
Geom. Funct. Anal.

https://doi.org/10.1007/s00039-018-0440-4
c© 2018 Springer International Publishing AG,
part of Springer Nature GAFA Geometric And Functional Analysis

NEARLY CIRCULAR DOMAINS WHICH ARE INTEGRABLE
CLOSE TO THE BOUNDARY ARE ELLIPSES

Guan Huang · Vadim Kaloshin · Alfonso Sorrentino

Abstract. The Birkhoff conjecture says that the boundary of a strictly convex
integrable billiard table is necessarily an ellipse. In this article, we consider a stronger
notion of integrability, namely integrability close to the boundary, and prove a local
version of this conjecture: a small perturbation of an ellipse of small eccentricity
which preserves integrability near the boundary, is itself an ellipse. This extends
the result in Avila et al. (Ann Math 184:527–558, ADK16), where integrability was
assumed on a larger set. In particular, it shows that (local) integrability near the
boundary implies global integrability. One of the crucial ideas in the proof consists
in analyzing Taylor expansion of the corresponding action-angle coordinates with
respect to the eccentricity parameter, deriving and studying higher order conditions
for the preservation of integrable rational caustics.

1 Introduction

A mathematical billiard is a system describing the inertial motion of a point mass
inside a domain, with elastic reflections at the boundary (which is assumed to have
infinite mass). This simple model has been first proposed by G.D. Birkhoff as a
mathematical playground where “the formal side, usually so formidable in dynamics,
almost completely disappears and only the interesting qualitative questions need to
be considered ”, [BIR27, pp. 155–156].

Since then billiards have captured much attention in many different contexts,
becoming a very popular subject of investigation. Not only is their law of motion very
physical and intuitive, but billiard-type dynamics is ubiquitous. Mathematically,
they offer models in every subclass of dynamical systems (integrable, regular, chaotic,
etc.); more importantly, techniques initially devised for billiards have often been
applied and adapted to other systems, becoming standard tools and having ripple
effects beyond the field.

Let us first recall some properties of the billiard map. We refer to [SIB04,TAB05]
for a more comprehensive introduction to the study of billiards.

Let Ω be a strictly convex domain in R
2 with Cr boundary ∂Ω, with r ≥ 3. The

phase space M of the billiard map consists of unit vectors (x, v) whose foot points
x are on ∂Ω and which have inward directions. The billiard ball map f : M −→ M
takes (x, v) to (x′, v′), where x′ represents the point where the trajectory starting
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Figure 1: A Birkhoff billiard

at x with velocity v hits the boundary ∂Ω next, and v′ is the reflected velocity,
according to the standard reflection law: the angle of incidence is equal to the angle
of reflection (Figure 1).

Remark 1.1. Observe that if Ω is not convex, then the billiard map is not continu-
ous; in this article we will be interested only in strictly convex domains (see Remark
1.4). Moreover, as pointed out by Halpern [HAL77], if the boundary is not at least
C3, then the (continuous) Billiard flow might not be complete (or, equivalently, there
might be non-trivial orbits with finite total length).

Let us introduce coordinates on M . We suppose that ∂Ω is parametrized by arc-
length s and let γ : R

|∂Ω|Z −→ R
2 denote such a parametrization, where |∂Ω| denotes

the length of ∂Ω. Let θ be the angle between v and the positive tangent to ∂Ω at
x. Hence, M can be identified with the annulus A = R

|∂Ω|Z × (0, π) and the billiard
map f can be described as

f : A −→ A

(s, θ) �−→ (s′, θ′).

In particular f can be extended to Ā = R

|∂Ω|Z × [0, π] by fixing f(s, 0) = (s, 0)
and f(s, π) = (s, π) for all s.

It is easy to check that the billiard map f preserves the area form sin θ ds ∧ dθ.
If we denote by

�(s, s′) := ‖γ(s) − γ(s′)‖
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the Euclidean distance between two points on ∂Ω, then one can check that
⎧
⎪⎨

⎪⎩

∂�

∂s
(s, s′) = − cos θ

∂�

∂s′ (s, s
′) = cos θ′ .

(1.1)

Remark 1.2. If we consider the lift to the universal cover and introduce new coor-
dinates (x, y) = (s, − cos θ) ∈ R× (−1, 1), then the billiard map is a twist map with
� as generating function and it preserves the area form dx∧ dy. See [SIB04,TAB05].

Despite the apparently simple (local) dynamics, the qualitative dynamical prop-
erties of billiard maps are extremely non-local. This global influence on the dynam-
ics translates into several intriguing rigidity phenomena, which are at the basis of
several unanswered questions and conjectures (see for example [ADK16,DKW17,
HKS16,KS,SIB04,SOR15,TAB05]). Amongst many, in this article we will address
the question of classifying integrable billiards, also known as Birkhoff conjecture.

1.1 Integrable billiards and Birkhoff conjecture. The easiest example of
billiard is given by a billiard in a disc D = DR of radius R. It is easy to check in
this case that the angle of reflection remains constant at each reflection (see also
[TAB05, Chapter 2]). If we denote by s the arc-length parameter (i.e., s ∈ R/2πRZ)
and by θ ∈ (0, π) the angle of reflection, then the billiard map has a very simple
form:

f(s, θ) = (s + 2R θ, θ).

In particular, θ stays constant along the orbit and it represents an integral of motion
for the map. Moreover, this billiard enjoys the peculiar property of having the phase
space—which is topologically a cylinder—completely foliated by homotopically non-
trivial invariant curves Γθ0 = {θ ≡ θ0}. These curves correspond to concentric circles
of radii ρ0 = R cos θ0 and are examples of what are called caustics, which are defined
as follows:

A smooth convex curve Γ ⊂ Ω is called a caustic, if whenever a trajectory is
tangent to it, then it remains tangent after each reflection (see Figure 2).

Notice that in the circular case, each caustic Γ corresponds to an invariant curve
of the associated billiard map f and, therefore, has a well-defined rotation number.

A billiard in a disc is an example of an integrable billiard. There are different ways
to define global/local integrability for billiards (the equivalence of these notions is
an interesting problem itself):

- either through the existence of an integral of motion, globally or locally near
the boundary (in the circular case an integral of motion is given by I(s, θ) = θ),

- or through the existence of a (smooth) foliation of the whole phase space or of
an open subset (for example, of a neighborhood of the boundary {θ = 0}), con-
sisting of invariant curves of the billiard map; for example, in the circular case
these are given by Γθ. This property translates (under suitable assumptions)
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Figure 2: Billiard in a disc

into the existence of a (smooth) family of caustics, globally or locally near the
boundary (in the circular case, the concentric circles of radii R cos θ).

In [BIA93], Misha Bialy proved the following result concerning global integrabil-
ity (see also [WOJ94]):

Theorem (Bialy). If the phase space of the billiard ball map is globally foliated by
continuous invariant curves which are not null-homotopic, then it corresponds to a
billiard in a disc.

However, while circular billiards are the only examples of global integrable bil-
liards, non-global integrability itself is still an intriguing open question. One could
consider a billiard in an ellipse: this is in fact integrable, yet the dynamical picture
is very distinct from the circular case: as it is showed in Figure 3, each trajectory
which does not pass through a focal point, is always tangent to precisely one confocal
conic section, either a confocal ellipse or the two branches of a confocal hyperbola
(see for example [TAB05, Chapter 4]). Thus, the confocal ellipses inside an elliptic
billiard are convex caustics, but they do not foliate the whole domain: the segment
between the two foci is left out (describing the dynamics explicitly is much more
complicated than in the circular case: see for example [TAB96]).

Question (Birkhoff). Are there other examples of integrable billiards?

Remark 1.3. Although some vague indications of this question can be found in
[BIR27], to the best of our knowledge, its first appearance as a conjecture was
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Figure 3: Billiard in an ellipse

in a paper by Poritsky [POR50, Section 9],1 which was published several years
after Birkhoff’s death. Thereafter, references to this conjecture (either as Birkhoff
conjecture or Birkhoff-Poritsky conjecture) repeatedly appeared in the literature: see,
for example, Gutkin [GUT03, Section 1], Moser [MOS03, Appendix A], Tabachnikov
[TAB95, Section 2.4], etc.

Remark 1.4. In [MAT82] Mather proved the non-existence of caustics (hence, the
non-integrability) if the curvature of the boundary vanishes at least at a point. This
observation justifies the restriction of our attention to strictly convex domains.

Remark 1.5. Interestingly, Treschev in [TRE13] gives indication that there might
exist analytic billiards, different from ellipses, for which the dynamics in a neighbor-
hood of the elliptic period-2 orbit is conjugate to a rigid rotation. These billiards
can be seen as an instance of local integrability; however, this regime is somehow
complementary to the one conjectured by Birkhoff: one has local integrability in a
neighborhood of an elliptic periodic orbit of period 2, while Birkhoff conjecture is
related to integrability in a neighborhood of the boundary. This gives an indication
that these two notions of integrability might differ.

Remark 1.6. The Birkhoff conjecture can be also thought as an analog, in the case
of billiards, of the following task: classifying integrable (Riemannian) geodesic flows
on T

2. The complexity of this question, of course, depends on the notion of integra-
bility that one considers. If one assumes that the whole space space is foliated by
invariant Lagrangian graphs (i.e., the system is C0-integrable), then it follows from
Hopf conjecture [BI94] that the associated metric must be flat. However, the question
becomes more challenging—and it is still open—if one considers integrability only

1 In [POR50, Footnote 1] Poritsky acknowledged that the results in the paper were obtained in
1927–29 while he was National Research Fellow in Mathematics at Harvard University, presumably
under the supervision of Birkhoff. Although the author does not attribute this conjecture explicitly
to Birkhoff, yet he cites many of his papers on the topic, hence it is reasonable to surmise Birkhoff’s
influence behind it.



GUAN HUANG ET AL. GAFA

on an open and dense set (global integrability), or assumes the existence of an open
set foliated by invariant Lagrangian graphs (local integrability). Example of glob-
ally integrable (non-flat) geodesic flows on T

2 are those associated to Liouville-type
metrics, namely metrics of the form

ds2 = (f1(x1) + f2(x2)) (dx2
1 + dx2

2).

A folklore conjecture states that these metrics are the only globally (resp. locally)
integrable metrics on T

2. A partial answer to this conjecture (global case) is pro-
vided in [BFM98], where the authors prove it under the assumption that the system
admits an integral of motion which is quadratic in the momenta. The question to
which we provide an affirmative answer in this article (local Birkhoff conjecture),
can be considered as an analog, in the billiard setting, of the above conjecture (local
case). It is interesting to point out, however, that—contrarily to what happens with
billiards—there is evidence that this local conjecture might be false for geodesic
flows (see [CK17]).

Despite its long history and the amount of attention that Birkhoff conjecture has
captured, it remains still open. As far as our understanding of integrable billiards is
concerned, the most important related results are the above–mentioned theorem by
Bialy [BIA93] (see also [WOJ94]), a result by Delshams and Ramı́rez-Ros [DR96]
in which they study entire perturbations of elliptic billiards and prove that any
nontrivial symmetric perturbation of the elliptic billiard is not integrable, a result
by Innami2 [INN02], in which he shows that the existence of caustics for all rotation
numbers in (0, 1/2) implies that the billiard must be an ellipse, and a more recent
result by Avila, De Simoi and Kaloshin [ADK16] in which they show a perturbative
version of this conjecture for ellipses of small eccentricity, assuming the existence
of caustics for all rotation numbers in (0, 1/3]. The latter result was generalised to
ellipses of any eccentricity by Kaloshin and Sorrentino [KS].

Let us introduce an important notion for this paper.

Definition 1.7. (i) We say that Γ is an integrable rational caustic for the billiard
map in Ω, if the corresponding (non-contractible) invariant curve consists of
periodic points; in particular, the corresponding rotation number is rational.

(ii) Let q0 ≥ 2. If the billiard map associated to Ω admits integrable rational
caustics of rotation number p/q for all 0 < p/q < 1/q0, we say that Ω is
q0–rationally integrable.

