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John N. Mather was undoubtedly one of the most influential mathematicians of
the last decades, whose exceptional depth and originality had a profound impact on a
vast area of mathematics, enhancing cross-field interactions and laying the foundations
of novel promising lines of investigation.

I was one of the lucky ones that had the privilege of being John’s Ph.D. student
at Princeton University: besides learning and benefitting much from his well-rounded
knowledge and unmatchable intuition, our weekly interactions profoundly shaped my
way of doing and perceiving mathematical research itself. Extremely modest and
reserved, he would rather let his striking mathematics speaks on his behalf. His works
were a clear reflection of this distinct personality: not a single word was accidental or
irrelevant, meant to bring into sharp focus the mathematical vision that he had vivid
in his mind and was eager to share.

Trying to provide a comprehensive description of his mathematical legacy is an
arduous task: from his earliest works on foliation theory, to his remarkable papers
on the theory of singularities – providing the rigorous foundations of this theory
–, up to the most recent revolutionary contributions in dynamical systems and La-
grangian/Hamiltonian dynamics, which led to the birth and outgrowth of novel areas
of research that nowadays bear his name.

In this note1 we would like to focus on these latter aspects of his work, trying
to provide an overview of what is nowadays called Mather’s theory: a set of ideas
and results for Lagrangian systems, that John started to develop in the early 1990’s,
following the striking intuition that this was the right path to follow in order to tackle
the problem of Arnol’d diffusion and to understand the onset of chaos in classical
mechanics. Years passed, and we must acknowledge that he was – as usual – very
right about that.

More specifically, starting from the observation that invariant Lagrangian graphs
can be characterized in terms of their action-minimizing properties, John pointed out
how analogue features can be traced in a more general setting, namely the so-called
Tonelli Hamiltonian systems. This approach brings to light a plethora of compact
invariant subsets for the system, which, under many points of view, can be considered
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as generalization of invariant Lagrangian graphs, despite not being in general either
submanifolds or regular. Besides being very significant from a dynamical systems
point of view, these objects also appear and play an important role in many other
different contexts: PDEs (e.g., Hamilton-Jacobi equation and weak KAM theory),
Symplectic geometry, etc...

Dear John, your memory will live on through your beautiful mathematics. Sit
tibi terra levis...
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1. In the beginning there were KAM tori.... The celebrated Kolmogorov-
Arnol’d-Moser (or KAM) theorem finally settled the old question concerning
the existence of quasi-periodic motions for nearly-integrable Hamiltonian systems,
i.e., Hamiltonian systems that are slight perturbation of an integrable one. In the
integrable case, in fact, the whole phase space is foliated by invariant Lagrangian
submanifolds that are diffeomorphic to tori, and on which the dynamics is conjugate
to a rigid rotation. More specifically, let H : T ∗

T
n −→ R be an integrable Tonelli

Hamiltonian in action-angle coordinates, i.e., H(x, p) = h(p) with the Hamiltonian

depending only on the action variables (see [3])2. Let us denote by φh
t the associated

Hamiltonian flow and identify T ∗
T
n with T

n × R
n, where T

n = R
n/Zn.

The Hamiltonian flow in this case is very easy to study. Hamilton’s equations
are: {

ẋ = ∂h
∂p (p) =: ρ(p)

ṗ = − ∂h
∂x (p) = 0,

therefore Φh
t (x0, p0) = (x0 + tρ(p0) modZn, p0). In particular, p is an integral of

motion, that is, it remains constant along the orbits. The phase space T ∗
T
n is hence

foliated by invariant tori Λ∗
p0

= T
n × {p0} on which the motion is a rigid rotation

with rotation vector ρ(p0) (see Figure 1).

On the other hand, it is natural to ask what happens to such a foliation and to
these stable motions once the system is perturbed. In 1954 Kolmogorov [26] – and
later Arnol’d [1] and Moser [42] in different contexts – proved that, in spite of the
generic disappearance of the invariant tori filled by periodic orbits (already pointed
out by Henri Poincaré), for small perturbations of an integrable system it is still
possible to find invariant Lagrangian tori corresponding to certain rotation vectors

2In general these coordinates can be defined only locally. For the sake of simplicity, in this
example we assume – without affecting its main purpose – that they are defined globally.
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Fig. 1. The phase space of an integrable system.

(the so-called diophantine rotation vectors). This result is commonly referred to as
KAM theorem, from the initials of the three main pioneers. In addition to open the
way to a new understanding of the nature of Hamiltonian systems and their stable
motions, this result contributed to raise new interesting questions, such as: what does
it happen to the stable motions that are destroyed by effect of the perturbation? Is it
possible to identify something reminiscent of their past presence? What can be said
for systems that not close to an integrable one?

While all these questions are concerned with the investigation of stable motions
of the perturbed system, another interesting issue soon took the stage: does the break-
down of this stable picture open the way to orbits with unstable or chaotic behaviours?

An answer to this latter question did not take long to arrive. In 1964 V. I. Arnol’d
[2] constructed an example of a perturbed integrable system in which unstable orbits –
resulting from the breaking of unperturbed KAM tori – coexist with the stable picture
drawn by KAM theorem. This striking, and somehow unexpected, phenomenon, yet
not completely understood, is nowadays called Arnol’d diffusion.

This new insight led to a change of perspective and in order to make sense of
the complex balance between stable and unstable motions that was looming out, new
approaches needed to be exploited. Amongst these, variational methods turned out to
be particularly suitable and successful. Mostly inspired by the so-called least action
principle,3 a sort of widely accepted “thriftiness” of Nature in all its actions, they
seemed to provide the natural setting to get over the local view given by the analytic
methods and make towards a global understanding of the dynamics.

Aubry-Mather theory represented undoubtedly a great leap forward in this direc-
tion. Developed independently by Serge Aubry [4] and John Mather [33] in 1980s, this
novel approach to the study of the dynamics of twist diffeomorphisms of the annulus
(which correspond to Poincaré maps of 1-dimensional non-autonomous Hamiltonian

3“Nature is thrifty in all its actions”, Pierre-Louis Moreau de Maupertuis (1744). A better-
known special case of this principle is what is generally called Maupertius’ principle. Actually, König
published a note claiming priority for Leibniz in the Berlin Academy correspondences overseen by
Maupertuis. Priority dispute brought in Euler, Voltaire and ultimately a committee convened by the
King of Prussia. In 1913, the Berlin Academy reversed its previous decision and found Leibniz had
priority.
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systems) pointed out the existence of many invariant sets, which are obtained by
means of variational methods and that always exist, even after rotational curves are
destroyed (see also [5, 35] for nice expositions of these results). Besides providing a
detailed structure theory for these new sets, this powerful approach yielded to a better
understanding of the destiny of invariant rotational curves and to the construction of
interesting chaotic orbits as a result of their destruction [34, 36].

Motivated by these achievements, John Mather [37, 38] – and later Ricardo Mañé
[28, 27] and Albert Fathi [20] in different ways – developed a generalization of this
theory to higher dimensional systems. Positive definite superlinear Lagrangians on
compact manifolds, also called Tonelli Lagrangians (see Definition 2.1), were the ap-
propriate setting to work in. Under these conditions, in fact, it is possible to prove
the existence of interesting invariant sets, known as Mather, Aubry and Mañé sets,
which generalize KAM tori and invariant Lagrangian graphs, and which continue to
exist beyond the nearly-integrable case. These invariant sets are obtained as minimiz-
ing solutions to variational problems; as a result, these objects present a much richer
structure and rigidity than one might generally expect and, quite surprisingly, play a
leading role in determining the global dynamics of the system.

Let us remark that these tools – while dealing with stable motions – revealed also
quite promising in the construction of chaotic orbits, such as for instance connecting
orbits among the above-mentioned invariant sets [38, 6, 19]. Therefore they set high
hopes on the possibility of proving the generic existence of Arnol’d diffusion in nearly
integrable Hamiltonian systems [39, 9, 14, 15, 24, 25, 29]. However, differently from
the case of twist diffeomorphisms, the situation turns out to be more complicated,
due to a general lack of information on the topological structure of these action-
minimizing sets. These sets, in fact, play a twofold role. Whereas on the one hand
they may provide an obstruction to the existence of “diffusing orbits”, on the other
hand their topological structure plays a fundamental role in the variational methods
that have been developed for the construction of orbits with “prescribed” behaviours.
We will not enter further into the discussion of this problematic, but we refer the
interested readers to [39, 40, 6, 8, 9, 14, 15, 19, 24, 25, 29].

In the following we will provide a brief overview of Mather’s theory. We will
first discuss an illustrative example (what happens in the integrable case) and then
describe how similar ideas can be extended to a more general setting.

