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On the local Birkhoff conjecture
for convex billiards
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Dedicated to the memory of our thesis advisor John N. Mather:

a great mathematician and a remarkable person

Abstract

The classical Birkhoff conjecture claims that the boundary of a strictly

convex integrable billiard table is necessarily an ellipse (or a circle as a

special case). In this article we prove a complete local version of this

conjecture: a small integrable perturbation of an ellipse must be an ellipse.

This extends and completes the result in Avila-De Simoi-Kaloshin, where

nearly circular domains were considered. One of the crucial ideas in the

proof is to extend action-angle coordinates for elliptic billiards into complex

domains (with respect to the angle), and to thoroughly analyze the nature

of their complex singularities. As an application, we are able to prove some

spectral rigidity results for elliptic domains.

1. Introduction

A mathematical billiard is a system describing the inertial motion of a

point mass inside a domain, with elastic reflections at the boundary (which

is assumed to have infinite mass). This simple model was first proposed by

G. D. Birkhoff as a mathematical playground where “the formal side, usually so

formidable in dynamics, almost completely disappears and only the interesting

qualitative questions need to be considered,” [7, pp. 155–156].

Since then billiards have captured much attention in many different con-

texts, becoming a very popular subject of investigation. Not only is their law

of motion very physical and intuitive, but billiard-type dynamics is ubiquitous.

Mathematically, they offer models in every subclass of dynamical systems (in-

tegrable, regular, chaotic, etc.); more importantly, techniques initially devised

Keywords: Birkhoff billiards, integrable billiards, integrable systems, elliptic function,

complex singularities, action-angle coordinates

AMS Classification: Primary: 37J35, 70H06; Secondary: 37E40, 33E05, 35A20, 37D50.

c© 2018 Department of Mathematics, Princeton University.

315

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2018.188.1.6


316 VADIM KALOSHIN and ALFONSO SORRENTINO

Figure 1.

for billiards have often been applied and adapted to other systems, becoming

standard tools and having ripple effects beyond the field.

Let us first recall some properties of the billiard map. We refer to [44],

[47], [48] for a more comprehensive introduction to the study of billiards.

Let Ω be a strictly convex domain in R2 with Cr boundary ∂Ω, with r ≥ 3.

The phase space M of the billiard map consists of unit vectors (x, v) whose

foot points x are on ∂Ω and that have inward directions. The billiard ball

map f : M −→M takes (x, v) to (x′, v′), where x′ represents the point where

the trajectory starting at x with velocity v hits the boundary ∂Ω again, and

v′ is the reflected velocity, according to the standard reflection law: angle of

incidence is equal to the angle of reflection (Figure 1).

Remark 1. Observe that if Ω is not convex, then the billiard map is not

continuous; in this article we will be interested only in strictly convex domains

(see Remark 4). Moreover, as pointed out by Halpern [19], if the boundary is

not at least C3, then the flow might not be complete.

Let us introduce coordinates on M . We suppose that ∂Ω is parametrized

by arc-length s and let γ : [0, |∂Ω|] −→ R2 denote such a parametrization,

where |∂Ω| denotes the length of ∂Ω. Let φ be the angle between v and the

positive tangent to ∂Ω at x. Hence, M can be identified with the annulus

A = [0, |∂Ω|]× (0, π) and the billiard map f can be described as

f : [0, |∂Ω|)× (0, π)−→ [0, |∂Ω|)× (0, π)

(s, φ) 7−→ (s′, φ′).

In particular, f can be extended to Ā = [0, |∂Ω|]× [0, π] by fixing f(s, 0) =

(s, 0) and f(s, π) = (s, π) for all s. Let us denote by

`(s, s′) := ‖γ(s)− γ(s′)‖
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the Euclidean distance between two points on ∂Ω. It is easy to prove that

(1)


∂`

∂s
(s, s′) = − cosφ,

∂`

∂s′
(s, s′) = cosφ′ .

Remark 2. If we lift everything to the universal cover and introduce new

coordinates (x, y) = (s,− cosφ) ∈ R× (−1, 1), then the billiard map is a twist

map with ` as generating function, and it preserves the area form dx∧ dy. See

[44], [47], [48].

Despite the apparently simple (local) dynamics, the qualitative dynamical

properties of billiard maps are extremely non-local. This global influence on the

dynamics translates into several intriguing rigidity phenomena, which are at the

basis of several unanswered questions and conjectures (see, for example, [3], [5],

[11], [18], [21], [22], [40], [39], [41], [44], [46], [47], [48], [50]). Amongst many,

in this article we will address the question of classifying integrable billiards,

also known as the Birkhoff conjecture. As an application of our main result, in

Section 1.2 we will also discuss certain spectral rigidity properties of ellipses.

1.1. Integrable billiards and the Birkhoff conjecture. The easiest example

of billiards is given by a billiard in a disc D (for example of radius R). It is

easy to check in this case that the angle of reflection remains constant at each

reflection (see also [48, Ch. 2]). If we denote by s the arc-length parameter

(i.e., s ∈ R/2πRZ) and by θ ∈ (0, π/2] the angle of reflection, then the billiard

map has a very simple form:

f(s, θ) = (s+ 2Rθ, θ).

In particular, θ stays constant along the orbit, and it represents an integral

of motion for the map. Moreover, this billiard enjoys the peculiar property

of having the phase space — which is topologically a cylinder — completely

foliated by homotopically non-trivial invariant curves Cθ0 = {θ ≡ θ0}. These

curves correspond to concentric circles of radii ρ0 = R cos θ0 and are examples

of what are called caustics, i.e., (smooth and convex) curves with the property

that if a trajectory is tangent to one of them, then it will remain tangent after

each reflection (see Figure 2).

A billiard in a disc is an example of an integrable billiard. There are

different ways to define global/local integrability for billiards (the equivalence

of these notions is an interesting problem itself):

- either through the existence of an integral of motion, globally or locally

near the boundary (in the circular case an integral of motion is given by

I(s, θ) = θ);
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Figure 2. Billiard in a disc

- or through the existence of a (smooth) foliation of the whole phase space (or

locally in a neighborhood of the boundary {θ = 0}), consisting of invariant

curves of the billiard map; for example, in the circular case these are given

by Cθ.

The second property translates (under suitable assumptions) into the existence

of a (smooth) family of caustics, globally or locally near the boundary (in the

circular case, the concentric circles of radii R cos θ).

In [5], Misha Bialy proved the following result concerning global integra-

bility (see also [51]).

Theorem (Bialy). If the phase space of the billiard ball map is globally

foliated by continuous invariant curves that are not null-homotopic, then it is

a circular billiard.

However, while circular billiards are the only examples of global integrable

billiards, integrability itself is still an intriguing open question. One could

consider a billiard in an ellipse: this is in fact integrable (see Section 2). Yet,

the dynamical picture is very distinct from the circular case: as it is showed in

Figure 3, each trajectory that does not pass through a focal point, is always

tangent to precisely one confocal conic section, either a confocal ellipse or the

two branches of a confocal hyperbola (see, for example, [48, Ch. 4]). Thus,

the confocal ellipses inside an elliptical billiards are convex caustics, but they

do not foliate the whole domain: the segment between the two foci is left

out. (Describing the dynamics explicitly is much more complicated: see, for

example, [49] and Section 2.)

Question (Birkhoff). Are there other examples of integrable billiards?
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Figure 3. Billiard in an ellipse

Remark 3. Although some vague indications of this question can be found

in [7], to the best of our knowledge, its first appearance as a conjecture was in

a paper by Poritsky [40], where the author attributes it to Birkhoff himself.1

Thereafter, references to this conjecture (either as the Birkhoff conjecture or

the Birkhoff-Poritsky conjecture) repeatedly appeared in the literature; see, for

example, Gutkin [18, §1], Moser [32, App. A], Tabachnikov [47, §2.4], etc.

Remark 4. In [28] Mather proved the non-existence of caustics (hence, the

non-integrability) if the curvature of the boundary vanishes at one point. This

observation justifies the restriction of our attention to strictly convex domains.

Remark 5. (i) Interestingly, Treschev in [50] gives indication that there

might exist analytic billiards, different from ellipses, for which the dynamics

in a neighborhood of the elliptic period-2 orbit is conjugate to a rigid rotation.

These billiards can be seen as an instance of local integrability; however, this

regime is somehow complementary to the one conjectured by Birkhoff. Here

one has local integrabilility in a neighborhood of an elliptic periodic orbit of

period 2, while the Birkhoff conjecture is related to integrability in a neigh-

borhood of the boundary. This gives an indication that these two notions of

integrability do differ.

(ii) An algebraic version of this conjecture states that the only billiards

admitting polynomial (in the velocity) integrals are circles and ellipses. For

recent results in this direction, see [6].

1Poritsky was Birkhoff’s doctoral student, and [40] was published several years after

Birkhoff’s death.
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Despite its long history and the amount of attention that this conjec-

ture has captured, it still remains open. As far as our understanding of

integrable billiards is concerned, the most important related results are the

above–mentioned theorem by Bialy [5] (see also [51]), a result by Innami2 [23],

in which he shows that the existence of caustics with rotation numbers ac-

cumulating to 1/2 implies that the billiard must be an ellipse,3 a result by

Delshams and Ramı́rez-Ros [12] in which they study entire perturbations of

elliptic billiards and prove that any non-trivial symmetric perturbation of the

elliptic billiard is not integrable, near homoclinic solutions, and a very recent

result by Avila, De Simoi and Kaloshin [3] in which they show a perturbative

version of this conjecture for ellipses of small eccentricity.

Let us introduce an important notion for this paper.

Definition 6. (i) We say Γ is an integrable rational caustic for the billiard

map in Ω if the corresponding (non-contractible) invariant curve Γ consists of

periodic points; in particular, the corresponding rotation number is rational.

(ii) If the billiard map inside Ω admits integrable rational caustics of

rotation number 1/q for all q > 2, we say that Ω is rationally integrable.

Remark 7. A simple sufficient condition for rational integrability is the

following (see [3, Lemma 1]). Let CΩ denote the union of all smooth convex

caustics of the billiard in Ω; if the interior of CΩ contains caustics of rotation

number 1/q for any q > 2, then Ω is rationally integrable.

Our main result is the following.

Main Theorem (Local Birkhoff conjecture). Let E0 be an ellipse of ec-

centricity 0 ≤ e0 < 1 and semi-focal distance c; let k ≥ 39. For every K > 0,

there exists ε = ε(e0, c,K) such that the following holds : if Ω is a rationally

integrable Ck-smooth domain so that ∂Ω is Ck-K-close and C1-ε-close to E0,

then Ω is an ellipse.

Remark 8. One could replace the smallness condition in the C1-norm with

a smallness condition with respect to the C0 topology. (This can be showed

by using interpolation inequalities and the convexity of the domains.)4

Remark 9. In [21] we prove a similar rigidity statement for a different type

of rational integrability. Namely, we describe an algorithm to prove that for

any given q0 ≥ 3, there exists e0 = e(q0) > 0 such that every sufficiently smooth

perturbation of Ee, with 0 < e < e0, having integrable rational caustics of ro-

tation numbers p/q, for all 0 < p/q < 1/q0, must be an ellipse. This algorithm

2We are grateful to M. Bialy for pointing out this reference.
3This regime of integrability is somehow diametrically opposed to ours, since we are in-

terested in integrability near the boundary of the billiard domain.
4This remark was suggested to the authors by Camillo De Lellis.
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is conditional on checking the invertibility of finitely many explicit matrices,

which we prove in the cases q0 = 3, 4, 5. Observe that the analysis in [21] only

applies to ellipses of small eccentricity as in [3], since Taylor expansions with

respect to e are needed in order to get higher order (integrability) conditions.

One of the crucial ideas to extend the analysis beyond the almost circular

case in [3] is to consider analytic extensions of the action-angle coordinates

of the elliptic billiard (more specifically, of the boundary parametrizations

induced by each integrable caustic) and to study their singularities (see Sec-

tion 7). These functions can be explicitly expressed in terms of elliptic integrals

and Jacobi elliptic functions (see Section 3.1). This analysis will be exploited

to define a dynamically-adapted basis for L2(R/2πZ), which will provide the

main framework to carry out our analysis. See Section 4.2 for a more detailed

description of the scheme of the proof.

In addition to this, in Appendix F we propose a possible strategy to use

the affine length shortening (ALS) flow (see, for instance, [42]) as a potential

approach to prove the global Birkhoff conjecture. Our proposal is based on the

fact that the ALS flow evolves any convex domain with smooth boundary into

an ellipse in finite time.

1.2. Applications for spectral rigidity of ellipses. In this subsection we

describe an interesting application of our Main Theorem to spectral rigidity

properties of ellipses.5

Let Ω be a smooth strictly convex (planar) domain. While the dependence

of the dynamics on the geometry of the domain is well perceptible, an intriguing

challenge is to understand to which extent dynamical information can be used

to reconstruct the shape of the domain. A particularly interesting problem in

this direction is to unravel which information on the geometry of the billiard

domain the set of periodic orbits does encode. More ambitiously, one could

wonder whether a complete knowledge of this set allows one to reconstruct the

shape of the billiard and hence the whole of its dynamics. Several results in

this direction (and in related ones) are contained, for instance, in [4], [11], [17],

[20], [21], [26], [27], [38], [39], [44], [46], [52].

Let us start by introducing the length spectrum of a domain Ω.

Definition 10 (length spectrum). Given a domain Ω, the length spectrum

of Ω is given by the set of lengths of its periodic orbits, counted with multi-

plicity:

L(Ω) := N{ lengths of closed geodesics in Ω} ∪ N |∂Ω|,
where |∂Ω| denotes the length of the boundary of Ω.

5This was suggested to the authors by Hamid Hezari.
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A remarkable relation exists between the length spectrum of a billiard in a

convex domain Ω and the spectrum of the Laplace operator in Ω with Dirichlet

boundary conditions (similarly for Neumann boundary conditions):

(2)

∆f = λf in Ω,

f |∂Ω = 0.

From the physical point of view, the eigenvalues λ’s are the eigenfrequencies

of the membrane Ω with a fixed boundary. K. Andersson and R. Melrose [2]

proved the following relation between the Laplace spectrum and the length

spectrum. Call the function

w(t) :=
∑

λi∈ spec ∆

cos(t
√
−λi)

the wave trace. Then, the wave trace w(t) is a well-defined generalized function

(distribution) of t, smooth away from the length spectrum, namely,

(3) sing. supp.
Ä
w(t)

ä
⊆ ±L(Ω) ∪ {0}.

So if l > 0 belongs to the singular support of this distribution, then there exists

either a closed billiard trajectory of length l, or a closed geodesic of length l

in the boundary of the billiard table.

Generically, equality holds in (3). More precisely, if no two distinct orbits

have the same length and the Poincaré map of any periodic orbit is non-

degenerate, then the singular support of the wave trace coincides with ±L(Ω)

∪ {0} (see, e.g., [38]). This theorem implies that, at least for generic domains,

one can recover the length spectrum from the Laplace one.

This relation between periodic orbits and spectral properties of the do-

main immediately recalls a more famous spectral problem (probably the most

famous) — Can one hear the shape of a drum? — as formulated in a very

suggestive way by Mark Kac [24] (although the problem had already been

stated by Hermann Weyl). More precisely, is it possible to infer information

about the shape of a drumhead (i.e., a domain) from the sound it makes (i.e.,

the list of basic harmonics/ eigenvalues of the Laplace operator with Dirichlet

or Neumann boundary conditions)? This question has not been completely

solved yet: there are several negative answers (for instance by Milnor [31] and

Gordon, Webb, and Wolpert [14]), as well as some positive ones.

Hezari and Zelditch, going in the affirmative direction, proved in [20] that,

given an ellipse E , any 1-parameter C∞-deformation Ωε that preserves the

Laplace spectrum (with respect to either Dirichlet or Neumann boundary con-

ditions) and the Z2 × Z2 symmetry group of the ellipse has to be flat (i.e., all

derivatives have to vanish for ε = 0). Popov–Topalov [39] recently extended

these results (see also [52]). Further historical remarks on the inverse spectral
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problem can be also found in [20]. In [33], [34], [35] Osgood, Phillips and Sar-

nak showed that isospectral sets are necessarily compact in the C∞ topology

in the space of domains with C∞ boundary. In [43] Sarnak conjectures that

the set of smooth convex domains isospectral to a given smooth convex domain

is finite. (For a partial progress on this question, see [11].)

One of the difficulties in working with the length spectrum is that all

of this information on the periodic orbits comes in a non-formatted way. For

example, we lose track of the rotation number corresponding to each length. A

way to overcome this difficulty is to “organize” this set of information in a more

systematic way, for instance, by associating to each length the corresponding

rotation number. This new set is called the Marked length spectrum of Ω and

is denoted by MLΩ:

ML(Ω) := {(length(γ), rot(γ)) : γ periodic orbit of the billiard in Ω},

where rot(γ) denotes the rotation number of γ.6

One could also refine this set of information by considering not the lengths

of all orbits, but selecting some of them. More precisely, for each rotation

number p/q in lowest terms, one could consider the maximal length among

those having rotation number p/q. We call this map the Maximal Marked

length spectrum of Ω, namely MLmax(Ω) : Q ∩ [0, 1/2] → R, given by

MLmax
Ω (p/q) = max

{
lengths of periodic orbits with rot. number p/q

}
.