Remark 1.8. A simple sufficient condition for rational integrability is the following
(see [ADK16, Lemma 1]). Let CΩ denote the union of all smooth convex caustics of
the billiard in Ω; if the interior of CΩ contains caustics of rotation number p/q for
all 0 < p/q < 1/q0, then Ω is q0-rationally integrable.

Let us denote with Ee,c ⊂ R
2 an ellipse of eccentricity e and semi-focal distance

c. We state the following local version of Birkhoff conjecture.

2 We are grateful to M. Bialy for pointing out this reference.
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Conjecture 1.9. For any integer q0 ≥ 3, there exist e0 = e0(q0) ∈ (0, 1), m0 =
m0(q0), n0 = n0(q0) ∈ N such that the following holds. For each 0 < e ≤ e0 and
c ≥ 0, there exists ε = ε(e, c, q0) > 0 such that any q0-rationally integrable Cm0–
smooth domain Ω, whose boundary ∂Ω is Cn0– ε-close to an ellipse Ee,c, is itself an
ellipse.

In this paper we prove this conjecture in some cases and provide a proof for the
remaining ones based on certain non-degeneracy conditions. These non-degeneracy
conditions are explicit and computable: in Section 7 we provide a description of how
to implement an algorithm to verify them by means of symbolic computations.

More precisely, our main results are the following.

Theorem 1.1. Conjecture 1.9 holds true for q0 = 2, 3, 4, 5, with m0 = 40q0 and
n0 = 3q0.

Theorem 1.2. For any integer q0 ≥ 6, Conjecture 1.9 holds true with m0 = 40q0

and n0 = 3q0, provided that the q0 − 2 matrices (7.11)–(7.17) are non-degenerate.

Remark 1.10. (i) Case q0 = 2 was proven in [ADK16] (see also [INN02]).
(ii) Notice that ε(e, c, q0) → 0 as e → 0+. Non-zero e, in fact, produces asymmetry

and it is fundamental for our argument to work. The less e is, the smaller must
be the perturbations that allow one to stay in asymmetric regime. We point
out that ε does not need to go to 0 with e for q0 = 2 (see [ADK16]).

(iii) The smoothness exponent is probably not optimal. In the proof of one of
the key lemmata (Lemma 3.3), we have directly used certain C1-estimates
from [ADK16]. One may improve the smoothness exponent by deriving Cn esti-
mates instead.

(iv) Notice that we actually do not need the existence of all caustics of rotation
number less than 1/q0; in fact, we only use integrable rational caustics of rota-
tion numbers of the form j/q < 1/q0 for j = 1, 2, 3.

(v) Analysis of caustics of rotation numbers 2
2q+1 is fairly delicate 3. Either for a

domain close to the circle or for an arbitrary sufficiently smooth domain and
large q, the condition of preservation of caustics of rotation numbers 2

2q+1 and
1

2q+1 are the same to the leading order! Thus, to obtain a new condition from
caustics of rotation numbers 2

2q+1 we need a precise information about higher
order dependence on the rotation number. For small eccentricity e this can be
extracted from the Taylor expansion of the action-angle variables with respect
to the eccentricity parameter (see Appendix C for details). Without this precise
information our method would not work! This analysis can be considered as
the main novel feature of the present paper compared to [ADK16] and [KS].

(vi) The coefficients of matrices (7.11)–(7.17) are completely determined by the
e-expansions of the action-angle parametrization for the elliptic billiard map,

3 The same remark applies to rotation numbers 3
2q

, for q not divisible by 3.
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which, in turn, is explicitly given by elliptic integrals (see (3.2) and Appendix
C). In particular, the entries of these matrices are either 0, 1 or of the form
ξ cos−2j(wπ)e2j , where ξ ∈ Q, j ∈ N, w ∈ { 1

2k+1 , 2
2k+1 , 1

2k , 3
2k : k > j}. See also

Remarks 7.5 and 7.9.

2 The Strategy of the Proof

Let us consider the ellipse

Ee,c =
{

(x, y) ∈ R
2 :

x2

a2
+

y2

b2
= 1

}

,

centered at the origin and with semi-axes of lengths, respectively, 0 < b ≤ a; in

particular e denotes its eccentricity, given by e =
√

1 − b2

a2 ∈ [0, 1) and c =
√

a2 − b2

the semi-focal distance. Observe that when e = 0, then c = 0 and E0,0 degenerates
to a 1-parameter family of circles centered at the origin.

The family of confocal elliptic caustics in Ee,c is given by (see also Figure 3):

Cλ =
{

(x, y) ∈ R
2 :

x2

a2 − λ2
+

y2

b2 − λ2
= 1

}

0 < λ < b. (2.1)

Observe that the boundary corresponds to λ = 0, while the limit case λ = b corre-
sponds to the the two foci F± = (±

√
a2 − b2, 0). Clearly, for e = 0 we recover the

family of concentric circles described in Figure 2.
Denote T := R/2πZ. A more convenient coordinate frame for addressing our

question is provided by the so-called elliptic-polar coordinates (or, simply, elliptic
coordinates) (μ, ϕ) ∈ R≥0 × T, given by:

{
x = c cosh μ cos ϕ
y = c sinh μ sinϕ,

where c =
√

a2 − b2 > 0 represents the semi-focal distance (in the case e = 0, this
parametrization degenerates to the usual polar coordinates). Observe that for each
μ∗ > 0, the equation μ ≡ μ∗ represents a confocal ellipse.

Therefore, in these elliptic polar coordinates Ee,c becomes:

Ee,c = {(μ0, ϕ), ϕ ∈ T} ,

where μ0 = μ0(e) := cosh−1 (1/e). Then, any smooth perturbation Ω of the ellipse
Ee,c can be written in this elliptic-coordinate frame as

∂Ω = {(μ0 + μ(ϕ), ϕ) : ϕ ∈ T},

where μ(ϕ) is a small smooth 2π-periodic function; hereafter, we will adopt this
shorthand notation and write

∂Ω = Ee,c + μ(ϕ).

Before describing the strategy of our proof, let us first recall the scheme in
[ADK16], and then describe the needed adjustments.
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2.1 A preliminary scheme of proving Theorem 1.1 for q0 = 2. In
the case q0 = 2, Theorem 1.1 was proven in [ADK16] and we now describe the
proof therein. In order to get a clearer idea, let us start from the simplified case of
integrable infinitesimal deformations of a circle.

Let Ω0 be a circle centered at the origin. Let Ωε be a one-parameter family of
deformations, given in polar coordinates by

∂Ωε = {(μ0 + εμ(ϕ) + O(ε2), ϕ), ϕ ∈ T}.

Fix a parametrization of the boundary ϕ : T → T. Consider the Fourier expansion
of μ ◦ ϕ :

μ ◦ ϕ(θ) = μ′
0 +

∑

k>0

μ′
k,ϕ sin(kθ) + μ′′

k,ϕ cos(kθ).

Theorem 2.1 (Ramı́rez-Ros [RAM06]). If, for any sufficiently small ε, Ωε has
an integrable rational caustic Γε

1/q of rotation number 1/q, then for a certain

parametrization of the boundary4 ϕ1/q(θ), we have μ′
q,ϕ1/q

= μ′′
q,ϕ1/q

= 0.

Notice that in the case of circular billiards, ϕ1/q(θ) ≡ θ for all q > 2; however,
this stops to be true away from the circle (see (3.2) for the more general case of
elliptic billiards).

This more general framework allows us to explain our strategy better.
Let us now assume that the domains Ωε are 2-rationally integrable for all suffi-

ciently small ε and ignore for a moment dependence on the parametrization; then,
the above theorem implies that μ′

k = μ′′
k = 0 for k > 2, i.e.,

μ(ϕ) = μ′
0 + μ′

1 cos ϕ + μ′′
1 sinϕ + μ′

2 cos 2ϕ + μ′′
2 sin 2ϕ

= μ′
0 + μ∗

1 cos(ϕ − ϕ1) + μ∗
2 cos 2(ϕ − ϕ2),

where ϕ1 and ϕ2 are appropriately chosen phases.

Remark 2.1. Observe that

• μ′
0 corresponds to an homothety;

• μ∗
1 cos(ϕ − ϕ1) corresponds to a translation in the direction forming an angle

ϕ1 with the polar semi-axis {ϕ = 0};
• μ∗

2 cos 2(ϕ−ϕ2) corresponds to a deformation of the disc into an ellipse of small
eccentricity, whose major axis forms an angle ϕ2 with the polar semi-axis.

This implies that, infinitesimally (as ε → 0), 2-rationally integrable deformations
of a circle are tangent to the 5-parameter family of ellipses.

Observe that in principle in the above theorem one may need to take ε → 0 as
q → ∞. However, note that the cases we have to deal with correspond to ε > 0 small,
but not infinitesimal; hence, one cannot use directly the above scheme to prove the
result and a more elaborate strategy needs to be adopted. Let us describe it more
precisely.

4 This parametrization of the boundary can be found in Lemma 3.3.
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2.2 The actual scheme of the proof of Theorem 1.1 for q0 = 2. Let
Ee,c be an ellipse of small eccentricity e and semi-focal distance c. Let (μ, ϕ) be the
associated elliptic-coordinate frame. Any domain Ω whose boundary is close to Ee,c,
can be written in the elliptic-coordinate frame associated to Ee,c as

∂Ω = {(μ0 + μ(ϕ), ϕ) : ϕ ∈ T},

where μ(ϕ) is a (small) smooth 2π-periodic function. The strategy used in [ADK16]
proceeds as follows (keep in mind that the ellipse Ee.c admits all integrable rational
caustics of rotation number 1/q for q > 2).

Step 1: Derive a quantitative necessary condition for the preservation of an inte-
grable rational caustic of a given rotation number (see [ADK16, Theorem 3] or
Lemma 3.3 below).

Step 2: Define the Deformed Fourier modes

{c0, cq, c−q}q>0

associated to the ellipse Ee,c. They satisfy the following properties:

• (Relation with Fourier Modes) There exist (see [ADK16, Lemma 20])
C∗(e, c) > 0 with C∗(e, c) → 0 as e → 0+, and a properly chosen parametriza-
tion of the boundary such that

‖c0 − 1‖C0 ≤ C∗(e, c)

and for any q ≥ 1
{

‖cq − cos(q ·)‖C0 ≤ q−1 C∗(e, c)
‖c−q − sin(q ·)‖C0 ≤ q−1 C∗(e, c).

(2.2)

• (Transformations preserving integrability) The first five functions

c0, c1, c−1, c2, c−2

correspond to infinitesimal generators of deformations preserving the class of
ellipses: namely, homotheties, translations and hyperbolic rotations about an
arbitrary axis.

• (Annihilation of inner products) Consider the one-parameter family of
domains Ωε, ε ∈ (−ε0, ε0), written in the elliptic-coordinate frame associ-
ated to the ellipse Ee,c,

∂Ωε := Ee,c + εμ.

For any q > 2, if Ωε admits an integrable rational caustic of rotation number
1/q for all sufficiently small ε, then

〈μ, cq〉 = 0, 〈μ, c−q〉 = 0, (2.3)
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where 〈·, ·〉 is a suitably weighted L2 inner product.
Notice that the functions c±q can be explicitly defined using elliptic integrals
via action-angle coordinates.

• (Linear independence and Basis property) For sufficiently small eccentricities,
the functions {c0, cq, c−q : q > 0} form a (non-orthogonal) basis of L2(T).

Step 3 (Approximation): Using the annihilation of the inner products, for the
domain ∂Ω = Ee,c + μ with small eccentricity e, one can find another ellipse E ′

such that

∂Ω = E ′ + μ′ and ‖μ′‖C1 ≤ 1
2
‖μ‖C1 .

Applying this result to the best approximation of Ω by an ellipse and then arguing
by contradiction, allow us to conclude that Ω itself must be an ellipse.

2.3 The adjusted scheme for the case q0 > 2. Now we describe how to
modify the above strategy to deal with the case q0 > 2.

