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convex billiards and describe some recent results,
obtained by the authors and collaborators, on the
classification of integrable billiards, namely the so-
called Birkhoff conjecture.
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1. Introduction
In this survey, we provide a concise introduction
to convex billiards and describe some recent results,
obtained by the authors and collaborators, on the
classification of integrable billiards, namely the so-called
Birkhoff conjecture.

These conceptually simple models of dynamical
systems—yet dynamically very rich and interesting—
were first introduced by Birkhoff [1] as paradigmatic
examples of Hamiltonian systems, that could be used as
a ‘playground’ to shed light, with as little technicality
as possible, on some interesting dynamical features and
phenomena appearing in the study of their dynamics.1

Since then billiards have captured much attention in
many different contexts, becoming a very popular subject

1‘[. . .]This example is very illuminating for the following reason: Any
dynamical system with two degrees of freedom is isomorphic with the
motion of a particle on a smooth surface rotating uniformly about a fixed
axis and carrying a conservative field of force with it.3 In particular if the
surface is not rotating and if the field of force is lacking, the paths of the
particles will be geodesics. If the surface is conceived of as convex to begin
with and then gradually to be flattened to the form of a plane convex curve
C, the “billiard ball” problems results. But in this problem the formal side,
usually so formidable in dynamics, almost completely disappears, and
only the interesting qualitative questions need to be considered.[. . .]’ (G.
D. Birkhoff, [1, pp. 155–156]).

2018 The Author(s) Published by the Royal Society. All rights reserved.

 on September 24, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2017.0419&domain=pdf&date_stamp=2018-09-17
http://dx.doi.org/10.1098/rsta/376/2131
mailto:vadim.kaloshin@gmail.com
http://orcid.org/0000-0002-6051-2628
http://rsta.royalsocietypublishing.org/


2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170419

.........................................................

of investigation. Not only are their laws of motion very physical and intuitive, but also billiard-
type dynamics are ubiquitous. Mathematically, they offer models in every subclass of dynamical
system (integrable, regular, chaotic, etc.); more importantly, techniques initially devised for
billiards have often been applied and adapted to other systems, becoming standard tools and
having ripple effects beyond the field.

More remarkably, the dynamics of these systems is profoundly intertwined with their
geometric properties (e.g. the shape of the billiard table): while it is evident how the shape
completely determines the billiard dynamics, a more subtle and intriguing question is to what
extent the knowledge of the dynamics allows one to reconstruct the shape of the billiard domain.
This translates into many intriguing unanswered questions and conjectures that have been the
focus of very active research over recent decades. Hereafter, we shall address some of them and
describe recent advances towards their solutions.

2. The billiard map
Let us first recall the definition of the billiard map and its main properties. We refer to [2–4] for a
more comprehensive introduction to the study of billiards.

Let Ω be a strictly convex domain in R2 with Cr boundary ∂Ω , with r ≥ 3. The phase space M
of the billiard map consists of unit vectors (x, v) whose foot points x are on ∂Ω and which have
inward directions. The billiard ball map BΩ : M −→ M takes (x, v) to (x′, v′), where x′ represents
the point where the trajectory starting at x with velocity v hits the boundary ∂Ω again, and v′ is
the reflected velocity, according to the standard reflection law: angle of incidence is equal to the
angle of reflection (figure 1).

Remark 2.1.

(i) The dynamical properties of billiards are strongly related to the geometric properties of
its shape. Besides the study of Birkhoff billiards, very active areas of research focus on
the study of polygonal billiards (in particular, rational billiards, whose dynamics can be
related to geodesic flows on translation surfaces and Teichmüller theory (e.g. [5]) or billiards
with concave boundary (so-called dispersive billiards) of particular interest as models in
statistical mechanics and mathematical physics [6].

(ii) More generally, one could consider a Riemannian metric with smooth boundary
(M, ∂M, g): the trajectory starting at x ∈ ∂M with (inward) unit velocity v will follow the
corresponding geodesic until it hits the boundary at x′ ∈ ∂M; the reflected (unit) inward
velocity v′ is obtained in the following way: the normal component of the hitting velocity
instantaneously changes sign, while the tangential one stays unchanged. Observe that in
the Birkhoff billiard case (Euclidean planar case), this gives exactly the standard reflection
law that we have described above.

Remark 2.2.

(i) Observe that if Ω is not convex, then the billiard map is not continuous; moreover, in this
article we shall be interested only in strictly convex domains, namely the curvature at
each point is strictly positive (see remark 3.5).

(ii) As pointed out by Halpern [7], if the boundary is not at least C3 (actually, C2 plus a
bounded third derivative is enough), then ‘strange’ phenomena can occur; for example,
there might be infinite orbits of finite total length (since we are considering unit velocities,
then this could be interpreted as a sort of incompleteness of the billiard flow, namely the
velocity becomes tangent to the boundary in finite time).

Let us introduce coordinates on M. We suppose that ∂Ω is parametrized by arc-length s and let
γ : R/�Z −→ R2 denote such a parametrization, where � denotes the length of ∂Ω . Without any
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(s', j')

(s, j)

Figure 1. Billiard map. (Online version in colour.)

loss of generality, fix an orientation of γ . Let ϕ be the angle between v and the positive tangent to
∂Ω at x. Hence, M can be identified with the annulus A� = R/�Z × (0, π ) and the billiard map BΩ

can be described as

BΩ : A� −→ A�

(s, ϕ) �−→ (s′, ϕ′).

Here are some properties of the billiard map:

— BΩ ∈ Cr−1(A�) (e.g. [8, Theorem 4.1]). Moreover, BΩ can be continuously extended to A� =
R/�Z × [0, π ] by fixing BΩ (s, 0) = BΩ (s, π ) = Id for all s ∈ R/�Z.