Remark 11. The maximal marked length spectrum is closely related to

Mather ’s minimal average action (or Mather ’s β-function) of the associated

billiard map in the domain, as was pointed out in [44]. Briefly speaking, this

function — which can be defined for any exact area preserving twist map, not

necessarily a billiard map — associates to any fixed rotation number (not only

rational ones) the minimal average action of orbits with that rotation number

(whose existence, inside a suitable interval, is ensured by the twist condition).

These action-minimizing orbits are of particular interest from a dynamical

point of view and play a key-role in what is nowadays called the Aubry-Mather

theory; we refer the reader to [4], [30], [44], [45] for a presentation of this topic.

In the case of billiard maps, since the action coincides (up to a nega-

tive sign) with the euclidean length of the segment joining two subsequent

rebounds, we have that the minimal average action of periodic orbits can be

6 In the case of negatively curved surfaces without boundary the marked length spectrum

consists of pairs of homotopy classes and length of the shortest geodesic in that homotopy

class. Guillemin and Kazhdan [16] proved local rigidity with respect to this marked length

spectrum. Global version of this result was obtained by Otal [36] and Croke [9].
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expressed in terms of the maximal marked length spectrum; namely,

(4) βΩ(p/q) = −1

q
MLmax

Ω (p/q) ∀ 0 < p/q ≤ 1/2.

In particular, this object encodes many interesting dynamical information on

the billiard map. For example, using the result in [29], one can deduce that

β is differentiable at p/q if and only if there exists a rational caustic of rota-

tion number p/q. See [44] for a detailed presentation of this and many other

properties.

Let us now address the following question.

Question: Let Ω1 and Ω2 be two strictly convex planar domains with

smooth boundaries, and assume that they have the same maximal marked

Length spectrum, namely, MLmax
Ω1
≡ MLmax

Ω2
(or equivalently, βΩ1 ≡ βΩ2).

Is it true that Ω1 and Ω2 are isometric?

Remark 12. It is known that if Ω has the same marked length spectrum

of a disc, then it is indeed a disc; for a proof of this result, see for example

[44, Cor. 3.2.17]. Another proof can be obtained by looking only at the Taylor

coefficients of the β-function at 0 (which are related to the so-called Marvizi-

Melrose invariants); it turns out that the first and the third order coefficients

always satisfy an inequality, which becomes an equality if and only if the

domain is a disc (see [26, §8] and [46, Cor. 1]).

It would be interesting to find a similar characterization for elliptic bil-

liards, namely, that the maximal marked length spectrum (respectively, the

β-function) univocally determines ellipses amongst all possible Birkhoff bil-

liards.

In [46, Prop. 1], by looking at the Taylor expansion of the β-function

at 0 (actually, only at the first and third order coefficients), a much weaker

result was pointed out, namely, that the isospectrality condition determines

univocally a given ellipse within the family of ellipses (up to rigid motions, i.e.,

the composition of a translation and a rotation).

From our Main Theorem, we can now deduce the following spectral rigidity

results for ellipses.

a much weaker result

Corollary 13 (Local length–spectral uniqueness of ellipses). Let Ω be a

smooth strictly convex domain Ω sufficiently close to an ellipse.

(i) If Ω has the same maximal marked length spectrum (or Mather ’s β-function)

of an ellipse, then it is an ellipse.

(ii) If its Mather ’s β-function is differentiable at all rationals 1/q with q ≥ 3,

then Ω is an ellipse.
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Moreover, the following spectral rigidity result holds.

Corollary 14 (Spectral rigidity of ellipses).

(i) Ellipses are (maximal) marked-length-spectrally rigid, meaning that if

Ωt is a smooth deformation of an ellipse that keeps fixed the (maximal)

marked length spectrum, then it consists of a rigid motion.

(ii) Ellipses are length-spectrally rigid, meaning that if Ωt is a smooth defor-

mation of an ellipse that keeps fixed the length spectrum, then it consists

of a rigid motion.

Proof of Corollary 13. Assertion (i) follows from assertion (ii), using (4)

and recalling that the β-function of an ellipse is differentiable in [0, 1/2), since

the corresponding billiard map is integrable. As for the proof of (ii), it follows

from the differentiability assumptions on β and from what was recalled at

the end of Remark 11 (see also [29], [44]), that there exist integrable rational

caustics for all rotation numbers 1/q for any q ≥ 3. Hence our billiard is

rationally integrable (see Definition 6). Applying the Main Theorem, since Ω

is close to an ellipse, then it must be an ellipse. �

Proof of Corollary 14. Assertion (i) follows from Corollary 13(ii) and the

fact that the β function (equivalently, the maximal marked length spectrum)

univocally determines a given ellipse within the family of ellipses (up to rigid

motions); see [46, Prop. 1].

To prove assertion (ii), one needs to use [44, Prop. 3.2.2], which shows

that a C0 iso-length spectral deformation is necessarily an iso-marked length

spectral deformation. Then, the claim follows by applying (i). �

1.3. Organization of the article. For the reader’s convenience, a brief de-

scription of how the article is organized now follows.

In Section 2 we describe our setting and introduce elliptic coordinates (see

Section 2.1), while in Section 3 we recall some definitions and some needed

properties of elliptic integrals and elliptic functions (see Section 3.1) and use

them to provide a more precise description of the billiard dynamics inside an

ellipse (see Section 3.2).

In Section 4 we outline the scheme of the proof of our Main Theorem, both

for perturbations of circular billiards (see Section 4.1) and for perturbations

of general elliptic ones (see Section 4.2); we refer to this latter subsection for

a detailed description of the contents of Sections 3–8.

In order to make the presentation clearer and easier to follow, we deferred

several proofs of technical claims and some complementary material to Appen-

dices A–E. Finally, in Appendix F we outline a possible strategy to approach

the global Birkhoff conjecture, by means of the affine length shortening flow.
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2. Notation and setting

Let us consider the ellipse

Ee0,c =

®
(x, y) ∈ R2 :

x2

a2
+
y2

b2
= 1

´
,

centered at the origin and with semi-axes of lengths, respectively, 0 < b ≤ a;

in particular, e0 denotes its eccentricity, given by e0 =
√

1− b2

a2 ∈ [0, 1) and

c =
√
a2 − b2 the semi-focal distance. Observe that when e0 = 0, then c = 0

and E0,0 degenerates to a 1-parameter family of circles centered at the origin.

The family of confocal elliptic caustics in Ee0,c is given by (see also Fig-

ure 3)

(5) Cλ =

®
(x, y) ∈ R2 :

x2

a2 − λ2
+

y2

b2 − λ2
= 1

´
, 0 < λ < b.

Observe that the boundary itself corresponds to λ = 0, while the limit case

λ = b corresponds to the the two foci F± = (±
√
a2 − b2, 0). Clearly, for e0 = 0,

we recover the family of concentric circles described in Figure 2.

2.1. Elliptic polar coordinates. A more convenient coordinate frame for

addressing this question is provided by the so-called elliptic polar coordinates

(or, simply, elliptic coordinates) (µ, ϕ) ∈ R≥0 × R/2πZ, given byx = c coshµ cosϕ,

y = c sinhµ sinϕ,
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where c =
√
a2 − b2 > 0 represents the semi-focal distance (In the case e0 = 0,

this parametrization degenerates to the usual polar coordinates.) Observe that

for each µ∗ > 0, the equation µ ≡ µ∗ represents a confocal ellipse, while for

each ϕ∗ ∈ [0, 2π) \ {0, π2 , π,
3π
2 }, the equation ϕ ≡ ϕ∗ corresponds to one of the

two branches of a confocal hyperbola; these grid-lines are mutually orthogonal.

Moreover, the degenerate cases µ∗ ≡ 0 and ϕ∗ ≡ 0, π2 , π,
3π
2 describe, respec-

tively, the (cartesian) segment {−c ≤ x ≤ c}, and the (cartesian) half-lines

{x ≥ c}, {y ≥ 0}, {x ≤ −c} and {y ≤ 0}.
Therefore, in these elliptic polar coordinates Ee0,c becomes

Ee0,c = {(µ0, ϕ), ϕ ∈ R/2πZ},
where µ0 = µ0(e0) := arcosh (1/e0) (The dependence on c is in the definition

of the coordinate frame.)

Let us denote by E`` the set of ellipses in R2 with circles being degenerate

points. This is a 5-dimensional family of strictly convex curves parametrized,

for example, by the cartesian coordinates of its center (x0, y0) ∈ R2, the semi-

focal distance c > 0, the parameter µ0 > 0 corresponding to the eccentric-

ity, and the angle θ ∈ [0, π) between the major semi-axis and the x-axis.

(Notice that θ is not well defined for circles.) More specifically, for each

(x0, y0, c, µ0, θ) ∈ R2×(0,+∞)2×[0, π), we associate the (parametrized) ellipse

E(x0, y0, c, µ0, θ)

:=

®Ç
x− x0

y − y0

å
=

Ç
cos θ − sin θ

sin θ cos θ

åÇ
c coshµ0 cosϕ

c sinhµ0 sinϕ

å
, ϕ ∈ [0, 2π)

´
.

(6)

In the following we will use the shorthand Ee0,c for E(0, 0, c, µ0(e0), 0). In

particular, E0,c consists of a 1-parameter family of circles centered at the origin.

3. Action-angle coordinate of elliptic billiards

Here we define and study action-angle coordinates for elliptic billiards.

3.1. Elliptic integrals and Jacobi elliptic functions. Let us recall some ba-

sic definitions on elliptic integrals and elliptic functions that will be used in

the following; we refer the reader, for instance, to [1] for a more comprehensive

presentation.

Let 0 ≤ k < 1. We define the following elliptic integrals:

• Incomplete elliptic integral of the first kind:

F (ϕ; k) :=

∫ ϕ

0

1»
1− k2 sin2 ϕ

dϕ.

In particular, k is called the modulus and ϕ the amplitude. Moreover,

the quantity k′ :=
√

1− k2 is often called the complementary modulus.

Observe that for k = 0, we have F (ϕ; 0) = ϕ; on the other hand, F (ϕ; 1)

has a pole at ϕ = π
2 .
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• Complete elliptic integral of the first kind:

K(k) = F

Å
π

2
; k

ã
.

Let us recall that an elliptic function is a doubly-periodic meromorphic

function, i.e., it is periodic in two directions, and hence it is determined by

its values on a fundamental parallelogram. Of course, a non-constant elliptic

function cannot be holomorphic, as it would be a bounded entire function, and

by Liouville’s theorem it would be constant. In particular, elliptic functions

must have at least two poles in a fundamental parallelogram (counting mul-

tiplicities); it is easy to check, using the periodicity, that a contour integral

around its boundary must vanish, implying that the residues of all simple poles

must cancel out.

Jacobi Elliptic functions are obtained by inverting incomplete elliptic in-

tegrals of the first kind. More specifically, let

(7) u = F (ϕ; k) =

∫ ϕ

0

dτ√
1− k2 sin τ

;

u is often called the argument. If u and ϕ are related as above (we can also

write ϕ = am (u; k), called the amplitude of u), then we define the Jacobi

elliptic functions as

sn (u; k) := sin(am (u; k)),

cn (u; k) := cos(am (u; k)).

Remark 15. These two elliptic functions have periods 4K(k) (in the real

direction) and 4iK(k′) (in the imaginary direction). Moreover, they have two

simple poles: at u1 = iK(k′) with residue, respectively, 1/k and −i/k, and at

u2 = 2K(k) + iK(k′) with residue, respectively, −1/k and i/k.

3.2. Elliptic billiard dynamics and caustics. Now we want to provide a

more precise description of the billiard dynamics in Ee0,c.
The following result has been proven in [8] (see also [10, Lemma 2.1]).

Proposition 16. Let λ ∈ (0, b), and let

k2
λ :=

a2 − b2

a2 − λ2
and δλ := 2F (arcsin(λ/b); kλ).

Let us denote, in cartesian coordinates, qλ(t) := (a cn (t; kλ), b sn (t; kλ)). Then,

for every t ∈ [0, 4K(kλ)), the segment joining qλ(t) and qλ(t + δλ) is tangent

to the caustic Cλ.

Observe that

• kλ is a strictly increasing function of λ ∈ (0, b); in particular, kλ → e0

as λ → 0+, while kλ → 1 as λ → b−. Observe that kλ represents the

eccentricity of the ellipse Cλ.
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• δλ is also a strictly increasing function of λ ∈ (0, b); in fact, F (ϕ; k) is

clearly strictly increasing in both ϕ and k ∈ [0, 1). Moreover, δλ → 0 as

λ→ 0+, and δλ → +∞ as λ→ b−.

Remark 17. Using elliptic polar coordinates, one can easily check that

tanh2 µ = 1− a2−b2
a2−λ2 and therefore

k(µ) =
»

1− tanh2 µ =
1

coshµ
,

which is exactly the eccentricity of the confocal ellipse of parameter µ.

Let us now consider the parametrization of the boundary induced by the

dynamics on the caustic Cλ:

Qλ : R/2πZ−→R2

θ 7−→ qλ

Ç
4K(kλ)

2π
θ

å
.

We define the rotation number associated to the caustic Cλ to be

(8) ωλ :=
δλ

4K(kλ)
=
F (arcsin(λ/b); kλ)

2K(kλ)
.

In particular, ωλ is strictly increasing as a function of λ and ωλ −→ 0 as

λ→ 0+, while ωλ → 1
2 as λ→ b−.

It is easy to deduce from the above expressions that, in elliptic coordinates

(µ, ϕ), the boundary parametrization induced by the caustic Cλ is given by

(9) Sλ(θ) := (µλ(θ), ϕλ(θ)) =

Ç
µ0, am

Ç
4K(kλ)

2π
θ; kλ

åå
.

More precisely, the orbit starting at Sλ(θ) and tangent to Cλ hits the boundary

at Sλ(θ + 2π ωλ).

4. Outline of the proof

In this section we provide a description of the strategy that we will follow

to prove our Main Theorem.

4.1. A scheme for proving the Main Theorem for circular billiards. For

small eccentricities, the Main Theorem was proven in [3], and we now describe

the proof therein. Let us start with the simplified setting of integrable infini-

tesimal deformations of a circle. This provides an insight into the strategy of

the proof in the general case.

Let Eρ0
0,0 be a circle centered at the origin and radius ρ0 > 0. Let Ωε be a

1-parameter family of deformations given in the polar coordinates (ρ, ϕ) by

∂Ωε = {(ρ, ϕ) = (ρ0 + ερ(ϕ) +O(ε2), ϕ)}.
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Consider the Fourier expansion of ρ :

ρ(ϕ) = ρ′0 +
∑
k>0

ρk sin(kϕ) + ρ−k cos(kϕ).

Theorem 18 (Ramı́rez-Ros [41]). If Ωε has an integrable rational caustic

Γ1/q of rotation number 1/q, for any ε sufficiently small, then we have ρkq = 0

for any integer k.

Let us now assume that the domains Ωε are 2-rationally integrable for all

sufficiently small ε and ignore for a moment dependence of parametrization:

then the above theorem implies that ρk = ρ−k = 0 for k > 2, i.e.,

ρ(ϕ) = ρ′0 + ρ−1 cosϕ+ ρ1 sinϕ+ ρ−2 cos 2ϕ+ ρ2 sin 2ϕ

= ρ∗0 + ρ∗1 cos(ϕ− ϕ1) + ρ∗2 cos 2(ϕ− ϕ2),

where ϕ1 and ϕ2 are appropriately chosen phases.

Remark 19. Observe that

• ρ∗0 corresponds to an homothety;

• ρ∗1 corresponds to a translation in the direction forming an angle ϕ1 with

the polar axis {ϕ = 0};
• ρ∗2 corresponds to a deformation of the circle into an ellipse of small eccen-

tricity, whose major axis forms an angle ϕ2 with the polar axis.

This implies that, infinitesimally (as ε→ 0), rationally integrable deformations

of a circle are tangent to the 5-parameter family of ellipses.

Notice that, in the above strategy, one needs to take ε → 0 as q → ∞.

This means that we cannot take ε > 0 small, but only infinitesimal; hence

one cannot directly use the above theorem to prove the main result. A more

elaborate strategy is needed.

4.2. Our scheme of the proof of the main theorem for elliptic billiards. One

of the noteworthy contributions of this paper is the analysis of perturbations

of ellipses of arbitrary eccentricity 0 ≤ e0 < 1. Let us outline the main steps

involved in the proof.

Let Ee0,c be an ellipse of eccentricity 0 < e0 < 1 and semi-focal distance

c > 0, and let (µ, ϕ) be the associated elliptic coordinates. Any domain Ω

close to Ee0,c can be written (in the elliptic coordinates associated to Ee0,c) in

the form

∂Ω = {(µ0 + µ1(ϕ), ϕ) : ϕ ∈ [0, 2π)},

where µ1 is a smooth 2π-periodic function (see also (11)). Recall that the

ellipse Ee0,c admits all integrable rational caustics of rotation number 1/q for

q > 2.
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By analogy with [3] we proceed as follows.

Step 1 (Dynamical modes). In Section 5, we consider the 1-parameter

integrable deformation of an ellipse Ee0,c, given by the family of rationally in-

tegrable domains Ωε, whose boundaries are given, using the elliptic coordinates

associated to Ee0,c, by

∂Ωε := {(µ0 + εµ1(ϕ) +O(ε2), ϕ) : ϕ ∈ [0, 2π)}.
In Lemma 21 we show that if for all ε, Ωε has an integrable rational caustic

Γε1/q of rotation number 1/q, with q > 2, then

(10) 〈µ1, cq〉L2 = 0, 〈µ1, sq〉L2 = 0,

where 〈·, ·〉L2 denotes the standard inner product in L2(R/2πZ) and {cq, sq :

q > 2} are suitable dynamical modes, which can be explicitly defined using the

action-angle coordinates; see (15). Also see Remark 22 for a more quantitative

version, which we need since we are interested in perturbations of ellipses and

not necessarily deformations.

