

= −λ−1 lim
T →+∞

H(LL(x(T ), p(T ))) − H(LL(x(0), p(0)))

T
= 0

where, in the last equality, we used that H ◦LL , being continuous, is bounded on suppμ.
��

Remark 11. In particular, if μ ∈ ML ,λ, then
∫

T M L dμ = − ∫
T M H ◦ LL dμ. Hence,

the averaged action coincides with the averaged energy, as it happens in the conservative
case: in that case the energy is constant along the orbit and its value coincides with the
minimal averaged action (also called Mather’s α function or Mañé critical value; see,
for example, [15,25,29].

FromRemark 10 we have that there exist someμ ∈ ML ,λ that are supported in ÃL ,λ.
We would like to characterize all of them. Let us start with the following observation.
Consider the function ūλ : M −→ R defined in (16) and let ν ∈ ML ,λ. Since ν is an
invariant measure, then (�t

L ,λ)∗ν = (�t
L ,λ)

∗
ν = ν for all t ∈ R. Moreover, using the

definition of uλ and Fubini Theorem, we obtain:
∫

T M
λ ūλ(x) dν(x, v) ≤ λ

∫

T M

(∫ 0

−∞
eλs L(�s

L ,λ(x, v)) ds

)

dν(x, v)

= λ

∫ 0

−∞
eλs

(∫

T M
L(�s

L ,λ(x, v)) dν(x, v)

)

ds

= λ

∫ 0

−∞
eλs

(∫

T M
L(x, v) d(�s

L ,λ)
∗ν(x, v)

)

ds

= λ

∫ 0

−∞
eλs

(∫

T M
L(x, v) dν(x, v)

)

ds

= λ

(∫

T M
L(x, v) dν(x, v)

)

·
(∫ 0

−∞
eλsds

)

=
∫

T M
L(x, v) dν(x, v). (26)
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The following characterization holds.

Proposition 12. Let μ ∈ ML ,λ. Then:

∫

T M
(L − λūλ) dμ ≥ 0.

Moreover,

∫

T M
(L − λūλ) dμ = 0 ⇐⇒ suppμ ⊆ ÃL ,λ.

Proof. The fact that
∫

T M (L − λūλ) dμ ≥ 0 follows from (26). Hence, let us prove the
second part.

If suppμ ⊆ ÃL ,λ, then for every (x, v) ∈ suppμ we have that �s
L ,λ(x, v) =

(γx (s), γ̇x (s)) for all s ∈ (−∞, 0], where γx is the curve achieving the infimum in the
definition of ūλ(x) (see item (3) in Proposition 7). Therefore, proceeding as in (26) we
get:

∫

T M
λ ūλ(x) dμ(x, v) = λ

∫

T M

(∫ 0

−∞
eλs L(�s

L ,λ(x, v)) ds

)

dμ(x, v)

= . . . =
∫

T M
L(x, v) dμ(x, v).

Hence,
∫

T M (L − λūλ) dμ = 0.
On the other side, if

∫
T M (L−λūλ) dμ = 0, then it follows from (26) that forμ-almost

every (x, v) ∈ suppμ we have that

ūλ(x) =
∫ 0

−∞
eλs L(�s

L ,λ(x, v)) ds.

Hence, it follows that the orbit �s
L ,λ(x, v) is (ūλ, L)-calibrated on (−∞, 0] (see item

(3) in Proposition 7) and therefore (x, v) ∈ �̃L ,λ. In particular, using the closedness of
�̃L ,λ, we can conclude that suppμ ⊆ �̃L ,λ. Since μ is invariant, then for every t ∈ R

�t
L ,λ(suppμ) = suppμ ⊂ �t

L ,λ(�̃L ,λ).

Hence, it follows from the definition of ÃL ,λ in (18) that suppμ ⊆ ÃL ,λ. ��
This result justifies the following definition:

We say that a measure μ ∈ ML ,λ is a minimizing measure if

∫

T M
(L − λūλ) dμ = 0.