— BΩ is a symplectic map, namely it preserves the exact symplectic form ω = sin ϕ dϕ ∧ ds =
−d(cos ϕ ds) =: −dα (observe that this form becomes degenerate on ∂A�), namely B∗ω = ω

(where B∗ denotes the pull-back) (e.g. [4, Theorem 3.1]).
Moreover, BΩ is an exact symplectic map, namely B∗α − α = dh is an exact 1-form; the
corresponding generating function is given by

h(s, s′) := −‖γ (s) − γ (s′)‖,

namely minus the Euclidean distance between two points on ∂Ω . It is easy to check that{
∂1h(s, s′) = cos ϕ and

∂2h(s, s′) = − cos ϕ′,
(2.1)

where ∂i denotes the derivative with respect to the ith variable (i = 1, 2).
— If we lift BΩ to the universal cover of A� and introduce new coordinates (x, y) =

(s, − cos ϕ) ∈ R × (−1, 1), then the billiard map becomes a monotone twist map with h
as generating function and it preserves the area form dx ∧ dy [2–4].

Remark 2.3. It follows from (2.1), {(si, ϕi)}i∈Z is an orbit of BΩ if and only if {si}i∈Z is a ‘critical
configuration’ for the action functional

{si}i∈Z �−→
∑
i∈Z

h(si, si+1),

in the usual sense of statistical mechanics; in fact, while this latter sum is infinite, its derivatives
are well defined:

∂

∂sn

⎛
⎝∑

i∈Z

h(si, si+1)

⎞
⎠ = ∂1h(sn, sn+1) + ∂2h(sn−1, sn).
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These critical configurations are not necessarily (global) minima. One could be wondering
whether (global) minima exist and if they have special dynamical features. Aubry-Mather theory—
developed independently by Serge Aubry and John Mather at the beginning of the 1980s—focuses
exactly on these questions. More specifically, it is concerned with the study of orbits that are
global minimizers of the action-functional, i.e. every finite segment minimizes the action functional
among all configurations with the same number of elements and the same end-points (see [2,9,10]
for more details).

Observe that in the billiard case, since the generating function (and hence the action) is given
by minus the Euclidean length, then action minimization can be rephrased in terms of length
maximization.

Despite the apparently simple (local) dynamics, the qualitative dynamical properties of billiard
maps are extremely non-local. This global influence on the dynamics translates into several
intriguing rigidity phenomena, which are the basis of several unanswered questions and conjectures
(e.g. [2–4,11–21]). Among many, in the following sections we shall address the problem of
classifying integrable billiards, also known as Birkhoff conjecture.

3. Caustics
In this section, we would like to introduce the concept of caustic of a billiard. Let us first start to
introduce the concepts of caustic and integrability by means of two examples.

(a) Circular billiard
The easiest example of billiard is given by a billiard in a disc D (for example of radius R). It is
easy to check in this case that the angle of reflection remains constant at each reflection (see also
[4, ch. 2]). If we denote by s the arc-length parameter (i.e. s ∈ R/2πRZ) and by ϕ ∈ (0, π/2] the angle
of reflection, then the billiard map has a very simple form (figure 2):

f (s, θ ) = (s + 2Rϕ, ϕ).

In particular, ϕ stays constant along the orbit and it represents an integral of motion for the
map; hence, the property of the orbits are determined by the corresponding angle ϕ = πω, with
ω ∈ (0, 1). First, observe that the orbits corresponding to ω′ = 1 − ω are geometrically the same,
but with reversed orientation. Hence, one could limit him/herself to ω ∈ (0, 1

2 ]. Then:

— If ω = p/q ∈ (0, 1
2 ] ∩ Q, in lowest terms, then the orbit is periodic with minimal period q.

In particular, it closes after q rebounces and it winds p around the disc before closing.
— If ω ∈ (0, 1

2 ]\Q, then the orbit is not periodic and it hits the boundary ∂D on a dense set of
points.

Moreover, this billiard enjoys the peculiar property that all orbits with ϕ = πω are tangent
to the same concentric circle of radius R cos πω (figure 2); this concentric circle is an example
of caustics (see definition 3.2), and it is related to the existence of a homotopically non-trivial
invariant curve for the corresponding billiard map, namely the Cω = R/2πRZ × {πω} (this
relationship between caustics and invariant curves is more subtle, see remark 3.3; figure 3).

Remark 3.1. Observe that the whole phase space of the circular billiard map—which is
topologically a cylinder—is completely foliated by homotopically non-trivial invariant curves
Cω = R/2πRZ × {πω}. Looking at the billiard table, this corresponds to saying that the billiard
table is completely foliated by caustics (the centre of the disc corresponds to a degenerate caustic
for orbits with ϕ = π/2, i.e. diameters). In this regard, circular billiards are an example of integrable
billiards.
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Figure 2. Billiard in a disc.

Figure 3. Foliation by caustics.
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Figure 4. Billiard in an ellipse.

(b) Elliptic billiard
As a second example, let us look at the billiard inside an ellipse

E =
{

(x, y) :
x2

a2 + y2

b2 = 1

}
,

with 0 < b ≤ a. Up to rescaling, we can assume that a = 1 (clearly, the billiard dynamics remains
unchanged under the action of homotheties) and therefore the eccentricity of the ellipse is given
by 0 ≤ h =

√
1 − b2 < 1 and the two foci by F± = (±h, 0).

Optical properties of conics (an alternative way to consider the billiard ball motion inside a
conic) were already well known to ancient Greeks. We refer to [4] for a more detailed discussion
(see also [2]). In particular, each trajectory which does not pass through a focal point is always
tangent to precisely one confocal conic section. More specifically, billiard trajectories can be
classified in the following way:

(i) trajectories that always intersect the open segment between the two foci,
(ii) trajectories that never intersect the closed segment between the two foci, and

(iii) trajectories that alternatively pass through one of the two foci.

In particular, each trajectory in (i) is tangent to a confocal hyperbola, each trajectory in (ii)
is tangent to a confocal ellipse, while trajectories of kind (iii) tend asymptotically to the major
semiaxis. Confocal ellipses are therefore examples of caustics (also hyperbolae can be considered
caustics) which foliate everything but the closed segment between the two foci (figure 4). Hence,
this could also be considered as an example of integrable billiards.

Analytic descriptions of the dynamics and the integral of motion are not as easy as in the
circular case, yet they can be done by means of elliptic functions and elliptic integrals; we refer
the reader to [22,23] for more details.

(c) Caustics and their existence
Let us give a more precise definition of a caustic2 and discuss some results and questions about
their existence.