Step 2 (Elliptic motions). In Section 6 we consider infinitesimal deforma-

tions of ellipses by homotheties, translations, rotations and hyperbolic rota-

tions (we call them elliptic motions since they preserve the class of ellipses)

and derive their infinitesimal generators eh, eτ1 , eτ2 , ehr and er; see (16)–

(20). Moreover, in Proposition 23 we prove a certain approximation result for

ellipses.

Step 3 (Basis property). In Section 7 we show that the collection of dy-

namical modes and elliptic motions form a basis of L2(R/2πZ). In subsec-

tions 7.1 and 7.2 we will consider their complex extensions and study their

singularities in detail; this analysis will be important to deduce their linear in-

dependence (Proposition 28). Moreover, in Proposition 33 we show that they

do generate the whole L2(R/2πZ), hence they form a (non-orthogonal) basis.

Step 4. (Approximation) In Section 8 we prove an approximation lemma

(Lemma 34) and use it to complete the proof of the Main Theorem (see Sec-

tion 8.1) by means of an approximation procedure similar to the one in [3, §8].

5. Preservation of rational caustics

In this section we want to investigate perturbations of ellipses, for which

the associated billiard map continues to admit rationally integrable caustics

corresponding to some rational rotation numbers.

Let us consider an ellipse Ee0,c and let ∂Ωε be an infinitesimal perturbation

of the form

(11)

x = c cosh(µ0 + εµ1(ϕ) +O(ε2)) cosϕ,

y = c sinh(µ0 + εµ1(ϕ) +O(ε2)) sinϕ



332 VADIM KALOSHIN and ALFONSO SORRENTINO

for ε→ 0+. To simplify notation we write

∂Ωε = Ee0,c + εµ1 +O(ε2),

which must be understood in the elliptic coordinates with semi-focal distance c.

Let us denote µε := εµ1 +O(ε2) and let hε be the generating function of

the billiard map inside Ωε; in particular,

(12) hε(ϕ,ϕ
′) = h0(ϕ,ϕ′) + εh1(ϕ,ϕ′) +Oe0,c,‖µε‖C1

(ε2),

where h0 denotes the generating function of the billiard map inside Ee0,c and

Oe0,c,‖µε‖C1
(ε2) denotes a term bounded by ε2 times a factor depending on

e0, c, and ‖µε‖C1 . Notice that this formula makes sense only for infinitesimal

perturbations.

Let us recall the following result (see [37, Cor. 9 and Prop. 11]).

Proposition 20. Assume that the billiard map associated to ∂Ωε has a

rationally integrable caustic corresponding to rotation number, in lowest term,

p/q ∈ (0, 1/2).

If we denote by {ϕkp/q}
q
k=0 the periodic orbit of the billiard map in Ee0,c

with rotation number p/q and starting at ϕ0
p/q = ϕ (these orbits are all tangent

to a caustic Cλp/q for some λp/q ∈ (0, b) — see (5)), then

L1(ϕ) :=
q−1∑
k=0

h1(ϕkp/q, ϕ
k+1
p/q ) = 2λp/q

q∑
k=1

µ1(ϕkp/q) ≡ cp/q,(13)

where cp/q is a constant depending only on p/q.

Let us consider rotation numbers 1/q, with q ≥ 3, and denote by λq the

value of λ corresponding to the caustic of rotation number 1/q. Similarly, kλq
denotes the associated modulus (see Proposition 16).

Therefore, with respect to the action-angle variables (9), we have that for

any θ ∈ R/2πZ,
q∑

k=1

µ1(ϕλq(θ + 2πk/q)) ≡ constant.

If u(x) denotes either cosx and sinx, then the above equality implies that∫ 2π

0
µ1(ϕλq(θ))u(q θ) dθ = 0

which, using the expression in (9), is equivalent to∫ 2π

0
µ1

Ç
am

Ç
4K(kλq)

2π
θ; kλq

åå
u(q θ) dθ = 0.

Now consider Now the change of coordinates

ϕ = am

Ç
4K(kλq)

2π
θ; kλq

å
⇐⇒ θ =

2π

4K(kλq)
F (ϕ; kλq).
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Then

dθ =
2π

4K(kλq)

d

dϕ

Ä
F (ϕ; kλq)

ä
=

2π

4K(kλq)

1√
1− k2

λq
sin2 ϕ

,

and the above integral becomes

(14)

∫ 2π

0
µ1(ϕ)

u

Å
2π q

4K(kλq )F (ϕ; kλq)

ã
√

1− k2
λq

sin2 ϕ
dϕ = 0.

For each q ≥ 3, define

cq(ϕ) :=
cos

Å
2π q

4K(kλq )F (ϕ; kλq)

ã
√

1− k2
λq

sin2 ϕ
,

sq(ϕ) :=
sin

Å
2π q

4K(kλq )F (ϕ; kλq)

ã
√

1− k2
λq

sin2 ϕ

(15)

or equivalently, in the complex form,

Eq(ϕ) :=
e

2πi q
4K(kλq

)
F (ϕ;kλq )√

1− k2
λq

sin2 ϕ
.

Lemma 21. Assume that the billiard map in ∂Ωε = Ee0,c + εµ1 + O(ε2)

has rationally integrable caustics corresponding to rotation numbers 1/q for all

q ≥ 3. Then,∫ 2π

0
µ1(ϕ) cq(ϕ) dϕ =

∫ 2π

0
µ1(ϕ) sq(ϕ) dϕ = 0 ∀ q ≥ 3.

Moreover, if we denote µε = εµ1 +O(ε2), then∫ 2π

0
µε(ϕ) cq(ϕ)dϕ =

∫ 2π

0
µε(ϕ) sq(ϕ)dϕ = Oe0,c,q(ε

2),

where Oe0,c,q(ε
2) is a term whose absolute value is bounded by ε2 times a factor

depending on e0, c, and q.

Remark 22. It follows from [3, Lemma 13] that assuming q < c(e)‖µ‖−1/8,

we have ∫ 2π

0
µε(ϕ) cq(ϕ)dϕ =

∫ 2π

0
µε(ϕ) sq(ϕ)dϕ = Oe0,c(q

8‖µ‖2C1),

where Oe0,c(q
8‖µ‖2C1) is a term whose absolute value is bounded by q8‖µ‖2C1

times a factor depending on e0, c and C5-norm of µ.

In order to apply [3, Lemma 13] we need to translate notation: in [3, §4,

pp. 7–8], action-angle variables are introduced, and in [3, middle of p. 16], Xq

is defined, which coincides with what we denote ϕλq . (Compare with (9), where
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λq is such that ωλq = 1/q, or with Appendix E.) With this notation, the above

integral is estimated as in [3, Lemma 13]. Notice also that the Lazutkin density

µ in [3, (14) on p. 14] coincides with our (37). Thus, integrating with respect

to Lazutkin parametrization with Lazutkin density is the same as integrating

with respect to ϕ.

Proof. The first part follows from (14). As for the second part, observe

that

∫ 2π

0
|cq(ϕ)| dϕ=

∫ 2π

0

∣∣∣∣cos

Å
2π q

4K(kλq )F (ϕ; kλq)

ã∣∣∣∣√
1− k2

λq
sin2 ϕ

dϕ

=
4K(kλq)

2πq

∫ 2πq

0
| cos t| dt =

8K(kλq)

π
.

In particular, recall that e0 < kλq ≤ kλ3 < 1 for all q ≥ 3 and that

kλq −→ e0 as q → +∞. Hence, using the first statement of the proposition,∫ 2π

0
µε(ϕ) cq(ϕ)dϕ =

∫ 2π

0
O(ε2)cq(ϕ) dϕ = Oe0,c,q(ε

2). �

6. Elliptic motions

We call translations, rotations, hyperbolic rotations, and homothety el-

liptic motions; indeed, all of these transformations keep the class of ellipses

invariant.

In Appendix B, we show that infinitesimal perturbations of an ellipse

Ee0,c by these motions correspond to these functions (expressed in the elliptic

coordinate frame with semi-focal distance c).

• Translations:

eτ1(ϕ) :=
cosϕ

1− e2
0 cos2 ϕ

,(16)

eτ2(ϕ) :=
sinϕ

1− e2
0 cos2 ϕ

;(17)

• Rotations:

(18) er(ϕ) :=
sin(2ϕ)

1− e2
0 cos2 ϕ

;

• Homotheties:

(19) eh(ϕ) :=
1

1− e2
0 cos2 ϕ

;

• Hyperbolic rotations:

(20) ehr(ϕ) :=
cos(2ϕ)

1− e2
0 cos2 ϕ

.
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We say that a strictly convex smooth domain Ω is a deformation of an

ellipse if there exist E = E(x0, y0, c, µ0, θ) and a function

µ1 = µ1(x0, y0, c, µ0, θ) ∈ C∞(R/2πZ)

such that

∂Ω =

®Ç
x− x0

y − y0

å
=

Ç
cos θ− sin θ

sin θ cos θ

åÇ
c cosh(µ0 + µ1(ϕ)) cosϕ

c sinh(µ0 + µ1(ϕ)) sinϕ

å
, ϕ ∈ [0, 2π)

´
.

By abusing notation, in the following we will write

(21) ∂Ω = E(x0, y0, c, µ0 + µ1, θ) = E(x0, y0, c, µ0, θ) + µ1.

We will need the following approximation result.

Proposition 23. Let us consider the ellipse Ee0,c and let

µ1(ϕ) := a0eh(ϕ) + a1eτ1(ϕ) + b1eτ2(ϕ) + a2ehr(ϕ) + b2er(ϕ),

where a0, a1, b1, a2, b2 are assumed to be sufficiently small. Then, there exist a

constant C = C(e0, c) and an ellipse Ẽ = E0 + µẼ such that

‖µ1 − µẼ‖C1 ≤ C‖µ1‖2C1 .

The proof is presented in Appendix B.

7. An adapted basis for L2(T)

In this section we want to determine a suitable basis of L2(T), where here-

after T = R/2πZ. This basis will be constructed by means of elliptic motions

{eh, eτ1, eτ2, ehr, er} (see (16)–(20)) and the functions {cq, sq}q≥3 defined in

(15).

In order to prove their linear independence, we need to consider their

analytic extension to C and study their singularities.

7.1. Analyticity properties of cq and sq . Let us start by considering the

complex extensions of the functions {cq, sq}q≥3 defined in (15),

cq(z) :=
cos

(
2π q

4K(kq)
F (z; kq)

)»
1− k2

q sin2 z
,

sq(z) :=
sin
(

2π q
4K(kq)

F (z; kq)
)»

1− k2
q sin2 z

(22)

where, to simplify the notation, we have denoted kq := kλq . In particular,

kq represents the eccentricity of the caustic Cq := Cλq with rotation number

1/q; moreover, kq ∈ (e0, 1) for all q ≥ 3 (e0 denotes the eccentricity of the

boundary), it is strictly decreasing in q, and kq −→ e0 as q → +∞. Denote

ρkq = arcosh
(

1
kq

)
and ρ0 = arcosh

Ä
1
e0

ä
.
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We are interested in the complex extensions of these functions and in their

singularities.

Proposition 24. For q ≥ 3, the functions cq and sq have an holomorphic

extension to the complex strip Σq =
¶
z ∈ C : |Im(z)| < ρkq

©
. This extension

is maximal in the sense that these functions have singularities at π
2 +πn± iρkq

(which are ramification singularities).

This proposition will be proven in Appendix C.1.

Remark 25. Observe that ρkq is a strictly increasing function as a function

of q and ρk3 ≤ ρkq −→ arcosh (1/e0) = ρ0 as q → +∞. Moreover, since k3(e0)

is a strictly increasing function of e0 and k3(e0) −→ 1 as e0 → 1−, then ρk3(e0)

is a strictly decreasing function of e0 and ρk3(e0) −→ 0 as e0 → 1−.

7.2. Analyticity properties of eτ1, eτ2, er, eh and ehr. Now let us discuss

the analyticity properties of the complex extensions of the elliptic motions

defined in (16)–(20):

eh(z) :=
1

1− e2
0 cos2 z

,

eτ1(z) :=
cos z

1− e2
0 cos2 z

= eh(z) cos z,

eτ2(z) :=
sin z

1− e2
0 cos2 z

= eh(z) sin z,

er(z) :=
sin(2z)

1− e2
0 cos2 z

= eh(z) sin(2z),

ehr(z) :=
cos(2z)

1− e2
0 cos2 z

= eh(z) cos(2z).

The analyticity and the singularities of these functions are the same as

those of eh(z). More specifically,

Proposition 26. The function eh(z) is analytic except at the following

singular points (which are poles):

ζn = nπ ± i ρ0 for n ∈ Z.

In particular, its maximal strip of analyticity is given by

Σρ0 = {z ∈ C : |Im(z)| < ρ0} .

We will prove this proposition in Appendix C.2.

Remark 27. Since ρ0 > ρkq for any q ≥ 3, we conclude that eτ1, eτ2, er,

eh, ehr cannot be generated as a finite linear combination of functions sq(z)

and cq(z) with q ≥ 3.
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7.3. Linear independence. It follows from the discussion in Sections 7.1

and 7.2 that looking at singularities of these functions, it is possible to deduce

the following proposition.

Proposition 28. The functions eh, eτ1, eτ2, ehr, er, {sq}q≥3 and {cq}q≥3

are linearly independent, namely, none of them can be written as a finite linear

combination of the others.

Proof. Clearly, eτ1, eτ2, er, eh, ehr are linear independent. Looking at the

singularities of the complex extensions of these functions, it follows that

• eh, eτ1, eτ2, ehr, er cannot be generated as a finite linear combination of sq
and cq with q ≥ 3;

• for any q0 ≥ 3, sq0 and cq0 cannot be generated as a finite linear combination

of eτ1, eτ2, er, eh, ehr, {sq}q 6=q0 and {cq}q 6=q0 . �

Remark 29. A more subtle and delicate issue is to understand whether

these function can be obtained as infinite combinations of the others. This

matter is related to our discussion in Section 7.5 and in Appendix D.

7.4. Weighted L2(T) space. Let us denote by ‖ ·‖L2
e0

the L2-norm induced

by the inner product with weight we0(ϕ) := (1− e2
0 cos2 ϕ), i.e.,

〈f, g〉L2
e0

:= 〈we0 f, we0 g〉L2 .

For 0 ≤ e0 < 1, this norm is clearly equivalent to the usual L2-norm; in fact

for each f ∈ L2(T), we have

(1− e2
0)‖f‖L2 ≤ ‖f‖L2

e0
≤ ‖f‖L2 .

We denote by L2
e0(T) the space L2(T) equipped with ‖ ·‖L2

e0
. Clearly, with

the choice of this weighted norm, the functions eh, eτ1, eτ2, er, ehr are mutually

orthogonal in L2
e0 . (Observe in fact that when multiplied by the weight, they

become cos(kϕ) for some k = 0, 1, 2 or sin(kϕ) for some k = 1, 2.)

In particular,

‖eh‖L2
e0

=
√

2π, ‖eτ1‖L2
e0

= ‖eτ2‖L2
e0

= ‖er‖L2
e0

= ‖ehr‖L2
e0

=
√
π.

On the other hand, for q ≥ 3,

‖cq‖2L2
e0

=

∫ 2π

0

cos2
Å

2π q
4K(kλq )F (ϕ; kλq)

ã
1− k2

λq
sin2 ϕ

(1− e2
0 cos2 ϕ)2dϕ

= 4K(kλq)

∫ 1

0
cos2 (2π q ξ)

(1− e2
0 cos2 ϕ(ξ))2√

1− k2
λq

sin2 ϕ(ξ)
dξ

=
2K(kλq)

qπ

∫ 2πq

0
cos2 t

(1− e2
0 cos2 ϕ(ξ(t)))2√

1− k2
λq

sin2 ϕ(ξ(t))
dt.
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Hence,

(1− e2
0)22K(kλq) ≤ ‖cq‖2L2

e0
≤

2K(kλq)√
1− k2

λq

.

In particular, using that K(·) is an increasing function and kλq is decreasing

with respect to q, we can obtain uniform bounds

(1− e2
0)22K(e0) ≤ ‖cq‖2L2

e0
≤ 2K(kλ3)»

1− k2
λ3

∀q ≥ 3;

similarly, for the functions sq.

In order to simplify our notation, hereafter we will denote

(23) e0 :=
eh√
2π
, e1 :=

eτ2√
π
, e2 :=

eτ1√
π
, e3 :=

er√
π

e4 :=
ehr√
π

and

(24) e2k :=
ck

‖ck‖L2
e0

, e2k−1 :=
sk

‖sk‖L2
e0

∀ k ≥ 3.

The family {ek}+∞k=0 consists of linearly independent normal vectors in L2
e0 .

We want to show that they are a basis.

7.5. Basis property. In this subsection we want to prove that {ek}k≥0 form

a basis of L2
e0(T), or equivalently of L2(T). We need to show that they form a

complete set of generators.

Let us start with the following proposition.