Fix an ellipse Ee,c of eccentricity e > 0 and semi-focal distance c. In Section 3.1
we will introduce the action-angle coordinates associated to the billiard problem in
Ee,c (it turns out that for e = 0 these action-angle coordinates degenerate to the
polar coordinates (ρ, θ)).
Step 1′: For small e > 0, we study the Taylor expansion, with respect to e, of the
action-angle coordinates. Using this expansion, we derive the necessary condition for
the preservation of integrable rational caustics, in terms of the Fourier coefficients of
the function μ, up to the precision of order e2N , for some positive integer N = N(q0).
See Section 3 and equality (3.8) for more details.
Step 2′: We define the deformed Fourier modes {C0, Cq, C−q}q>0, similarly to what
described before. Fix some r ∈ N; these functions satisfy the following properties.

• (Relation with Fourier mode) We have C0 = 1,

Cq(·) = Vq(·), C−q(·) = V−q(·), 0 < q ≤ q0,

and there exists C∗(e) > with C∗(e) → 0 as e → 0+, such that
{

‖ Cq(·) − Vq(·) ‖r ≤ C∗(e)/q,

‖C−q(·) − V−q(·)‖r ≤ C∗(e)/q,
q > q0,

where ‖ · ‖r is the norm in the Sobolev space Hr(T), and Vq are the zero
average functions on T, such that

{
V(r)

q (·) = cos(q ·), q > 0
V(r)

q (·) = − sin(q ·), q < 0,

where V(r)
q denotes the rth derivative of Vq. The constant C∗(e) here can be

chosen as in (2.2).
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• (Linear independence and Basis property) For small eccentricities, the set of
functions {C0, Cq, C−q, q ∈ N+} form a (non-orthogonal) basis of the Hilbert
space Hr (see Lemma 8.3).

• (Annihilation of inner products) From the existence of integrable rational
caustics with rotation numbers 1/q, q > q0, we deduce the following relations:

〈μ, C±q〉r = O(q7‖μ‖1+β
C1 ), β > 0,

where 〈·, ·〉r is the inner product of the Hilbert space Hr(T) (see Lemma 8.9).
Observe that since q0 ≥ 3, with respect to the previous scheme we have lost

finitely many annihilation conditions:

〈μ, Cq〉r = 〈μ, C−q〉r = 0, 3 ≤ q ≤ q0. (2.4)

Hence, we need to find a way to recover them. Our goal becomes then to show:

〈μ, Cq〉r = O(e2), 〈μ, C−q〉r = O(e2), 3 ≤ q ≤ q0. (2.5)

In particular, we manage to prove them in the following way.

• Case q0 = 3: We lose a pair of conditions (2.4), corresponding to q = 3. In
Section 4 we study the necessary conditions for the existence of integrable
rational caustics of rotation numbers 1/5, 1/7, 2/7. We use the expansions,
with respect to e, of the resulting equalities, up to the precision O(e6), to
derive a system of linear equations (see (4.8)) for the 3rd, 5th, 7th Fourier
coefficients. Solving this linear system will provide us with (2.5) for q = 3.

• Case q0 = 4: In this case we lose two pairs of conditions (2.4), corresponding
to q = 3, 4. In Section 5 we derive (2.5) for q = 3, 4; this will be achieved in
two steps:

- To recover (2.5) for q = 3, we study the necessary conditions for
the existence of integrable rational caustics of rotation numbers
1/5, 1/7, 1/9, 2/9, written in terms of the Fourier coefficients of μ, and
considering their expansions, with respect to e, up to order O(e8). We
then derive a linear system for the 3rd, 5, 7th, 9th Fourier coefficients,
whose solution will provide us with (2.5) for q = 3.

- To recover (2.5) for q = 4, we study the necessary conditions for
the existence of integrable rational caustics of rotation numbers
1/6, 1/8, 1/10, 1/12, 1/14, 3/14, which give rise to a system of lin-
ear equation for the 4th, 6th, 8th, 10th, 12th, 14th Fourier coefficients;
similarly as above, the solution of this system will prove (2.5) for q = 4.
• Case q0 = 5 and the general case: Along the same lines described

in the previous two items, the case q0 = 5 will be discussed in Section
6. Moreover, in Section 7 we will outline a general (conditional)
procedure to derive (2.5) for any q0 ≥ 6; the implementation of
this scheme is based on the assumption that certain explicit non-
degeneracy conditions for the corresponding linear systems hold (see
Remarks 7.5 and 7.9).
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Step 3′: Finally, once the previous steps are completed, we adapt the approximation
arguments from [ADK16] and show that Ω must be an ellipse; see Section 9 for more
details.

3 Necessary Conditions for the Existence of a Caustic with
Rational Rotation Number

3.1 Elliptic billiard dynamics and caustics. Now we want to provide a more
precise description of the billiard dynamics in Ee,c. We rely on notations of Section
2. In addition, we need the following notations.

Let 0 ≤ k < 1, we define elliptic integrals and Jacobi Elliptic functions:

• Incomplete elliptic integral of the first kind:

F (ϕ; k) :=
∫ ϕ

0

1
√

1 − k2 sin2 τ
dτ.

• Complete elliptic integral of the first kind:

K(k) := F
(π

2
; k

)
.

• Jacobi elliptic functions are obtained by inverting incomplete elliptic integrals
of the first kind. Precisely, if

u := F (ϕ; k) =
∫ ϕ

0

1
√

1 − k2 sin2 τ
dτ,

then we define

ϕ := am(u; k).

The Jacobi elliptic functions are given by:

sn (u; k) := sin(am(u; k)) = sin(ϕ),
cn (u; k) := cos(am(u; k)) = cos(ϕ).

The following result has been proven in [CF88] (see also [DCR17, Lm. 2.1]).

Proposition 3.1. Let λ ∈ (0, b) and let

k2
λ :=

a2 − b2

a2 − λ2
and δλ := 2F (arcsin(λ/b); kλ).

Let us denote, in cartesian coordinates, qλ(t) := (a cn (t; kλ), b sn (t; kλ)). Then, for
every t ∈ [0, 4K(kλ)) the segment joining qλ(t) and qλ(t + δλ) is tangent to the
caustic Cλ, defined in (2.1).
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Observe that:

• kλ is a strictly increasing function of λ ∈ (0, b); in particular kλ → e as
λ → 0+, while kλ → 1 as λ → b−. Observe that kλ represents the eccentricity
of the ellipse Cλ.

• δλ is also a strictly increasing function of λ ∈ (0, b); in fact, F (ϕ; k) is clearly
strictly increasing in both ϕ and k ∈ [0, 1). Moreover, δλ → 0 as λ → 0+, and
δλ → +∞ as λ → b−.

Let us now consider the parametrization of the boundary induced by the dynam-
ics corresponding to the caustic Cλ:

Qλ : R/2πZ −→ R
2

θ �−→ qλ

(
4K(kλ)

2π
θ

)

.

We define the rotation number associated to the caustic Cλ to be

ω(λ, e) :=
δλ

4K(kλ)
=

F (arcsin(λ/b); kλ)
2K(kλ)

. (3.1)

In particular ω(λ, e) is strictly increasing in λ and ω(λ, e) −→ 0 as λ → 0+, while
ω(λ, e) → 1

2 as λ → b−. In addition, for every θ ∈ T, the orbit starting at Qλ(θ) and
tangent to Cλ, hits the boundary at Qλ(θ + 2π ωλ).

Denote the inverse of the function ω(λ, e), by λω = λ(e, ω). Notice that in the
Taylor expansion of ω(λ, e) only even powers of e appear, hence the same holds for
λ(e, ω). Moreover,

ω(λ, 0) =
arcsin(λ/b)

π
,

and it is straightforward to show that the following estimate holds.

Lemma 3.2. There exists C > 0 such that for each e ∈ [0, 1
2 ] and ω ∈ (0, 1/2), we

have

|λ(e, ω) − b sin ωπ| ≤ Ce2.

We want to write the boundary parametrization induced by the caustic Cλ,
expressed in elliptic coordinates (μ, ϕ), namely determine the function Sλ(θ) =
(μλ(θ), ϕλ(θ)) = (μ0, ϕλ(θ)) such that the orbit starting at Sλ(θ) (in elliptic coordi-
nates) and tangent to Cλ, hits the boundary at Sλ(θ + 2π ωλ).

It is easy to deduce from the above expression that

ϕλ(θ) = ϕ(θ, λ, e) := am
(

4K(kλ)
2π

θ; kλ

)

. (3.2)

Therefore, we have Sλ(θ) =
(
μ0, am

(
4K(kλ)

2π θ; kλ

))
. The parametrization given in

(3.2) is called the action-angle parametrization of the boundary, associated to the
caustic Cλ.
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Below, if we need to emphasize the rotation number of the associated caustic,
we will write Cλω

.
Fix a positive integer m and consider a perturbation of the ellipse Ee,c, denoted

Ωε, i.e., in the elliptic coordinates

∂Ωε = {(μ, ϕ) : μ = μ0+με(ϕ), ϕ ∈ [0, 2π)},

where με(ϕ) is a 2π-periodic Cm-function with ‖με‖Cm ≤ M and ‖με‖C1 ≤ ε, for
some sufficiently small ε > 0.

Lemma 3.3. For any rational number p/q ∈ (0, 1/2) in lowest terms, if the billiard
inside Ωε admits an integrable rational caustic Cε

λp/q
of rotation number p/q, then

there exist constants cp/q and C = C(m) such that

λp/q

q∑

k=1

με

(

ϕλp/q

(

θ +
kp

q
2π

))

= cp/q + Υp/q(θ), (3.3)

where5 Υp/q ∈ Cm−1(T) and

‖Υp/q‖Cm−1 ≤ Cq ‖Υp/q‖C0 ≤ Cq7‖με‖2
C1 .

Remark 3.4. We need the higher regularity estimates from this lemma to prove
Lemma 8.9.

Proof. Let ϕk, k = 0, . . . , q − 1, be the vertices of the maximal (p, q)-gon inscribed
in the ellipse Ee,c, tangent to the caustic C0

λp/q
of the billiard map in Ee,c, with ϕ0

being θ-dependent. Let ϕε
k, k = 0, . . . , q−1, be the vertices of the maximal (p, q)-gon

inscribed in Ωε, tangent to the caustic Cε
λp/q, with ϕε

0 = ϕ0. Then, by Lemma 5 in
[ADK16], we have that there exists C > 0, independent of q, such that

|ϕk − ϕε
k| ≤ Cq3‖με‖2

C1 , k = 0, . . . , q − 1. (3.4)

For ‖με‖C1 small enough, the generating function of the billiard dynamics inside Ωε

is given by

hε(ϕ, ϕ′) = h0(ϕ, ϕ′) + h1(ϕ, ϕ′) + h2(ϕ, ϕ′),

where h0(ϕ, ϕ′) is the generating function of the billiard dynamics inside the ellipse
Ee,c and

‖h1(ϕ, ϕ′)‖C1 ≤ 2‖με‖C1 ‖h2(ϕ, ϕ′)‖C0 < C‖με‖2
C1 ,

5 We drop dependence on ε in the notations.
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and

‖h1‖Cm + ‖h2‖Cm ≤ C.