We would like to conclude this section, by pointing out that in addition to its
fundamental impact on the modern study of classical dynamics, Mather’s theory has
also contributed to point out interesting and sometimes unexpected links to other
fields of research (both pure and applied), fostering a multidisciplinary interest in
these ideas and in the techniques involved. The literature is vast, but interested
readers could read, for example, [16, 20, 23, 30, 32, 43, 45, 47, 49, 50, 51, 52, 53, 54]
and references therein, for more information on these recent developments.

2. Setting: Tonelli Lagrangians and Hamiltonians. Before starting, let us
introduce the basic setting that we will consider in the following. Let M be a compact
and connected smooth manifold without boundary. Denote by TM its tangent bundle
and T ∗M the cotangent one. A point of TM will be denoted by (x, v), where x ∈M
and v ∈ TxM , and a point of T ∗M by (x, p), where p ∈ T ∗

xM is a linear form on
the vector space TxM . Let us fix a Riemannian metric g on it and denote by d the
induced metric on M ; let ‖ · ‖x be the norm induced by g on TxM ; we will use the
same notation for the norm induced on T ∗

xM .

We will consider functions L : TM −→ R of class C2, which are called La-
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grangians. Associated to each Lagrangian, there is a flow on TM called the Euler-
Lagrange flow, defined as follows. Let us consider the action functional AL from the
space of absolutely continuous curves γ : [a, b]→M , with a ≤ b, defined by:

AL(γ) :=

∫ b

a

L(γ(t), γ̇(t)) dt.

Curves that extremize4 this functional among all curves with the same end-points
(and the same time-length) are solutions of the Euler-Lagrange equation:

d

dt

∂L

∂v
(γ(t), γ̇(t)) =

∂L

∂x
(γ(t), γ̇(t)) ∀ t ∈ [a, b] .

Observe that this equation is equivalent to

∂2L

∂v2
(γ(t), γ̇(t))γ̈(t) =

∂L

∂x
(γ(t), γ̇(t))− ∂2L

∂v∂x
(γ(t), γ̇(t))γ̇(t) ,

therefore, if the second partial vertical derivative ∂2L/∂v2(x, v) is non-degenerate at
all points of TM , we can solve for γ̈(t). This condition

det
∂2L

∂v2
�= 0

is called Legendre condition and allows one to define a vector field XL on TM , such
that the solutions of γ̈(t) = XL(γ(t), γ̇(t)) are precisely the curves satisfying the Euler-
Lagrange equation. This vector field XL is called the Euler-Lagrange vector field and
its flow ΦL

t is the Euler-Lagrange flow associated to L. It turns out that ΦL
t is C1

even if L is only C2 (see Remark 2.3).

Definition 2.1 (Tonelli Lagrangian). A function L : TM −→ R is called a
Tonelli Lagrangian if:

i) L ∈ C2(TM);
ii) L is strictly convex in the fibers, in the C2 sense, i.e., the second partial

vertical derivative ∂2L/∂v2(x, v) is positive definite, as a quadratic form, for
all (x, v);

iii) L is superlinear in each fiber, i.e.,

lim
‖v‖x→+∞

L(x, v)

‖v‖x
= +∞.

This condition is equivalent to ask that for each A ∈ R there exists B(A) ∈ R

such that

L(x, v) ≥ A‖v‖ −B(A) ∀ (x, v) ∈ TM .

Observe that since the manifold is compact, then condition iii) is independent of
the choice of the Riemannian metric g.

4These extremals are not in general minima. The existence of global minima and the study of
the corresponding motions is the core of Aubry-Mather theory; see section 4.
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Examples of Tonelli Lagrangians.
• Riemannian Lagrangians. Given a Riemannian metric g on TM , the
Riemannian Lagrangian on (M, g) is given by the kinetic energy:

L(x, v) =
1

2
‖v‖2x .

Its Euler-Lagrange equation is the equation of the geodesics of g:

D

dt
ẋ ≡ 0 ,

and its Euler-Lagrange flow coincides with the geodesic flow.
• Mechanical Lagrangians. These Lagrangians play a key-role in the study
of classical mechanics. They are given by the sum of the kinetic energy and
a potential U : M −→ R:

L(x, v) =
1

2
‖v‖2x + U(x) .

The associated Euler-Lagrange equation is given by:

D

dt
ẋ = ∇U(x) .

• Mañé’s Lagrangians. This is a particular class of Tonelli Lagrangians,
introduced by Ricardo Mañé in [27]. If X is a Ck vector field on M , with
k ≥ 2, one can embed its flow ϕX

t into the Euler-Lagrange flow associated to
a certain Lagrangian, namely

LX(x, v) =
1

2
‖v −X(x)‖2x .

It is quite easy to check that the integral curves of the vector field X are
solutions of the Euler-Lagrange equation. In particular, the Euler-Lagrange
flow ΦLX

t restricted to Graph(X) = {(x,X(x)), x ∈ M} (which is clearly
invariant) is conjugate to the flow of X on M and the conjugacy is given by
π|Graph(X), where π : TM →M is the canonical projection. In other words,
the following diagram commutes:

Graph(X)

π

��

Φ
LX
t �� Graph(X)

π

��
M

ϕX
t

�� M

that is, for every x ∈ M and every t ∈ R, ΦLX
t (x,X(x)) = (γX

x (t), γ̇X
x (t)),

where γX
x (t) = ϕX

t (x).

In the study of classical dynamics it often turns out to be very useful to con-
sider the associated Hamiltonian system, which is defined on the cotangent bundle
T ∗M . Given a Lagrangian L we can define the associated Hamiltonian as its Fenchel
transform (or Legendre-Fenchel transform), see [44]:

H : T ∗M −→ R

(x, p) �−→ sup
v∈TxM

{〈p, v〉x − L(x, v)}
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where 〈 ·, · 〉x denotes the canonical pairing between the tangent and cotangent bun-
dles.

If L is a Tonelli Lagrangian, one can easily prove that H is finite everywhere (as
a consequence of the superlinearity of L), superlinear and strictly convex in each fiber
(in the C2 sense). Observe that H is also C2. In fact the Euler-Lagrange vector field
corresponds, under the Legendre transformation, to a vector field on T ∗M given by
Hamilton’s equation; it is easily seen that this vector field is C1 (see [12, p. 207]).
Such a Hamiltonian is called a Tonelli (or optical) Hamiltonian.

Definition 2.2 (Tonelli Hamiltonian). A function H : T ∗M −→ R is called a
Tonelli (or optical) Hamiltonian if:

i) H is of class C2;
ii) H is strictly convex in each fiber in the C2 sense, i.e., the second partial

vertical derivative ∂2H/∂p2(x, p) is positive definite, as a quadratic form, for
any (x, p) ∈ T ∗M ;

iii) H is superlinear in each fiber, i.e.,

lim
‖p‖x→+∞

H(x, p)

‖p‖x
= +∞ .

Examples of Tonelli Hamiltonians. Let us see what are the Hamiltonians as-
sociated to the Tonelli Lagrangians that we have introduced in the previous examples.

• Riemannian Hamiltonians. If L(x, v) = 1
2‖v‖2x is the Riemannian La-

grangian associated to a Riemannian metric g on M , the corresponding
Hamiltonian will be

H(x, p) =
1

2
‖p‖2x,

where ‖ · ‖ represents – in this last expression – the induced norm on the
cotangent bundle T ∗M .

• Mechanical Hamiltonians. If L(x, v) = 1
2‖v‖2x + U(x) is a mechanical

Lagrangian, the associated Hamiltonian is:

H(x, p) =
1

2
‖p‖2x − U(x).

It is sometimes referred to as mechanical energy.
• Mañé’s Hamiltonians. If X is a Ck vector field on M , with k ≥ 2, and
LX(x, v) = ‖v −X(x)‖2x is the associated Mañé Lagrangian, one can check
that the corresponding Hamiltonian is given by:

H(x, p) =
1

2
‖p‖2x + 〈p,X(x)〉 .

Given a Hamiltonian one can consider the associated Hamiltonian flow ΦH
t on

T ∗M . In local coordinates, this flow can be expressed in terms of the so-called Hamil-
ton’s equations: {

ẋ(t) = ∂H
∂p (x(t), p(t))

ṗ(t) = −∂H
∂x (x(t), p(t)) .

We will denote by XH(x, p) :=
(

∂H
∂p (x, p),−∂H

∂x (x, p)
)

the Hamiltonian vector

field associated to H. This has a more intrinsic (geometric) definition in terms of the
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canonical symplectic structure ω on T ∗M , which in local coordinates can be written
as dx ∧ dp (see for example [11]). In fact, XH is the unique vector field that satisfies

ω (XH(x, p), ·) = dxH(·) ∀(x, p) ∈ T ∗M.