Proposition 30. Let q0 ≥ 3; then

〈{ek}0≤k≤2q0
〉 ∩ 〈{ek}k>2q0

〉 = {0}.

The proof of this proposition is postponed to Appendix D.

Let us now introduce the linear map Lq0 : L2(T) → L2(T) defined by

mapping the standard Fourier basis into the following functions:

1√
2π
7−→ 1√

2π
,

1√
π

cos(qϕ) 7−→ 1√
π

cos(qϕ) for 0 < q ≤ q0,

1√
π

sin(qϕ) 7−→ 1√
π

sin(qϕ) for 0 < q ≤ q0,(25)

1√
π

cos(qϕ) 7−→ cq(ϕ) for q > q0,

1√
π

sin(qϕ) 7−→ sq(ϕ) for q > q0.
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Lemma 31. Suppose there is q0 ≥ 3 such that the linear map Lq0 is in-

vertible. Then, {ek}k≥0 is a basis of L2(T).

Proof. Since the corresponding linear map is invertible, then the collection®
1√
2π
,

1√
π

cos(qϕ),
1√
π

sin(qϕ)

´
0<q≤q0

∪ {cq(ϕ), sq(ϕ)}q>q0

also forms a basis and, in particular, it spans the whole space L2(T). This

implies that the subspace

〈{cq, sq}q>q0〉 = 〈{ek}k>2q0
〉

has codimension 2q0 + 1.

It follows from Proposition 28 that the subspace spanned by {ek}0≤k≤2q0
has dimension 2q0 + 1 and from Proposition 30 that

〈{ek}k>2q0
〉 ∩ 〈{ek}0≤k≤2q0

〉 = {0}.

We can conclude from this that

〈{ek}k>0〉 = L2(T).

Hence, {ek}k≥0 form a set of generators of L2(T) and therefore a basis. �

The problem now reduces to show that the linear map Lq0 , defined by

(25), is invertible for some q0 ≥ 3.

For q ∈ Z+ and j ≥ 3, let us consider the elements of the (infinite)

correlation matrix ‹A = (ãi,h)∞i,h=0, whose entries are

ã2q,2j := 〈cos(qϕ), cj〉L2 ,

ã2q,2j+1 := 〈cos(qϕ), sj〉L2 ,

ã2q+1,2j := 〈sin(qϕ), cj〉L2 ,

ã2q+1,2j+1 := 〈sin(qϕ), sj〉L2 .

(26)

Lemma 32. There exists ρ = ρ(e0, c) > 0 such that for all q ∈ N and

j ≥ 6,

ãq,j = 2K(k[j/2]) δq,j +Oe0,c
Ä
j−1 e−ρ |q−j|

ä
,

where [·] denotes the integer part, δq,j the Dirac’s delta, and Oe0,c(∗) means

that the absolute value of the corresponding term is bounded by ∗ times a factor

depending only on e0 and c.

The proof of the above lemma will be given in Appendix E.

Proposition 33. There exists q0 = q0(e0, c) ≥ 3 such that Lq0 is invert-

ible as an operator acting on L2(T). In particular, it follows from Lemma 31

that {ek}k≥0 is a basis of L2(T).
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Proof. Let us show that there exists q0 = q0(e0, c) ≥ 3 such that the linear

map Lq0 is invertible. Consider the infinite dimensional matrix A = (aq,j)q,j
defined as

(27) aq,j =


δq,j if j < 2q0, q ≥ 0,

1√
2π
ã0,j if j ≥ 2q0,

1√
π
ãq,j if j ≥ 2q0, q ≥ 1.

Using Lemma 32 and the fact that K(kj) ≥ K(e0) > 0 for all j ≥ 3, we

obtain

|aq,q| ≥ min

®
1,

2√
π
K(e0) +Oe0,c

Å
1

q eρ

ã´
.

Observe that since K(e0) ≥ π
2 for 0 ≤ e0 < 1, then if one chooses q0 sufficiently

large, the above minimum is achieved by 1.

Denote by Dq0 the diagonal linear operator given by the diagonal elements

of Lq0 . Notice that Dq0 is invertible and has bounded norm of the inverse; in

particular, for q0 sufficiently large, ‖D−1
q0 ‖2 ≤ 1. Again using Lemma 32 we

also have for each q ≥ 0, ∑
q≥q0

∞∑
j=0,j 6=q

|aq,j |2 ≤
C

q0

for some suitable constant C = C(e0, c). For any predetermined δ = δ(e0, c)

> 0, by choosing q0 large enough we obtain

(28)
∑
q≥q0

∞∑
j=0,j 6=q

|aq,j |2 < δ(e0, c).

Using Cauchy-Schwarz, (28) implies that with respect to the L2-norm ‖ · ‖2 we

have

‖Lq0 −Dq0‖2 ≤ δ(e0, c) ≤
1

2
≤ 1

2
‖D−1

q0 ‖
−1
2 .

This implies that Lq0 is invertible and concludes the proof. �

8. Proof of the Main Theorem

In this section we prove our Main Theorem. Let us first start by stating

and proving the following approximation lemma similar to [3, Lemma 24].

Lemma 34 (Approximation Lemma). Let us consider the ellipse Ee0,c and

let ∂Ω be a rationally integrable C39-deformation of Ee0,c, identified by a C39

function µ, i.e., ∂Ω = Ee0,c + µ. For every L > 0, there exists a constant

C = C(e0, c, L) such that if ‖µ‖C39 ≤ L, then the following holds. There

exist an ellipse E = E(x̄0, ȳ0, c̄, µ̄0, θ̄) and a function µ = µ(ϕ) (where ϕ is the
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angle with respect to the elliptic coordinate frame associated to E ), such that

∂Ω = E + µ (see (21)) and

‖µ‖C1 ≤ C(e0, c, L)‖µ‖703/702
C1 .

Proof. Let us consider the basis Be0 := {ej}j≥0 of L2
e0(T), introduced in

(23) and (24); moreover, we denote by

Ve0 := 〈e0, e1, e2, e3, e4〉

the 5-dimensional space generated by elliptic motions. Let us decompose

µ = µVe0 + µ⊥,

where µ⊥ is orthogonal in L2
e0(T) to the subspace Ve0 and µVe0 :=

∑4
j=0 ajej

∈ Ve0 . Using the orthogonality in L2
e0(T) and the fact that Be0 is a basis, we

obtain

‖µVe0‖
2
L2
e0

+ ‖µ⊥‖2L2
e0

= ‖µ‖2L2
e0
≤ C‖µ‖2C1

for some C = C(e0, c). This implies that aj = Oe0,c(‖µ‖C1) for 0 ≤ j ≤ 4;

since the functions ej are analytic, we obtain

(29) ‖µVe0‖Ck ≤ C(e0, c, k)‖µ‖C1 .

We claim that

(30) ‖µ⊥‖C1 ≤ C(e0, c, ‖µ‖Ck)‖µ‖1+δ
C1 ,

where the above constant depends monotonically on ‖µ‖Ck , and δ will turn out

to be equal to 1/702. This is enough to complete the proof. In fact, applying

Proposition 23 with Ee0,c and µVe0 , we obtain an ellipse Ẽ = Ee0,c + µẼ such

that

‖µVe0 − µẼ‖C1 ≤ C‖µVe0‖
2
C1 ≤ C‖µ‖2C1 ,

where the last inequality follows from (29). We choose E := Ẽ ; if we consider

∂Ω = E + µ, then we conclude from Lemma 36 that

‖µ‖C1 ≤C(e0, c)‖µ− µẼ‖C1 = C(e0, c)‖µVe0 + µ⊥ − µẼ‖C1

≤C(e0, c)
Ä
‖µVe0 − µẼ‖+ ‖µ⊥‖C1

ä
≤C(e0, c, ‖µ‖Ck) ‖µ‖1+δ

C1 .

Therefore, let us prove (30). Let us define the Fourier coefficients

µ̂⊥j := 〈µ⊥, ej〉e0 ,

which are clearly zero for j = 0, . . . , 4 (due to orthogonality). In particular,

we have (see, for example, [3, Cor. 23])

‖µ⊥‖2L2
e0
≤ C(e0, c)

∞∑
j=5

∣∣∣µ̂⊥j ∣∣∣2 .
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It follows from Lemma 21 and Remark 22 that∣∣∣µ̂⊥j ∣∣∣ = Oe0,c(q
8‖µ‖2C1).

Fix some positive α < 1/8. Choose q0 = [‖µ‖−αC1 ], where [·] denotes the integer

part and α > 0 will be determined in the following. Below, C(e0, c) denotes

a constant depending on e0 and c. Using the above estimates we get for

5 ≤ q ≤ q0, ∣∣∣µ̂⊥j ∣∣∣ ≤ C(e0, c)q
8‖µ‖2C1 ≤ C(e0, c)‖µ‖2−8α

C1 .

Then, summing over 5 ≤ q ≤ q0, we obtain

q0∑
q=5

∣∣∣µ̂⊥j ∣∣∣2 ≤ C(e0, c)‖µ‖4−17α
C1 .

On the other hand, Lemma 49 gives∣∣∣µ⊥j ∣∣∣2 ≤ C(e0, c)
‖µ‖2C1

q2
.

Therefore, summing over q > q0 we conclude that

+∞∑
q=q0+1

∣∣∣µ̂⊥j ∣∣∣2 ≤ C(e0, c)‖µ‖2+α
C1 .

Combining the two above estimates and optimizing for α (i.e., choosing α =

1/9), we conclude that
∣∣∣µ̂⊥j ∣∣∣ ≤ C(e0, c)‖µ‖19/18

C1 .

Now, observe that

‖µ⊥‖C1 ≤ ‖Dµ⊥‖L1 + ‖D2µ⊥‖L1 ≤ ‖Dµ⊥‖L2 + ‖D2µ⊥‖L2 .

Using standard Sobolev interpolation inequalities (see, for example, [13]), for

any δ > 0 and any 1 ≤ j ≤ 2, we have

‖Djµ⊥‖L2 ≤ C
Ä
∆‖µ⊥‖Ck + ∆−j/(k−j)‖µ⊥‖L2

ä
.

Optimizing the above estimate, we choose ∆ = ‖µ‖703/702
C1 .

Using the above estimates and the fact that ‖ ·‖L2
e0

is equivalent to ‖ ·‖L2 ,

we conclude that (30) holds, by taking δ = 1
702 . �

8.1. Proof of the Main Theorem. First of all, observe that up to applying

a rotation and a translation (which do not alter rational integrability, nor the

other hypotheses), we can assume that E0 = Ee0,c.
Let us denote by E``σ(E0) the set of ellipses whose Hausdorff distance from

E0 is not larger than σ:

E``σ(E0) =
¶
E ′ ⊂ R2 : distH(E ′, E0) ≤ σ

©
,

where σ is sufficiently small (to be determined).



ON THE LOCAL BIRKHOFF CONJECTURE FOR CONVEX BILLIARDS 343

Let us denote by Pσ(E0) the set of parameters corresponding to ellipses in

E``σ(E0):

Pσ(E0) :=
¶

(x, y, c, µ, θ) ∈ R2 × (0,+∞)2 × [0, π) : E(x, y, c, µ, θ) ∈ E``σ(E0)
©
.

Then, Pσ(E0) is compact in R2× (0,+∞)2× [0, π). Notice that the size of this

set is independent of ε.

Let µ be a Ck perturbation, with ‖µ‖Ck < K and ‖µ‖C1 < ε, and consider

the domain given by

∂Ω = E0 + µ.

Observe that there exists a constant M = M(e0, c,K) such that if E ∈
E``σ(E0) and ∂Ω = E + µ̃, then

(31) distH(E , ∂Ω) ≤M‖µ̃‖C0 .

For any ν ∈ Pσ(E0), let us denote by Eν the corresponding ellipse and

by µν the perturbation such that ∂Ω = Eν + µν . Observe that the elliptic

coordinate frame corresponding to Eν varies analytically with respect to ν;

hence, µν also changes analytically with respect to ν. In particular, we can

assume ε sufficiently small so that for any ν ∈ Pσ(E0), we have ‖µν‖Ck < 2K.

The function ν 7−→ ‖µν‖C1 is, therefore, continuous and, being Pσ(E0)

compact, it achieves a minimum at some ν∗ ∈ Pσ(E0).

0 ≤ ‖µν∗‖C1 ≤ ‖µ‖C1 < ε.

Let us assume that ‖µν∗‖C1 6= 0 and apply Lemma 34 to Eν∗ and µν∗ ,

thus obtaining Eν∗ and µν∗ , such that

(32) ‖µν∗‖C1 ≤ C‖µν∗‖1+δ
C1 < ‖µν∗‖C1 ,

where we have assumed ε to be sufficiently small. Notice that as ‖µν∗‖C1

decreases, ‖µν∗‖C1 decreases. Therefore, ε is small enough, Ē from Lemma 34

belongs to the set Pσ(E0), which has non-emtpy interior and is independent

of ε.

Using the triangle inequality, for sufficiently small ε, we have

distH(E0, Eν∗)≤ distH(E0, ∂Ω) + distH(∂Ω, Eν∗)
≤ 2Mε ≤ σ.

Hence Eν∗ ∈ E``σ(E0), and therefore Eν∗ = Eν∗ for some ν∗ ∈ Pσ(E0). This and

(32) contradict the minimality of ν∗ in Pσ(E0). As a consequence, µν∗ ≡ 0 and

therefore ∂Ω ∈ Pσ(E0). �
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Appendix A. Parametrizing ellipses

Let us consider the ellipse

Ee0,c =

®
(x, y) ∈ R2 :

x2

a2
+
y2

b2
= 1

´
centered at the origin and with semi-axes of lengths, respectively, 0 < b ≤ a;

in particular, as before, e0 =
√

1− b2

a2 ∈ [0, 1) denotes its eccentricity, while

c =
√
a2 − b2 denotes the semi-focal distance.

We want to recall various parametrizations of ellipses that have been men-

tioned and used in the proofs.

• Polar coordinates: (r, ϕ) ∈ (0,+∞)× R/2πZ:

Ee0,c :

x = a cosϕ,

y = b sinϕ.

Observe that this choice parametrizes the ellipse counterclockwise, with

(x(0), y(0)) = (a, 0).

In these coordinates the radius of curvature of the ellipse is given by

ρ(ϕ) =

∣∣∣∣∣∣(ẋ
2 + ẏ2)

3
2

ẋÿ − ẏẍ

∣∣∣∣∣∣ =
(a2 sin2 ϕ+ b2 cos2 ϕ)

3
2

ab

=
a2

b
(1− e2

0 sin2 ϕ)
3
2 .

(33)

• Arc-length parametrization :

Ee0,c :

x = x(s),

y = y(s)
for s ∈ [0, |Ee0,c|),

where |Ee0,c| denotes the perimeter of Ee0,c and we fix, for example, the

starting point at (x(0), y(0)) = (a, 0) and the counterclockwise orientation.

In terms of the polar coordinate ϕ, we have

s(ϕ) = a

∫ ϕ

0

»
1− e2

0 sin2 ϕdϕ,(34)

from which

(35)
ds(ϕ)

dϕ
= a
»

1− e2
0 sin2 ϕ.

In particular, the perimeter of Ee0,c can be computed quite explicitly:

|Ee0,c|=
∫ 2π

0

»
a2 cos2 ϕ+ b2 sin2 ϕdϕ = a

∫ 2π

0

»
1− e2

0 sin2 ϕdϕ

= 4a

∫ π
2

0

»
1− e2

0 sin2 ϕdϕ =: 4aE(e0),
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where E(e0) :=
∫ π

2
0

»
1− e2

0 sin2 ϕdϕ is called complete elliptic integral of

the second type; see, for instance, [1].

• Elliptic polar coordinates : See Section 2.1.

• Lazutkin parametrization : Following an idea by Lazutkin in [25], let us

introduce the following reparametrization

(36) x`(s) := C−1
`

∫ s

0
ρ−

2
3 (τ)dτ,

where s denotes the arc-length parameter, ρ the radius of curvature com-

puted in (33), and C` :=
∫ |Ee0,c|
0 ρ−

2
3 (τ)dτ is a normalizing factor so that

x`(|Ee0,c|) = 1 (sometimes it is called the Lazutkin perimeter).

Observe that using (33), (35), and (36), we obtain x` as a function of the

polar angular coordinate ϕ:

x`(ϕ) =C−1
`

∫ ϕ

0
ρ−

2
3 (s(ϕ))

ds(ϕ)

dϕ
dϕ

=C−1
`

b
2
3

a
1
3

∫ ϕ

0

dϕ»
1− e2

0 sin2 ϕ
.

In particular,

(37)
dx`(ϕ)

dϕ
=
b

2
3

a
1
3

C−1
`»

1− e2
0 sin2 ϕ

.

Remark 35. For any smooth strictly convex domain Ω, let us denote by

|∂Ω| the perimeter of Ω. Let us consider the Lazutkin change of coordinates

LΩ : [0, |∂Ω|)× [0, π] −→ R/Z× [0, δ]:

(s, ϕ) 7−→
Å
x = C−1

Ω

∫ s

0
ρ−2/3(s)ds, y = 4C−1

Ω ρ1/3(s) sinϕ/2

ã
,

where CΩ :=
∫ |∂Ω|

0 ρ−2/3(s)ds and δ > 0 is sufficiently small.