2Caustic comes from the greek word καυστικός (kaustikós), meaning ‘burning’; this terminology is related to optics and
refers to the envelope of reflected or refracted rays of light, namely concentration of lights that can potentially lead to burns.
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Definition 3.2. We say that a curve Γ is a caustic for the billiard in Ω if every time a trajectory
is tangent to it, then it remains tangent after every reflection. Moreover, a C1 convex caustic is a
caustic consisting of a closed C1 curve bounding a strictly convex region inside Ω .

Remark 3.3.

(i) Observe that every convex caustic has a well-defined rotation number. In fact, the
dynamics tangent to it induces a circle homeomorphism from the boundary to itself; the
rotation number of the caustic corresponds to the Poincaré rotation number of this circle
homeomorphism.

(ii) One could wonder about the relation between caustics for the billiard in Ω and invariant
curves for the corresponding billiard map BΩ . One can show that a C1 convex caustic in Ω

corresponds to a homotopically non-trivial invariant curve for the billiard map; however,
the converse is not entirely true. In fact, homotopically non-trivial invariant curves of BΩ

(which are graphs by Birkhoff’s theorem) do give rise to caustics, but these caustics need
neither be convex nor differentiable.

Remark 3.4. The notion of caustics is often connected to the so-called whispering gallery, a
phenomenon that can be detected under some particular domes, in which whispers can be clearly
transmitted and received from distant parts of the gallery.

A natural question that one could ask is whether the existence of caustics is a common or a
rare phenomenon. As we have seen before, circular and elliptic billiards possess many caustics.

Question. Are there other Birkhoff billiards with caustics? And in the case of an affirmative answer:
How many caustics is it reasonable to expect?

Constructing a Birkhoff billiard with at least one caustic is easy: it is enough to perform the
so-called string construction, similar to the well-known one to draw a circle as the set of points
equidistant from a fixed centre, or to construct an ellipse as the locus of points whose distances
from two fixed points have a constant sum. More specifically (see, e.g. [4, ch. 5] for more details),
given a curve γ , one could wrap a closed non-stretchable string around it (of length longer than
the one of γ ), pull it tight at a point and move this point around γ : the curve that one obtains
corresponds to a billiard domain that has γ as a caustic.

Are there other billiards with infinitely many caustics? Quite surprisingly, the answer is
affirmative: all (sufficiently smooth) Birkhoff billiards have infinitely many smooth convex
caustics that accumulate to the boundary of the billiard domain. In fact, Lazutkin [24] introduced
a very special change of coordinates that reduces the billiard map BΩ to a very simple form. Let
LΩ : R/�Z × [0, π ] → R/Z × [0, δ] with small δ > 0 be given by

(x, y) = LΩ (s, ϕ) :=
(

C−1
Ω

∫ s

0
ρ−2/3(τ )dτ , 4C−1

Ω ρ1/3(s) sin
ϕ

2

)
,

where ρ denotes the radius of curvature of ∂Ω , and CΩ := ∫�
0 ρ−2/3(s) ds (sometimes called the

Lazutkin perimeter). In these new coordinates, the billiard map becomes a more simple expression:

BL
Ω (x, y) = (x + y + O( y3), y + O( y4)).

In particular, near the boundary {y = 0}, this map can be seen as a small perturbation of
the integrable map (x, y) �−→ (x + y, y), and hence, under suitable regularity assumptions, KAM
theorem can be applied (it is sufficient, for example, that ∂Ω is C6, so that the map is at least C5).
Hence, there exists a positive measure Cantor set of smooth homotopically non-trivial invariant
curves for the map which accumulates on {y = 0} and on which the motion is smoothly conjugate
to a rigid rotation with Diophantine rotation number (see [17,24] for a refined version); this
translates into the existence of a positive measure set of caustics, accumulating to the boundary
of the billiard table.
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Remark 3.5. Observe that it is extremely important that Ω is strictly convex. In fact, Mather [25]
proved the non-existence of caustics if the curvature of the boundary vanishes at one point. An
alternative proof of this result has been provided by Gutkin & Katok [26], where the authors
also investigate how the shape of the domain determines the location of caustics, establishing the
existence of open regions which are free of caustics and estimating (from below) the size of these
regions.

The next step consists then in asking in which cases these caustics foliate the whole billiard
table or an open dense subset of it, as it happens in the circular and elliptic cases. In other words:
Are there other examples of integrable billiards?

This apparently naive question turns out to be much more difficult to extricate, and it has
given rise to one of the most famous (and somehow impenetrable) open problems in dynamical
systems: the so-called Birkhoff conjecture.

4. Integrable billiards and the Birkhoff conjecture
As we have seen in the previous section, billiards in a disc or in an ellipse are examples of integrable
billiards. There are different ways to define integrability (the relation between these notions is an
interesting problem itself):

— Through the existence of an integral of motion, globally or locally in the phase space; in
the case of circular billiards, for example, an integral of motion is given by I(s, ϕ) := ϕ.

— Through the existence of a (smooth or C0) foliation of the phase space (globally or locally),
consisting of invariant curves of the billiard map; for example, in the case of circular
billiards, this foliation is smooth and it consists of invariant curves {ϕ ≡ ϕ0}, for any ϕ0 ∈
(0, π ). As we have remarked above, under suitable conditions, this property translates
into the existence of a global/local foliation of the billiard table, consisting of (smooth)
convex caustics (in the circular case, these are all concentric circles, whereas in the elliptic
one, these are all confocal ellipses).

A natural question follows: Which Birkhoff billiards are integrable?

Conjecture (Birkhoff). Circular and elliptic billiards are the only examples of integrable
Birkhoff billiards.

Remark 4.1. Although some vague indications of this question can be found in [1], to the best
of our knowledge, its first appearance as a conjecture was in a paper by Poritsky [18].3 Thereafter,
references to this conjecture (either as Birkhoff conjecture or Birkhoff–Poritsky conjecture) repeatedly
appeared in the literature (e.g. Gutkin [14, Section 1], Moser [27, Appendix A] and Tabachnikov
[3, Section 2.4]).

This conjecture assumes very different connotations and levels of complexity, according to
the notion of integrability that one takes into account. Despite its long history and the amount of
attention that it has captured over recent decades, many interesting formulations of this conjecture
still remain unanswered.

(a) Global integrability
Bialy [12] proved the following result under the assumption of full global integrability.