For this reason, it is sometime called symplectic gradient of H. It is easy to check
from both definitions that – only in the autonomous case – the Hamiltonian is a prime
integral of the motion, i.e., it is constant along the solutions of these equations.

Now, we would like to explain what is the relation between the Euler-Lagrange
flow and the Hamiltonian one. It follows easily from the definition of Hamiltonian
(and Legendre-Fenchel transform) that for each (x, v) ∈ TM and (x, p) ∈ T ∗M the
following inequality holds:

〈p, v〉x ≤ L(x, v) +H(x, p) . (1)

This is called Fenchel inequality (or Legendre-Fenchel inequality, see [44]) and it plays
a crucial role in the study of Lagrangian and Hamiltonian dynamics and in the vari-
ational methods that we are going to describe. In particular, equality holds if and
only if p = ∂L/∂v(x, v). One can therefore introduce the following diffeomorphism
between TM and T ∗M , known as Legendre transform:

L : TM −→ T ∗M

(x, v) �−→
(
x,

∂L

∂v
(x, v)

)
. (2)

Moreover, the following relation with the Hamiltonian holds:

H ◦ L(x, v) =
〈
∂L

∂v
(x, v), v

〉
x

− L(x, v) .

This diffeomorphism L represents a conjugacy between the two flows, namely the
Euler-Lagrange flow on TM and the Hamiltonian flow on T ∗M ; in other words, the
following diagram commutes:

TM

L
��

ΦL
t �� TM

L
��

T ∗M
ΦH

t

�� T ∗M

Remark 2.3. Since L and the Hamiltonian flow ΦH are both C1, then it follows
from the commutative diagram above that the Euler-Lagrange flow is also C1.

3. Cartoon example: Action-minimizing properties of integrable sys-
tems. Before entering into the details of Mather’s work, we would like to discuss a
very easy case: action-minimizing properties of invariant measures and orbits of an
integrable system (see section 1). This will provide us with a better understanding of
the ideas behind Mather’s theory and will describe clearer in which sense the action-
minimizing sets that we are going to construct – namely, what we will call Mather sets
(see section 4), Aubry sets and Mañé sets (see section 6) – represent a generalization
of KAM tori.
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As we have already discussed in section 1, let H : T ∗
T
n −→ R be an integrable

Tonelli Hamiltonian in action-angle coordinates, i.e., H(x, p) = h(p) and let L :
TTn −→ R, L(x, v) = 	(v), be the associated Tonelli Lagrangian. We denote by Φh

and Φ� the respective flows, by L the associated Legendre transform, and identify
both T ∗

T
n and TTn with T

n × R
n.

We have recalled in section 2 that the Euler-Lagrange flow can be equivalently de-
fined in terms of a variational principle associated to the Lagrangian action functional
A�. We would like to study action-minimizing properties of these invariant manifolds;
for, it is much better to work in the Lagrangian setting. Moreover, instead of consid-
ering properties of single orbits, it would be more convenient to study “collection” of
orbits, in the form of invariant probability measures and consider their average action.
If μ is an invariant probability measure for Φ� – i.e., (Φ�

t)
∗μ = μ for all t ∈ R, where

(Φ�
t)

∗μ denotes the pull-back of the measure – then we define:

A�(μ) :=

∫
TTn

	(v) dμ.

Let us consider any invariant probability measure μ0 supported on Λ̃p0
:=

L−1(Λ∗
p0
), where Λ∗

p0
= T

n × {p0}, and compute its action. Observe that on the
support of this measure 	(v) ≡ 	(ρ(p0)). Then:

A�(μ0) =

∫
TTn

	(v) dμ0 =

∫
TTn

	(ρ(p0)) dμ0 =

= 	(p0) = p0 · ρ(p0)− h(p0), (3)

where in the last step we have used the Legendre-Fenchel duality between h and 	.
Let us now consider a general invariant probability measure μ. In this case it is

not true anymore that 	(v) is constant on the support of μ. However, using Legendre-
Fenchel inequality (see (1)), we can conclude that 	(v) ≥ p0 ·v−h(p0) for each v ∈ R

n.
Hence:

A�(μ) =

∫
TTn

	(v) dμ ≥
∫
TTn

(p0 · v − h(p0)) dμ

=

∫
TTn

p0 · v dμ− h(p0) = p0 ·
(∫

TTn

v dμ

)
− h(p0). (4)

We would like to compare expressions (3) and (4). However, in the case of a
general measure, we do not know how to evaluate the term

∫
TTn v dμ. One possible

trick to overcome this problem is the following: instead of considering the action
of 	(v), let us consider the action of 	(v) − p0 · v. It is easy to see that this new
Lagrangian is also Tonelli (we have subtracted a linear term in v) and that it has the
same Euler-Lagrange flow as 	. In this way we obtain from (3) and (4) that:

A�−p0·v(μ0) = −h(p0) and A�−p0·v(μ) ≥ −h(p0),

which are now comparable. Hence, we have just showed the following fact:

Fact 1: Every invariant probability measure supported on Λ̃p0
minimizes the

action A�−p0·v amongst all invariant probability measures of Φ�.

In particular, we can characterize our invariant tori in a different way (this will
be generalized in section 4):

Λ̃p0 =
⋃
{suppμ : μ minimizes A�−p0·v}.
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Moreover, there is a relation between the energy (Hamiltonian) of the invariant
torus and the minimal action of its invariant probability measures:

h(p0) = −min{A�−p0·v(μ) : μ is an inv. prob. measure}.

Observe that it is somehow expectable that we need to modify the Lagrangian in
order to obtain information on a specific invariant torus. In fact, in the case of an
integrable system we have a foliation of the space made by these invariant tori and
it would be unrealistic to expect that they could all be obtained as extremals of the
same action functional. In other words, what we did was to add a weighting term to
our Lagrangian, in order to magnify some motions rather than others.

Is it possible to distinguish these motions in a different way? Let us go back to
(3) and (4). The main problem in comparing these two expression was represented
by the term

∫
TTn v dμ. This can be interpreted as a sort of average rotation vector of

orbits in the support of μ. Hence, let us define the average rotation vector of μ as:

ρ(μ) :=

∫
TTn

v dμ ∈ R
n.

We will give a more precise definition of it (which is also meaningful on manifolds
different from the torus) in section 4.

Let now μ be an invariant probability measure of Φ� with rotation vector ρ(μ) =
ρ(p0). It follows from (4) that:

A�(μ) ≥ p0 ·
(∫

TTn

v dμ

)
− h(p0) = p0 · ρ(μ)− h(p0) =

= p0 · ρ(p0)− h(p0) = 	(ρ(p0)).

Therefore, comparing with (3) we obtain another characterization of μ0 (see sec-
tion 4 for the general case):

Fact 2: Every invariant probability measure supported on Λ̃p0
minimizes the

action A� amongst all invariant probability measures of Φ� with rotation vector ρ(p0).

In particular:

Λ̃p0
=

⋃
{suppμ : μ minimizes A� amongst measures with rot. vect. ρ(p0)}.

Moreover, there is a relation between the value of the Lagrangian at ρ(p0) and
the minimal action of all invariant probability measures with rotation vector ρ(p0):

	(ρ(p0)) = min{A�(μ) : μ is an inv. prob. meas. with rot. vect. ρ(p0)}.

One could also study directly orbits on these tori and try to show that their action
minimizes a modified Lagrangian action, in the same spirit as we have just discussed
for measures. Let (x0, p0) be a point on the KAM torus Λ∗

p0
and we consider the

projection on T
n of its orbit under the Hamiltonian flow, i.e., γ(t) = x0 +

∂h
∂p0

(p0)t.
Let us fix any times a < b and consider the corresponding Lagrangian action of this
curve. Proceeding as we did before and using Fenchel-Legendre (in)equality we get:∫ b

a

(	(γ̇(t))− p0 · γ̇(t)) dt = −h(p0)(b− a) .
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Let us now take any other absolutely continuous curve ξ : [a, b] −→ T
n with the same

endpoints as γ, i.e., ξ(a) = γ(a) and ξ(b) = γ(b). Proceeding as before and using
Fenchel-Legendre inequality, we obtain:∫ b

a

(
	(ξ̇(t))− p0 · ξ̇(t)

)
dt ≥ −h(p0)(b− a) =

∫ b

a

(	(γ̇(t))− p0 · γ̇(t)) dt.

Therefore for any times a < b, γ is the curve that minimizes the action of 	(v)−
p0 · v over all absolutely continuous curves ξ : [a, b] −→ T

n with ξ(a) = γ(a) and
ξ(b) = γ(b).