In these new coordinates the billiard map becomes very simple (see [25]):

fLΩ
(x, y) =

(
x+ y +O(y3), y +O(y4)

)
(38)

In particular, near the boundary {ϕ = 0} = {y = 0}, the billiard map

fLΩ
reduces to a small perturbation of the integrable map (x, y) 7−→ (x+y, y).

Using this result and the KAM theorem, Lazutkin proved in [25] that if ∂Ω

is sufficiently smooth (smoothness is determined by the KAM theorem), then

there exists a positive measure set of caustics (which correspond to KAM

invariant curves), which accumulates on the boundary and on which the motion

is smoothly conjugate to a rigid rotation with irrational rotation number.
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Appendix B. Elliptic motions and a proof of Proposition 23

We start by studying perturbations of ellipses within the family of el-

lipses. Once enough analytic tools are developed, we prove Proposition 23. Up

to suitable translation and rotation, we can assume — using the parametriza-

tion introduced in (6) — that the unperturbed ellipse has the form Ee0,c =

E(0, 0, c, µ0, 0); in particular, its eccentricity is e0 = 1/ coshµ0.

Perturbing by an homothety. Let λ ∈ R, and consider an homothety of

factor eλ. We want to write the dilated/contracted ellipse Eλ := eλEe0,c as

Eλ = Ee0,c + µλ,

which is equivalent to

E(0, 0, eλc, µ0, 0) = E(0, 0, c, µ0 + µλ, 0).

Hence, we have to solve the following system of equations:c cosh(µ0 + µλ(ϕ)) cosϕ = eλc coshµ0 cosϕλ,

c sinh(µ0 + µλ(ϕ)) sinϕ = eλc sinhµ0 sinϕλ,

where one should observe that the angle ϕ changes as well. In particular,
µλ = o(1) and ∆ϕ := ϕλ−ϕ = o(1). Applying Taylor formula and simplifying,
we obtain{[

coshµ0 + sinhµ0 µλ(ϕ) + o(λ)
]

cosϕ = (1 + λ) coshµ0[cosϕ− sinϕ∆ϕ] + o(λ),[
sinhµ0 + coshµ0 µλ(ϕ) + o(λ)

]
sinϕ = (1 + λ) sinhµ0[sinϕ+ cosϕ∆ϕ] + o(λ),{

sinhµ0 cosϕµλ + coshµ0 sinϕ∆ϕ = λ coshµ0 cosϕ+ o(λ),

coshµ0 sinϕµλ − sinhµ0 cosϕ∆ϕ = λ sinhµ0 sinλϕ+ o(λ).

Therefore (we are interested in µλ),

µλ(ϕ) =
λ sinhµ0 coshµ0

(sinh2 µ0 cos2 ϕ+ cosh2 µ0 sin2 ϕ)
+ o(λ)

=
λ
»

1− e2
0

1− e2
0 cos2 ϕ

+ o(λ).

(39)

Perturbing by a translation. Let τ = (τx, τy) ∈ R2, and consider a trans-

lation by τ . We want to write the translated ellipse Eτ as

Eτ = Ee0,c + µτ ,

which is equivalent to

E(τx, τy, c, µ0, 0) = E(0, 0, c, µ0 + µτ , 0).
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Hence, we have to solve the following system of equations:c cosh(µ0 + µτ (ϕ)) cosϕ = τx + c coshµ0 cosϕτ ,

c sinh(µ0 + µτ (ϕ)) sinϕ = τy + c sinhµ0 sinϕτ ,

where one should observe that the angle ϕ changes as well. In particular,
µτ = o(1) and ∆ϕ := ϕτ −ϕ = o(1). Applying Taylor formula and simplifying,
we obtain{[

coshµ0 + sinhµ0 µτ + o(‖τ‖)
]

cosϕ = τx
c + coshµ0[cosϕ− sinϕ∆ϕ+ o(‖τ‖)],[

sinhµ0 + coshµ0 µτ + o(‖τ‖)
]

sinϕ =
τy
c + sinhµ0[sinϕ+ cosϕ∆ϕ+ o(‖τ‖)],{

sinhµ0 cosϕµτ + coshµ0 sinϕ∆ϕ = τx
c + o(‖τ‖),

coshµ0 sinϕµτ − sinhµ0 cosϕ∆ϕ =
τy
c + o(‖τ‖).

Therefore,

µτ (ϕ) =
1

(sinh2 µ0 cos2 ϕ+ cosh2 µ0 sin2 ϕ)

·
ï
τx
c

sinhµ0 cosϕ+
τy
c

coshµ0 sinϕ

ò
+ o(‖τ‖)

=
e0

c(1− e2
0 cos2 ϕ)

[
τx
»

1− e2
0 cosϕ+ τy sinϕ

]
+ o(‖τ‖).

(40)

Perturbing by a rotation. Let θ ∈ [0, 2π), and consider a rotation by θ

(counterclockwise); we denote

Rθ :=

Ç
cos θ − sin θ

sin θ cos θ

å
.

We are interested in the rotated ellipse Eθ, and we want to write it (in elliptic

coordinates) as

Eθ = Ee0,c + µθ,

which is equivalent to

E(0, 0, c, µ0, θ) = E(0, 0, c, µ0 + µθ, 0).

Hence, we have to solve the following system of equations:Ç
c cosh(µ0 + µθ(ϕ)) cosϕ

c sinh(µ0 + µθ(ϕ)) sinϕ

å
= Rθ

Ç
c coshµ0 cosϕθ
c sinhµ0 sinϕθ

å
,

where one should observe that the angle ϕ changes as well. In particular,

µθ = o(1) and ∆ϕ := ϕθ−ϕ = o(1). Applying Taylor formula and simplifying,

we obtain( î
coshµ0 + sinhµ0 µθ

ó
cosϕî

sinhµ0 + coshµ0 µθ
ó

sinϕ

)

=

Ç
1 −θ
θ 1

åÇ
coshµ0[cosϕ− sinϕ∆ϕ+ o(θ)]

sinhµ0[sinϕ+ cosϕ∆ϕ+ o(θ)]

å
,
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which impliesÇ
sinhµ0 cosϕ

coshµ0 sinϕ

å
µθ−

Ç
coshµ0 sinϕ

sinhµ0 cosϕ

å
∆ϕ =

Ç
− sinhµ0 sinϕ

coshµ0 cosϕ

å
θ+ o(θ).

Hence, we conclude

µθ =
θ
î
sinϕ cosϕ(cosh2 µ0 − sinh2 µ0)

ó
(sinh2 µ0 cos2 ϕ+ cosh2 µ0 sin2 ϕ)

+ o(θ)

=
θ e2

0

2(1− e2
0 cos2 ϕ)

sin 2ϕ+ o(θ).

(41)

Perturbing by an hyperbolic rotation. Let us consider the matrix

Λ = Λ(λ) :=

Ç
eλ 0

0 e−λ

å
with λ ∈ R;

we are interested in the ellipse EΛ obtained by applying this transformation to

E0, and we want to write it (in elliptic coordinates) as

EΛ = Ee0,c + µΛ,

which is equivalent to

E(0, 0, c, µ0, θ) = E(0, 0, c, µ0 + µΛ, 0).

Hence, we have to solve the following system of equations:Ç
c cosh(µ0 + µΛ(ϕ)) cosϕ

c sinh(µ0 + µΛ(ϕ)) sinϕ

å
= Λ

Ç
c coshµ0 cosϕΛ

c sinhµ0 sinϕΛ

å
,

where one should observe that the angle ϕ changes as well. In particular,

µΛ = o(1) and ∆ϕ := ϕΛ−ϕ = o(1). Applying Taylor formula and simplifying,

we obtain( î
coshµ0 + sinhµ0 µΛ

ó
cosϕî

sinhµ0 + coshµ0 µΛ

ó
sinϕ

)

=

Ç
1 + λ 0

0 1− λ

åÇ
coshµ0[cosϕ− sinϕ∆ϕ]

sinhµ0[sinϕ+ cosϕ∆ϕ]

å
+ o(λ),

which impliesÇ
sinhµ0 cosϕ

coshµ0 sinϕ

å
µΛ−

Ç
coshµ0 sinϕ

sinhµ0 cosϕ

å
∆ϕ = λ

Ç
coshµ0 cosϕ

− sinhµ0 sinϕ

å
+o(λ).

Hence, we conclude

µΛ =
λ sinhµ0 coshµ0(cos2 ϕ− sin2 ϕ)

(sinh2 µ0 cos2 ϕ+ cosh2 µ0 sin2 ϕ)

=
λ

1− e2
0 cos2 ϕ

cos 2ϕ+ o(λ).

(42)
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Perturbation of Ellipses and Proof of Proposition 23. Let us first start

with the following lemma, which is similar to [3, Lemma 7].

Lemma 36. Let Ee0,c = E(0, 0, c, µ0, 0) be an ellipse of eccentricity e0 =

1/ coshµ0 and semi-focal distance c, and suppose that Ω is a perturbation of

Ee0,c, which can be written (in the elliptic coordinate frame (µ, ϕ) associated

to Ee0,c) as Ω = Ee0,c + µΩ(ϕ). Consider another ellipse E sufficiently close to

Ee0,c, which can be written (in elliptic coordinates frame associated to Ee0,c) as

E = Ee0,c + µE .

If E is sufficiently close to Ee0,c, we can write (in the elliptic coordinate frame

(µ, ϕ) associated to E) Ω = E+µΩ(ϕ) for some function µΩ. Then, there exists

C = C(e0, c) such that for every ϕ ∈ [0, 2π), we have

(43) |µΩ(ϕ)− (µE(ϕ) + µΩ(ϕ))| ≤ C‖µE‖C1‖‖µΩ − µE‖C1 .

Moreover, for any C ′ > 1, if E is sufficiently close to Ee0,c, then we have

(44)
1

C ′
‖µΩ − µE‖C1 ≤ ‖µΩ‖C1 ≤ C ′‖µΩ − µE‖C1 .

Proof. Let

E = E(x0, y0, c, µ0, θ) = Ee0,c + µE(ϕ).

Consider the analytic change of coordinates between the coordinate frame

(µ, ϕ) associated to Ee0,c and the coordinate frame (µ, ϕ) associated to E ; we

have

(45)

µ(µ, ϕ) = µ0 +
î
µ− µ0 − µE(ϕ)

ó
(1 + ρµ(µ− µ0, ϕ)),

ϕ(µ, ϕ) = ϕ+ ρϕ(µ− µ0, ϕ),

where ρµ and ρϕ are analytic functions that are C1‖µE‖Cr -small in any Cr-

norm, where C1 = C1(e0, c, r). Observe that µ(µ0 + µE(ϕ)) ≡ µ0.

Let us observe the following facts:

• It follows from (45) that

µ0 + µΩ (ϕ(µ0 + µΩ(ϕ), ϕ)) = µ (µ0 + µΩ(ϕ), ϕ) .

Taking the derivatives on both sides and using (45), we obtain

µ′Ω(ϕ(µ0 + µΩ(ϕ), ϕ))

ï
1 +

∂ρϕ
∂µ

(µΩ(ϕ), ϕ)µ′Ω(ϕ) +
∂ρϕ
∂ϕ

(µΩ(ϕ), ϕ)

ò
= µ′Ω(ϕ)

ï
1 + ρµ(µΩ(ϕ), ϕ) +

(
µΩ(ϕ)− µE(ϕ)

) ∂ρµ
∂µ

(µΩ(ϕ), ϕ)

ò
− µ′E(ϕ) [1 + ρµ(µΩ(ϕ), ϕ)] + [µΩ(ϕ)− µE(ϕ)]

∂ρµ
∂ϕ

(µΩ(ϕ), ϕ)
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=
Ä
µ′Ω(ϕ)− µ′E(ϕ)

ä
[1 + ρµ(µΩ(ϕ), ϕ)]

+
(
µΩ(ϕ)− µE(ϕ)

) ï∂ρµ
∂µ

(µΩ(ϕ), ϕ)µ′Ω(ϕ) +
∂ρµ
∂ϕ

(µΩ(ϕ), ϕ)

ò
.

Hence,

µ′Ω(ϕ(µ0 + µΩ(ϕ), ϕ)) =
Oe0,c(‖µΩ − µE‖C1)

[
1 +Oe0,c(‖µE‖C1)

]
1 +Oe0,c(‖µE‖C1)

,(46)

where Oe0,c(·) means that its absolute value is bounded by the absolute

value of (·) and a constant that depends on e0 and c.

• Let us write ϕΩ(ϕ) := ϕ(µ0 + µΩ(ϕ), ϕ); it follows from (45) that it is a

diffeomorphism and

ϕ′Ω(ϕ) = 1 +Oe0,c(‖µE‖C1).

In particular,

µ′Ω(ϕ) =
Ä
µΩ ◦ ϕΩ ◦ ϕ−1

Ω

ä′
(ϕ)

= µ′Ω(ϕΩ(ϕ)) · ϕ′Ω(ϕ) ·
Ä
ϕ−1

Ω

ä′
(ϕ).

Along with (46), this implies (44).

• Moreover, using that ϕ(µ0 + µΩ(ϕ), ϕ)− ϕ = Oe0,c(‖µE‖C0), we obtain

µΩ (ϕ(µ0 + µΩ(ϕ), ϕ))− µΩ(ϕ) =

∫ ϕ(µ0+µΩ(ϕ),ϕ)

ϕ
µ′Ω(t)dt

=Oe0,c(‖µΩ − µE‖C1‖µE‖C1).

• Since

Ω = Ee0,c + µΩ(ϕ) = E + µΩ(ϕ),

then we have

µ0 + µΩ(ϕΩ(ϕ)) = µ (µ0 + µΩ(ϕ), ϕ)

= µ0 +
î
µΩ(ϕ)− µE(ϕ)

ó
(1 + ρµ(µΩ(ϕ), ϕ));

therefore,

µΩ(ϕΩ(ϕ))−
(
µΩ(ϕ)− µE(ϕ)

)
=
(
µΩ(ϕ)− µE(ϕ)

)
ρµ(µΩ(ϕ), ϕ)

=Oe0,c(‖µΩ − µE‖C0‖µE‖C0).

Summarizing all of the above information, we get

µΩ(ϕ)− µΩ(ϕ) + µE(ϕ)

=
î
µΩ(ϕΩ(ϕ))− µΩ(ϕ) + µE(ϕ)

ó
+
î
µΩ(ϕΩ(ϕ))− µΩ(ϕ)

ó
= Oe0,c(‖µΩ − µE‖C1‖µE‖C1),

and this concludes the proof of (43). �

Now we are ready to prove Proposition 23.
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Proof of Proposition 23. We use the notation introduced in (16)–(20) and

proven in the first part of this section. Moreover, since we will be working with

elliptic coordinate frames associated to different ellipses Ek, we will adopt the

convention to denote functions with a superscript (k) when we consider them

with respect to the angle associated to the ellipse Ek.
Let us denote Ω=Ee0,c+µ(0). We consider different steps of approximation.

(1) Let us now consider the ellipse E1 obtained by translating Ee0,c by a vector

τ =

Ñ
a1 c

e0

»
1− e2

0

,
b1 c

e0

é
.

Let µ
(0)
E1 be such that E1 = Ee0,c + µ

(0)
E1 , and let µ

(1)
1 be such that Ω =

E1 + µ
(1)
1 . It follows from (40) that

(47)
∥∥∥µ(0)
E1 − (a1e

(0)
τ1 + b1e

(0)
τ2 )
∥∥∥
C1

= Oe0,c(a
2
1 + b21).

Then, using Lemma 36 and (47), we obtain∥∥∥µ(0)
1 − (a0e

(0)
h + a2e

(0)
hr + b2e

(0)
r )
∥∥∥
C1

≤ ‖µ(0)
1 − (µ(0) − µ(0)

E1 )‖C1 +
∥∥∥µ(0)
E1 − (a1e

(0)
τ1 + b1e

(0)
τ2 )
∥∥∥
C1

= Oe0,c
Ä
‖µ(0)‖2C1

ä
;

in particular, we have used that

‖µ(0)
E1 ‖C1 = Oe0,c(

»
a2

1 + b21) = Oe0,c(‖µ(0)‖C1).

Let us denote by ϕ1 = ϕ1(ϕ) the angle associated to E1; it follows from

computations similar to (40) that

‖ϕ1 − ϕ‖C1 = Oe0,c
(»

a2
1 + b21

)
.

Then, we conclude that∥∥∥µ(1)
1 − (a0e

(1)
h + a2e

(1)
hr + b2e

(1)
r )
∥∥∥
C1

=Oe0,c
Ä
‖µ(0)‖2C1

ä
.(48)

(2) Let us consider the dilated/contracted ellipse

E2 = e

a0√
1−e2

0 E1;

let µ
(1)
E2 be such that E2 = E1 +µ

(1)
E2 , and let µ

(2)
2 be such that Ω = E2 +µ

(2)
2 .

It follows from (39) that

(49)
∥∥∥µ(1)
E2 − a0e

(1)
h

∥∥∥
C1

= Oe0,c(a
2
0).

Then, proceeding as above and using Lemma 36, (48) and (49), we obtain∥∥∥µ(1)
2 − (a2e

(1)
hr + b2e

(1)
r )
∥∥∥
C1
≤‖µ(1)

2 − (µ
(1)
1 − µ

(1)
E2 )‖C1
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+
∥∥∥µ(1)

1 − (a0e
(1)
h + a2e

(1)
hr + b2e

(1)
r )
∥∥∥
C1

+
∥∥∥µ(1)
E2 − a0e

(1)
h

∥∥∥
C1

=Oe0,c
Ä
‖µ(0)‖2C1

ä
;

Let us denote by ϕ2 = ϕ2(ϕ1) the angle associated to E2; it follows from

computations similar to (39) that

‖ϕ2 − ϕ1‖C1 = Oe0,c (a0) .