Using [DR13, Proposition 4.1], we deduce

q−1∑

k=0

h1(ϕk, ϕk+1) = 2λp/q

q−1∑

k=0

με(ϕk). (3.5)

By the existence of an integrable rational caustic with rotation number p/q for the
billiard dynamics inside Ωε, we have

L(ϕ) :=
q−1∑

k=0

hε(ϕε
k, ϕ

ε
k+1) = const., whereϕε

0 = ϕ. (3.6)

Since

∑

k=1

h0(ϕε
k, ϕ

ε
k+1) =

q−1∑

k=0

[
h0(ϕε

k, ϕ
ε
k+1) − h0(ϕk, ϕk+1) + h0(ϕk, ϕk+1)

]

=
q−1∑

k=1

[
(∂1h0(ϕk, ϕk+1) + ∂2h0(ϕk−1, ϕk))(ϕε

k − ϕk) + h0(ϕk, ϕk+1)

+ O(|ϕε
k − ϕk|2)

]

=
q−1∑

k=0

h0(ϕk, ϕk+1) + Υ0
p/q,

with

‖Υ0
p/q‖C0 = O(q7‖με‖2

C1), ‖Υ0
p/q‖Cm ≤ q C0(m),

and

q−1∑

k=0

h1(ϕε
k, ϕ

ε
k+1) =

q−1∑

k=0

h1(ϕk, ϕk+1) + Υ1
p/q,

with

‖Υ1
p/q‖C0 = O(q7‖με‖2

C1), ‖Υ1
p/q‖Cm−1 ≤ q C1(m),

using the fact that

ϕk = ϕλp/q

(

θ +
pk

q
2π

)

, k = 0, . . . , q − 1,

the assertion of the lemma follows from (3.5) and (3.6).
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Let us consider the Fourier series of με(ϕ),

με(ϕ) = μ′
0 +

+∞∑

k=1

ak cos(kϕ) + bk sin(kϕ).

Now substitute into με(ϕ) the action-angle parametrization ϕ = ϕλ(θ), and expand
it with respect to the eccentricity e. By Lemma C.1, we obtain, for any positive
integer N ∈ N, N ≤ m − 1, that

με(ϕ(θ, λ, e)) = με(θ) +
N∑

n=1

Pn(θ)
ane2n

(a2 − λ2)n
+ O(‖με‖CN+1e2N+2), (3.7)

where

Pn(θ) =
+∞∑

k=1

n∑

l=−n

ξn,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,

and ξn,l(k) are polynomials in k (see Appendix C). Let us now recall the following
elementary identities (we leave the proof to the reader).

Lemma 3.5. Let 0 < p/q ∈ Q in lowest terms. If n ∈ N\qN, then

q∑

m=1

cos
(

n

(

θ +
pm

q
2π

))

≡ 0 and

q∑

m=1

sin
(

n

(

θ +
pm

q
2π

))

≡ 0.

If n ∈ qN, then

q∑

m=1

cos
(

n

(

θ +
pm

q
2π

))

≡ q cos nθ ,

q∑

m=1

sin
(

n

(

θ +
pm

q
2π

))

≡ q sin nθ.

If we apply the above equalities to (3.3) and (3.7), we obtain

+∞∑

j=1

aj cos(jq θ) + bj sin(jq θ)

+
N∑

n=1

n∑

l=−n

ξn,l(jq − 2l)
(
ajq−2l cos(jq θ) + bjq−2l sin(jq θ)

) ane2n

(a2 − λ2
p/q)

n

= O(‖με‖CN+1e2N+2 + λ−1
p/qq

7‖με‖2
C1) +

cp/q

q
− μ′

0.

Multiplying both sides by cos(q θ) and integrating with respect to θ from 0 to
2π, we get the following prop.



GUAN HUANG ET AL. GAFA

Proposition 3.6. Let 0 < p/q ∈ Q∩ (0, 1) and assume that Ω admits an integrable
rational caustic of rotation number p/q. Let N ∈ N such that q > 2N . Then:

aq +
N∑

n=1

∑

|l|≤n

ξn,l(q − 2l) aq−2l
ane2n

(a2 − λ2
p/q)

n

= O(e2N+2‖με‖CN+1 + λ−1
p/qq

7‖με‖2
C1). (3.8)

Similarly, if we multiply both sides by sin qθ and integrate with respect to θ from
0 to 2π, we obtain the analogous equality for bq.

4 The Case q0 = 3

In this section we consider a 3-rationally integrable domain Ω, whose boundary is
C3–close to an ellipse Ee,c, i.e., for a C3–small function μ(ϕ) we have

∂Ω = Ee,c + μ(ϕ).

Let

μ(ϕ) = μ′
0 +

+∞∑

k=1

ak cos(kϕ) + bk sin(kϕ),

and assume

‖μ‖C1 ≤ e6. (4.1)

We will show that the higher order relations on the existence of integrable rational
caustics of rotation numbers 1

2k+1 , k ≥ 1, and 2
7 imply that

a3 = O(e2‖μ‖C3), b3 = O(e2‖μ‖C3). (4.2)

Remark 4.1. The proof in this case consists of one step and does not require any
other iteration of the same argument (compare also with Remarks 5.1 and 6.1).

For simplicity, we assume that the semi-major axis of Ee,c equals to 1, i.e., c = e,
and we denote it simply by Ee.

Let us start by observing the following lemma, which is a special case of Lemma
5.2 (and of Lemma 7.1 for k0 = 2).

Lemma 4.2. a5 = O(e2‖μ‖C1), a7, a9, a11 = O(e4‖μ‖C2).

Remark 4.3. Although we do not provide a direct proof of this lemma, let us point
out that it exploits the existence of integrable rational caustics of rotation numbers
1
5 , 1

7 , 1
9 , 1

11 , and 1
13 .

Let us now show how property (4.2) follows from this lemma.
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• From the existence of an integrable rational caustic with rotation number
1/5, using (3.8) and (4.1) with N = 1, we deduce that

a5 +
[
ξ1,−1(7) a7 + ξ1,1(3) a3

] e2

1 − λ2
1/5

+ O(e4‖μ‖C2) = 0,

where ξ1,±1(k) = ± k
16 (see Appendix C). Hence, it follows from Lemmata 3.2

and 4.2 that

a5 +
3a3

16
e2(1 + O(e2))

cos2 π
5

= O(e4‖μ‖C2). (4.3)

which implies

a5 +
3a3

16
e2

cos2 π
5

= O(e4‖μ‖C2). (4.4)

• From the existence of an integrable rational caustic with rotation number
1/7, using (3.8) and (4.1) with N = 2, we obtain that

a7 +
2∑

n=1

n∑

l=−n

ξn,l(7 − 2l) a7−2l
e2n

(1 − λ2
1/7)

n
+ O(e6‖μ‖C3) = 0,

where ξ2,2(k) = k2+k
512 (see Appendix C).

Observe that, as it follows from Lemma 3.2,

1
(1 − λ2

ω)n
=

1 + O(e2)
cos2n(πω)

. (4.5)

Hence, we obtain:

a7 +
2∑

n=1

n∑

l=−n

ξn,l(7 − 2l) a7−2l
(1 + O(e2))
cos2n(π

7 )
e2n = O(e6‖μ‖C3),

which implies, using the estimates in Lemma 4.2, that

a7 +
5a5

16
e2

cos2(π
7 )

+
12a3

512
e4

cos4(π
7 )

= O(e6‖μ‖C3). (4.6)

In fact, for n = 2 the terms e2nO(e2) = O(e6). For n = 1, the same is true,
observing that a5 = O(e2‖μ‖C1), a7 = O(e4‖μ‖C2) and a9 = O(e4‖μ‖C2),
as it follows from Lemma 4.2 (see also Sections 7.1 and 7.2 for more precise
computations).

• Similarly, from the existence of an integrable rational caustic with rotation
number 2/7, we get

a7 +
5a5

16
e2

cos2
(

2π
7

) +
12a3

512
e4

cos4
(

2π
7

) = O(e6‖μ‖C3). (4.7)
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• Combining (4.4), (4.6) and (4.7), we obtain the linear system
⎛

⎜
⎜
⎜
⎝

3e2

16 cos2(π

5 )
1 0

12e4

512 cos4(π

7 )
5e2

16 cos2(π

7 )
1

12e4

512 cos4( 2π

7 )
5e2

16 cos2( 2π

7 ) 1

⎞

⎟
⎟
⎟
⎠

⎛

⎝
a3

a5

a7

⎞

⎠ =

⎛

⎜
⎜
⎝

O(e4‖μ‖C2)

O(e6‖μ‖C3)

O(e6‖μ‖C3)

⎞

⎟
⎟
⎠ . (4.8)

Observe that coefficient matrix is invertible6; moreover, using Theorem D.1 in
Appendix D we can compute the first row of its inverse, which has the form

(
O(e−2) O(e−4) O(e−4)

)
. (4.9)

This allows us to conclude that a3 = O(e2‖μ‖C3).
Similarly, one can prove that b3 = O(e2‖μ‖C3).

5 The Case q0 = 4

In this section we consider a 4-rationally integrable domain Ω, whose boundary is
C6–close to an ellipse Ee (also here we assume c = e), i.e.

∂Ω = Ee + μ(ϕ),

where μ is a C6–small function. Let

μ(ϕ) = μ′
0 +

+∞∑

k=1

ak cos(kϕ) + bk sin(kϕ),

and assume
‖μ‖C1 ≤ e12. (5.1)

We will show that the higher order conditions on the existence of integrable rational
caustics of rotation numbers 1

2k+1 , 1
2k+2 , k ≥ 2, along with 2

9 and 3
14 , imply that

ak = O(e2‖μ‖C6), bk = O(e2‖μ‖C6), k = 3, 4. (5.2)

Remark 5.1. The proof in this case consists of two steps, related to the odd and
even cases, and does not require any iteration (compare also with Remarks 4.1 and
6.1). We give a detailed account of the odd case below.

Let us start by stating the following lemma, which is also a special case of Lemma
7.1 (with k0 = 2).

Lemma 5.2.

a5 = O(e2‖μ‖C3), a7 = O(e4‖μ‖C3), a9, a11, a13 = O(e6‖μ‖C3).

6 By means of Mathematica, one can compute that its determinant is −4.182 × 10−4e4.
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Remark 5.3. Although an independent proof of this lemma is not given, let us
observe that it exploits the existence of integrable rational caustics of rotation num-
bers 1

5 , 1
7 , 1

9 , 1
11 , 1

13 , 1
15 , and 1

17 .

Let us now describe how to prove (5.2).
Let us first show that a3 = O(e2‖μ‖C4).

• From the existence of an integrable rational caustic with rotation number
1/5, using equality (3.8) (with N = 1) together with Lemmata 3.2 and 5.2,
we deduce that (see also the analogous discussion for (4.4))

a5 + a3 ξ1,1(3)
e2

cos2(π
5 )

(1 + O(e2)) = O(e4‖μ‖C2).

Since |a3| ≤ ‖μ‖C2 , the term a3ξ1,1(3)e2O(e2) could be put into the error
term O(e4‖μ‖C2) on the right-hand side.

• Similarly to what done in (4.6), from the existence of integrable rational
caustic with rotation numbers 1/7, we get

a7 + a5
ξ1,1(5)e2

cos2(π
7 )

+ a3
ξ2,2(3)e4

cos4(π
7 )

= O(e6‖μ‖C3).

• From the existence of integrable rational caustic with rotation number 1/9,
using (3.8) (with N = 3), (4.5) and (5.1), we obtain that

a9 +
3∑

n=1

n∑

l=−n

ξn,l(9 − 2l) a9−2l
(1 + O(e2))
cos2n(π

9 )
e2n + O(e8‖μ‖C4) = 0,

which implies, using the estimates in Lemma 5.2, that

a9 + a7
ξ1,1(7)e2

cos2(π
9 )

+ a5
ξ2,2(5)e4

cos4(π
9 )

+ a3
ξ3,3(3)e6

cos6(π
9 )

= O(e8‖μ‖C4).

In fact, for n = 3 the terms e2nO(e2) = O(e8). For n = 1, 2, the same is
true, observing that a5 = O(e2‖μ‖C3), a7 = O(e4‖μ‖C3), a9 = a11 = a13 =
O(e6‖μ‖C3), as it follows from Lemma 5.2 (see also Sections 7.1 and 7.2 for
more precise computations).

• Similarly, from the existence of an integrable rational caustic with rotation
number 2/9, we get

a9 + a7
ξ1,1(7)e2

cos2(2π
9 )

+ a5
ξ2,2(5)e4

cos4(2π
9 )

+ a3
ξ3,3(3)e6

cos6(2π
9 )

= O(e8‖μ‖C4).