Remark 3.1. Actually something more is true. Let us consider a curve with
the same endpoints, but a different time-length, i.e., ξ : [a′, b′] −→ T

d with a′ < b′

and such that ξ(a′) = γ(a) and ξ(b′) = γ(b). Proceeding as above, one obtains∫ b

a

(	(γ̇(t))− p0 · γ̇(t) + h(p0)) ≤
∫ b′

a′

(
	(ξ̇(t))− p0 · ξ̇(t) + h(p0)

)
.

Hence, for any times a < b, γ minimizes the action of 	(v) − p0 · v + h(p0) amongst
all absolutely continuous curves ξ that connect γ(a) to ξ(b) = γ(b) in any given time
(adding a constant does not change the Euler-Lagrange flow).

We have just proven the following fact:
For any given a < b, the projection γ of any orbit on Λ∗

p0
minimizes the action of

	(v)−p0 ·v amongst all absolutely continuous curves that connect γ(a) to γ(b) in time
b− a.

Such a curve is called a p0-global minimizer of 	.
In particular, we obtain that:

L−1(Λ∗
p0
) =

⋃
{(γ(t), γ̇(t)) : γ is a p0-global minimizer of 	 and t ∈ R}.

The set on the right-hand side is often denoted by Ñp0 and called the Mañé set of
cohomology class p0 (it will be defined, in the general case, in section 6).

Actually these curves satisfy a stronger property that just being p0-global min-
imizers, namely they are regular minimizers. This latter property is not very clear
in this simple context: it happens to coincide with being a global minimizer; we will
describe it more clearly in section 6. For the time being, let us just provide a sketchy
idea of what we would like to look at.

Let x1, x2 ∈ T
n and let us denote by hT

p0
(x1, x2) the minimimal action of 	(v)−p0·v

along curves that connect x1 to x2 in time T . It follows from what we discussed
above, that if there exist an orbit on Λ∗

p0
connecting (x1, p0) to (x2, p0) in time T ,

then hT
p0
(x1, x2) = −h(p0)T , or equivalently hT

p0
(x1, x2) + h(p0)T = 0.

Inspired by this, we define the so-called Pieierls’ barrier:

hp0(x1, x2) := lim inf
T→+∞

(
hT
p0
(x1, x2) + h(p0)T

)
.

It is not difficult to show that in our case hp0
(x1, x2) ≡ 0 for every x1, x2 ∈ T

n.
In particular, hp0

(x, x) = 0 for every x ∈ T
n, namely we can find closed loops

γk : [0, Tk] −→ T
n, with γk(0) = γk(Tk) = x and Tk → +∞, such that∫ Tk

0

(	(γ̇k(t))− p0 · γ̇k(t) + h(p0)) dt −→ 0 as k → +∞.
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We say that a p0-global minimizer γ is a p0-regular minimizer, if hp0
(xα, xω) +

hp0(xω, xα) = 0 for each xα in the α-limit set of γ and xω in the ω-limit set of γ.
It is trivial that in our case all minimizers are regular, since hp0(x1, x2) ≡ 0;

however, this is not the case in general and justifies the attention to this special class
of minimizers and the invariant set formed by their supports. In the special case we
are considering,

L−1(Λ∗
p0
) =

⋃
{(γ(t), γ̇(t)) : γ is a p0-regular minimizer of 	 and t ∈ R}.

The set on the right-hand side is often denoted by Ãp0
and called the Aubry set of

cohomology class c (it will be defined, in the general case, in section 6).

4. Action-minimizing measures and Mather sets. In this section we de-
scribe Mather’s theory for general Tonelli Lagrangians on compact manifolds. As we
have already said before, we refer the reader to [51] for all the proofs and for a more
detailed presentation of this theory.

Let M(L) be the space of probability measures μ on TM that are invariant under
the Euler-Lagrange flow of L and such that

∫
TM

‖v‖ dμ <∞. We will hereafter assume
that M(L) is endowed with the vague topology, i.e., the weak∗–topology induced by
the space C0

� of continuous functions f : TM −→ R having at most linear growth:

sup
(x,v)∈TM

|f(x, v)|
1 + ‖v‖ < +∞ .

One can check that M(L) ⊂
(
C0

�

)∗
.

In the case of an autonomous Tonelli Lagrangian, it is easy to see that M(L) is
non-empty (actually it contains infinitely many measures with distinct supports). In
fact, recall that because of the conservation of the energy E(x, v) := H ◦ L(x, v) =〈
∂L
∂v (x, v), v

〉
x
−L(x, v) along the orbits, each energy level of E is compact (it follows

from the superlinearity condition) and invariant under ΦL
t . It is a classical result

in ergodic theory (sometimes called Kryloff–Bogoliouboff theorem) that a flow on a
compact metric space has at least an invariant probability measure, which belongs
indeed to M(L).

To each μ ∈M(L), we may associate its average action:

AL(μ) =

∫
TM

Ldμ .

The action functional AL : M(L) −→ R is lower semicontinuous with the vague
topology on M(L) (this functional might not be necessarily continuous, see [18, Re-
mark 2-3.4]). In particular, this implies that there exists μ ∈M(L), which minimizes
AL over M(L).

Definition 4.1. A measure μ ∈M(L), such that AL(μ) = minM(L) AL, is called
an action-minimizing measure of L.

As we have already seen in section 3, by modifying the Lagrangian (without
changing the Euler-Lagrange flow) one can find many other interesting measures be-
sides those found by minimizing AL. A similar idea can be implemented for a general
Tonelli Lagrangian. Observe, in fact, that if η is a 1-form on M , we can interpret it
as a function on the tangent bundle (linear on each fiber)

η̂ : TM −→ R

(x, v) �−→ 〈η(x), v〉x



MATHER’S CONTRIBUTIONS IN HAMILTONIAN DYNAMICS 49

and consider a new Tonelli Lagrangian Lη := L− η̂. The associated Hamiltonian will
be given by Hη(x, p) = H(x, η(x) + p).

Observe that:
i) If η is closed, then L and Lη have the same Euler-Lagrange flow on TM . See

[37].

ii) If μ ∈M(L) and η = df is an exact 1-form, then
∫
d̂fdμ = 0. Thus, for a fixed

L, the minimizing measures will depend only on the de Rham cohomology
class c = [η] ∈ H1(M ;R).

Therefore, instead of studying the action minimizing properties of a single La-
grangian, one can consider a family of such “modified” Lagrangians, parameterized
over H1(M ;R). Hereafter, for any given c ∈ H1(M ;R), we will denote by ηc a closed
1-form with that cohomology class.

Definition 4.2. Let ηc be a closed 1-form of cohomology class c. Then, if
μ ∈ M(L) minimizes ALηc

over M(L), we will say that μ is a c-action minimizing
measure (or c-minimal measure, or Mather measure with cohomology c).

Compare with Fact 1 in section 3.

Remark 4.3. Observe that the cohomology class of an action-minimizing
invariant probability measure is not intrinsic in the measure itself nor in the dynamics,
but it depends on the specific choice of the Lagrangian L. Changing the Lagrangian
by a closed 1-form η, i.e., L �−→ L − η, we will change all the cohomology classes of
its action minimizing measures by −[η] ∈ H1(M ;R). Compare also with Remark 4.5
(ii).

One can consider the following function on H1(M ;R) (the minus sign is intro-
duced for a convention that will probably become clearer later on):

α : H1(M ;R) −→ R

c �−→ − min
μ∈M(L)

ALηc
(μ) .

This function α is well-defined (it does not depend on the choice of the representatives
of the cohomology classes) and it is easy to see that it is convex. This is generally
known as Mather’s α-function. We have seen in section 3 that for an integrable
Hamiltonian H(x, p) = h(p), α(c) = h(c). For this and several other reasons that we
will see later on, this function is sometimes called effective Hamiltonian. In particular,
it can be proven that α(c) is related to the energy level containing such c-action
minimizing measures [13].

We will denote by Mc(L) the subset of c-action minimizing measures:

Mc := Mc(L) = {μ ∈M(L) : ALηc
(μ) = −α(c)}.

We can now define a first important family of invariant sets: the Mather sets.

Definition 4.4. For a cohomology class c ∈ H1(M ;R), we define the Mather
set of cohomology class c as:

M̃c :=
⋃

μ∈Mc

suppμ ⊂ TM . (5)

The projection on the base manifold Mc = π
(
M̃c

)
⊆ M is called projected Mather

set (with cohomology class c).

Properties of this set:
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i) It is non-empty, compact and invariant [37].
ii) It is contained in the energy level corresponding to α(c) [13].
iii) In [37] Mather proved the celebrated graph theorem:

Let π : TM −→ M denote the canonical projection. Then, π|M̃c is an in-

jective mapping of M̃c into M , and its inverse π−1 :Mc −→ M̃c is Lipschitz.