Then, we conclude that∥∥∥µ(2)
2 − (a2e

(2)
hr + b2e

(2)
r )
∥∥∥
C1

= Oe0,c
Ä
‖µ(0)‖2C1

ä
.

(3) Let us consider the rotated ellipse

E3 = R 2a2
e2
0

E2;

let µ
(2)
E3 be such that E3 = E2 +µ

(2)
E3 , and let µ

(3)
3 be such that Ω = E3 +µ

(3)
3 .

It follows from (41) that

(50)
∥∥∥µ(2)
E3 − b2e

(2)
r

∥∥∥
C1

= Oe0,c(b
2
2).

Proceeding as above (Lemma 36 and similar estimates), we get∥∥∥µ(3)
3 − a2e

(3)
hr

∥∥∥
C1

=Oe0,c
Ä
‖µ(0)‖2C1

ä
.

(4) Finally, let us consider the ellipse obtained by means of an hyperbolic

rotation Λ(a2):

E4 = Λ(a2) E3.

Let be µ
(3)
E4 such that E4 = E3 +µ

(3)
E4 , and let µ

(4)
4 be such that Ω = E4 +µ

(4)
4 .

It follows from (42) that∥∥∥µ(3)
E4 − a2e

(3)
hr

∥∥∥
C1

= Oe0,c(a
2
2).

In particular, proceeding as above, we conclude also in this case that

‖µ(4)
4 ‖C1 = Oe0,c

Ä
‖µ(0)‖2C1

ä
.

To conclude the proof, we denote Ẽ := E4 and we consider µẼ such that

Ẽ = Ee0,c + µẼ . It follows from Lemma 36 (second part of the statement) that

‖µ(0) − µ(0)

Ẽ
‖C1 = Oe0,c

(
‖µ(4)

4 ‖C1

)
= Oe0,c

Ä
‖µ(0)‖2C1

ä
,

and this concludes the proof of the proposition. �
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Appendix C. Analytic extensions and their singularities

C.1. Proof of Proposition 24. Let us start by studying the zeros of

(51) hk(z) = 1− k2 sin2 z

for 0 < k < 1.

Remark 37. Observe that kq > 0 unless e0 = 0; i.e., the boundary of the

billiard is a circle and kq ≡ 0 for any q ≥ 3. In this latter case, h0(z) ≡ 1 and

there are no zeros; in fact, cq and sq correspond to cos(q z) and sin(q z), which

are entire functions. Hence, we consider only the case 0 < kq < 1.

Lemma 38. Let k satisfy 0 < k < 1:

hk(z) = 0 ⇐⇒ zn =

Å
π

2
+ nπ

ã
± i ρk for n ∈ Z.

Proof. Recall that

sin(x+ iy) = sinx cosh y + i cosx sinh y,

therefore,

sin2(x+ iy) = (sin2 x cosh2 y − cos2 x sinh2 y) + 2i sinx cosx sinh y cosh y

= [sin2 x cosh2 y − cos2 x(cosh2 y − 1)] + i sin(2x) sinh y cosh y

= [cosh2 y(sin2 x− cos2 x) + cos2 x] + i sin(2x) sinh y cosh y

= [− cosh2 y cos(2x) + cos2 x] + i sin(2x) sinh y cosh y.

(52)

In particular, denoting z = x+ iy, we have

hk(z) = 1− k2 sin2 z

= [1− k2 cos2 x+ k2 cosh2 y cos(2x)]− ik2 sin(2x) sinh y cosh y
(53)

and hence for 0 < k < 1,

hk(z) = 0 ⇐⇒

1− k2 cos2 x+ k2 cosh2 y cos(2x) = 0,

sin(2x) sinh y cosh y = 0.

The second equation has the following solutions:

(i) x =
mπ

2
(with m ∈ Z) or (ii) y = 0.

If we plug those solutions in the first equation we obtain

(i) Let x = mπ
2 , and let us distinguish two cases:

(a) if x = nπ, then the first equation becomes

1− k2 + k2 cosh2 y > 0 for 0 < k < 1;
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(b) if x = (2n+1)π
2 , then the first equation becomes

1− k2 cosh2 y = 0,

hence

cosh2 y = 1/k2 ⇐⇒ y± = ±ρk := ±arcosh (1/k) ,

which is well defined since 0 < k < 1.

(ii) If y = 0, then the first equation becomes

0 = 1− k2 cos2 x+ k2 cos(2x)

= 1− k2 sin2 x,

which does not admit solutions for 0 < k < 1.

Summarizing, for 0 < k < 1,

hk(z) = 0 ⇐⇒ zn =

Å
π

2
+ nπ

ã
± i ρk for n ∈ Z. �

If we denote by Σρ the open complex strip of (half) width ρ > 0 around

the real axis, i.e.,

Σρ := {z ∈ C : |Im(z)| < ρ},

then we conclude that hk is an entire function that, for 0 < k < 1, does not

vanish in the strip Σρk .

Now we want to consider the complex function
»
hk(z) and understand

its domain of analyticity. Recall the following elementary result from complex

analysis:

Let f be a nowhere vanishing holomorphic function in a simply

connected region Ω. Then f has a holomorphic logarithm, and

hence, a holomorphic square-root in Ω.

Therefore, we can conclude that the functions
»
hk(z) and 1/

»
hk(z) are

analytic in Σρk .

If we consider, for 0 < k < 1, the function F (ϕ; k) :=

∫ ϕ

0

dϕ»
1− k2 sin2 ϕ

,

then its complex extension is given by

F (z; k) :=

∫ z

0

dζ»
hk(ζ)

.

It follows from Cauchy’s theorem that this function is well defined and analytic

in Σρk . This completes the proof of Proposition 24. �
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C.2. Proof of Proposition 26. Observe that, using the notation introduced

in (51),

eh(z) =
1

he0
(
z + π

2

) .
It follows from the discussion in Section C.1 that this function has singularities

(which are poles) at

ζn = nπ ± i ρ0 for n ∈ Z,

where ρ0 = arcosh (1/e0) = µ0. In particular, its maximal strip of analyticity

is given by

Σρ0 = {z ∈ C : |Im(z)| < ρ0} .
This concludes the proof of Proposition 26. �

Appendix D. Proof of Proposition 30

Consider the following variational problem.

Given 0 < j ≤ 2q0, we would like to see how much ej(ϕ) is linearly

independent of the vector subspace

Λq0 := 〈{ek}k>2q0〉.

Observe that it suffices to consider an arbitrary q0, since we already have

linear independence for every finite subcollection.

We start by considering the case j ≥ 5; for the other case, see Remark 46.

Let us define vj as the vector realizing the minimal L2
e0-distance from the unit

vector ej to the subspace Λq0 ; namely, if

vj := ej −
∑
k>2q0

djkek,(54)

then we require that vj be orthogonal to all ek for k > 2q0. Hence, we consider

the L2
e0-scalar product of vj with em, for m > 2q0, and we impose that it be

equal to zero:

(55) vj · em = ej · em −
∑
k>2q0

djk (ek · em) = 0.

Strategy of proof. Notice that by definition each vector vj , 0 < j ≤ 2q0

is the projection of ej onto the orthogonal complement to Λq0 . If the vectors

{vj , 0 < j ≤ 2q0} are linearly independent (see Corollary 47), then the sub-

spaces 〈{ek}0≤k≤2q0
〉 and 〈{ek}k>2q0

〉 have zero dimensional intersection (see

Proposition 30). This, in turn, implies that {ej , j > 0} form a basis of L2(T)

(see Lemma 31).

The key idea to check linear independence of vectors {vj , 0 < j ≤ 2q0}
is the same as in the case of finite linear combinations (see Proposition 28).

In the case {ej , 0 < j ≤ 2q0}, singularities of the complex extensions are

explicit and pairwise disjoint for ei and ej with i 6= j. We modify this idea for
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{vj , 0 < j ≤ 2q0} as follows: for each 5 ≤ j ≤ 2q0, we would like to compare

the maximal strips of analyticity of ej and vj related by (54). Notice that the

width of the maximal strip of analyticity of ej equals ρk
ĵ
, while the width of

the maximal strip of analyticity of vj − ej equals to the strip of analyticity

of ej −
∑
m>2q0 djm em, which turns out to equal ρk

ĵ
(Corollary 45). Infinite

linear independence will then follow; see Corollary 47.

Let us introduce some notation. For j ≤ 2q0 < k,m, we define

akm := ek · em =

∫ 2π

0
ek(ϕ) em(ϕ) (1− e2

0 cos2 ϕ)2dϕ(56)

and

bjm := ej · em =

∫ 2π

0
ej(ϕ) em(ϕ) (1− e2

0 cos2 ϕ)2dϕ,(57)

where the scalar product is meant in the weighted space L2
e0 .

Hence, we obtain the (infinite) row vector

~Bq0 := (bjm)m>2q0

and the (infinite) square matrix

Aq0 := (akm)k,m>2q0 .

In particular, if we denote by ~Dq0 the infinite row vector

~Dq0 := (djk)k>2q0 ,

then equation (55) becomes

~Dq0 Aq0 = ~Bq0 .(58)

In particular, if Aq0 is invertible, then

~Dq0 = ~Bq0 A
−1
q0 .

Now we need to study Aq0 and ~Bq0 for large q0. Notice that the ma-

trix Aq0 is a small perturbation of the identity, because by Lemma 39, for

k 6= m→ +∞, its elements akm decay exponentially. (We will make this more

quantitative in the following.) The vector ~Bq0 also has components exponen-

tially decaying in m. (It follows from the estimates in Lemma 39 too.) To

compare maximal strips of analyticity of vj and ej for each j ≤ 2q0, we need to

estimate the exponent of the speed of decay of elements of ~Dq0 . Our analysis

starts with the following lemma.

Notation. Hereafter, given an integer q ∈ N, we will denote q̂ :=
î
q+1

2

ó
,

where [ · ] denotes the integer part. This cumbersome notation is needed since

for every integer q, we have couples e2q and e2q−1 corresponding to the same

rotation number 1/q. Whenever it is possible, in the forthcoming statements

and proofs, we will try to ease notation as much as possible.
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Theorem 39. For every e0 > 0, there exists q0 = q0(e0) such that the

following holds. For each j ≥ 3, there exists λj ∈ (0, 1) such that for any δ > 0,

there is Cj := Cj(e0, δ) > 0 such that for each 3 ≤ j < m,

|ajm − δjm| ≤ Cj(λj + δ)m̂,(59)

where “m :=
î
m+1

2

ó
. Moreover, for 2q0 < j ≤ m, we have

|ajm − δjm| ≤ C∗ (λ∗ + δ)m̂(60)

for some C∗ = C∗(e0, δ) and λ∗ = λ∗(e0) < 1.

Remark 40. We will see that we can choose λj = exp[−ρkj (1 + κ∗))] for

some suitable κ∗ = κ∗(e0) > 0. Moreover, by studying the growth of the

constants Cj , we show that we can choose λ∗ = exp[−(σ∞(ρkq0 )−ρkq0 )], where

σ∞(ρkq0 )− ρkq0 > 0. (See (63) for a definition of σ∞(·).)

Proof. Recall from (24) that

e2j :=
cj

‖cj‖L2
e0

, e2j−1 :=
sj

‖sj‖L2
e0

∀ j ≥ 3.

In particular, up to multiplication by constants, we have

e2j(ϕ) �
cos(j 2π

4K(kj)
F (ϕ, kj))»

1− k2
j sin2 ϕ

, e2j−1(ϕ) �
sin(j 2π

4K(kj)
F (ϕ, kj))»

1− k2
j sin2 ϕ

.

Let us now denote

t2j(ϕ) = t2j−1(ϕ) :=
2π

4K(kj)
F (ϕ, kj)

and their inverses

ϕ2j(t) = ϕ2j−1(t) := am

Ç
4K(kj)

2π
t, kj

å
;

then

e2j(ϕ) � cos(jtj(ϕ))
dtj
dϕ

(ϕ) and e2j−1(ϕ) � sin(jtj(ϕ))
dtj
dϕ

(ϕ).

We need to compute ej · em. Observe that if j = m, then it is 1, since

they are unit vectors with respect to the L2
e0-scalar product. Let us assume

that j < m. Doing a change of coordinate in the corresponding integral, we

get (we consider the case in which both indices are even, since the other cases

are analogous)

e2j · e2m =

∫ 2π

0
e2j(ϕ) e2m(ϕ) (1− e2

0 cos2 ϕ)2 dϕ

=

∫ 2π

0
e2j(ϕm(t)) cos(mt)

dtm
dϕm

dϕm
dt

(1− e2
0 cos2 ϕm(t))2 dt

=

∫ 2π

0
e2j(ϕm(t)) (1− e2

0 cos2 ϕm(t))2 cos(mt) dt.
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Hence, we are computing the m-th Fourier coefficients of the function

Ejm(t) := e2j(ϕm(t)) (1− e2
0 cos2 ϕm(t))2

=
cos

(
j 2π

4K(kj)
F (ϕm(t), kj)

)»
1− k2

j sin2 (ϕm(t))
(1− e2

0 cos2 ϕm(t))2

=
cos

(
jF
(
am (4K(km)

2π t, km), kj
))…

1− k2
j sn 2

(
4K(km)

2π t, km
) Ç

1− e2
0 cn 2

Ç
4K(km)

2π
t, km

åå2

.

(61)

In order to compute the decay rate of its Fourier coefficients, we need to

analyze its maximal strip of analyticity.

Recall that kj represents the eccentricity of the caustic of rotation number

1/j. In particular, it is strictly decreasing with respect to j and

kj > km > e0 ∀ 2 < j < m.

First of all, observe (see Remark 15) that sn (z, k) and cn (z, k) have simple

poles with imaginary parts iK(k′), where k′ denotes the complementary mod-

ulus k′ :=
√

1− k2. Hence, sn (4K(km)
2π t, km) has maximal strip of analyticity

of width equal to 2π K(k′m)
4K(km) .

On the other hand, cos(·) is an entire function. Thus, the singularities of

Ejm can be of two types: singularities of the last bracket and vanishing of the

denominator. The first type singularity occurs at i2π K(k′m)
4K(km) .

Hence, it remains only to study when the denominator of Ejm vanishes:

1− k2
j sin2

Ç
am

Ç
4K(km)

2π
ζ, km

åå
= 0.

Proceeding as in Lemma 38, if follows that the above equality is achieved when

am

Ç
4K(km)

2π
ζ, km

å
=
π

2
+ πn± iρkj ,

where ρkj = arcosh (1/kj). In particular, the solutions of this equation are

ζn :=
2π

4K(km)
F

Å
π

2
+ πn± iρkj , km

ã
=

2π

4K(km)

Å
F

Å
π

2
± iρkj , km

ã
+ 2nK(km)

ã
=

2π

4K(km)
F

Å
π

2
± iρkj , km

ã
+ πn.

Observe that ρkj < ρkm , so the points π
2±iρkj are inside the strip of analyticity

of F (·; km).
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The above expression can be expanded further. In fact, observe that

F

Å
π

2
± iρkj , km

ã
=K(km) +

∫ π
2
±iρkj

π
2

1»
1− k2

m sin2 z
dz

=K(km)± i
∫ ρkj

0

1»
1− k2

m cosh2 t
dt,

where in the last equality we have used that sin2
(π

2 + it
)

= cosh2 t. Hence,

the singularities are at

ζn :=
2π

4K(km)
F

Å
π

2
± iρkj , km

ã
+ πn

=
π

2
+ πn± i 2π

4K(km)

∫ ρkj

0

1»
1− k2

m cosh2 t
dt.

The quantity

σm(ρkj ) :=
2π

4K(km)
min


∫ ρkj

0

1»
1− k2

m cosh2 t
dt , K(

»
1− k2

m)


=

2π

4K(km)

∫ ρkj

0

1»
1− k2

m cosh2 t
dt

(62)

provides the width of the strip of analyticity of Ejm; the proof of the last

equality follows from Lemma 41 with x = km and y = kj , observing that

0 < km < kj for j < m.

Notice that the entries a2j,2m, defined by (56), can be viewed as Fourier

coefficients of the functions Ejm. The latter ones has the strip of analyticity,

given by σm(ρkj ). For fixed j, these widths are strictly decreasing in m and,

in the limit as m→ +∞, they tend to

(63) σ∞(ρkj ) :=
2π

4K(e0)

∫ ρkj

0

1»
1− e2

0 cosh2 t
dt,

which is strictly increasing in j. In fact, consider the function

W (x, y) :=
2π

4K(x)

∫ arcosh1/y

0

1√
1− x2 cosh2 t

dt

defined for 0 < x < y < 1. It suffices to show that it is increasing with respect

to x. Since x = km is decreasing with respect to m, it will follow that it is

decreasing. This can be shown using lengthy, but elementary, manipulation

or using Mathematica. In Figure 4 we present two plots: the first one is the

graph of W , and the second one is the graph of the partial derivative of W

with respect to x, which turns out to be positive.
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Figure 4. Plots of W (x, y) and ∂xW (x, y).

We can now deduce (59) by applying Paley-Wiener theorem.8997 Observe

that we can choose λm = exp[−σ∞(ρkj )]. (We will show in Proposition 42

that σ∞(ρkj ) > ρkm(1 + κ∗)) for some suitable κ∗ = κ∗(e0) > 0 that will be

explicitly determined.)