Remark 12. (i) When λ = 0, this definition coincides with the classical definition of
Mather’s measures (see [25,29]).
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(ii) If μ is a minimizing measure, then, using Proposition 11 and the fact that ūλ is
differentiable on AL ,λ, we obtain:

∫

T M
(L − λūλ) dμ = 0 =

∫

T M
(L + H) dμ.

Hence,
∫

T M
(λūλ + H ◦ LL) dμ = 0

or equivalently
∫

T M
(λūλ(x) + H(x, dūλ(x)) dπ∗μ(x) = 0,

where π : T M −→ M denotes the projection.

Let us define the following invariant set, which , in analogy with the conservative
case, will be called the Mather set:

M̃L ,λ :=
⋃

{suppμ : μ is minimizing}. (27)

In analogy with what done for the Aubry set in (18), we describe some properties of the
Mather set:

m.1) M̃L ,λ �= ∅, as it follows fromRemark 10 and Proposition 12.Moreover, it follows
from the definition that M̃L ,λ ⊆ ÃL ,λ (see also item (a.2) after the definition of
ÃL ,λ in (18)).

m.2) M̃L ,λ is clearly invariant, since it is the closure of the union of invariant objects.
m.3) (Graph property) Since M̃L ,λ ⊆ ÃL ,λ, then the projection π : M̃L ,λ −→ M

such that π(x, v) = x is injective (see item (a.4) after the definition of ÃL ,λ

in (18)). In particular, π : M̃L ,λ −→ ML ,λ is a bi-Lipschitz homeomorphism
(where ML ,λ := π(M̃L ,λ)) and

M̃L ,λ =
{(

x,
∂ H

∂p
(x, dūλ(x)

)

: x ∈ MH,λ

}

. (28)

7. Limit to the Conservative Case

In this sectionwewould like to briefly discusswhat happens in the limit as the dissipation
λ goes to zero.

Let us start with the following property whose proof follows, for example, from
[21], [12, Proposition 2.6] and Remark 5 (i). We denote by α(0) the value of Mather’s
α-function at 0 ( we refer for example to [15,25,29] for more details).

Proposition 13. λūλ converges uniformly to −α(0) as λ → 0+.

Remark 13. It follows from this fact that the region Z0
Fλ

∪ Z−
Fλ

= {(x, p) ∈ T ∗M :
Fλ(x, p) ≤ 0} where the dynamics is attracted, in the limit as λ → 0+ converges to
the energy sublevel {H(x, p) ≤ α(0)}. In particular, Z0

Fλ
converges to Mañé’s critical

energy level for H (see [15,29] and references therein).
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Let us now prove this convergence result.

Proposition 14. Let μλ be minimizing measures for λ > 0 and assume that μ̄ is an
accumulation point of these probability measures as λ goes to 0. Then, μ̄ is a Mather
measure for the limit conservative system.

Proof. Let assume that μλn converge (in the weak∗ topology) to μ̄ (λn → 0+ as n →
+∞). Then, it follows from the definition of minimizing measure, the convergence of
these measures and Proposition 13, that:

0 =
∫

T M
(L − λnūλn ) dμλn

n→+∞−→
∫

T M
L dμ̄ + α(0),

which implies ∫

T M
L dμ̄ = −α(0). (29)

Observe that μ̄ is a closed probability measure (since it is the limit of invariant, hence
closed, probability measures). It has been proven in [23, Proposition 1.3] (see also [6,
Theorem 31] for the proof of the equivalence between the definition of closed measures
and holonomic measures) that a closed measure which satisfies the minimality condition
in (29) is invariant and it is a Mather measure. ��

If we denote by M̃L the (conservative) Mather set associated to H and L , then the
following holds.

Corollary 2. The limit of M̃L ,λ is contained in M̃L . More specifically, for every neigh-
borhood U ⊃ M̃L , the sets M̃L ,λ are definitely contained in U as λ → 0+.