• Therefore, we obtain the following system of linear equations in the variables
a3, . . . , a9:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1,1(3)e2

cos2(π
5 )

1 0 0

ξ2,2(3)e4

cos4(π
7 )

ξ1,1(5)e2

cos2(π
7 )

1 0

ξ3,3(3)e6

cos6(π
9 )

ξ2,2(5)e4

cos4(π
9 )

ξ1,1(7)e2

cos2(π
9 )

1

ξ3,3(3)e6

cos6( 2π
9 )

ξ2,2(5)e4

cos4( 2π
9 )

ξ1,1(7)e2

cos2( 2π
9 )

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

a3

a5

a7

a9

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O(e4‖μ‖C2)

O(e6‖μ‖C3)

O(e8‖μ‖C4)

O(e8‖μ‖C4)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.3)

Observe that the coefficient matrix of this linear system is invertible7; more-
over, using Theorem D.1 in Appendix D we can compute the first row of its
inverse, which has the form

(
O(e−2) O(e−4) O(e−6) O(e−6)

)
. (5.4)

All of this is enough to conclude that

a3 = O(e2‖μ‖C4).

Let us now show that a4 = (e2‖μ‖C6). In the same way as before, from the exis-
tence of integrable rational caustics with rotation numbers 1/6, 1/8, 1/10, 1/12, 1/14
and 3/14, we obtain a linear system of equations in the variables a4, a6, . . . , a14.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1,1(4)e2

cos2(π
6 )

1 0 0 0 0

ξ2,2(4)e4

cos4(π
8 )

ξ1,1(6)e2

cos2(π
8 )

1 0 0 0

ξ3,3(4)e6

cos6( π
10)

ξ2,2(6)e4

cos4( π
10)

ξ1,1(8)e2

cos2( π
10)

1 0 0

ξ4,4(4)e8

cos8( π
12)

ξ3,3(6)e6

cos6( π
12)

ξ2,2(8)e4

cos4( π
12)

ξ1,1(10)e2

cos2( π
12)

1 0

ξ5,5(4)e10

cos10( π
14)

ξ4,4(6)e8

cos8( π
14)

ξ3,3(8)e6

cos6( π
14)

ξ2,2(10)e4

cos4( π
14)

ξ1,1(12)e2

cos2( π
14)

1

ξ5,5(4)e10

cos10(3π
14 )

ξ4,4(6)e8

cos8(3π
14 )

ξ3,3(8)e6

cos6(3π
14 )

ξ2,2(10)e4

cos4(3π
14 )

ξ1,1(12)e2

cos2(3π
14 )

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a4

a6

a8

a10

a12

a14

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O(e4‖μ‖C2)

O(e6‖μ‖C3)

O(e8‖μ‖C4)

O(e10‖μ‖C5)

O(e12‖μ‖C6)

O(e12‖μ‖C6)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.5)

7 By means of Mathematica, one can compute that its determinant is −4.02 × 10−6e6
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Also in this case the coefficient matrix is non-degenerate8; moreover, using Theorem
D.1 in Appendix D we can compute the first row of its inverse, which has the form

(
O(e−2) O(e−4) O(e−6) O(e−8) O(e−10) O(e−10)

)
. (5.6)

Hence, we can conclude that

a4 = O(e2‖μ‖C6).

Repeating the same arguments as before, one can show the analogous equalities
for bk’s, namely

b3 = O(e2‖μ‖C4), b4 = O(e2‖μ‖C6).

6 The Case q0 = 5

In this section we consider a 5-rationally integrable domain Ω, whose boundary is
C7–close to an ellipse Ee (we continue to assume that c = e), i.e., for a C7–small
function μ(ϕ) we have

∂Ω = Ee + μ(ϕ).

Let

μ(ϕ) = μ′
0 +

+∞∑

k=1

ak cos(kϕ) + bk sin(kϕ),

and assume
‖μ‖C1 ≤ e14. (6.1)

We will show that the higher order conditions on the existence of integrable
rational caustics of rotation numbers 1

2k+1 , 1
2k+2 , k ≥ 2, along with 2

11 , 2
13 and 3

16
imply that

ak, bk = O(e2‖μ‖C7), k = 3, 4, 5.

Remark 6.1. The proof in this case consists of three steps: we start by analyzing
the odd and even cases and in the odd case we need to iterate the argument once
(inductive step). In the general case q0 > 5, we will need the number of inductive
steps to be [q0/2] − 1; see the beginning of Section 7.

Let us start by stating the following lemma, which is also a special case of Lemma
7.1 (for k0 = 3).

8 By means of Mathematica, one can compute that its determinant is 7.1437 × 10−5e10
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Lemma 6.2.

a7 = O(e2‖μ‖C4), a9 = O(e4‖μ‖C4), a11, a13, a15 = O(e6‖μ‖C4).

Remark 6.3. Although an independent proof of this lemma is not given, let us
observe that it exploits the existence of integrable rational caustics of rotation num-
bers 1

5 , 1
7 , 1

9 , 1
11 , 1

13 , 1
15 , 1

17 , and 1
19 .

Let us now show how property (6.3) follows from this lemma.

• From the existence of an integrable rational caustic with rotation number
1/7, using equality (3.8) with N = 1, we have

a7 +
(
ξ1,1(5)a5 + ξ1,−1(9)a9

) e2

1 − λ2
1/7

+ O(e4‖μ‖C2) = 0.

By Lemmata 3.2 and 6.2, it follows that

a7 + ξ1,1(5)a5
e2

cos2(π/7)
= O(e4‖μ‖C2).

• From the existence of an integrable rational caustic with rotation number
1/9, using (3.8) (with N = 2) and (6.1), we obtain that

a9 +
2∑

n=1

n∑

l=−n

ξn,l(9 − 2l) a9−2l
e2n

(1 − λ2
1/9)

n
+ O(e6‖μ‖C3) = 0.

Using (4.5), we obtain

a9 +
2∑

n=1

n∑

l=−n

ξn,l(9 − 2l) a9−2l
(1 + O(e2))
cos2n(π

9 )
e2n = O(e6‖μ‖C3),

which implies, using the estimates in Lemma 6.2, that

a9 + a7
ξ1,1(7)e2

cos2(π/9)
+ a5

ξ2,2(5)e4

cos4(π/9)
= O(e6‖μ‖C3).

In fact, clearly for n = 2 the terms e2nO(e2) = O(e6). For n = 1, the same
is true, observing that a7 = O(e2‖μ‖C1), a9 = O(e4‖μ‖C2), and a11, a13 =
O(e6‖μ‖C3), as it follows from Lemma 6.2 (see also Sections 7.1 and 7.2 for
more precise computations).

• From the existence of integrable rational caustic with rotation number 1/11,
using (3.8) (with N = 3), (6.1) and (4.5), we obtain that

a11 +
3∑

n=1

n∑

l=−n

ξn,l(11 − 2l) a11−2l
(1 + O(e2))
cos2n( π

11)
e2n + O(e8‖μ‖C4) = 0,
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which implies, again using the estimates in Lemma 6.2, that

a11 + a9
ξ1,1(9)e2

cos2(π/11)
+ a7

ξ2,2(7)e4

cos4(π/11)
+ a5

ξ3,3(5)e6

cos6(π/11)
= O(e8‖μ‖C4);

see also Sections 7.1 and 7.2 for more precise computations.
• Similarly, from the existence of an integrable rational caustic with rotation

number 2/11, we obtain:

a11 + a9
ξ1,1(9)e2

cos2(2π/11)
+ a7

ξ2,2(7)e4

cos4(2π/11)
+ a5

ξ3,3(5)e6

cos6(2π/11)
= O(e8‖μ‖C4).

• Putting all of this information together, we obtain a system of linear equations
with unknowns a5, a7, a9, a11 and the following coefficient matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1,1(5)e2

cos2(π/7)
1 0 0

ξ2,2(5)e4

cos4(π/9)
ξ1,1(7)e2

cos2(π/9)
1 0

ξ3,3(5)e6

cos6(π/11)
ξ2,2(7)e4

cos4(π/11)
ξ1,1(9)e2

cos2(π/11)
1

ξ3,3(5)e6

cos6(2π/11)
ξ2,2(7)e4

cos4(2π/11)
ξ1,1(9)e2

cos2(2π/11)
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This matrix is invertible9 and, using Theorem D.1 in Appendix D, we can
compute the first row of its inverse, which has the form

(
O(e−2), O(e−4), O(e−6), O(e−6)

)
. (6.2)

Hence, we conclude that
a5 = O(e2‖μ‖C4). (6.3)

Now, using this new estimate, we obtain the following improvement of Lemma 6.2.
This is the second inductive step aforementioned in Remark 6.1. This Lemma follows
from (7.7) for k0 = 3 and m = 2.

Lemma 6.4.

a7 = O(e4‖μ‖C4), a9 = O(e6‖μ‖C4), a11 = O(e8‖μ‖C4), a13 = O(e10‖μ‖C5)

and

a15, a17, a19, a21 = O(e10‖μ‖C5).

9 By means of Mathematica, one can compute that its determinant is 1.4 × 10−5e6.
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Proceeding as before, using Lemmata 3.2 and 6.4 and the equality (3.8), from
the higher order relations on the existence of integrable rational caustics of rotation
numbers 1/7, 1/9, 1/11, 2/11, 1/13, and 2/13, we obtain the following linear system
(see Sections 7.1 and 7.2 for more precise computations):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ2,2(3)e4

cos4(π/7)
ξ1,1(5)e2

cos2(π/7) 1 0 0 0

ξ3,3(3)e6

cos6(π/9)
ξ2,2(5)e4

cos4(π/9)
ξ1,1(7)e2

cos2(π/9) 1 0 0

ξ4,4(3)e8

cos8(π/11)
ξ3,3(5)e6

cos6(π/11)
ξ2,2(7)e4

cos4(π/11)
ξ1,1(9)e2

cos2(π/11) 1 0

ξ4,4(3)e8

cos8(2π/11)
ξ3,3(5)e6

cos6(2π/11)
ξ2,2(7)e4

cos4(2π/11)
ξ1,1(9)e2

cos2(2π/11) 1 0

ξ5,5(3)e10

cos10(π/13)
ξ4,4(5)e8

cos8(π/13)
ξ3,3(7)e6

cos6(π/13)
ξ2,2(9)e4

cos4(π/13)
ξ1,1(11)e2

cos2(π/13) 1

ξ5,5(3)e10

cos10(2π/13)
ξ4,4(5)e8

cos8(2π/13)
ξ3,3(7)e6

cos6(2π/13)
ξ2,2(9)e4

cos4(2π/13)
ξ1,1(11)e2

cos2(2π/13) 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a3

a5

a7

a9

a11

a13

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O(e6‖μ‖C4)

O(e8‖μ‖C4)

O(e10‖μ‖C5)

O(e10‖μ‖C5)

O(e12‖μ‖C6)

O(e12‖μ‖C6)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.4)

This matrix of coefficients is invertible10 and, using Theorem D.1 in Appendix D,
we can compute the first two rows of its inverse, which have the form

(
O(e−4) O(e−6) O(e−8) O(e−8) O(e−10) O(e−10)
O(e−2) O(e−4) O(e−6) O(e−6) O(e−8) O(e−8)

)

. (6.5)

Therefore, we conclude that

a3 = O(e2‖μ‖C6), a5 = O(e4‖μ‖C6).

Then, we want to show that

a4 = O(e2‖μ‖C7).

For this, we exploit relations (3.8), obtained from the higher order conditions on
the existence caustics with rotation numbers 1/6, 1/8, 1/10, 1/12, 1/14, 1/16 and
3/16.