Now, we want to prove (60). In order to do this, we need to get a better

control on the constants Cj . In particular, we need to estimate∣∣∣∣∣cos

Ç
j

2π

4K(kj)
F (ϕm(z), kj)

å∣∣∣∣∣ =

∣∣∣∣∣cos

Ç
j

2π

4K(kj)
F

Ç
am (

4K(km)

2π
z, km), kj

åå∣∣∣∣∣
7 Let us briefly recall the statement of this theorem; see, for example, http://www.math.

lsa.umich.edu/∼rauch/555/fouriercomplexbw.pdf:

Theorem (Paley-Wiener). If f is an analytic periodic function in the strip {|Im z| < a}
for some a > 0, then its Fourier coefficients cn satisfy the following property : for any ε > 0,t

there exists C(ε) > 0 such that |cn| ≤ C(ε)e(−a+ε)|n| for every n ∈ Z. In particular, C(ε) is

bounded from above by the supremum of |f | on the strip {|Im z| ≤ a− ε}.
Conversely, if {cn}n satisfy the above property, then f :=

∑
n∈Z cne

inz has an analytic

continuation to the strip {|Im z| < a}.

http://www.math.lsa.umich.edu/~rauch/555/fouriercomplexbw.pdf 
http://www.math.lsa.umich.edu/~rauch/555/fouriercomplexbw.pdf 
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on the complex strip of width (ρkj −δ). Since | cos(x+ iy)| grows like e|y|, then

we need to estimate∣∣∣∣∣Im
Ç

2π

4K(kj)
F

Ç
am (

4K(km)

2π
t, km), kj

åå∣∣∣∣∣
=

2π

4K(kj)

∣∣∣∣∣Im
Ç
F

Ç
am (

4K(km)

2π
t, km), kj

åå∣∣∣∣∣
on the strip of width (ρkj − δ).

Since F (·, km) and ϕm are one the inverse of the other, then it follows that

for 2q0 < j ≤ m, and then there exists ‹C(e0, δ) > 0 such that∣∣∣∣∣Im
Ç
F

Ç
am (

4K(km)

2π
z, km), kj

åå∣∣∣∣∣ ≤ ‹C 4K(km)

2π
|Im (z)|

for every z in the complex strip of width ρkj − δ.
Hence,

|Ejm(z)| ≤ C exp(j(ρkj − δ))
in the (ρkj − δ)-strip for some C = C(e0, δ).

Now with this bound at hand we can deduce from the Paley-Wiener the-

orem (see footnote 7) that

|e2j · e2m| ≤C∗(e0, δ) exp(j(ρkj − δ)) exp(−mσ∞(ρkj ))

≤C∗(e0, δ) exp(−m(σ∞(ρk0)− ρk0 + δ)).

Since ρkj >ρkq0 for every j>q0, we can choose λ∗=exp(−(σ∞(ρkq0 )−ρkq0 )). We

point out that σ∞(ρkq0 )− ρkq0 > κ∗ρk0 > 0, as it follows from Proposition 42.

�

Let us prove this lemma, which was used in the proof of Theorem 39.

Lemma 41. For 0 < x ≤ y < 1, we have

I(x, y) :=

∫ arcosh(1/y)

0

1√
1− x2 cosh2 t

dt ≤ K(
√

1− x2),

with equality only for x = y.

Proof. 8 Clearly, I(x, y) is strictly increasing with respect to x, while

K(
√

1− x2) is strictly decreasing with respect to x.

The claim follows from the fact that for any 0 < y < 1, we have

I(y, y) = K(
»

1− y2).

8There is an alternative proof of this lemma using the Reduction Theorem for General

Elliptic Integrals (see, e.g., https://dlmf.nist.gov/19.29). One can represent both integrals

using the canonical form RF and then relate them using the representation formula for RF
and in terms of RC (see https://dlmf.nist.gov/19.23).

https://dlmf.nist.gov/19.29
https://dlmf.nist.gov/19.23).
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In fact, consider the following change of variable in the integral defining I(y, y):

cosh2 t− 1 = (1/y2 − 1) sin2 θ,

which implies

sinh t =
»

1 + (1/y2 − 1) sin θ

and

cosh t=
»

1 + (1/y2 − 1) sin2 θ

dt=

»
1/y2 − 1 cos θ dθ»

1 + (1/y2 − 1) sin2 θ
.

Then

I(y, y) =

∫ π/2

0

1√
1− y2 cos θ

»
1/y2 − 1 cos θ dθ»

1 + (1/y2 − 1) sin2 θ

=
1

y

∫ π/2

0

dθ»
1 + (1/y2 − 1) sin2 θ

=
1

y

∫ π/2

0

dθ»
cos2 θ + 1/y2 sin2 θ

=
1

y

∫ π/2

0

dθ»
1/y2 − (1/y2 − 1) cos2 θ

=

∫ π/2

0

dθ»
1− (1− y2) cos2 θ

=

∫ π/2

0

dθ»
1− (1− y2) sin2 θ

= K(
»

1− y2). �

The width of the strip of analyticity of vj − ej depends on the exponent

of the speed of decay of elements of ~Dq0 . We will compare now the width of

strips of analyticity of vj and vj − ej for each j < 2q0.

We need the following estimate to compare σm(ρkj ) with ρkj .

Proposition 42. There is a decreasing sequence κm ≥ κ∗ := κ∗(e0) > 0

such that for any m > j ≥ 3, we have

ρkj < σm(ρkj )− ρkjκm.

In particular,

ρkj < σ∞(ρkj )− ρkjκ
∗.
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Proof. Recall the definition of σm(ρkj ) in (62). There is κ′m = κ′m(km) > 0

such that

4ρkjK(km) = ρkj

∫ 2π

0

dt»
1− k2

m sin2 t

< ρkj

Ñ
π»

1− k2
m

+
π»

1− k2
m/2

é
=:ρkj

Ñ
2π»

1− k2
m

− κ′m

é
= 2π

∫ ρkj

0

dt»
1− k2

m

− ρkjκ
′
m

< 2π

∫ ρkj

0

dt»
1− k2

m cosh2 t
− ρkjκ

′
m,

(64)

where

κ′m := π

Ñ
1»

1− k2
m

− 1»
1− k2

m/2

é
,

which is strictly decreasing9 as a function of m and, as m→ +∞, tends to

κ′∞ := π

Ñ
1»

1− e2
0

− 1»
1− e2

0/2

é
> 0.

Dividing on both sides of (64) by 4K(km) we get

ρkj < σm(ρkj )−
ρkjκ

′
m

4K(km)
for any m > j ≥ 3.

Denote κm = κ′m
4K(km) ; this function is also strictly decreasing10 as a function

of m and, as m→ +∞, tends to

κ∗ :=
π

4K(e0)

Ñ
1»

1− e2
0

− 1»
1− e2

0/2

é
> 0. �

Let I denote the Identity (infinite) matrix, and let us denote

Aq0 = I + ∆Aq0 ,

9This follows from the fact that the function 1√
1−x2

− 1√
1−x2/2

is strictly increasing in

[0, 1).
10This follows from the fact that the function 1

K(x)

(
1√

1−x2
− 1√

1−x2/2

)
is strictly in-

creasing in [0, 1).
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where ∆Aq0 := (akm − δkm)k,m>2q0 and

|akm − δkm| ≤ C∗(λ∗ + δ)q0 .

Lemma 43. Using the same notation as in Lemma 39, assume that q0 is

chosen so that ∑
m>2q0

C∗(λ∗ + δ)m̂ ≤ 1

4
.(65)

Then, for any h, k > 2q0, we have∣∣∣∣∣∣ ∑m>2q0

(ahm − δhm)(amk − δmk)

∣∣∣∣∣∣ ≤ C∗

4
(λ∗ + δ)max{k̂,̂h}.

In particular, this implies that

(66) |(∆Aq0)2
h,k| ≤

C∗

4
(λ∗ + δ)max{k̂,̂h}.

Inductively, one can show that for every N ≥ 2,

(67) |(∆Aq0)Nh,k| ≤
C∗

4N−1
(λ∗ + δ)max{k̂,̂h}.

Proof. Without loss of generality we assume 2q0 < h ≤ k. (Indeed, esti-

mates are symmetric with respect to switching indices h and k.) Using (60)

and (65),∣∣∣∣∣∣ ∑m>2q0

(ahm − δhm)(amk − δmk)

∣∣∣∣∣∣≤C∗(λ∗ + δ)k̂
∑

m>2q0

|ahm − δhm|

≤C∗(λ∗ + δ)k̂

Ñ ∑
m>2q0

C∗(λ∗ + δ)m̂

é
=
C∗

4
(λ∗ + δ)k̂,

which implies (66). As for (67), it suffices to proceed by induction on N :

assume that the estimate holds for N ≥ 2, then

|(∆Aq0)N+1
h,k ‖ ≤

∣∣∣∣∣∣ ∑m>2q0

(ahm − δhm)(∆Aq0)Nm,k

∣∣∣∣∣∣
≤ C∗

4N−1
(λ∗ + δ)k̂

Ñ ∑
m>2q0

C∗(λ∗ + δ)m̂

é
=
C∗

4N
(λ∗ + δ)k̂. �
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Let us now consider

A−1
q0 = (I + ∆Aq0)−1 = I +

∑
N≥1

(−∆Aq0)N .

Applying Lemma 43, we deduce that the (k,m) entry of the matrix

A−1
q0 − I,

which we denote by a−km, is bounded by

|a−km| ≤ 2C∗(λ∗ + δ)m̂.

Then, combining this with the estimates on the decays of the elements of ~Bq0
proved in Lemma 39, we obtain the following lemma. (In particular, it uses

the that fact that
∑
m>2q0 |bj,m| < +∞.)

Lemma 44. Let djk be the (j, k)-entry of

~Dq0 = ~Bq0 ·A−1
q0 ,

with j ≤ 2q0 < k. Then there exists C∗ > 0 such that for all k > 2q0, we have

|djk| ≤ C∗(λ∗ + δ)k̂.

For each 5 ≤ j ≤ 2q0, we need to compare the maximal strips of analyticity

of ej and vj related by (54). Notice that the width of the maximal strip

of analyticity of ej equals ρk
ĵ
. On the other hand, using the estimates in

Lemma 44 and the analyticity properties of ek, we conclude that
∑
k>2q0 djkek

has strip of analyticity not smaller than σ∞(ρkq0 ) − ρkq0 + ρk
k̂
> ρk

ĵ
, for

j ≤ 2q0 < k. Hence vj has width of analyticity ρk
ĵ
.

Corollary 45. For each 5 ≤ j ≤ 2q0, the functions vj and ej related by

(54) are real analytic and have maximal strips of analyticity ρk
ĵ
.

Remark 46. The case corresponding to 0 < j ≤ 4 can be treated similarly.

Recalling the definitions of these ej in Section 7.2 (see also (16)–(20)), it follows

that the main modifications correspond to a simpler expression for Ejm in (61),

in which the denominator disappears and the singularities are given by the ones

of ϕm(t):

Ejm(t) = u(ĵ ϕm(t))
Ä
1− e2

0 cos2 ϕm(t)
ä
,

where u(·) denotes either sine or cosine. Hence, the corresponding strip of

analyticity is independent of j:

σm̂ :=
2π

4K(km̂)
K(
√

1− k2
m̂

).

One can prove similarly that the corresponding functions {vj}4j=1 have different

strips of analyticity from the ones corresponding to the case j ≥ 5.
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Corollary 47. Any non-trivial linear combination of {vj}j≤2q0 is non-

zero; i.e., they are linearly independent.

Proof. The claim easily follows from the fact that we are considering fi-

nite linear combinations of analytic functions, with different maximal strips of

analyticity. �

Finally, we can conclude the proof of Proposition 30.

Proof of Proposition 30. If we had

2q0∑
j=1

αjej ∈ 〈{ej}j>2q0〉,

then
2q0∑
j=1

αjvj = 0.

It follows from Corollary 47 that α1 = · · · = α2q0 = 0, which completes the

proof. �

Appendix E. Some technical lemmata

Let us recall the expression of the angles of the action-angle coordinates;

see (9). For the sake of simplicity, as before, we denote by kq the eccentricity

of the caustic of rotation number 1/q (with q ≥ 3):

ϕq(ξ) := am

Ç
4K(kq)

2π
ξ; kq

å
and its inverse

ξq(ϕ) :=
2π

4K(kq)
F (ϕ; kq) .

Similarly, we denote the corresponding functions corresponding to boundary

and rotation number 0 (i.e., in the limit as q → +∞):

ϕ∞(ξ) := am

Ç
4K(e0)

2π
ξ; e0

å
and its inverse

ξ∞(ϕ) :=
2π

4K(e0)
F (ϕ; e0) ,

where we have used that kq → e+
0 in the limit as q → +∞.

Lemma 48. For each q ≥ 1,

ξq(ξ∞)− ξ∞ = Oe0,c(1/q
2)

and

kq − e0 = Oe0,c(1/q
2).
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Proof. Observe that

ξq(ξ∞) =
2π

4K(kq)
F

Ç
am

Ç
4K(e0)

2π
ξ∞; e0

å
; kq

å
= ξ∞ +

ñ
2π

4K(kq)
F

Ç
am

Ç
4K(e0)

2π
ξ∞; e0

å
; kq

å
− ξ∞

ô
= ξ∞ +

π

2

∫ kq

e0

∂

∂k

Ñ
F
(
am

(
4K(e0)

2π ξ∞; e0

)
; k
)

K(k)

é
︸ ︷︷ ︸

=: α(ξ∞,k)

dk.

(68)

Hence,

|ξq(ξ∞)− ξ∞| ≤
π

2

Ç
max

e0≤k≤k3(e0)
max

ξ∞∈[0,2π)
|α(ξ∞, k)|

å
(kq − e0)

≤ C(e0, a)(kq − e0).

(69)

In order to conclude the proof, we need to estimate kq − e0. By definition

of kq = kλq (see Proposition 16), we have

k2
q =

a2 − b2

a2 − λ2
q

=
a2e2

0

a2 − λ2
q

,

from which we deduce that

kq − e0 =
ae0»
a2 − λ2

q

− e0

=
e0λ

2
q»

a2 − λ2
q

Ä
a+
»
a2 − λ2

q

ä .(70)

Using definition (8) we obtain

2

q
=
F (arcsin

λq
b ; kq)

K(kq)
⇐⇒ 2

q
K(kq) = F (arcsin

λq
b

; kq).(71)

Rewriting, using the definition of both F andK and the fact that b = a
»

1− e2
0,

we obtain an implicit equation for λq (observe that kq = kq(λq)):

2

q

∫ π/2

0

dϕ»
1− k2

q sin2 ϕ
=

∫ arcsinλq/(a
√

1−e20)

0

dϕ»
1− k2

q sin2 ϕ
.(72)

Since kq ∈ [e0, k3] for all q ≥ 3, then

1 ≤ 1»
1− k2

q sin2 ϕ
≤ 1»

1− k2
3

,
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and hence if we substitute in (72), we deduce

π

q

1»
1− k2

3

≥ arcsin

Ñ
λq

a
»

1− e2
0

é
.

In particular, if q ≥ 2/
»

1− k2
3 =: q0(e0), then we have

(73) λq ≤ a
»

1− e2
0 sin

Ñ
π

q

1»
1− k2

3

é
;

namely, λq = Oe0,a(1/q).

Substituting in (70) and (69), and observing that c = a
»

1− e2
0, we con-

clude that

ξq(ξ∞)− ξ∞ = Oe0,c(1/q
2), and kq − e0 = Oe0,c(1/q

2). �

Lemma 49. Let f : [0, 2π) −→ R be a C1 function. Then, there exists

C = C(e0, c) such that for each q ≥ 3,∣∣∣∣∣
∫ 2π

0
f(ϕ)cq(ϕ) dϕ

∣∣∣∣∣ ≤ C ‖f‖C1

q
and

∣∣∣∣∣
∫ 2π

0
f(ϕ)sq(ϕ) dϕ

∣∣∣∣∣ ≤ C ‖f‖C1

q
.

Proof. If follows from the definition of cq (see (15)), ξq, ϕ∞ and ξ∞, that∫ 2π

0
f(ϕ)cq(ϕ) dϕ=

4K(kq)

2π

∫ 2π

0
f(ϕ) cos(q ξq(ϕ)) ξ′q(ϕ) dϕ

=
4K(kq)

2π

∫ 2π

0
f(ξ∞) cos(q ξq(ξ∞)) ξ′q(ξ∞)ϕ′∞(ξ∞)dξ∞

=
4K(kq)

2π

∫ 2π

0
f(ξ∞) cos(q ξq(ξ∞))

d

dξ∞
(ξq(ξ∞)) dξ∞.

Using Lemma 48:∫ 2π

0
f(ϕ)cq(ϕ) dϕ=

4K(kq)

2π

∫ 2π

0
(f(ξ∞) cos(qξ∞) +Oe0,c(1/q)) dξ∞

=
4K(kq)

2π

∫ 2π

0
f(ξ∞) cos(qξ∞) dξ∞ +Oe0,c

Ç
‖f‖C0

q

å
.