Remark 14. The following reasoning and the above results can be easily adapted to the
case in which the cohomology class η ∈ H1(M; R) is different from zero. In particular,
the limit to the conservative case implies that both the cohomology class cλ −→ 0 and
λ → 0+; more specifically, in the light of Remark 2 and (9), we are interested in the
limit of cλ

λ
.

One can easily consider the case inwhich cλ = λ c0. In this case Proposition 13 reads:
λūλ,cλ converges uniformly to −α(c0) as λ → 0+. The proof is the same, choosing the
new Hamiltonian H̃(x, p) = H(x, c0 + p) [see Remark 2 and (9)]. In particular, all
other proofs (given for c = 0) adapt similarly to this case, up to substitute the limit zero
cohomology class with c0.

Remark 15. (i) In [12] the authors proved that ūλ+
α(0)
λ

uniformly converges asλ → 0+

to a specific solution to the classical Hamilton–Jacobi equation.
(ii) A similar convergence result as in Corollary 2 does not hold in general for theAubry

set. Consider for example a vector field X on a closed surface � and let H(x, p) =
1
2‖p‖2x + 〈p, X (x)〉x be the associated Mañé Hamiltonian (see Example 3). As we
have seen in Proposition 8 for each λ > 0 the Aubry set ÃL ,λ = Graph(X), so

lim
λ→0+

ÃL ,λ = Graph(X).

On the other hand, the Aubry set ÃL for the conservative case might be smaller (see
Example 3). In fact, as it was proven in [14, Theorem 1.6], under these assumptions
the projected Aubry set AL = π(ÃL) corresponds to the set of chain-recurrent
points for the flow of X on�; hence, it may happen that it is only properly contained
in �.
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8. Examples

Let us discuss some illustrative examples of conformally symplectic vector fields and
describe the corresponding Aubry–Mather sets.

Example 1 (Integrable CS Vector Fields). Let h : R
n −→ R be a strictly convex and

superlinear C2 function and consider the vector field on T ∗
T

ngiven by
{

ẋ = ∂h
∂p (p)

ṗ = −λp + η

where x ∈ T
n , p ∈ R

n , while λ > 0 and η ∈ R
n are fixed.

It is easy to check that the Lagrangian submanifold �λ,η = T
n ×{ η

λ
} is invariant and

that the motion on it corresponds to a rotation with rotation vector ∂h
∂p (

η
λ
). In particular

we have that

Kh,λ = A∗
h,λ = M∗

h,λ = �λ,η.

All orbits that do not lie on this invariant manifold are asymptotic to �λ,η. In fact, the
equation ṗ = −λp + η, with initial condition p(0) = p0, is easy to integrate and one
obtains:

p(t) = Ce−λt +
η

λ

where C = C(p0) = p0 − η
λ
is a constant depending on the initial condition (observe

that it vanishes when p0 = η
λ
); in particular, p(t) −→ η

λ
as t → +∞.

If we consider the limit from the dissipative to the conservative case, observe that
when λ goes to zero, also η must converge to zero (otherwise the limit system does
not correspond to a Hamiltonian system on T ∗

T
n anymore). In particular, what really

matters is the value of the limit λ
η
as λ goes to zero: if this limit exists and is equal to

some c ∈ R, then �λ,η converges to the invariant tours T
n × {c}.

Remark 16. Let H(x, p) : T
n × R

n −→ R be a Tonelli Hamiltonian of the form
H(x, p) = h(p) + εH1(x, p) where h : R

n −→ R is a strictly convex and superlinear
C2 function, ε > 0, λ > 0 and η ∈ R

n , and let us consider the quasi-integrable CS
vector field given by

{
ẋ = ∂h

∂p (p) + ε ∂ H1
∂p (x, p)

ṗ = −ε ∂ H1
∂x (x, p) − λp + η

Different KAM approaches (e.g., [7,8,24,28]) have been proposed to show the persis-
tence – under suitable assumptions and for small values of ε – of the invariant torus of
the integrable case �λ,η. This “perturbed” torus does coincide with the Aubry and the
Mather sets that we constructed; in particular, it continues to be a local attractor [8].