Theorem (Bialy). If the phase space of the billiard ball map is fully foliated by continuous invariant
curves which are not null-homotopic, then it is a circular billiard.

3In [18, Footnote 1] Poritsky acknowledged that the results in the paper were obtained in 1927–29 while he was National
Research Fellow in Mathematics at Harvard University, presumably under the supervision of Birkhoff. Although the author
does not attribute this conjecture explicitly to Birkhoff, he cites many of his papers on the topic; hence it is reasonable to
surmise Birkhoff’s influence behind it.
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Remark 4.2. An integral-geometric approach to prove Bialy’s result was proposed by
Wojtkowski [28], by means of the so-called mirror formula. This approach was later exploited
by Bialy [29] for billiards on the sphere and the hyperbolic plane, as well as for magnetic billiards.

Observe that Bialy and Wojtkowski’s result is not in contrast with what we have discussed
in the case of elliptic billiards. In fact, in that case the family of convex caustics represented by
confocal ellipses do not foliate the whole domain (the segment between the two foci is left out),
and neither set of homotopically non-trivial invariant curves has full ω-measure in the phase
space: the homotopically trivial invariant curves corresponding to orbits tangent to confocal
hyperbolae, foliate a positive ω-measure set (in the phase portrait (figure 4) this set corresponds to
the area below the separatrix, i.e. the stable/unstable manifold of the hyperbolic 2-periodic orbit
corresponding to the major semi-axis of the ellipse).

What about other notions of integrability? In the study of integrable systems, in fact, in most
of the cases integrals of motion are non-degenerate not everywhere, but either on an open-dense
subset of the phase space (we shall refer to this as global integrability) or just a proper (non-trivial)
open subset (we shall refer to this as local integrability).

Remark 4.3. An interesting result4 by Innami [30] shows that the existence of caustics with
rotation numbers accumulating to 1

2 implies that the billiard must be an ellipse. This regime of
integrability is somehow opposite to the one we are interested in, which is concerned with caustics
near the boundary of the billiard table, i.e. with small rotation numbers. Innami’s proof is based
on Aubry–Mather theory; a simpler and more geometric proof of Innami’s result has been recently
given in [31].

Remark 4.4. Very interestingly, Treschev [21] gives numerical indication that there might exist
analytic billiards, different from ellipses, for which the dynamics in a neighbourhood of the
elliptic period-2 orbit is conjugate to a rigid rotation. These billiards could be seen as an instance of
local integrability; however, this regime is somehow complementary to the one usually considered
for Birkhoff conjecture. Here one has local integrability in a neighbourhood of an elliptic periodic
orbit of period 2 (leading to homotopically trivial invariant curves for the billiard map), while
Birkhoff conjecture is usually concerned with integrability in a neighbourhood of the boundary
of the billiard table. However, this fact—if verified—would provide an extremely interesting
indication that these two regimes of integrability do differ.

Remark 4.5. Birkhoff conjecture can also be thought of as an analogue, in the case of billiards,
in the following task: classifying integrable (Riemannian) geodesic flows on T2. The complexity of
this question, of course, depends on the notion of integrability that one considers. If one assumes
that the whole space is foliated by invariant Lagrangian graphs (i.e. the system is C0-integrable),
then it follows from Hopf conjecture [32] (see also [33] for the proof in dimensions greater than 2)
that the associated metric must be flat. Bialy and Wojtkowski’s results in the billiard setting can
be considered as the analogues of this result.

However, the question becomes more challenging—and it is still open—if one considers
integrability only on an open and dense set (global integrability), or assumes the existence of
an open set foliated by invariant Lagrangian graphs (local integrability). Examples of globally
integrable (non-flat) geodesic flows on T2 are those associated to Liouville-type metrics, namely
metrics of the form

ds2 = ( f1(x1) + f2(x2))(dx2
1 + dx2

2).

A folklore conjecture states that these metrics are the only globally (resp. locally) integrable
metrics on T2, which, in some sense, can be interpreted as the analogue of Birkhoff conjecture,
in the realm of integrable geodesic flows on T2.

A partial answer to this conjecture (global case) is provided in [34], where the authors
prove it under the assumption that the system admits an integral of motion which is quadratic
in the momenta. Observe that while the case of quadratic integral of motion reduces to a

4We are grateful to M. Bialy for pointing out this reference.
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system of linear PDEs, the case of higher degree integrals of motions is very challenging and
it turns out to be equivalent to delicate questions on nonlinear PDEs of hydrodynamic type
(e.g. [35,36]).

This notion of integrability is related to the so-called algebraic integrability, namely the existence
of integrals of motion that are polynomial in the velocity. The relationship between this notion of
integrability and Birkhoff conjecture (algebraic Birkhoff conjecture) has been studied and has led
to interesting results [37,38]. Recently, using previous results of [37], Glutsyuk [39] proved the
algebraic Birkhoff conjecture.

Finally, we point out that the topological structure of the torus plays a fundamental role in
the afore-mentioned conjectures and results. For example, on the two-dimensional sphere there
are plenty of non-trivial integrable metrics: the so-called Zoll surfaces. A Zoll surface is a surface
homeomorphic to the 2-sphere, equipped with a Riemannian metric, all of whose geodesics are
closed and of equal length (the first example was a non-trivial example discovered by Zoll in
[40]). While the usual unit-sphere metric on S2 obviously has this property, there also exists an
infinite-dimensional family of geometrically distinct deformations that are still Zoll surfaces. In
particular, most Zoll surfaces do not have constant curvature. See [41] for more details.

(i) Perturbative Birkhoff conjecture

Instead of considering all possible Birkhoff billiards, one could restrict the analysis to what
happens for domains that are sufficiently close to ellipses and try to study the Birkhoff conjecture
in this class of domain, which can be considered as perturbations of ellipses. More specifically, we
can state the following perturbative version of the Birkhoff conjecture.

Birkhoff conjecture (perturbative version). A smooth strictly convex domain that is sufficiently close
(w.r.t. some topology) to an ellipse and whose corresponding billiard map is integrable, is necessarily
an ellipse.

A first result in this direction was obtained by Delshams & Ramírez-Ros [42], who studied
entire perturbations of elliptic domains and proved that any nontrivial symmetric perturbation
breaks integrability near homoclinic solutions.