Observe that ϕ∞ = ϕ∞(ξ∞) is an analytic function, so f(ξ∞) is C1 and

its q-th Fourier coefficient are Oe0,c(‖f‖C1/q); hence we conclude∫ 2π

0
f(ϕ)cq(ϕ) dϕ = Oe0,c

Ç
‖f‖C1

q

å
,

which proves the first relation. In the same way, one proves the other one

involving sq. �

For q ∈ N and j ≥ 3, let us consider the elements of the (infinite) correla-

tion matrix ‹A = (ãi,h)∞i,h=0, introduced in (26), Section 7.5.
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Lemma 50. There exists ρ = ρ(e0, c) > 0 such that for all q ∈ N and

j ≥ 6,

ãq,j = 2K(k[j/2]) δq,j +Oe0,c
Ä
j−1 e−ρ |q−j|

ä
,

where [·] denotes the integer part and δq,j the Dirac’s delta.

Proof. We proceed similarly to what done in Lemma 49. In particular,

recall formula (68)

ξq(ξ∞) = ξ∞ +
π

2

∫ kq

e0

α(ξ∞, k)dk =: ξ∞ + ∆q(ξ∞).

Observe that ∆q is analytic in a complex strip of width at least ρ = ρ(e0, c) > 0

(independent of q) and that there exists C = C(e0, c) such that q2‖∆q‖ρ ≤ C

for all q ≥ 3, where ‖ · ‖ρ denotes the analytic norm of the function in the strip

{|Imz| ≤ ρ} (namely, the sup-norm on this closed strip of the modulus of its

complex extension). This follows from the second part of Lemma 48, namely,

the fact that q2(kq − e0) is uniformly bounded.
Recalling the definition of cq, sq, ξq, ϕ∞ and ξ∞, we obtain the following

(we prove it only in one case, the proofs of the others are identical):

ã2q,2j =

∫ 2π

0

cos(qϕ) cj(ϕ) dϕ

=
4K(kj)

2π

∫ 2π

0

cos(qϕ) cos(j ξj(ϕ)) ξ′j(ϕ) dϕ

=
4K(kj)

2π

∫ 2π

0

cos(qξ∞) cos(j ξj(ξ∞)) ξ′j(ξ∞)ϕ′
∞(ξ∞)dξ∞

=
4K(kj)

2π

∫ 2π

0

cos(qξ∞) cos(j ξj(ξ∞))
d

dξ∞
(ξj(ξ∞)) dξ∞

=
4K(kj)

2π

∫ 2π

0

cos(qξ∞) cos(j ξ∞ + j∆j(ξ∞))

Å
1 +

d

dξ∞
∆j(ξ∞)

ã
dξ∞

=
4K(kj)

2π

∫ 2π

0

cos(qξ∞)
[

cos(jξ∞) cos(j∆j(ξ∞))− sin(jξ∞) sin(j∆j(ξ∞))
]

·
Å

1 +
d

dξ∞
∆j(ξ∞)

ã
dξ∞

=
K(kj)

π

∫ 2π

0

[[
cos((q + j)ξ∞) + cos((q − j)ξ∞)

]
cos(j∆j(ξ∞))

−
[

sin((q + j)ξ∞)− sin((q − j)ξ∞)
]

sin(j∆j(ξ∞))
]

·
Å

1 +
d

dξ∞
∆j(ξ∞)

ã
dξ∞
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= 2K(kj)δq,j

+
K(kj)

π

∫ 2π

0

[[
cos((q + j)ξ∞) + cos((q − j)ξ∞)

](
cos(j∆j(ξ∞))− 1

)
−
[

sin((q + j)ξ∞)− sin((q − j)ξ∞)
]

sin(j∆j(ξ∞))
]

·
Å

1 +
d

dξ∞
∆j(ξ∞)

ã
dξ∞.

Since ∆j is analytic in the strip of width ρ, then also d
dξ∞

∆j , sin(j∆j)

and cos(j∆j) − 1 are analytic in the same strip and their analytic norm in

the strip of width ρ is at most Oe0,c(1/j); hence, their Fourier coefficients

decay exponentially. It suffices to notice that the above integral consists of a

combination of their Fourier coefficients. Therefore,

ã2q,2j = 2K(kj) δq,j +Oe0,c

Å
1

j
e−ρ |q−j|

ã
. �

Appendix F. From local to global Birkhoff conjecture

In this appendix we want to outline some ideas on how to use our local

results to prove the global Birkhoff conjecture. Roughly speaking, we would

like to use the Affine Length Shortening (ALS) PDE flow, which evolves any

convex domain into an ellipse [42], in order to extend our result from a small

neighborhood of ellipses to all strictly convex domains. The idea we outline

here is to find a Lyapunov function for the flow, which measures the non-

integrability of a domain. Moreover, we propose to reduce the analysis to

glancing periodic orbits, which stay in a nearly integrable zone during the

whole ALS evolution.

F.1. Affine length and affine curvature of a plane curve. Let us first recall

some definitions (see, for instance, [42]). Let C : T → R2 be an embedded

closed curve with curve parameter p. A reparametrization s can be chosen so

that in the new parameter s one has (hereafter we will use the shorthand to

use subscripts to denote derivatives)

[Cs, Css] = 1,

where [X,Y ] stands for the determinant of the 2 × 2 matrix whose columns

are given by vectors X,Y ∈ R2. Notice that the relation is invariant under

the SL2(R)-transformations. Call the parameter s the affine arc-length; in

particular, if

g(p) = [Cp, Cpp]
1/3

then the parameter s is explicitly given by

s(p) =

∫ p

0
g(ξ) dξ.
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Assume g(ξ) is non-vanishing, which is automatically satisfied for strictly con-

vex curves.

Call the affine curvature ν(s) the function given by

ν = [Css, Csss].

The affine perimeter for the closed curve C is then defined by

L :=

∮
g(p) dp.

Remark 51. In analogy with what happens for the Euclidean curvature,

the curves of constant affine curvature ν are precisely all non-singular conics.

More specifically, those with ν > 0 are ellipses, those with ν = 0 are parabolas,

and those with ν < 0 are hyperbolas.

To conclude this subsection, let us point out the relation between the

(constant) affine curvature of an ellipse ν0 and its instant eccentricity µ0 (in

elliptic coordinates). One can easily show that

µ0 = arsinh (2ν
−3/2
0 /c2)/2.

Moreover, if we consider a domain Ω, which is ε-close to an ellipse E (of

instant eccentricity µ0 and affine curvature ν0), and we denote by ν(s) the

affine curvature of ∂Ω and by µ(s) = µ0 + εµ1(s) the instant eccentricity in

the elliptic coordinate frame associated to E , as in (11); then,

µ(s) = f(ν(s)) = f(ν0 + εν1) = f(ν0) + εf ′(ν0)ν1 +O(ε2),

where f(a) = arsinh (2a−3/2/c2)/2. Thus, Fourier expansion of µ1 coincides

with Fourier expansion of ν1 up to O(ε2)-error.

F.2. Affine Length Shortening (ALS) flow. The study of evolution of plane

curves in the direction of the Euclidean normal with speed proportional to the

Euclidean curvature (also known as curve-shortening flow) has been intensively

studied; see, for example, [15] and references therein. The classical result says

that the Euclidean curvature evolution is a “Euclidean curve shortening” and

flows every convex domain toward a circle.11 More specifically, for any closed

convex curve, the isoperimetric ratio (i.e., the ratio between the squared curve

length and the area) decreases monotonically (and in finite time) to 4π, i.e.,

the value of this ratio for circles.

Adapting this idea, Sapiro and Tannenbaum [42] developed an analogous

flow describing the evolution of plane curves in the direction of the affine

normal, with speed proportional to the affine curvature; this flow is generally

11Actually it shrinks every curve to a point. However, rescaling of either the perimeter

(or the area) the curve will converge to a circle.
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called the affine length shortening (ALS) flow (or affine curvature flow) and,

analogously to the Euclidean one, it is “affine length shortening.” Similarly

to the Euclidean curvature evolution, in fact, this flow evolves every convex

domain to an ellipse. More specifically, the isoperimetric ratio (i.e., the ratio

between the squared affine curve length and the area) decreases monotonically

to 8π2, which is the ratio for ellipses12.

F.3. Application to billiards. Our idea is to apply the above geometric flow

to deduce the non-integrability of a domain, by means of a suitable Lyapunov

function. Let us describe this construction more specifically.

Let Ω ⊂ R2 be a strictly convex domain with a sufficiently smooth bound-

ary ∂Ω. Let s be the arc-length parameter of the boundary, and let us denote

by |∂Ω| its Euclidean perimeter.

For each q > 2 and for every point s on the boundary, let us denote by

L1/q(s) the maximal perimeter of a q-gon starting at this point. For each

q > 2p > 1 and for every point s on the boundary, let us denote by Lp/q(s) the

maximal perimeter of a star shape q-gon starting at this point whose rotation

number is p/q and the points are ordered on the boundary in the same cyclical

order as the rotation by p/q. Notice that if there exists an integrable rational

caustic of rotation number p/q, then Lp/q(s) is constant or, equivalently,

(74)

∆p/q :=

∫ |∂Ω|

0
(Lp/q(s)− 〈Lp/q〉)2 ds = 0, where 〈Lp/q〉 =

∫ |∂Ω|

0
Lp/q(s)ds.

Suppose now that for any strictly convex domain Ω that is sufficiently

close to an ellipse, but not an ellipse, the billiard map in Ω satisfies one of the

two conditions:

(1) either it has caustics for all rotation numbers in (0, 1/q0] for some q0 > 2;

(2) or it has a sequence qk → ∞, as k → ∞, and a sequence pk such that
pk
qk
→ 0 and there is no integrable rational caustic of rotation number pk

qk
or, equivalently, ∆pk/qk 6= 0.

This situation corresponds to a stronger version of the local Birkhoff conjecture

than the one proved in the present article. So far, this picture has been proven

to hold true only for ellipses of small eccentricities (see [21]).

Recall that, as we explained in Section F.2, for any convex domain Ω,

different from an ellipse, its evolution Ωt under the ALS flow brings it into a

neighborhood of the ellipses. Thus, for some T > 0, we have that

• ΩT belongs to a neighborhood of ellipses;

12Also in this case the flow shrinks every curve to a point. However, under rescaling of

either the perimeter (or the area) the curve will converge to an ellipse.
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• there is a sequence qk →∞ as k →∞ and a sequence pk such that pk/qk → 0

and the billiard map associated to ΩT has no integrable rational caustics of

rotation number pk/qk or, equivalently, ∆pk/qk 6= 0.

We conjecture the following.

Conjecture. Let Ωt be the evolution of the domain Ω under the nor-

malized affine curvature flow (i.e., we keep the perimeter, or the area, of the

domain fixed along the flow), and let ∆t
p/q be the ∆p/q–function associated Ωt.

Then, there exists q0 = q0(Ω) > 2 such that for some rational 0 < p/q < 1/q0,

we have that ∆t
p/q is monotone in t.

Hereafter we verify a local version of this conjecture when Ω is the unit

circle. See Lemma 52.

F.4. ALS flow evolution. Let us first describe some results on the ALS

flow. In [42, (32), p. 96], the formula for the evolution of the affine curvature

ν is derived:

∂ν

∂t
=

4

3
ν2 +

1

3
νss.(75)

Let us describe what happens in the case of ellipses, i.e., ν ≡ ν0; in

particular, we want to point out a subtlety of this flow, namely, certain blow

up in a finite time. Then
∂ν

∂t
=

4

3
ν2

becomes an ODE. If we make a substitution ν = χ−1, then

4

3
ν2 =

∂ν

∂t
= − 1

χ2

∂χ

∂t
= −ν2 ∂χ

∂t
.

Thus, χ(t) = χ0− 4t
3 and ν0(t) = 3

3χ0−4t . Notice that in finite time ν0(t) blows

up. It corresponds to the area of the corresponding curve converging to zero.

See discussions in [42, §7.1]. In [42, §8.1] bounds on the time of blow up are

presented in terms of minimal and maximal affine curvature ν.

Denote the above solution as ν0(t). Notice that one needs to rescale ν,

e.g., to keep the area inside the domain fixed. If no rescaling is done, then the

domain collapses to a point. Indeed, let ν(s, t) = ν0(t) + ε∆ν(s, t) for small ε.

Then we get

∂ν

∂t
=
∂ν0

∂t
+ ε

∂∆ν

∂t

=
4

3
(ν2

0 + 2εν0∆ν + ε2∆ν2) +
1

3
(ν0)ss +

1

3
ε∆νss.

Simplifying,
∂∆ν

∂t
=

4

3
(2ν0∆ν + ε∆ν2) +

1

3
∆νss.
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Rewriting as a Fourier expansion

∆ν(s, t) =
∑
k∈Z

∆νk(t)e
iks,

we obtain

∂∆νk
∂t

=

Ç
8

3
ν0(t)− k2

3

å
∆νk +O(ε(∆ν2)k),

where (∆ν2)k is the k’th Fourier coefficient of ∆ν2. This shows that for each

|k| >
»

8 ν0(t) such that ∆νk 6= 0, for ε small enough, this Fourier coefficient

decays along the ALS flow. We will use this fact to prove that locally in time

the functional ∆q decays monotonically; see Lemma 52.

F.5. Preservation of rational caustics. In this section we relate the pres-

ence of an integrable rational caustic of rotation number 1/q to properties of

resonant Fourier coefficients, i.e., those with index divisible by q.

Let us first recall the following facts. In [37, §4] they study small pertur-

bation of ellipses. Following notation of [37, §4], we have that the perimeter

Lε = L0 + εL1 +O(ε2),

is given by [37, formula (5)]. (Here we the drop subindex q.) Then by [37,

Prop. 4.1] (see also Proposition 20), the linear term in ε has the form

L1(ϕ) = 2λ
q−1∑
k=0

µ1(ϕkq ),(76)

where λ is the parameter associated to a given caustic (see also Section 3.2) and

µ1 represents the first-order perturbation (in ε) of the boundary (see Section 5).

Let us now consider the usual polar coordinates and let Ω = {(ρ, ϕ) :

ρ = ρ0} be the circle centered at the origin and radius ρ0. We are interested

in studying small perturbations given by

Ωε = {(ρε, ϕ) : ρε = ρ0 + ερ1(ϕ) +O(ε2)},(77)

where ρ1 is a Cr smooth function for r ≥ 2. Assume by rescaling that ρ1(0) = 1.

Expand the perturbation in the Fourier series:

ρ1(ϕ) =
∑
j∈Z

ρ
(j)
1 eijϕ.

We show that for perturbations of the circle and for an appropriate choice

of q, the existence of integrable rational caustics depends on resonant Fourier

coefficients, i.e., those divisible by q. In fact, plug the rigid rotation ϕ 7→ ϕ+ 2π
q

into (76). Denote by ∆q(ρ1, ε) the value of the function ∆1/q associated to
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the domain Ωε, as defined in (74). Using (76) we have that for some c > 0

independent of ε,

Lε =L0 + cε
q−1∑
k=0

ρ1

Å
ϕ+

2πk

q

ã
+O(ε2)

=L0 + cε
q−1∑
k=0

∑
j∈Z

ρ
(j)
1 e

ij
(
ϕ+ 2πk

q

)
+O(ε2).

Thus,

∆q(ρ1, ε) := c2ε2 q2
∑

j∈Z\{0}
(ρ

(jq)
1 )2 +O(ε3).(78)

Consider the domain Ωε defined in (77). The vanishing of the function

∆q(ρ1, ε) detects the existence of an integrable rational caustic of rotation

number 1/q. According to our computations this function has an asymptotic

expansion (78). Denote by Ωt
ε the image of Ωε under the ALS flow (75).

Lemma 52. Let ρε(ϕ), ε ≥ 0 be the family of domains in (77). Assume

that q > 2 and that ρ
(q)
1 6= 0. Then, for ε sufficiently small, the family of

domains Ωt
ε for 0 ≤ t ≤ ε satisfies

∂∆t
q(ρ1, ε)

∂t
< 0.

Proof. Notice that up to a affine-length parametrization, s and polar angle

ϕ are the same. Consider the derivative with respect to the affine length

shortening flow (75) of ∆t
q(ρ1, ε). According to (78), this leads to the derivative

of the resonant Fourier coefficients. For each j > 0, we have that

∂ρ
(jq)
1

∂t
= ε

Ç8

3
ρ

(0)
1 −

j2q2

3

å
ρ

(jq)
1 + ε

∑
p∈Z\{0}

ρ
(jq−p)
1 ρ

(p)
1 +O(ε2)

 .
It follows from (76) and (78) that

∆t
q,ε = c2ε2q2

∑
j∈Z\{0}

(
ρ

(jq)
1

)2
+O(ε3).

Consider
∂

∂t

∑
j∈Z\{0}

(
ρ

(jq)
1

)2
=

= ε
∑
j∈Z\0

Ç8

3
ρ

(0)
1 −

j2q2

3

å (
ρ

(jq)
1

)2
+ ε

∑
p∈Z\{0}

ρ
(jq−p)
1 ρ

(p)
1 ρ

(jq)
1 +O(ε2)

 .
Since ρ

(q)
1 6= 0, for ε small enough, the last expression is negative. �
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Concluding remarks. This lemma is certainly only an example of, what we

believe, is a much more general phenomenon. More specifically, we conjecture

Monotonicity of the functional ∆q along the ALS flow (75).13

The next step would be a local analysis of the ALS flow in a neighborhood

of ellipses. It would be more challenging to extend this local analysis to the

space of strictly convex domains, and this will be an important step to prove

the global Birkhoff conjecture.
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