Now, we would like to shift our attention to a related problem. As we have seen in
section 3, instead of considering different minimizing problems over M(L), obtained
by modifying the Lagrangian L, one can alternatively try to minimize the Lagrangian
L by putting some constraint, such as, for instance, fixing the rotation vector of the
measures. In order to generalize this to Tonelli Lagrangians on compact manifolds,
we first need to define what we mean by rotation vector of an invariant measure.

Let μ ∈ M(L). Thanks to the superlinearity of L, the integral
∫
TM

η̂dμ is well
defined and finite for any closed 1-form η on M . Moreover, if η is exact, then this
integral is zero, i.e.,

∫
TM

η̂dμ = 0. Therefore, one can define a linear functional:

H1(M ;R) −→ R

c �−→
∫
TM

η̂dμ ,

where η is any closed 1-form on M with cohomology class c. By duality, there exists
ρ(μ) ∈ H1(M ;R) such that∫

TM

η̂ dμ = 〈c, ρ(μ)〉 ∀ c ∈ H1(M ;R)

(the bracket on the right–hand side denotes the canonical pairing between cohomology
and homology). We call ρ(μ) the rotation vector of μ. This rotation vector is the same
as the Schwartzman’s asymptotic cycle of μ (see [46] and [51] for more details).

Remark 4.5. (i) It is possible to provide a more geometric interpretation of
this. Suppose for the moment that μ is ergodic. Then, it is known that a generic
orbit γ(t) := πΦL

t (x, v), where π : TM −→ M denotes the canonical projection, will
return infinitely often close (as close as we like) to its initial point γ(0) = x. We
can therefore consider a sequence of times Tn → +∞ such that d(γ(Tn), x) → 0 as
n → +∞, and consider the closed loops σn obtained by closing γ|[0, Tn] with the
shortest geodesic connecting γ(Tn) to x. Denoting by [σn] the homology class of this

loop, one can verify (see [46]) that limn→∞
[σn]
Tn

= ρ(μ), independently of the chosen
sequence {Tn}n. In other words, in the case of ergodic measures, the rotation vector
tells us how on average a generic orbit winds around TM . If μ is not ergodic, ρ(μ)
loses this neat geometric meaning, yet it may be interpreted as the average of the
rotation vectors of its different ergodic components.

(ii) It is clear from the discussion above that the rotation vector of an invariant
measure depends only on the dynamics of the system (i.e., on the Euler-Lagrange
flow) and not on the chosen Lagrangian. Therefore, it does not change when we
modify our Lagrangian by adding a closed one form.

Using that the action functional AL : M(L) −→ R is lower semicontinuous, one
can prove that the map ρ : M(L) −→ H1(M ;R) is continuous and surjective, i.e., for
every h ∈ H1(M ;R) there exists μ ∈M(L) with AL(μ) <∞ and ρ(μ) = h (see [37]).
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Following Mather [37], let us consider the minimal value of the average action AL

over the probability measures with rotation vector h. Observe that this minimum is
actually achieved because of the lower semicontinuity of AL and the compactness of
ρ−1(h) (ρ is continuous and L superlinear). Let us define

β : H1(M ;R) −→ R

h �−→ min
μ∈M(L): ρ(μ)=h

AL(μ) . (6)

This function β is what is generally known as Mather’s β-function and it is immediate
to check that it is convex. We have seen in section 3 that if we have an integrable
Tonelli Hamiltonian H(x, p) = h(p) and the associated Lagrangian L(x, v) = 	(v),
then β(h) = 	(h). For this and several other reasons, this function is sometime called
effective Lagrangian.

We can now define what we mean by action minimizing measure with a given
rotation vector.

Definition 4.6. A measure μ ∈ M(L) realizing the minimum in (6), i.e., such
that AL(μ) = β(ρ(μ)), is called an action minimizing (or minimal, or Mather)
measure with rotation vector ρ(μ).

Compare with Fact 2 in section 3.

We will denote by Mh(L) the subset of action minimizing measures with rotation
vector h:

Mh := Mh(L) = {μ ∈M(L) : ρ(μ) = h and AL(μ) = β(h)}.

This allows us to define another important familty of invariant sets.

Definition 4.7. For a homology class (or rotation vector) h ∈ H1(M ;R), we
define the Mather set corresponding to a rotation vector h as

M̃h :=
⋃

μ∈Mh

suppμ ⊂ TM , (7)

and the projected one as Mh = π
(
M̃h

)
⊆M .

Similarly to what we have already seen above, this set satisfies the following
properties:

i) It is non-empty, compact and invariant.
ii) It is contained in a given energy level.
iii) It also satisfies the graph theorem:

let π : TM −→M denote the canonical projection. Then, π|M̃h is an injec-

tive mapping of M̃h into M , and its inverse π−1 :Mh −→ M̃h is Lipschitz.

5. Mather’s α and β-functions. The discussion in section 4 led to two equiv-
alent formulations of the minimality of an invariant probability measure μ:

• there exists a homology class h ∈ H1(M ;R), namely its rotation vector ρ(μ),
such that μ minimizes AL amongst all measures in M(L) with rotation vector
h, i.e., AL(μ) = β(h).

• There exists a cohomology class c ∈ H1(M ;R), such that μ minimizes ALηc

amongst all probability measures in M(L), i.e., ALηc
(μ) = −α(c).
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What is the relation between two these different approaches? Are they equivalent,
i.e.,

⋃
h∈H1(M ;R) M

h =
⋃

c∈H1(M ;R) Mc ?

In order to comprehend the relation between these two families of action-
minimizing measures, we need to understand better the properties of the these two
functions that we have introduced above:

α : H1(M ;R) −→ R and β : H1(M ;R) −→ R.

Let us start with the following trivial remark.

Remark 5.1. As we have previously pointed out, if we have an integrable
Tonelli Hamiltonian H(x, p) = h(p) and the associated Lagrangian L(x, v) = 	(v),
then α(c) = h(c) and β(h) = 	(h). In this case, the cotangent bundle T ∗

T
n is foli-

ated by invariant tori T ∗
c := T

n × {c} and the tangent bundle TTn by invariant tori

T̃ h := T
n × {h}. In particular, we proved that

M̃c = L−1(Tc) = T̃ h = M̃h,

where h and c are such that h = ∇h(c) = ∇α(c) and c = ∇	(h) = ∇β(h).

We would like to investigate whether a similar relation linking Mather sets of a
certain cohomology class to Mather sets with a certain rotation vector, continues to
exist beyond the specificity of this situation. Of course, one main difficulty is that in
general the effective Hamiltonian α and the effective Lagrangian β, although being
convex and superlinear (see Proposition 5.2), are not necessarily differentiable.
Before stating the main relation between these two functions, let us recall some defi-
nitions and results from classical convex analysis (see [44]). Given a convex function
ϕ : V −→ R ∪ {+∞} on a finite dimensional vector space V , one can consider a
dual (or conjugate) function defined on the dual space V ∗, via the so-called Fenchel
transform: ϕ∗(p) := supv∈V

(
p · v − ϕ(v)

)
. In our case, the following holds.

Proposition 5.2. α and β are convex conjugate, i.e., α∗ = β and β∗ = α. In
particular, it follows that α and β have superlinear growth.

Next proposition will allow us to clarify the relation (and duality) between the
two minimizing procedures described above. To state it, recall that, like any convex
function on a finite-dimensional space, β admits a subderivative at each point h ∈
H1(M ;R), i.e., we can find c ∈ H1(M ;R) such that

∀h′ ∈ H1(M ;R), β(h′)− β(h) ≥ 〈c, h′ − h〉.

As it is usually done, we will denote by ∂β(h) the set of c ∈ H1(M ;R) that are
subderivatives of β at h, i.e., the set of c’s which satisfy the above inequality. Simi-
larly, we will denote by ∂α(c) the set of subderivatives of α at c. Actually, Fenchel’s
duality implies an easier characterization of subdifferentials: c ∈ ∂β(h) if and only
if 〈c, h〉 = α(c) + β(h) (similarly for h ∈ ∂α(c)).

We can now state precisely in which sense what observed in Remark 5.1 continues
to hold in the general case

Proposition 5.3. Let μ ∈M(L) be an invariant probability measure. Then:
(i) AL(μ) = β(ρ(μ)) if and only if there exists c ∈ H1(M ;R) such that μ minimizes
ALηc

(i.e., ALηc
(μ) = −α(c)).
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(ii) If μ satisfies AL(μ) = β(ρ(μ)) and c ∈ H1(M ;R), then μ minimizes ALηc
if and

only if c ∈ ∂β(ρ(μ)) (or equivalently 〈c, h〉 = α(c) + β(ρ(μ)).