More recently, Avila et al. proved in [11] that the claim of the perturbative version of the
Birkhoff conjecture is true for domains that are sufficiently close to a circular billiard. The
complete proof for domains sufficiently close to an ellipse of any eccentricity has been provided
in [43]. See §5a for more details.

Let us describe this result more precisely, starting with the following definition.

Definition 4.6. Let Ω be a strictly convex domain.

(i) We say Γ is an integrable rational caustic for the billiard map in Ω , if the corresponding
(non-contractible) invariant curve Γ consists of periodic points; in particular, the
corresponding rotation number is rational.

(ii) Let q0 ≥ 2 be a positive integer. If the billiard map inside Ω admits integrable rational
caustics for all rotation numbers 0 <

p
q < 1

q0
, we say that Ω is q0-rationally integrable.

The main result proved in [43] is as follows.

Theorem 4.7 (perturbative Birkhoff conjecture). Let E0 be an ellipse of eccentricity 0 ≤ e0 < 1 and
semi-focal distance c; let k ≥ 39. For every K > 0, there exists ε = ε(e0, c, K) such that the following holds:
if Ω is a 2-rationally integrable Ck-smooth domain, whose boundary ∂Ω is

— K-close to E0, with respect to the Ck-norm,
— ε-close to E0, with respect to the C1-norm,

then Ω is an ellipse.
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Remark 4.8. Actually, it is sufficient to ask only the existence of rational integral caustics of
rotation number 1

q , for all q ≥ 3.

Some ideas on the proof will be outlined in §5a.

(ii) Non-perturbative results?

A possible strategy to extend our results to a non-perturbative version of this conjecture involves
the use of some geometric flow to transform the domain into a small perturbation of an ellipse.
Roughly speaking, the most important features of this flow should be:

(i) preservation of strict convexity and smoothness of the boundary;
(ii) convergence (possibly, up to some renormalization of the length or the area) to the set of

elliptic domains, which must be an invariant set for the flow; and
(iii) preservation of integrability.

It is clear that if such a flow exists, then (i)–(iii) imply that any integrable Birkhoff billiard Ω

can be mapped into an integrable Birkhoff billiard Ω ′ close to an ellipse; using our perturbative
result, we can deduce that Ω ′ must be an ellipse; since the set of ellipses is invariant under the
(backward) flow, then also Ω must be an ellipse.

In [43, Appendix G] we suggested as a possible candidate the so-called affine length shortening
(ALS) flow (see, for instance [44] for more details). More specifically, a flow describing the
evolution of plane curves in the direction of the affine normal, with speed proportional to the
affine curvature. This flow satisfies property (i) and (ii) [44]; the main obstacle consists in proving
that property (iii) holds (if one believes in Birkhoff conjecture, then it should hold, since ellipses
are an invariant set for the flow). In [43, Appendix G], we proposed to prove this by introducing
a family of functions, measuring the non-integrability of the domains, and conjecturing that they
behave as Lyapunov functions for the ALS flow.

We remark that property (iii) for the classical Euclidean curve shortening flow (namely, the
evolution is in the direction of the Euclidean normal with speed proportional to the Euclidean
curvature) does not hold in general, as proved in [45].

(b) Local integrability and the Birkhoff conjecture
What can be said for locally integrable Birkhoff billiards? As we have noted in remark 4.4, the
correct regime that one should consider seems to be integrability in a neighbourhood of the
boundary of the billiard table, i.e. for small rotation numbers.

Let us denote with Ee,c ⊂ R2 an ellipse of eccentricity e and semifocal distance c. We state the
following local version of the Birkhoff conjecture.

Local Birkhoff conjecture. For any integer q0 ≥ 3, there exist e0 = e0(q0) ∈ (0, 1), m0 = m0(q0), n0 =
n0(q0) ∈ N such that the following holds. For each 0 < e ≤ e0 and c ≥ 0, there exists ε = ε(e, c, q0) > 0 such
that the following holds.
If Ee,c is an ellipse of eccentricity e and semi-focal distance c, and Ω is a q0-rationally integrable
Cm0 -smooth domain, whose boundary ∂Ω is ε-close to E0, with respect to the Cn0 -norm, then Ω

must be an ellipse.
This conjecture has been studied in a recent work [15]. More precisely, the following results have been

proved.

Theorem 4.9.

(i) The Local Birkhoff Conjecture holds true for q0 = 2, 3, 4, 5, with m0 = 40q0 and n0 = 3q0.
(ii) The Local Birkhoff Conjecture holds true for q0 > 5 with m0 = 40q0 and n0 = 3q0, subject to

checking that q0 − 2 matrices (which are explicitly described) are invertible.
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Remark 4.10.

(i) Case q0 = 2 was proven in [11] (see also [30,43]).
(ii) Smoothness exponents are probably not optimal.

(iii) Notice that in the proof we actually need only the existence of rationally integrable
caustics of rotation numbers, less than 1/q0, of the form j/q for j = 1, 2, 3.

(iv) The invertibility condition on finitely many matrices, to which the claim of part (ii)
of theorem 4.9 is subject, is explicit and computable. In [16], it is described how to
implement an algorithm to verify it by means of symbolic computations. The coefficients
of these matrices are completely determined by the e-expansion of the action-angle
parametrization of the ellipse, which, in turn, is explicitly given by elliptic integrals; it
turns out that the entries of these matrices are either 0, 1 or of the form ξcos−2j(wπ )e2j,
where ξ ∈ Q, j ∈ N, w ∈ {1/(2k + 1), 2/(2k + 1), 1/2k, 3/2k : k > j}.

Some ideas on the proof will be outlined in §5b.

5. Some ideas on the proof of theorems 4.7 and 4.9

(a) Perturbative Birkhoff conjecture (theorem 4.7)
Let us provide a description of the strategy that we adopted in [43] to prove theorem 4.7.

For small eccentricities, theorem 4.7 was proven in [11]. Let us start by describing the simplified
setting of integrable infinitesimal deformations of a circle. This provides an insight into the
strategy of the proof in the general case.