10 By means of Mathematica, one can compute that its determinant is 6.86498 × 10−15e16.
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In the same spirit as before (see Sections 7.1 and 7.2 for more precise computa-
tions), we get the following linear system:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1,1(4)e2

cos2(π/6) 1 0 0 0 0 0

ξ2,2(4)e4

cos4(π/8)
ξ1,1(6)e2

cos2(π/8) 1 0 0 0 0

ξ3,3(4)e6

cos6(π/10)
ξ2,2(6)e4

cos4(π/10)
ξ1,1(8)e2

cos2(π/10) 1 0 0 0

ξ4,4(4)e8

cos8(π/12)
ξ3,3(6)e6

cos6(π/12)
ξ2,2(8)e4

cos4(π/10)
ξ1,1(10)e2

cos2(π/12) 1 0 0

ξ5,5(4)e10

cos10(π/14)
ξ4,4(6)e8

cos8(π/14)
ξ3,3(8)e6

cos6(π/14)
ξ2,2(10)e4

cos4(π/14)
ξ1,1(12)e2

cos2(π/14) 1 0

ξ6,6(4)e12

cos12(π/16)
ξ5,5(6)e10

cos10(π/16)
ξ4,4(8)e8

cos8(π/16)
ξ3,3(10)e6

cos6(π/16)
ξ2,2(12)e4

cos4(π/16)
ξ1,1(14)e2

cos2(π/16) 1

ξ6,6(4)e12

cos12(3π/16)
ξ5,5(6)e10

cos10(3π/16)
ξ4,4(8)e8

cos8(3π/16)
ξ3,3(10)e6

cos6(3π/16)
ξ2,2(12)e4

cos4(3π/16)
ξ1,1(14)e2

cos2(3π/16) 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a4

a6

a8

a10

a12

a14

a16

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O(e4‖μ‖C2)

O(e6‖μ‖C3)

O(e8‖μ‖C4)

O(e10‖μ‖C5)

O(e12‖μ‖C6)

O(e14‖μ‖C7)

O(e14‖μ‖C7)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This matrix is invertible11 and, using Theorem D.1 in Appendix D, we can compute
the first row of its inverse, which has the form

(O(e−2) O(e−4) O(e−6) O(e−8) O(e−10) O(e−12) O(e−12) ) . (6.6)

Hence, we obtain

a4 = O(e2‖μ‖C7).

Similarly (see again Sections 7.1 and 7.2 for more precise computations), one can
prove that

bk = O(e2‖μ‖C7), k = 3, 4, 5.

11 By means of Mathematica, one can compute that its determinant is −2.5 × 10−6e12.
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7 The General Cases

In the previous sections, we have described how to recover the missing relations in
the cases q0 = 3, 4, 5. Clearly, the same set of ideas can be implemented for any
q0 ≥ 6. In this section we aim to outline the procedure for proving these results in
the general case.

Let q0 ≥ 6 and let us consider a q0-rationally integrable domain Ω, whose bound-
ary is close to an ellipse Ee (we use the normalization c = e)

∂Ω = Ee + μ(ϕ).

Let

μ(ϕ) = μ′
0 +

+∞∑

k=1

ak cos(kϕ) + bk sin(kϕ),

and assume

‖μ‖C1 ≤ e6q0 .

Without loss of generality, we assume that q0 is an even integer, i.e.,

q0 = 2k0, with k0 ≥ 3.

Let us outline this inductive procedure to show that

ak, bk = O(e2‖μ‖C5k0 ), k = 3, . . . , q0 = 2k0.

The proof of this claim will be detailed in the following subsections (see Propo-
sition 7.10 for a more precise summarizing statement).

Let us start with the following Lemma.

Lemma 7.1.

a2k+1 =

⎧
⎨

⎩

O(e2(k−k0)+2‖μ‖Ck0+1) if k = k0, . . . , 2k0 − 1,
O(e2k0+2‖μ‖Ck0+1) if k = 2k0, . . . , 3k0,

O(e2(4k0−k)+2‖μ‖Ck0+1) if k = 3k0 + 1, . . . , 4k0.

and

a2k =

⎧
⎨

⎩

O(e2(k−k0)‖μ‖C2k0+1) if k = k0 + 1, . . . , 3k0 + 1,
O(e4k0+2‖μ‖C2k0+1) if k = 3k0 + 2, . . . , 6k0 + 1,

O(e2(8k0−k)+4‖μ‖C2k0+1) if k = 6k0 + 2, . . . , 8k0 + 1.

Remark 7.2. Notice that only the first two items in each bracket are really used
for our proof. However, we report also the others for the sake of completeness.
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Proof. Let us start by proving the estimates for the Fourier coefficients of odd order.
The proof consists in an iterative application of equality (3.8).

From the existence of integrable rational caustics with rotation numbers 1
2k+1 ,

with k = k0, . . . , 4k0 (observe that this choice ensures that 1
2k+1 < 1

q0
), using equality

(3.8) with N = 0, we easily get:

a2k+1 = O(e2‖μ‖C1), k = k0, . . . , 4k0. (7.1)

Let us now consider (3.8) with N = 1, for rotation numbers 1
2k+1 , where k =

k0 + 1, . . . , 4k0 − 1:

a2k+1 = −
1∑

l=−1

ξ1,l(2(k − l) + 1) a2(k−l)+1
e2

1 − λ2
1/2k+1

+ O(e4‖μ‖C2)

= −
1∑

l=−1

ξ1,l(2(k − l) + 1) a2(k−l)+1
e2

cos2
(

π
2k+1

) + O(e4‖μ‖C2),

where in the last equality we have used Lemma 3.2 which implies

1 − λ2
1/2k+1 = cos2

π

2k + 1
+ O(e2). (7.2)

Observe now that, since |l| ≤ 1, then k0 ≤ k − l ≤ 4k0, hence we can use estimates
(7.1) and obtain:

a2k+1 = O(e4‖μ‖C2), k = k0 + 1, . . . , 4k0 − 1.

In order to prove the claim, we need to iterate the same argument until N = k0.
Let us describe how the inductive procedure works. Suppose that we have already

iterated the same argument for N = 1, . . . , N0 < k0; then, we have obtained:

a2k+1 = O(e2N0+2‖μ‖CN0+1), k = k0 + N0, . . . , 4k0 − N0. (7.3)

Observe that if k0 ≤ k < k0 + N0, then the index k has been involved until the
iteration corresponding to N = k − k0; hence

a2k+1 = O(e2(k−k0)+2‖μ‖C(k−k0)+1), k0 ≤ k < k0 + N0. (7.4)

Similary, if 4k0−N0 < k ≤ 4k0, then the index k has been involved until the iteration
corresponding to N = 4k0 − k; hence

a2k+1 = O(e2(4k0−k)+2‖μ‖C(4k0−k)+1), 4k0 − N0 < k ≤ 4k0. (7.5)

Apply now (3.8) with N = N0 + 1 and rotation numbers 1
2k+1 , with k = k0 +

N0 + 1, . . . , 4k0 − N0 − 1. Then:

a2k+1 = −
N0+1∑

n=1

∑

|l|≤n

ξn,l(2(k − l) + 1) a2(k−l)+1
e2n

(1 − λ2
1/2k+1)

n

+O(e2(N0+1)+2‖με‖CN0+2). (7.6)



GUAN HUANG ET AL. GAFA

We want to show that all terms in this sum can be included in the remainder. Let
us distinguish several cases:

• l = 0 appears for all n ≥ 1 and, using (7.3), we conclude:

a2k+1
e2n

(1 − λ2
1/2k+1)

n
= O(e2(N0+1)+2‖μ‖CN0+1).

• 0 < l ≤ N0 + 1 appears for all n ≥ l; using (7.3), (7.4) and (7.2), we can
conclude:

a2(k−l)+1
e2n

(1 − λ2
1/2k+1)

n

= O(e2(k−l−k0)+2‖μ‖CN0+1) · O(e2l) ·
(
1 + O(e2)

)

= O(e2(k−k0)+2‖μ‖CN0+1) ·
(
1 + O(e2)

)

= O(e2(N0+1)+2‖μ‖CN0+1) ·
(
1 + O(e2)

)

= O(e2(N0+1)+2‖μ‖CN0+1),

where, in the second-last equality, we have used that k ≥ k0 + N0 + 1.
• 0 < −l ≤ N0 + 1 appears for all n ≥ −l; using (7.3), (7.5) and (7.2), we can

conclude:

a2(k+l)+1
e2n

(1 − λ2
1/2k+1)

n

= O(e2(4k0−k+l)+2‖μ‖CN0+1) · O(e−2l) ·
(
1 + O(e2)

)

= O(e2(4k0−k)+2‖μ‖CN0+1) ·
(
1 + O(e2)

)

= O(e2(N0+1)+2‖μ‖CN0+1) ·
(
1 + O(e2)

)

= O(e2(N0+1)+2‖μ‖CN0+1),

where, in the second-last equality, we have used that k ≤ 4k0 − N0 − 1.

It follows from these estimates and (7.6) that

a2k+1 = O(e2(N0+1)+2‖με‖CN0+2) for k = k0 + N0 + 1, . . . , 4k0 − N0 − 1.

The claim of the theorem then follows by taking N0 = k0 in (7.3), (7.4) and (7.5).
Similarly, one proves the relations corresponding to Fourier coefficients of even

order. More specifically, one considers integrable rational caustics with rotation num-
bers 1

2k , with k = k0 + 1, . . . , 8k0 + 1. As in the previous part, the proof consists
in an iterative application of (3.8); in particular, in this case the number of needed
iterations equals 2k0 (from which the appearance of the C2k0+1-norm). ��

Now, we want to describe how to recover the missing relations. We distinguish
between Fourier coefficients corresponding to Fourier modes of, respectively, odd
and even order.
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7.1 Fourier coefficients of odd order Fourier modes. Let us prove that
for every integer 1 ≤ m ≤ k0, we have that

a2k+1 =

{
O(e2(k−m)+2‖μ‖C3k0 ), k ∈ [m, 3k0 − m),
O(e2k0+4(k0−m)+2‖μ‖C3k0 ), k ∈ [3k0 − m, 6k0 − 3m].

(7.7)

Remark 7.3. The above estimates hold with sharper choices of the norms ‖ · ‖Ck

(see (3.8) and Lemma 7.1). However, for the sake of simplicity we have opted for a
common choice that is suitable for all steps involved in the algorithm (see Remark
7.4).

The argument below consists in a finite (backward) induction: the first step
corresponds to m = k0, while the final one to m = 2. Observe that Lemma 7.1
implies (7.7) for m = k0. Let us assume that (7.7) holds for a given 2 ≤ m ≤ k0

(inductive hypothesis) and let us prove it for m − 1.
We denote N(k) := k − m + 1.
Let us fix k ∈ {k0, . . . , 3k0 − m}; observe that for such a choice of k, there exists

an integrable rational caustic with rotation number 1
2k+1 . Let us now apply (3.8)

with N = N(k):

a2k+1 +
N(k)∑

n=1

∑

|l|≤n

ξn,l(2(k − l) + 1) e2n

(1 − λ2
1

2k+1

)n
a2(k−l)+1 = O(e2N(k)+2‖μ‖CN(k)+1). (7.8)

Remark 7.4. Notice that all estimates involve ‖μ‖Ck+1 and ‖μ‖CN(k)+1 , for some
k ≤ 3k0 − m and m ≥ 1; in particular, N(k) ≤ 3k0 − m + 1 < 3k0. Hence, we can
choose to bound all terms with respect to ‖μ‖C3k0 . Hereafter, in order to simplify
the notation, we will neglect this term and concentrate on the part involving powers
of the eccentricity e.

Now we want to show that in (7.8) the only terms in the sum that are not of the
same order as the remainder are the ones corresponding to l = n.

• Observe that if 0 ≤ l ≤ n − 1, then

k − l ≥ k − (N(k) − 1) = m

and, since k0 ≤ k ≤ 3k0 − m, we also have

k − l ≤ 3k0 − m.