Remark 5.4. (i) It follows from the above proposition that both minimizing
procedures lead to the same sets of invariant probability measures:⋃

h∈H1(M ;R)

Mh =
⋃

c∈H1(M ;R)

Mc .

In other words, minimizing over the set of invariant measures with a fixed rotation
vector or globally minimizing the modified Lagrangian (corresponding to a certain
cohomology class) are dual problems, as the ones that often appears in linear pro-
gramming and optimization. In some sense, modifying the Lagrangian by a closed
1-form is analog to the method of Lagrange multipliers for searching constrained crit-
ical points of a function.

(ii) In particular we have the following inclusions between Mather sets:

c ∈ ∂β(h) ⇐⇒ h ∈ ∂α(c) ⇐⇒ M̃h ⊆ M̃c .

Moreover, for any c ∈ H1(M ;R):

M̃c =
⋃

h∈∂α(c)

M̃h .

Observe that the non-differentiability of α at some c produces the presence in
M̃c of (ergodic) invariant probability measures with different rotation vectors. On
the other hand, the non-differentiability of β at some h implies that there exist c �= c′

such that M̃c ∩ M̃c′ �= ∅ (compare with the integrable case discussed in section 3,
where these phenomena do not appear).

(iii) The minimum of the α-function is sometime called Mañé’s strict critical
value. Observe that if α(c0) = minα(c), then 0 ∈ ∂α(c0) and β(0) = −α(c0). There-
fore, the measures with zero homology are contained in the least possible energy level
containing Mather sets and M̃0 ⊆ M̃c0 . This inclusion might be strict, unless α
is differentiable at c0; in fact, there may be other action minimizing measures with
non-zero rotation vectors corresponding to the other subderivatives of α at c0.

(iv) Note that measures of trivial homology are not necessarily supported on or-
bits with trivial homology or fixed points. For instance, one can consider the following
example. Let M = T

2 equipped with the flat metric and consider a vector field X with
norm 1 and such that X has two closed orbits γ1 and γ2 in opposite (non-trivial) ho-
mology classes and any other orbit asymptotically approaches γ1 in forward time and
γ2 in backward time; for example one can considerX(x1, x2) = (cos(2πx1), sin(2πx1)),
where (x1, x2) ∈ T

2 = R
2/Z2 (see Figure 2).

As we have described in section 2, we can embed this vector field into the Euler-
Lagrange vector field given by the Tonelli Lagrangian LX(x, v) = 1

2‖v − X(x)‖2.
Let us now consider the probability measure μγ1 and μγ2 , uniformly distributed
respectively on (γ1, γ̇1) and (γ2, γ̇2). Since these two curves have opposite ho-
mologies, then ρ(μγ1

) = −ρ(μγ2
) =: h0 �= 0. Moreover, it is easy to see that

ALX
(μγ1

) = ALX
(μγ2

) = 0, since the Lagrangian vanishes on Graph(X). Using
the fact that LX ≥ 0 (in particular it is strictly positive outside of Graph(X)) and
that there are no other invariant ergodic probability measures contained in Graph(X),
we can conclude that M0 = γ1 ∪ γ2 and α(0) = 0. Moreover, μ0 := 1

2μγ1 + 1
2μγ2
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Fig. 2. Plot of the vector field X.

has zero homology and its support is contained in M̃0. Therefore (see Proposition

5.3 (i)), μ0 is action minimizing with rotation vector 0 and M̃0 ⊆ M̃0; in particular,

M̃0 = M̃0. This also implies that β(0) = 0 and α(0) = minα(c) = 0.

Observe that α is not differentiable at 0. In fact, reasoning as we have done before
for the zero homology class, it is easy to see that for all t ∈ [−1, 1] M̃th0 = M̃0. It is
sufficient to consider the convex combination μλ = λμγ1

+(1−λ)μγ2
for any λ ∈ [0, 1].

Therefore, ∂α(0) = {th0, t ∈ [−1, 1]} and β(th0) = 0 for all t ∈ [−1, 1].

As we have just seen in item (iv) of Remark 5.4, it may happen that the Mather
sets corresponding to different homology (resp. cohomology) classes coincide or are
included one into the other. This is something that, for instance, cannot happen
in the integrable case: in this situation, in fact, these sets form a foliation and are
disjoint. The problem in the above mentioned example, seems to be related to a lack
of strict convexity of β and α.
In the light of this, let us try to understand better what happens when α and β are
not strictly convex, i.e., when we are in the presence of flat pieces.

Let us first fix some notation. If V is a real vector space and v0, v1 ∈ V , we
will denote by σ(v0, v1) the segment joining v0 to v1, that is σ(v0, v1) := {tv0 + (1−
t)v1 : t ∈ [0, 1]}. We will say that a function f : V −→ R is affine on σ(v0, v1), if
there exists v∗ ∈ V ∗ (the dual of V ), such that f(v) = f(v0) + 〈v∗, v − v0〉 for each
v ∈ σ(v0, v1). Moreover, we will denote by Int(σ(v0, v1)) the interior of σ(v0, v1),
i.e., Int(σ(v0, v1)) := {tv0 + (1− t)v1 : t ∈ (0, 1)}.

Proposition 5.5. (i) Let h0, h1 ∈ H1(M ;R); β is affine on σ(h0, h1) if and only

if for any h ∈ Int(σ(h0, h1)) we have M̃h ⊇ M̃h0 ∪ M̃h1 .

(ii) Let c0, c1 ∈ H1(M ;R); α is constant on σ(c0, c1) if and only if for any c ∈
Int(σ(c0, c1)) we have M̃c ⊆ M̃c0 ∩ M̃c1 .
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Remark 5.6. The inclusion in Proposition 5.5 (i) may not be true at the end
points of σ. For instance, Remark 5.4 (iv) provides an example in which the inclusion
in Proposition 5.5 (i) is not true at the end-points of σ(−h0, h0).

Remark 5.7. It follows from the previous remarks and Proposition 5.5, that,
in general, the action minimizing measures (and consequently the Mather sets M̃c

or M̃h) are not necessarily ergodic. Recall that an invariant probability measure is
said to be ergodic, if all invariant Borel sets have measure 0 or 1. These measures
play a special role in the study of the dynamics of the system, therefore one could
ask what are the ergodic action-minimizing measures. It is a well-known result from
ergodic theory, that the ergodic measures of a flow correspond to the extremal points
of the set of invariant probability measures, where by extremal point of a convex set,
we mean an element that cannot be obtained as a non-trivial convex combination
of other elements of the set. Since β has superlinear growth, its epigraph {(h, t) ∈
H1(M ;R)× R : t ≥ β(h)} has infinitely many extremal points. Let (h, β(h)) denote
one of these extremal points. Then, there exists at least one ergodic action minimizing
measure with rotation vector h. It is in fact sufficient to consider any extremal point
of the set {μ ∈ Mh(L) : AL(μ) = β(h)}: this measure will be an extremal point
of M(L) and hence ergodic. Moreover, as we have already recalled in Remark 4.5,
for such an ergodic measure μ, Birkhoff’s ergodic theorem implies that for μ-almost
every initial datum, the corresponding trajectory has rotation vector h.

6. Action-minimizing curves and more invariant sets. In section 4 we
have described the construction and the main properties of the Mather sets. One of
the main limitations of these sets is that, being the support of invariant probability
measures, they are recurrent under the flow (Poincaré recurrence theorem), i.e., each
orbit after a sufficiently long time (and therefore infinitely many often) will return
arbitrarily close to its initial point. This property excludes many interesting invari-
ant sets, which are somehow “invisible” to such a construction; for instance, think
about the stable and unstable manifolds of some hyperbolic invariant set, or about
heteroclinic and homoclinic orbits between invariant sets.

We will describe how to construct other (possibly) “larger” compact invariant sets
and discuss their significance for the dynamics: the Aubry sets and the Mañé sets.

The key idea is the following: instead of considering action-minimizing invariant
probability measures, one can look at action-minimizing curves for some modified
Lagrangian. We showed in section 3 that orbits on KAM tori can be characterized in
terms of this property. In this section we will imitate that construction in the general
case of a Tonelli Lagrangian.