Let Ω0 be a circle centred at the origin and radius ρ0 > 0. Let Ωε be a one-parameter family of
smooth deformations given in the polar coordinates (ρ, ϕ) by

∂Ωε = {(ρ, ϕ) = (ρ0 + ερ(ϕ) + O(ε2), ϕ)}.
Consider the Fourier expansion of ρ:

ρ(ϕ) = ρ′
0 +

∑
k>0

ρk sin(kϕ) + ρ−k cos(kϕ).

Theorem 5.1 (Ramírez-Ros [19]). If Ωε has an integrable rational caustic Γ1/q of rotation number
1/q, for any ε sufficiently small, then we have ρkq = ρ−kq = 0 for any integer k.

Let us now assume that the domains Ωε are 2-rationally integrable for all sufficiently small ε

and ignore for a moment the dependence on the parametrization: then the above theorem implies
that ρ′

k = ρ′′
k = 0 for k > 2, i.e.

ρ(ϕ) = ρ′
0 + ρ′

1 cos ϕ + ρ′′
1 sin ϕ + ρ′

2 cos 2ϕ + ρ′′
2 sin 2ϕ

= ρ′
0 + ρ∗

1 cos(ϕ − ϕ1) + ρ∗
2 cos 2(ϕ − ϕ2),

where ϕ1 and ϕ2 are appropriately chosen phases.

Remark 5.2. Observe that

— ρ0 corresponds to an homothety;
— ρ∗

1 corresponds to a translation in the direction forming an angle ϕ1 with the polar axis
{ϕ = 0};

— ρ∗
2 corresponds to a deformation of the circle into an ellipse of small eccentricity, whose

major axis forms an angle ϕ2 with the polar axis.

This implies that, infinitesimally (as ε → 0), rationally integrable deformations of a circle are
tangent to the 5-parameter family of ellipses.
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In order to extend these ideas to the case of an integrable perturbation (not necessarily a
deformation) of an ellipse, a more elaborate strategy is needed, involving more quantitative
estimates and approximation procedure (we refer to [11,43] for more technical details). In
particular, Fourier modes are replaced by new functions determined by the dynamics inside the
approximating ellipse, that we call dynamical modes {cq, sq}q≥3, which are given by

cq(ϕ) := cos((2πq/4K(kq))F(ϕ; kq))√
1 − k2

q sin2 ϕ

and

sq(ϕ) := sin((2πq/4K(kq))F(ϕ; kq))√
1 − k2

q sin2 ϕ

,

where kq denotes the eccentricity of the confocal ellipse corresponding to the caustic of rotation
number 1/q, while

F(ϕ; k) :=
∫ϕ

0

dθ√
1 − k2 sin2 τ

and K(k) := F
(π

2
; k

)

are the elliptic integrals of first kind (see, for example, [46] for more details on these functions and
their properties).

The core of the proof consists in showing that these dynamical modes together with the
infinitesimal generators of homotheties, translations, rotations and hyperbolic rotations (i.e. those
transformations preserving the set of ellipses), form a basis of L2(R/2πZ). This is one of the main
difficulties (maybe the hardest one) involved in the extension of the perturbative result in [11] to
the case of perturbations of any ellipse, as studied in [43]. While in the former case, one can take
advantage of the fact that these functions can be considered small perturbations of the Fourier
modes, in the latter new strategies need to be exploited.

In [43] we consider analytic extensions of the action-angle coordinates of the elliptic billiard,
more specifically, of the boundary parametrizations induced by each integrable caustic (these
functions can be explicitly expressed in terms of elliptic integrals and Jacobi elliptic functions).
A detailed study of their complex singularities and the size of their maximal strips of analyticity
allowed us to deduce their linear independence (both for finite and infinite combinations) and,
by a suitable codimension argument, to show that they form a complete set of generators, thus
completing the proof that they are a basis of L2(R/2πZ).

(b) Local Birkhoff conjecture for nearly circular domains (theorem 4.9)
The main difficulty in this case—in comparison with the one discussed in theorem 4.7 and §5a—is
that we cannot use the preservation of integrable rational caustics for all rotation number 1/q, with
q ≥ 3; hence, we need to recover the missing conditions on the corresponding Fourier coefficients
of the perturbation.

Our key idea is the following: for ellipses of small eccentricity e > 0, we study the Taylor
expansion, with respect to e, of the corresponding action-angle coordinates. Using this expansion,
we derive the necessary condition for the preservation of integrable rational caustics, in terms
of the Fourier coefficients of the perturbation, up to the precision of order e2N , for some positive
integer N = N(q0).

Let us outline our strategy, starting from some special cases.

— Case q0 = 3: We lose a pair of conditions corresponding to Fourier coefficients of order
3. We exploit the conditions obtained from the existence of integrable rational caustics
of rotation numbers 1

5 , 1
7 , 2

7 : we use the corresponding expansions, with respect to e, up
to the precision O(e6), to derive a system of linear equations for the 3rd, 5th and 7th
Fourier coefficients. Solving this linear system will provide us with the estimates needed
for Fourier coefficients of order 3.
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— Case q0 = 4: In this case, we lose two pairs of conditions corresponding to Fourier
coefficients of order q = 3, 4. These will be recovered in two steps:

(i) To recover the one corresponding to Fourier coefficients of order 3, we study
the necessary conditions for the existence of integrable rational caustics of
rotation numbers 1

5 , 1
7 , 1

9 and 2
9 , written in terms of the Fourier coefficients of the

perturbation, and consider their expansions, with respect to e, up to order O(e8). We
then derive a linear system for the 3rd, 5th, 7th and 9th Fourier coefficients, whose
solution will provide us with the estimates needed for the Fourier coefficients of
order 3.

(ii) To recover the one corresponding to Fourier coefficients of order 4, we study the
necessary conditions for the existence of integrable rational caustics of rotation
numbers 1

6 , 1
8 , 1

10 , 1
12 , 1

14 and 3
14 , which give rise to a system of linear equation for the

4th, 6th, 8th, 10th, 12th and 14th Fourier coefficients; as before, the solution of this
linear system will give us the estimates needed for the Fourier coefficients of order 4.

— The general case: Along the same lines described in the previous two items, we outlined
in [16] a general (conditional) procedure to deal with this problem for any q0 ≥ 3; the
implementation of this scheme is based on the assumption that certain explicit non-
degeneracy conditions for the corresponding linear systems hold. We remark, however,
that all of these conditions are very explicit and the algorithm is explicitly described, so
needs to be implemented on a computer.