Example 2 (The dissipative pendulum). Let us consider the mechanical system obtained
by adding a dissipative force proportional to the velocity to the simple pendulumequation
(what is generally called the dissipative pendulum). The corresponding Hamiltonian H
is defined on T ∗

T = T × R, with T = R/2πZ, by H(x, p) = 1
2 p2 − (1 − cos x). The
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corresponding Lagrangian L(x, v) = 1
2 p2 + (1− cos x) is defined on T T = T×R. The

associated CS vector field is:
{

ẋ = p
ṗ = sin x − λp (30)

Let us now make some observations.

(i) We have that H ≥ −2 and

d

dt
H(x(t), p(t)) = −λp(t)2

so that H is a Lyapunov function. For every c>0 consider the forward invariant set

Mc = {(x, p) ∈ T ∗
T : H(x, p) < c}.

Applying the LaSalle invariant principle [18] on Mc we have that �∞(Mc) is con-
tained in the largest forward invariant set in {Ḣ = 0}. Hence,�∞(T ∗

T) ⊆ P1 ∪ P2
where P1 = (0, 0) and P2 = (π, 0) are the only equilibria of the system. Moreover,
since P1 is a saddle, by the stable manifold theorem, there exist (exactly) two orbits
approaching it for t → +∞. We can apply LaSalle principle to a neighborhood of
P2 to get that it is asymptotically stable. Then, we have that �∞(T ∗

T) = P1 ∪ P2.
The basins of attractions of these two equilibria are different: all of the orbits con-
verging to P1 stay on its stable manifold, while the basin of attraction of P2 is the
rest of T ∗

T (see Fig. 1a).
(ii) The unique solution ūλ to the associated λ-discounted Hamilton–Jacobi equation

[see (16)] enjoys some symmetries. In fact, first note that if (x(t), p(t)) is an orbit
of (30), then also (2π − x(t),−p(t)) is an orbit (we slightly abuse of notation,
thinking of the lifted system on the covering space R

2). Hence the system (30)
is invariant under the action of the involution I(x, p) = (−x,−p) defined on
T ∗

T. Since in this case L(x, v) = (x, p), the same holds for the corresponding
Lagrangian system. Moreover, both L and H are invariant under the action of I.
Therefore, if γx realizes the minimum in (16) so does γ1−x = I ◦ L−1(γx , γ̇x ).
Hence ūλ(x) = ūλ(−x).

(iii) We know that for every x ∈ T there exists γx : (−∞, 0] −→ T such that γx (0) = x
and which is (ūλ, L)-calibrated (see Proposition 7); in particular, using Proposi-
tions 5 and 6, and the fact that in this case LL(x, v) = (x, p), we have that ūλ is
differentiable in γx ((−∞, 0)) and that γ̇x (t) = dūλ(γx (t)) for all t ∈ (−∞, 0).

These facts and the information on the symmetry of ūλ, are sufficient to determine, at
least qualitatively, ūλ. More specifically, ūλ is differentiable everywhere but at x = π ;
moreover, with reference to Fig. 1a, the graph of dūλ coincides on [0, π)with the “upper”
part of the unstable manifold of P1, and on (π, 2π ] with the “lower” part of the unstable
manifold of P1.

Hence, �̃ is the union of the closure of these two branches of separatrices. As a
consequence, it follows from the definition of Aubry set (18) that

A∗
H,λ = P1 = {(0, 0)}.

Moreover, there is only one invariant measure supported in A∗
H,λ, namely the Dirac’s

delta δP1 ; therefore (see Proposition 12):

M∗
H,λ = A∗

H,λ = P1 = {(0, 0)}.
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(a) (b)

(c)
Fig. 1. The dissipative pendulum with λ = 1/5. a Phase portrait where we highlight the stable and unstable
manifolds of the saddle (thick gray and thick black respectively). b The sets Z0

Fλ
(thick black line) and Z−

Fλ
(shaded region). c The global maximal attractor formed by the unstable manifolds and the equilibria (colour
figure online)

It comes from observation (i) that the set A∗
H,λ is not an attractor. Actually, being a

saddle we can define its unstable manifold whose orbits approach the asymptotically
stable point P2 (cfr Remark 3).