Similarly to what observed in section 4, let us fix a cohomology class c ∈ H1(M ;R)
and choose a smooth 1-form η on M that represents c. As we have already pointed
out in section 2, there is a close relation between solutions of the Euler-Lagrange flow
and extremals of the action functional ALη for the fixed end-point problem (which are
the same as the extremals of AL). In general, these extremals are not minima (they
are local minima only if the time length is very short [20, Section 3.6]). One could
wonder if such minima exist, namely if for any given end-points x, y ∈ M and any
given positive time T , there exists a minimizing curve connecting x to y in time T .
From what already said, this curve will correspond to an orbit for the Euler-Lagrange
flow. Under our hypothesis on the Lagrangian, the answer to this question turns out
to be affirmative. This is a classical result in calculus of variations, known as Tonelli
Theorem.
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Theorem 6.1 (Tonelli Theorem, [37]). Let M be a compact manifold and L a
Tonelli Lagrangian on TM . For all a < b ∈ R and x, y ∈ M , there exists, in the set
of absolutely continuous curves γ : [a, b] −→ M such that γ(a) = x and γ(b) = y, a

curve that minimizes the action ALη
(γ) =

∫ b

a
Lη(γ(t), γ̇(t)) dt.

We refer the reader to [37, Appendix 1] for details on its proof.

Remark 6.2. (i) A curve minimizing ALη(γ) =
∫ b

a
Lη(γ(t), γ̇(t)) dt subject to

the fixed end-point condition γ(a) = x and γ(b) = y, is called a c-Tonelli minimizer.
Recall that such minimizers do only depend on c and not on the chosen representative
η. In fact, adding an exact 1-form df to L will contribute with a constant term
f(y)− f(x), that does not play any role in selecting the minimizers.

(ii) As Mañé pointed out in [28], in order for these minimizers to exist it is not
necessary to assume the compactness of M : the superlinear growth condition with
respect to some complete Riemannian metric on M is enough.

(iii) A Tonelli minimizer which is C1 is in fact Cr (if the Lagrangian L is Cr) and
satisfies the Euler-Lagrange equation; this follows from the usual elementary argument
in calculus of variations, together with Caratheodory’s remark on differentiability. In
the autonomous case, Tonelli minimizers will be always C1; in the non-autonomous
time-periodic case (Tonelli Theorem holds also in this case [37]), one needs to require
that the Euler-Lagrange flow is also complete.

In the following we will be interested in particular Tonelli minimizers that are
defined for all times and whose action is minimal with respect to any given time
length. We will see that these curves present a very rich structure.

Definition 6.3 (c-minimizers). An absolutely continuous curve γ : R −→ M is
a c-(global) minimizer for L, if for any given a < b ∈ R

ALη
(γ
∣∣[a, b]) = minALη

(σ)

where the minimum is taken over all σ : [a, b] → M such that σ(a) = γ(a) and
σ(b) = γ(b).

Remark 6.4. Differently from what happens with invariant probability mea-
sures, it will not be always possible to find action-minimizing orbits for any given
rotation vector (it is not even possible to define, in general, a rotation vector for every
action minimizing orbit). For instance, an example due to Hedlund [22] provides the
existence of a Riemannian metric on a three-dimensional torus, for which minimal
geodesics exist only in three asymptotic directions; this example can be extended to
any dimension larger than three.

One can prove that in the setting we are considering, c-minimizers always exist.

Proposition 6.5 (Mather, [37]). For any c ∈ H1(M ;R), there exist c-global
minimizers for L. Moreover, every trajectory of the Euler-Lagrange flow contained in
M̃c is a c-global minimizer.

See [37, Proposition 3] for a detailed proof.

Definition 6.6 (Mañé set). The Mañé set (with cohomology class c) is defined
as:

Ñc =
⋃
{(γ(t), γ̇(t)) : γ is a c-global minimizer and t ∈ R} .
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Remark 6.7. (i) Clearly, this set is invariant. Moreover, it follows from

Proposition 6.5 that M̃c ⊆ Ñc. This inclusion might be strict (in general this set is
much larger).

(ii) It was proved by Carneiro [13] that there is a very interesting link between
the energy of global minimizers and their average action. Namely, c-minimizers are
contained in the energy level α(c) (see sections 4 and 5 for the definition and the main
properties of Mather’s α function). Hence,

Ñc ⊆ Ẽc := {(H ◦ L)(x, v) = α(c)},

where L denotes the Legendre transform associated to L, as defined in (2).
(iii) It is possible to prove that if the Hamiltonian flow associated to H admits

an invariant Lagrangian graphs Λc of cohomology class c, then each orbit on Λc is a
c-minimizer and L−1(Λc) ⊆ Ñc; see, for instance, [21].

We want now to introduce a special class of minimizers. The main ingredient is
the notion of Peierls barrier, introduced in [38].5

For t > 0 and x, y ∈M , let us consider :

hη,t(x, y) = min

∫ t

0

Lη(γ(s), γ̇(s)) ds , (8)

where the minimum is taken over all piecewise C1 paths γ : [0, t] −→ M , such that
γ(0) = x and γ(t) = y. This minimum is achieved because of Tonelli theorem (Theo-
rem 6.1). We define the Peierls barrier as:

hη(x, y) = lim inf
t→+∞ (hη,t(x, y) + α(c)t) . (9)

Remark 6.8. (i) Observe that hη does not depend only on the cohomology
class c, but also on the choice of the representative η; namely, if η′ = η + df , then
hη′(x, y) = hη(x, y) + f(y)− f(x). Anyhow, this dependence will not be harmful for
what we are going to do in the following (it will not affect the set of action-minimizing
curves).

(ii) This function hη is a generalization of Peierls barrier introduced by Aubry
[4] and Mather [33, 34, 36, 35] in their study of twist maps. In some sense we are
comparing, in the limit, the action of Tonelli minimizers of time length T with the
corresponding average c-minimimal action −α(c)T . Remember, in fact, that −α(c) is
the “average action” of a c-minimal measure.

(iv) Albert Fathi [20] showed that – in the autonomous case – this lim inf can be
replaced by a limit. This is not generally true in the non-autonomous time-periodic
case. Tonelli Lagrangians for which this convergence result holds are called regular;
Patrick Bernard [6] showed that under suitable assumptions on the Mather set, it
is possible to prove that the Lagrangian is regular. For instance, if the Mather set
M̃c is union of 1-periodic orbits, then Lη is regular. This problem turned out to be
strictly related to the convergence of the so-called Lax-Oleinik semigroup (see [20] for
its definition).

5The function that we are defining here is actually a variant of h∞
c defined in [38]. Pay attention

that throughout article [38], the sign of the α-function is wrong: wherever there is α(c), it should be
substituted by −α(c).
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It is interesting to consider the following symmetrization:

δc : M ×M −→ R

(x, y) �−→ hη(x, y) + hη(y, x). (10)

Observe that this function does now depend only on the cohomology class c and
moreover it is non-negative, symmetric and satisfies the triangle inequality.
An interesting property of δc is the following (see [38, Section 8]). If d denotes the
distance induced on M by the Riemannian metric g, then there exists C > 0 such
that for each x, y ∈M we have

δc(x, y) ≤ Cd(x, y)2.

Let us see now some relation between this Peierls barrier (or equivalently δc) and
c-action minimizing curves. Let γ : R −→ M be a c-minimizer and consider xα, x

′
α

in the α-limit set6 of γ and xω, x
′
ω in the ω-limit set7 of γ. Mather in [38, Section 6]

proved that δc(xα, x
′
α) = δc(xω, x

′
ω) = 0. In general, it is not true that δc(xα, xω)=0;

what one can prove is that this value does not depend on the particular xα and xω,
i.e., δc(xα, xω) = δc(x

′
α, x

′
ω): it is a property of the limit sets rather than of their

elements. Nevertheless, there will exist particular c-minimizers for which this value is
equal to 0 and these will be the c-minimizers that we want to single out.

Definition 6.9 (c-regular minimizers). A c-minimizer γ : R −→ M is called a
c-regular minimizer, if δc(xα, xω) = 0 for each xα in the α-limit set of γ and xω in
the ω-limit set of γ.

It can be shown that orbits contained in M̃c are c-regular minimizers (see [38,
28, 51]), hence these special kind of curves do exist (see [38, 28, 20]).

Remark 6.10. (i) Observe that the adjective regular in the alternative appelation
(coined by John Mather) has no relation to the smoothness of the curve, since, like all
solutions of the Euler-Lagrange flow, this curve will be as smooth as the Lagrangian.

(ii) It follows from the fact that orbits in M̃c are c-regular minimizers, that
all orbits on a KAM torus of cohomology class c, are c regular minimizers. Observe,
however, that if the Hamiltonian flow associated to H admits an invariant Lagrangian
graphs Λc of cohomology class c, although orbits on Λc are c- minimizer, yet it is not
automatically true that they are c-regular minimizers (see [21, 51] for more details).