Data accessibility. This article has no additional data.
Competing interests. We declare we have no competing interests.
Funding. V.K. acknowledges partial support of the NFS grant DMS-1702278. A.S. acknowledges the MIUR
Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata,
CUP E83C18000100006.

References
1. Birkhoff GD. 1927 On the periodic motions of dynamical systems. Acta Math. 50, 359–379.

(doi:10.1007/BF02421325)
2. Siburg KF. 2004 The principle of least action in geometry and dynamics. Lecture Notes in

Mathematics, vol. 1844, xiii+ 128 pp. Berlin, Germany: Springer.
3. Tabachnikov S. 1995 Billiards. Panor. Synth. vi+ 142 pp.
4. Tabachnikov S. 2005 Geometry and billiards. In Student mathematical library, vol. 30, xii+ 176

pp. Providence, RI: American Mathematical Society.
5. Forni G, Matheus C. 2014 Introduction to Teichmüller theory and its applications to dynamics

of interval exchange transformations, flows on surfaces and billiards. J. Mod. Dyn. 8, 271–436.
(doi:10.3934/jmd.2014.8.271)

6. Sinai YG. 1970 Dynamical systems with elastic reflections. Ergodic properties of dispersing
billiards. Russ. Math. Surveys 25, 137–189. (doi:10.1070/RM1970v025n02ABEH003794)

7. Halpern B. 1977 Strange billiard tables. Trans. Amer. Math. Soc. 232, 297–305. (doi:10.1090/
S0002-9947-1977-0451308-7)

8. Katok A, Strelcyn J-M, Ledrappier F, Przytycki F. 1986 Invariant manifolds, entropy and
billiards; smooth maps with singularities. Lecture Notes in Mathematics, 1222, viii+283 pp. Berlin,
Germany: Springer.

9. Mather JN, Forni G. 1994 Action minimizing orbits in Hamiltonian systems. In Transition
to chaos in classical and quantum mechanics (Montecatini Terme, 1991). Lecture Notes in
Mathematics, vol. 1589, pp. 92–186. Berlin, Germany: Springer.

10. Sorrentino A. 2015 Action-minimizing methods in hamiltonian dynamics. An introduction to Aubry-
Mather theory. Mathematical Notes Series, vol. 50. Princeton, NJ: Princeton University Press.

11. Avila A, De Simoi J, Kaloshin V. 2016 An integrable deformation of an ellipse of small
eccentricity is an ellipse. Ann. Math. 184, 527–558. (doi:10.4007/annals.2016.184.2.5)

 on September 24, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1007/BF02421325
http://dx.doi.org/doi:10.3934/jmd.2014.8.271
http://dx.doi.org/doi:10.1070/RM1970v025n02ABEH003794
http://dx.doi.org/doi:10.1090/S0002-9947-1977-0451308-7
http://dx.doi.org/doi:10.1090/S0002-9947-1977-0451308-7
http://dx.doi.org/doi:10.4007/annals.2016.184.2.5
http://rsta.royalsocietypublishing.org/


15

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170419

.........................................................

12. Bialy M. 1993 Convex billiards and a theorem by E. Hopf. Math. Z. 124, 147–154.
(doi:10.1007/bf02572397)

13. De Simoi J, Kaloshin V, Wei Q. 2017 Deformational spectral rigidity among Z2-symmetric
domains close to the circle. Ann. Math. 186, 277–314. (Appendix B coauthored with H. Hezari).
(doi:10.4007/annals.2017.186.1.7)

14. Gutkin E. 2003 Billiard dynamics: a survey with the emphasis on open problems. Regul.
Chaotic Dyn. 8, 1–13. (doi:10.1070/RD2003v008n01ABEH000222)

15. Huang G, Kaloshin V, Sorrentino A. 2018 Nearly circular domains which are integrable
close to the boundary are ellipses. Geom. Funct. Anal. 28, 334–392. (doi:10.1007/s00039-018-
0440-4)

16. Huang G, Kaloshin V, Sorrentino A. 2018 On marked length spetrums of generic strictly
convex billiard tables. Duke Math. J. 167, 175–209. (doi:10.1215/00127094-2017-0038)

17. Popov G. 1994 Invariants of the length spectrum and spectral invariants of planar convex
domains. Commun. Math. Phys. 161, 335–364. (doi:10.1007/BF02099782)

18. Poritsky H. 1950 The billiard ball problem on a table with a convex boundary—an illustrative
dynamical problem. Ann. Math. 51, 446–470. (doi:10.2307/1969334)

19. Ramírez-Ros R. 2006 Break-up of resonant invariant curves in billiards and dual billiards
associated to perturbed circular tables. Phys. D 214, 78–87. (doi:10.1016/j.physd.2005.12.007)

20. Sorrentino A. 2015 Computing Mather’s beta-function for Birkhoff billiards. Discr. Contin.
Dyn. Syst. Series A 35, 5055–5082. (doi:10.3934/dcds.2015.35.5055)

21. Treschev D. 2013 Billiard map and rigid rotation. Phys. D 255, 31–34. (doi:10.1016/j.physd.
2013.04.003)

22. Chang S-J, Friedberg R. 1988 Elliptical billiards and Poncelet’s theorem. J. Math. Phys. 29,
1537–1550. (doi:10.1063/1.527900)

23. Tabanov MB. 1996 New ellipsoidal confocal coordinates and geodesics on an ellipsoid. J. Math.
Sci. 82, 3851–3858. (doi:10.1007/BF02362647)

24. Lazutkin VF. 1973 Existence of caustics for the billiard problem in a convex domain. Izv. Akad.
Nauk SSSR Ser. Mat. 37, 186–216. (In Russian) (doi:10.1070/IM1973v007n01ABEH001932)

25. Mather JN. 1982 Glancing billiards. Ergodic Theory Dyn. Syst. 2, 397–403. (doi:10.1017/
S0143385700001681)

26. Gutkin E, Katok A. 1995 Caustics for inner and outer billiards. Commun. Math. Phys. 173,
101–133. (doi:10.1007/BF02100183)