Using the inductive hypothesis, the fact that 0 ≤ l ≤ n− 1 and (7.2), we get:
a2(k−l)+1

(1 − λ2
1

2k+1

)n
e2n = O(e2(k−l−m)+2) · O(e2l+2) · (1 + O(e2))

= O(e2(k−m+1)+2) · (1 + O(e2))
= O(e2N(k)+2).
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• Let us now consider negative l.
First observe that if l = −N(k), then clearly

a2(k+N(k))+1

(1 − λ2
1

2k+1

)N(k)
e2N(k) = O(e2N(k)+2),

where we have used that a2(k+N(k))+1 = O(e2), as it follows applying (3.8)
with N = 0 (in fact, since k + N(k) ≥ k0, there exists by assumption an
integrable rational caustic of rotation number 1

2(k+N(k))+1).
Let us now assume that −N(k) + 1 ≤ l < 0.
If k +m− 3k0 ≤ l < 0, then k0 < k − l ≤ 3k0 −m; hence, using the inductive
hypothesis we get:

a2(k−l)+1

(1 − λ2
1

2k+1

)n
e2n = O(e2(k−l−m)+2) · O(e2) · (1 + O(e2))

= O(e2(k−m+1)+2) · (1 + O(e2))
= O(e2N(k)+2).

On the other hand, if −n ≤ l < k + m − 3k0, then

k − l > 3k0 − m and k − l ≤ k + N(k) − 1 ≤ 6k0 − 3m.

Therefore, using the inductive hypothesis we get (we use that n ≥ −l >
3k0 − m − k):

a2(k−l)+1

(1 − λ2
1

2k+1

)n
e2n = O(e2k0+4(k0−m)+2) · O(e2n) · (1 + O(e2))

= O(e2k0+4(k0−m)+2) · O(e6k0−2m−2k) · (1 + O(e2))
= O(e12k0−6m−2k+2) · (1 + O(e2))
= O(e2N(k)+2) · (1 + O(e2))

where in the last equality we have used that m ≤ k0, k < 3k0 − m and
therefore

12k0 − 6m − 2k + 2 = 2(3k0 − m) + 2(3k0 − m − k) − 2m + 2
≥ 2(k − m + 1) + 2
= 2N(k) + 2.

Using these estimates, we see that (7.8) becomes:

a2k+1 +
N(k)∑

j=1

ξj,j(2k + 1 − 2j)e2j

(1 − λ2
1

2k+1

)j
a2(k−j)+1 = O(e2N(k)+2‖μ‖C3k0 ).
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Using Lemma 3.2 and the inductive hypothesis, we see that for j < N(k) (which
implies m ≤ k − j < 3k0 − m), we have:

a2(k−j)+1 e2j

(1 − λ2
1

2k+1

)j
=

a2(k−j)+1 e2j

cos2j( π
2k+1)

(1 + O(e2))

=
a2(k−j)+1 e2j

cos2j( π
2k+1)

+ e2j+2 O(e2(k−j−m)+2)

=
a2(k−j)+1 e2j

cos2j( π
2k+1)

+ O(e2N(k)+2).

Clearly, for j = N(k)

a2(k−N(k))+1 e2N(k)

(1 − λ2
1

2k+1

)N(k)
=

a2(k−N(k))+1 e2N(k)

cos2N(k)( π
2k+1)

+ O(e2N(k)+2).

Hence, (7.8) reduces to

a2k+1 +
N(k)∑

j=1

ξj,j(2k + 1 − 2j)e2j

cos2j( π
2k+1)

a2k+1−2j = O(e2N(k)+2‖μ‖C3k0 ) (7.9)

for k = k0, . . . , 3k0 − m.
If k ≥ 2k0, then 2

2k+1 < 1
2k0

= 1
q0

. Since Ω is q0-integrable, then we have also
the existence of integrable rational caustics with rotation numbers 2

2k+1 . Hence,
proceeding as above, for k = 2k0, . . . , 3k0 − m, we get

a2k+1 +
N(k)∑

j=1

ξj,j(2k + 1 − 2j)e2j

cos2j( 2π
2k+1)

a2(k−j)+1 = O(e2N(k)+2‖μ‖C3k0 ) (7.10)

for k = 2k0, . . . , 3k0 − m.

Remark 7.5. We obtain 3k0 − 2m + 2 linear equations with 3k0 − 2m + 2 unknown
variables: a2m−1, a2m+1, . . . , a2(3k0−m)+1. Let us consider the system of linear equa-
tions consisting of:

• the k0 equations corresponding to (7.9) for k = k0, . . . , 2k0 − 1;
• the (k0 − m + 1) couples of equations corresponding to (7.9) and (7.10) for

k = 2k0, . . . , 3k0 − m.

Recall that q0 = 2k0. Denote by A(odd)
q0,m ∈ M3k0−2m+2(R) the square matrix of

the coefficients associated to this system. In particular, the matrix A(odd)
q0,m has the

following structure

A(odd)
q0,m =

(
∗ L O
∗ ∗ K

)

(7.11)

where
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• L is a lower triangular k0 × k0 matrix with 1’s on the diagonal;
• K is a (k0 − m + 1) × 2(k0 − m + 1) matrix of the form

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0
1 0 0 . . . 0
∗ 1 0 . . . 0
∗ 1 0 . . . 0
...

...
...

...
...

∗ ∗ ∗ . . . 1
∗ ∗ ∗ . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

• O is a block of zeros of size k0 × (k0 − m + 1);
• observe that each row has a unit on it and the ∗ entries are a multiple of

e2j , where j ∈ N represents the “distance” from the unit within the row;
in particular all ∗ entries are of the form ξ cos−2j(wπ)e2j , where ξ ∈ Q,
w ∈ { 1

2k+1 , 2
2k+1 : k > j}.

• Notice that this hierarchical structure of the powers of e in a given
row/column, implies a similar hierarchical structure for the rows of its inverse,
as we have already pointed out in (4.9), (5.4), (5.6), (6.2), (6.5) and (6.6).

If A(odd)
q0,m is non-degenerate, then solving this system of linear equations, we obtain

a2k+1 = O(e2(k−(m−1))+2‖μ‖C3k0 ), k = m − 1, m, . . . , k0.

With this new relation, using the arguments in Lemma 7.1, we show that assumption
(7.7) still holds by replacing m with m−1. This completes the proof of the inductive
step.

Iterating the procedure until m = 1, we conclude that

a2k+1 = O(e2‖μ‖C3k0 ), k = 1, . . . , k0 − 1.

In the same way, we may show that

b2k+1 = O(e2‖μ‖C3k0 ), k = 1, . . . , k0 − 1.

7.2 Fourier coefficients of even order Fourier modes Let 1 ≤ m ≤ k0.
Denote Nm = 3k0 + 3

⌊
k0−m

2

⌋
+ νk0,m, where

νk0,m :=

{
1 if k0 − m is even
2 if k0 − m is odd

and �·� denotes the floor function. This choice of Nm will be clarified in Remark 7.8.
Assume that for some 1 ≤ m ≤ k0 we have

a2k =
{

O(e2(k−m)‖μ‖C5k0 ), k = m + 1, . . . , Nm,

O(e2(Nm−m+1)‖μ‖C5k0 ), k = Nm + 1, . . . , 2Nm − m.
(7.12)
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Remark 7.6. The above estimates hold with sharper choices of the norms ‖ · ‖Ck

(see (3.8) and Lemma 7.1). However, for the sake of simplicity we have opted for a
common choice that is suitable for all steps involved in the algorithm (see Remark
7.7).

Observe that Lemma 7.1 implies the assumption above for m = k0.
We denote N ′(k) := k − m.
Let us fix k ∈ {k0 + 1, . . . , Nm}; observe that for such a choice of k, there exists

an integrable rational caustic with rotation number 1
2k . Let us now apply (3.8) with

N = N ′(k):

a2k +
N ′(k)∑

n=1

∑

|l|≤n

ξn,l(2(k − l)) e2n

(1 − λ2
1
2k

)n
a2(k−l) = O(e2N ′(k)+2‖μ‖CN′(k)+1). (7.13)

Remark 7.7. Notice that all estimates involve ‖μ‖Ck+1 and ‖μ‖CN′(k)+1 , for some
k ≤ Nm and m ≥ 1; in particular, N ′(k)+1 ≤ Nm+1 ≤ 5k0 (as one can easily verify,
by choosing m = 1 and estimating the corresponding expression both for k0 ≥ 2 even
or odd). Hence, we can choose to bound all terms with respect to ‖μ‖C5k0 . Hereafter,
in order to simplify the notation, we will neglect this term and concentrate on the
part involving powers of the eccentricity e.

Similarly to what we have done in the odd-order case, we want to show that in
(7.13) the only terms in the sum that are not of the same order as the remainder
are the ones corresponding to l = n.

• Observe that if 0 ≤ l ≤ n − 1, then

k − l ≥ k − (N ′(k) − 1) = m + 1

and clearly k − l ≤ Nm. Using the inductive hypothesis, the fact that 0 ≤ l ≤
n − 1 and (7.2), we get:

a2(k−l)

(1 − λ2
1
2k

)n
e2n = O(e2(k−l−m)) · O(e2l+2) · (1 + O(e2))

= O(e2(k−m)+2) · (1 + O(e2))
= O(e2N ′(k)+2).

• Let us now consider negative l.
First observe that if l = −N ′(k), then clearly

a2(k+N(k))

(1 − λ2
1
2k

)N ′(k)
e2N ′(k) = O(e2N ′(k)+2),

where we have used that a2(k+N ′(k)) = O(e2), as it follows applying (3.8) with
N = 0 (in fact, since k+N ′(k) ≥ k0, there exists by assumption an integrable
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rational caustic of rotation number 1
2(k+N ′(k))).

Let us now assume that k − Nm ≤ l < 0, hence m + 1 ≤ k − l ≤ Nm. Using
the inductive hypothesis we get:

a2(k−l)

(1 − λ2
1
2k

)n
e2n = O(e2(k−l−m)) · O(e2) · (1 + O(e2))

= O(e2(k−m)+2) · (1 + O(e2))
= O(e2N ′(k)+2).

On the other hand, if −n ≤ l < k − Nm, then

k − l ≥ Nm + 1 and k − l ≤ k + N ′(k) ≤ 2Nm − m.

Therefore, using the inductive hypothesis we get (we use that n ≥ −l ≥
Nm − k ≥ 0):

a2(k−l)

(1 − λ2
1
2k

)n
e2n = O(e2(Nm−m+1)) · O(e2n) · (1 + O(e2))

= O(e2(Nm−m+1)) · O(e2(Nm−k)) · (1 + O(e2))
= O(e2(2Nm−m−k)+2) · (1 + O(e2))
= O(e2N ′(k)+2).

Using these estimates, we see that (7.13) becomes:

a2k +
N ′(k)∑

j=1

ξj,j(2k − 2j)e2j

(1 − λ2
1
2k

)j
a2(k−j) = O(e2N ′(k)+2‖μ‖C5k0 ).

Using Lemma 3.2 and the inductive hypothesis, we see that for j < N ′(k) (which
implies m + 1 ≤ k − j < Nm), we have:

a2(k−j) e2j

(1 − λ2
1
2k

)j
=

a2(k−j) e2j

cos2j( π
2k )

(1 + O(e2))

=
a2(k−j) e2j

cos2j( π
2k )

+ e2j+2 O(e2(k−j−m))

=
a2(k−j)+1 e2j

cos2j( π
2k )

+ O(e2N ′(k)+2).

Clearly, for j = N ′(k)

a2(k−N ′(k)) e2N ′(k)

(1 − λ2
1
2k

)N ′(k)
=

a2(k−N ′(k)) e2N ′(k)

cos2N ′(k)( π
2k )

+ O(e2N ′(k)+2).
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Hence, (7.13) reduces to

a2k +
N ′(k)∑

j=1

ξj,j(2k − 2j)e2j

cos2j( π
2k )

a2(k−j) = O(e2N ′(k)+2‖μ‖C5k0 ), (7.14)

for k = k0 + 1, . . . , Nm.