By means of this special kind of minimizers, Mather defined a new invariant set
consisting of c-regular minimizers, namely what is nowadays called the Aubry set.

Definition 6.11 (Aubry set). The Aubry set (with cohomology class c) is:

Ãc =
⋃
{(γ(t), γ̇(t)) : γ is a c-regular minimizer and t ∈ R} .

The projection on the base manifold Ac = π(Ãc) ⊆ M is called the projected Aubry
set (with cohomology class c).

Properties of this set:

6Recall that a point z is in the α-limit set of γ, if there exists a sequence tn → −∞ such that
γ(tn)→ z.

7Recall that a point z is in the ω-limit set of γ, if there exists a sequence tn → +∞ such that
γ(tn)→ z.
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i) It is non-empty, compact and invariant [38].
ii) It is contained in the energy level corresponding to α(c) [13].
iii) In [37, 38] Mather proved the celebrated graph theorem:

Let π : TM −→M denote the canonical projection. Then, π|Ãc is an injective

mapping of Ãc into M , and its inverse π−1 : Ac −→ Ãc is Lipschitz.
We summarize in this diagram8 the main properties of this set and its relations

to the other invariant sets that we have defined so-far.

M̃c

π

��

⊆ Ãc

π

��

⊆ Ñc ⊆ Ẽc := {H ◦ L(x, v) = α(c)} ⊆ TM

π

��
Mc

(π| ˜Mc)
−1

��

⊆ Ac

(π| ˜Ac)
−1

��

⊆ M⊆

Remark 6.12. (i) The above inclusions may not be strict (see [51] for some
examples).

(ii) The Lipschitz graph property of M̃c and Ãc are generally called Mather’s
graph theorem(s); namely, the Mather set and the Aubry set are contained in a Lip-
schitz graph over M . This is probably the most important property of these sets
and it has many dynamical consequences. The original proof by Mather exploits the
so-called “crossing” Lemma (see [37, Lemma p. 186] ), inspired by similar properties
of Riemannian geodesic flows. The graph property can be also proved in a different
way by means of viscosity (sub)solutions of the associated Hamilton-Jacobi equation;
this is the content of the so-called weak KAM Theory (see [20]).

(iii) The graph property does not hold in general for the Mañé set (see [51] for
some counterexamples).

Observe that one can also provide an alternative definition of the (projected)
Aubry set (compare with what discussed in section 3 in the case of KAM tori):

Proposition 6.13 (See [20, Proposition 5.3.8]). The following properties are
equivalent.

i) x ∈ Ac;
ii) hη(x, x) = 0;
iii) there exists a sequence of absolutely continuous curves γn : [0, tn]→ M such

that:
- for each n, we have γn(0) = γn(tn) = x;
- the sequence tn → +∞, as n→ +∞;
- as n→ +∞,

∫ tn
0

Lη(γn(s), γ̇n(s)) ds+ α(c)tn → 0.

Remark 6.14. (i) Therefore, the Aubry set consists of points that are contained
in loops with periods as long as we wish and actions as close as we want to the minimal
average one.

(ii) Moreover, it follows from ii) in Proposition 6.13 that δc is a pseudometric on
the projected Aubry set

Ac = {x ∈M : δc(x, x) = 0} .
8This (unintentional?) typographical “coincidence” honoring Ricardo Mañé was first pointed out

by Albert Fathi.
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(iii) One can easily construct a metric space out of (Ac, δc). We call quotient
Aubry set (or Mather quotient) the metric space (Āc, δ̄c) obtained by identifying two
points in Ac, if their δc-pseudodistance is zero. This set plays quite an interesting
role in the study of the dynamics; see for example [48] for more details.

7. Some topological and symplectic properties of the Aubry and Mañé
sets. To conclude this survey, let us describe some other properties of these invariant
sets.

We have remarked that the Mather sets, being the support of invariant probability
measures, are recurrent under the flow. This is not true anymore for the Aubry and
Mañé sets, but something can still be said. Let us first recall the definition of ε-pseudo
orbit. Given a (compact) metric space X and a flow ϕ on it, we say that there exists
an ε-pseudo orbit between two points x, y ∈ X, if we can find {xn}kε

n=0 ⊂ X and
positive times t1, . . . , tkε

> 0 such that x0 = x, xkε
= y and dist

(
ϕti+1

(xi) , xi+1

)
≤ ε

for all i = 0, . . . , kε.

Proposition 7.1. (i) ΦL
∣∣Ñc is chain transitive, i.e., for each ε > 0 and for all

(x, v), (y, w) ∈ Ñc, there exists an ε-pseudo-orbit for the flow ΦL connecting them.

(ii) ΦL
∣∣Ãc is chain recurrent, i.e., for each ε > 0 and for all (x, v) ∈ Ãc, there exists

an ε-pseudo-orbit for the flow ΦL connecting (x, y) to itself.

The proof of this result can be found for instance in [17, Theorem V].

As a consequence of the chain-transitivity it follows that the Mañé set must be
connected (the Aubry set in general not).

Corollary 7.2. The Mañé set is connected.

Moreover, one can also prove some topological and symplectic properties of the
Aubry and Mañé sets, similar to what we have alread seen and proven for the Mather
sets (see section 5).

In Proposition 5.5 we have related the intersection of Mather sets corresponding
to different cohomology classes, to the “flatness” of the α-function. The same result
holds for the Aubry set and has been proven by Daniel Massart in [31, Proposition
6]. However, the proof in this case is less straightforward and more involved.

Massart proved that it is possible to relate the dimension of a “face” of the epi-
graph of the α-function to the topological complexity of the Aubry sets corresponding
to cohomologies in that face (see [31, Theorem 1]). More precisely, for any sufficiently
small ε > 0, let us define Cc(ε) be the set of integer homology classes which are rep-
resented by a piecewise C1 closed curve made with arcs contained in Ac except for
a remainder of total length less than ε. Let Cc :=

⋂
ε>0 Cc(ε). Let Vc be the space

spanned in H1(M ;R) by Cc. Note that Vc is an integer subspace of H1(M ;R), that
is it has a basis of integer elements (images in H1(M ;R) of elements in H1(M ;Z)).

We denote by:
- Fc the maximal face (flat piece) of the epigraph of α, containing c in its interior;
- Vect Fc the underlying vector space of the affine subspace generated by Fc in

H1(M ;R);
- V ⊥

c the vector space of cohomology classes of C1 1- forms that vanish on Vc;
- Gc the vector space of cohomology classes of C1 1-forms that vanish in TxM for

each x ∈ Ac;
- Ec the space of cohomology classes of 1-forms of class C1, the supports of which

are disjoint from Ac.
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Massart in [31] proved that the following inclusions hold:

Ec ⊆ VectFc ⊆ Gc ⊆ V ⊥
c .

Moreover:

Theorem 7.3 (Massart, [31]). Let c ∈ H1(M ;R) and denote by Fc maximal face
of the epigraph of α containing c in its interior.
(i) If a cohomology class c1 belongs Fc, then Ac ⊆ Ac1 . In particular, if c1 belongs to
the interior of Fc, then they coincide, i.e., Ac = Ac1 .

(ii) Conversely, if two cohomology classes c and c1 are such that Ãc ∩ Ãc1 �= ∅, then
for each λ ∈ [0, 1] we have α(c) = α(λc+ (1−λ)c1), i.e., the epigraph of α has a face
containing c and c1.

See also [32], where the relation between the differentiability of Mather’s beta
function and the integrability of the system has been thoroughly investigated.

To conclude this section, let us point out that these sets are symplectic invariant.
Let us denote by M∗

c(H), A∗
c(H) and N ∗

c (H) the Mather, Aubry and Mañé sets
associated to a Tonelli Hamiltonian H (in the sense of the Legendre transform of the
corresponding ones for the associated Lagrangian). Then:

Theorem 7.4 (Bernard, [7]). Let L : TM −→ R be a Tonelli Lagrangian and
H : T ∗M −→ R the associated Hamiltonian. If Φ : T ∗M −→ T ∗M is an exact
symplectomorphism, then

M∗
0(H ◦ Φ) = Φ−1 (M∗

0(H)) ,

A∗
0(H ◦ Φ) = Φ−1 (A∗

0(H))

N ∗
0 (H ◦ Φ) = Φ−1 (N ∗

0 (H)) .

Remark 7.5. The above result can be extended to non-exact symplectomor-
phisms and to other cohomology classes, under the assumption that Φ is isotopic to
the identity. In general, there will be a linear reparametrization of the cohomology
classes, depending on how the symplectomorphism acts on the first cohomology group;
see [41, 51] for a more precise discussion.

For more symplectic geometric aspects of Mather theory, see for example [7, 10,
30, 41, 49, 50, 54].
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