Remark 17. Let Fλ(x, p) = λūλ(x) + H(x, p). From the symmetries of H and ūλ one
deduces that Fλ(−x,−p) = Fλ(x, p) and Fλ(x,−p) = Fλ(x, p). It follows from these
symmetries thatZ0

Fλ
is obtained by reflectingLL(�̃) about the axis x = π . In particular,

Z−
Fλ

is the bounded region that it encloses (see Fig. 1b).
Finally, we claim that the maximal attractor KH,λ is formed by the equilibria P1 and

P2 and the unstable manifolds W u of P1 (see Fig. 1c).
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First, observe that P1, P2 and W u are contained inZ0
Fλ

∪Z−
Fλ

and are invariant under
the flow, therefore, P1 ∪ P2 ∪ W u ⊆ KH,λ.

Let us prove the other inclusion. Consider a point P ∈ KH,λ; sinceKH,λ is invariant,
then the alpha-limit of P is contained in KH,λ ⊆ Z0

Fλ
∪ Z−

Fλ
; in particular, since H is

Lyapunov function of the system – see item i) above – then the alpha-limit of P must
be contained in the set { d

dt H = 0} = {p = 0}. It follows from the equations of motion,
that the only invariant sets contained in {p = 0} are P1 and P2. If the alpha-limit is P2
then P ≡ P2, while if the alpha-limit is P1 then P ≡ P1 or P ∈ W u . This shows that
P1 ∪ P2 ∪ W u ⊇ KH,λ, and concludes the proof.

Example 3 (Mañé-like CS Vector Fields). Let X be a vector field on M and denote by ϕt
X

the associated flow. Consider the associatedMañé Lagrangian L(x, v) = 1
2‖v−X (x)‖2x .

Observe that L(x, v) ≥ 0 and vanishes only on

Graph(X) = {(x, X (x)) : x ∈ M} ⊂ T M.

Let us consider the corresponding Hamiltonian H(x, p) = 1
2‖p‖2x + 〈p, X (x)〉x . For

every λ > 0 we consider the vector field on T ∗M defined by:
{

ẋ = ∂ H
∂p (x, p) = p + X (x)

ṗ = − ∂ H
∂x (x, p) − λp.

It is easy to check that the function ūλ ≡ 0 is the unique solution of (12); hence, in
the light of Proposition 2, we can conclude that the zero section O ⊂ T ∗M is invariant
(clearly, it is Lagrangian and exact). In particular, the vector field restricted on it becomes

{
ẋ = X (x)

ṗ = 0.

Therefore, the flow �t
H,λ on O is smoothly conjugated to ϕt

X (the conjugation is the
projection π|O : O −→ M).

Observe that the dynamics on this invariant manifold can be very complicated. For
examples, the recurrent set might contain invariant measures with different homology
(or rotation vector). As a simple example consider the following (see also [29, Remark
3.3.5 (iv)]). Let M = T

2 = R
2/(2πZ)2 equipped with the flat metric and consider a

vector field X with norm 1 and such that X has two closed orbits γ1 and γ2 and any
other orbit asymptotically approaches γ1 in forward time and γ2 in backward time; for
example one can consider X (x1, x2) = (cos(x1), sin(x1)), where (x1, x2) ∈ T

2. Let us
denote by γ̃1 and γ̃2 the lifts of these orbits on Graph(X) ⊂ TM. One can check that:

• It comes from Proposition 8 that ÃL ,λ = Graph(X)

• The only ergodic invariant probability measures supported in ÃL ,λ, are those sup-
ported on γ̃1 and γ̃2. Therefore

M̃L ,λ = γ̃1 ∪ γ̃2 � ÃL ,λ.
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