27. Moser J. 2003 Selected chapters of the calculus of variations. Lectures in Mathematics. ETH, Zurich:
Birkhäuser.

28. Wojtkowski MP. 1994 Two applications of Jacobi fields to the billiard ball problem.
J. Differential Geom. 40, 155–164. (doi:10.4310/jdg/1214455290)

29. Bialy M. 2013 Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane.
Discrete Contin. Dyn. Syst. 33, 3903–3913. (doi:10.3934/dcds.2013.33.3903)

30. Innami N. 2002 Geometry of geodesics for convex billiards and circular billiards. Nihonkai
Math. J. 13, 73–120.

31. Arnold M, Bialy M. 2018 Nonsmooth convex caustics for Birkhoff billiards. Pacific J. Math. 295,
257–269. (doi:10.2140/pjm.2018.295.257)

32. Hopf E. 1948 Closed surfaces without conjugate points. Proc. Natl Acad. Sci. USA 34, 47–51.
(doi:10.1073/pnas.34.2.47)

33. Burago D, Ivanov S. 1994 Riemannian tori without conjugate points are flat. Geom. Funct. Anal.
4, 259–269. (doi:10.1007/BF01896241)

34. Bolsinov AV, Fomenko AT, Matveev VS.1998 Two-dimensional Riemannian metrics with an
integrable geodesic flow. Local and global geometries. Mat. Sb. 189, 5–32. Translation in Sb.
Math. 189: 1441–1466, 1998.

35. Bialy M, Mironov A. 2011 Cubic and quartic integrals for geodesic flow on 2-torus via a system
of the hydrodynamic type. Nonlinearity 24, 3541–3554. (doi:10.1088/0951-7715/24/12/010)

36. Bialy M, Mironov A. 2011 Rich quasi-linear system for integrable geodesic flows on 2-torus.
Discrete Contin. Dyn. Syst. 29, 81–90. (doi:10.3934/dcds.2011.29.81)

37. Bialy M, Mironov A. 2017 Angular Billiard and Algebraic Birkhoff conjecture. Adv. Math. 313,
102–126. (doi:10.1016/j.aim.2017.04.001)

38. Bolotin S. 1990 Integrable Birkhoff billiards. Mosc. Univ. Mech. Bull. 45, 10–13.
39. Glutsyuk A. 2017 On polynomially integrable Birkhoff billiards on surfaces of constant

curvature. Submitted.

 on September 24, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1007/bf02572397
http://dx.doi.org/doi:10.4007/annals.2017.186.1.7
http://dx.doi.org/doi:10.1070/RD2003v008n01ABEH000222
http://dx.doi.org/doi:10.1007/s00039-018-0440-4
http://dx.doi.org/doi:10.1007/s00039-018-0440-4
http://dx.doi.org/doi:10.1215/00127094-2017-0038
http://dx.doi.org/doi:10.1007/BF02099782
http://dx.doi.org/doi:10.2307/1969334
http://dx.doi.org/doi:10.1016/j.physd.2005.12.007
http://dx.doi.org/doi:10.3934/dcds.2015.35.5055
http://dx.doi.org/doi:10.1016/j.physd.2013.04.003
http://dx.doi.org/doi:10.1016/j.physd.2013.04.003
http://dx.doi.org/doi:10.1063/1.527900
http://dx.doi.org/doi:10.1007/BF02362647
http://dx.doi.org/doi:10.1070/IM1973v007n01ABEH001932
http://dx.doi.org/doi:10.1017/S0143385700001681
http://dx.doi.org/doi:10.1017/S0143385700001681
http://dx.doi.org/doi:10.1007/BF02100183
http://dx.doi.org/doi:10.4310/jdg/1214455290
http://dx.doi.org/doi:10.3934/dcds.2013.33.3903
http://dx.doi.org/doi:10.2140/pjm.2018.295.257
http://dx.doi.org/doi:10.1073/pnas.34.2.47
http://dx.doi.org/doi:10.1007/BF01896241
http://dx.doi.org/doi:10.1088/0951-7715/24/12/010
http://dx.doi.org/doi:10.3934/dcds.2011.29.81
http://dx.doi.org/doi:10.1016/j.aim.2017.04.001
http://rsta.royalsocietypublishing.org/


16

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170419

.........................................................

40. Zoll O. 1903 Über Flächen mit Scharen geschlossener geodätischer Linien. Math. Ann. 57,
108–133. (German). (doi:10.1007/BF01449019)

41. LeBrun C, Mason LJ. 2002 Zoll manifolds and complex surfaces. J. Differ. Geometry 61, 453–535.
(doi:10.4310/jdg/1090351530)

42. Delshams A, Ramírez-Ros R. 1996 Poincaré-Melnikov-Arnold method for analytic planar
maps. Nonlinearity 9, 1–26. (doi:10.1088/0951-7715/9/1/001)

43. Kaloshin V, Sorrentino A. 2018 On the local Birkhoff conjecture for convex billiards. Ann.
Math. 188, 315–380.

44. Sapiro G, Tannenbaum A. 1994 On affine plane curve evolution. J. Funct. Anal. 119, 79–120.
(doi:10.1006/jfan.1994.1004)

45. Damasceno J, Dias Carneiro MJ, Ramírez-Ros R. 2017 The billiard inside an ellipse deformed
by the curvature flow. Proc. Amer. Math. Soc. 145, 705–719. (doi:10.1090/proc/13351)

46. Akhiezer NI 1990 Elements of the theory of elliptic functions. Translations of Mathematical
Monographs, 79, viii+237. Providence, RI: American Mathematical Society.

 on September 24, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1007/BF01449019
http://dx.doi.org/doi:10.4310/jdg/1090351530
http://dx.doi.org/doi:10.1088/0951-7715/9/1/001
http://dx.doi.org/doi:10.1006/jfan.1994.1004
http://dx.doi.org/doi:10.1090/proc/13351
http://rsta.royalsocietypublishing.org/

	Introduction
	The billiard map
	Caustics
	Circular billiard
	Elliptic billiard
	Caustics and their existence

	Integrable billiards and the Birkhoff conjecture
	Global integrability
	Local integrability and the Birkhoff conjecture

	Some ideas on the proof of theorems 4.7 and 4.9
	Perturbative Birkhoff conjecture (theorem 4.7)
	Local Birkhoff conjecture for nearly circular domains (theorem 4.9)

	References