If k ≥ 3k0 + 1, since Ω is q0-integrable (recall that q0 = 2k0), then we also have
the existence of integrable rational caustics with rotation numbers 3

2k .
In particular, let 2k �≡ 0 (mod. 3), with k = 3k0 + 1, . . . , Nm. Proceeding as above,
using the existence of a caustic with rotation number 3

2k , we can conclude that:

a2k +
N ′(k)∑

j=1

ξj,j(2k − 2j)e2j

cos2j(3π
2k )

a2k−2j = O(e2N ′(k)+2‖μ‖C5k0 ). (7.15)

Remark 7.8. We obtain Nm − m + 1 linear equations in Nm − m + 1 variables: a2k

with k = m, . . . , Nm.
Observe, in fact, that the number Nm was chosen in such a way that the number of
equations is the same as the number of unknowns. Indeed:

• For k = k0 + 1, . . . , 3k0, we obtain 2k0 equations.
• For k = 3k0 + 1, . . . , Nm, we have Nm − 3k0 values of k which contribute

with 2 equations when k is not a multiple of 3, and with only one equation
otherwise. Hence, each group {3j + 1, 3j + 2, 3(j + 1)} produces 5 equations
and in our case j = k0, . . . , �Nm/3�. Let us define αm ∈ {0, 1, 2} such that
Nm = 3�Nm/3� + αm, namely αm ≡ Nm (mod. 3).

• Hence, the number of total equations is

2k0︸︷︷︸
1st block

+ 5 (�Nm/3� − k0) + 2αm
︸ ︷︷ ︸

2ndblock

.

• The number of unknowns that we get is Nm − m + 1.

In conclusion, we want to choose Nm such that

2k0 + 5 (�Nm/3� − k0) + 2αm = Nm − m + 1
⇐⇒ 5�Nm/3� − 3k0 + 2αm = 3�Nm/3� + αm − m + 1
⇐⇒ 2�Nm/3� = 3k0 − m + 1 − αm. (7.16)

We want to solve this equation. We distinguish two cases according to the parity of
3k0 − m (or, equivalently, of k0 − m):
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• If k0 − m is even, (7.16) can have an integral solution only if αm = 1; in this
case:

⌊
Nm

3

⌋

=
3k0 − m

2

and

Nm = 3
⌊

3k0 − m

2

⌋

+ 1 = 3k0 +
⌊

k0 − m

2

⌋

+ 1.

• Similarly, if k0 −m is odd, (7.16) can have an integral solution only if αm = 0
or 2; in case αm = 2:

⌊
Nm

3

⌋

=
3k0 − m − 1

2
=

⌊
3k0 − m

2

⌋

and

Nm = 3
(⌊

3k0 − m

2

⌋)

+ 2 = 3k0 + 3
⌊

k0 − m

2

⌋

+ 2.

Observe that if we choose αm = 0, then we could get a larger Nm, namely
3k0 + 3

⌊
k0−m

2

⌋
+ 3.

Summarizing, we choose

Nm := 3k0 + 3
⌊

k0 − m

2

⌋

+ νk0,m,

where

νk0,m =

{
1 if k0 − m is even
2 if k0 − m is odd.

Observe that for m = k0, we have exactly Nk0 = 3k0 +1, as needed to recover (7.12)
from Lemma 7.1.

Remark 7.9. Recall that q0 = 2k0. We denote by A(even)
q0,m ∈ MNm−m+1(R) the

square matrix of the coefficients associated to the linear system of equations, con-
sisting of

• the first 2k0 equations correspond to (7.14) for k = k0 + 1, . . . , 3k0,
• the other Nm − 2k0 rows correspond to the equations (7.14)–(7.15) for k =

3k0 + 1, . . . , Nm.

In particular, the matrix A(even)
q0,m has the following structure

A(even)
q0,m =

(
∗ L′ O′

∗ ∗ K′

)

, (7.17)

where

• L′ a lower triangular 2k0 × 2k0 matrix with 1’s on the diagonal;
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• K′ is a (Nm − 2k0) × (Nm − 3k0 + m − 1) matrix of the form

K′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0
1 0 0 . . . 0
∗ 1 0 . . . 0
∗ 1 0 . . . 0
∗ ∗ 1 . . . 0
...

...
...

...
...

∗ ∗ ∗ . . . 1
∗ ∗ ∗ . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

actually, the above matrix is just an example of K′, for some choice of k0 and
m: the actual form and size of this block, in fact, may vary according to the
arithmetic properties of k0 and m;

• O′ is a block of zeros of size 2k0 × (Nm − 3k0 + m − 1);
• observe that each row has a unit on it and the ∗ entries are a multiple of

e2j , where j ∈ N represents the “distance” from the unit within the row;
in particular all ∗ entries are of the form ξ cos−2j(wπ)e2j , where ξ ∈ Q,
w ∈ { 1

2k , 3
2k : k > j}.

• Notice that this hierarchical structure of the powers of e within a given
row/column, implies a similar hierarchical structure for the rows of its inverse,
as we have already pointed out before, for example in (4.9), (5.4), (5.6), (6.2),
(6.5) and (6.6).

If A(even)
q0,m is non-degenerate, then solving the linear system, we get that

a2k = O(e2k−2m+2‖μ‖C5k0 ), k = m, . . . , k0.

Then one can show that replacing m by m− 1, assumption (7.12) continues to hold.
Therefore, iterating the procedure until m = 1, we conclude that

a2k = O(e2‖μ‖C5k0 ), k = 2, . . . , k0.

Similarly, one can show that

b2k = O(e2‖μ‖C5k0 ), k = 2, . . . , k0.

To summarize, the discussion in Subsections 7.1 and 7.2 leads to the following
statement.

Proposition 7.10. If all the q0−2 matrices in (7.11) and (7.17) are non-degenerate,
then there exists Cq0 > 0 depending only on q0 such that

|ak|, |bk| ≤ Cq0e
2‖μ‖C3q0 , k = 3, . . . , q0.

Remark 7.11. Notice that the algorithm that we have described, can be easily
implemented on a computer, hence all of the above non-degeneracy conditions can
be explicitely verified, via symbolic computations, for arbitrary q0; see Sections 4–6
for the cases corresponding to q0 = 3, 4, 5.
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8 Deformed Fourier Modes

Let Ω be a strictly convex domain and let s denote the arc-length parametrization
of ∂Ω and denote by |∂Ω| its length. Let ρ(s) be its radius of curvature at s. Observe
that if Ω is Cr, then ρ is Cr−2. The Lazutkin parametrization of the boundary, first
introduced in [LAZ73], is defined as

x(s) = CΩ

∫ s

0
ρ(σ)−2/3dσ, where CΩ := 2π

[ ∫ |∂Ω|

0
ρ(σ)−2/3dσ

]−1
.

Observe that if ∂Ω = Ee is an ellipse, ρ is analytic, thus, the Lazutkin parametrization
is itself an analytic parametrization of Ee. Let (μ, ϕ) be the elliptic coordinates
associated to the ellipse Ee,

Ee = {(μ0, ϕ) : ϕ ∈ [0, 2π)}.

Let ϕL(x) denote the change of parametrization from x to ϕ. Then we have the
following lemma.

Lemma 8.1. For each r ∈ N, there exists Cr such that

‖ϕL(x) − x‖Cr ≤ Cre
2.

The proof of this lemma is straightforward. The reader is kindly referred to [KS,
Appendix A] for some details.

Now let us introduce the change of variables from the action-angle parametriza-
tion θ of Ee, derived from the smooth convex caustic with rotation number 1/q, to
the Lazutkin parametrization x, i.e,

x = Xq(θ) := ϕ−1
L

(
ϕλ1/q

(θ)
)
.

The following lemma is proven in [ADK16, Lemma 11].

Lemma 8.2. There exists C(e), with C(e) → 0 as e → 0+, such that

‖Xq(·) − I(·)‖C1 ≤ C(e)
q2

.

where I stands for the identity map.

Let us denote L2(T) the L2-space of 2π-periodic functions, with trigonometric
basis {vk}k∈Z, where

v0 = 1, vk(x) =
1√
π

cos kx, v−k =
1√
π

sin kx, k = 1, 2, . . . .

Consider another set of functions {ck}k∈Z, where

c0(x) = v0, ck(x) = vk(x), c−k(x) = v−k(x) k = 1, . . . , q0,
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and for k > q0,

ck(x) =
cos

(
kX−1

k (x)
)

√
π X ′

k

(
X−1

k (x)
) , c−k(x) =

sin
(
kX−1

k (x)
)

√
π X ′

k

(
X−1

k (x)
) .

Note here that the functions c±k have zero average. From Lemma 8.2, for each k ≥ 1
we have

‖ck − vk‖C0 ≤ C(e)
k

, ‖c−k − v−k‖C0 ≤ C(e)
k

, (8.1)

and

C(e) −→ 0 as e → 0+;

for e small enough, {ck}k∈Z form a basis of L2 (see [ADK16, Proposition 22] and
Lemma 8.3 hereafter).

For any integer r ≥ 1, we consider the Sobolev space Hr(T), which is defined as

Hr(T) := {u ∈ L2(T) : u(r) ∈ L2(T)},

where u(r) denotes the rth (weak) derivative of u. Recall that Hr(T) is a Hilbert
space with inner product

〈u, v〉r =
(∫

T

udx

)(∫

T

vdx

)

+
∫

T

u(r)v(r)dx,

and we have

‖u‖2
r =

∑

k∈Z

(|k|2r ∧ 1)û2
k = 〈u, u〉r,

where a ∧ b = max{a, b} and ûk are the Fourier coefficient of u, i.e.,

ûk =
∫

T

u(x)vk(x)dx, k ∈ Z.

Notice that the choice of norms is somewhat non-standard and for each r ≥ 1 we
have

‖u‖r ≤ ‖u‖r+1.

Denote Vk(x) be the functions that have zero average and

V(r)
k (x) = vk(x), k ∈ Z\{0}.

Then, we have that the set of functions {V0 = 1, Vk, k ∈ Z\{0}} form an orthonor-
mal basis of Hr(T), i.e.,

〈Vk, Vj〉r = δk,j , ∀ k, j ∈ Z,
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and for every u ∈ Hr(T), we have

u(x) =
∑

k∈Z

ukVk(x),

and

‖u‖2
r =

∑

k∈Z

u2
k,

where uk = 〈u, Vk〉r. Observe that u2
k = (k2r ∧ 1)û2

k, for k ∈ Z.
Now we introduce a set of functions

{C0 = 1, Ck, C−k, k ∈ Z+},

where C±k, k ∈ Z+ are the zero average functions on T such that

C(r)
k (x) = ck(x), C(r)

−k(x) = c−k(x), k ∈ Z\{0}.

Therefore, we have

Ck = Vk, C−k = V−k, k ∈ Z+, k ≤ q0,

and using (8.1)

‖Vk − Ck‖2
r = 〈Vk − Ck, Vk − Ck〉r ≤ [C(e)]2

k2
,

‖V−k − C−k‖2
r = 〈V−k − C−k, V−k − C−k〉r ≤ [C(e)]2

k2
(8.2)

for k ∈ Z, k > q0. Consider the linear operator

L : Hr(T) → Hr(T), u �→ Lu = u0 +
∑

k∈Z+

ukCk(x) + u−kC−k(x),

where uk = 〈u, Vk〉r.

Define D(q0) :=
[∑

|k|>q0,k∈Z

1
k2

] 1
2

<
√

π2

3 .

Lemma 8.3. Let C(e) be from Lemma 8.2. Assume e0 satisfies

C(e0)D(q0) < 1.

Then, for each e ∈ [0, e0] the operator L is bounded and invertible in the Hilbert
space Hr(T). In particular, {C0, Ck, C−k, k ∈ Z+} form a basis of Hr(T).
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Proof. Observe that if ‖L − I‖Hr→Hr < 1, then L is a bounded invertible operator
with a bounded inverse; recall that

‖L − I‖Hr→Hr := sup
‖u‖r≤1

‖[L − I](u)‖r. (8.3)

For each v ∈ Hr, we have

u =
∑

k∈Z

ukVk, uk = 〈uk, Vk〉r, k ∈ Z.

By the definition of the operator L, we have

[L − I](u) =
∑

k∈Z,|k|>q0

uk(Ck − Vk).

By the Cauchy inequality, we have

‖[L − I](u)‖r ≤
∑

k∈Z,|k|>q0

|uk| · ‖Ck − Vk‖r ≤
[
∑

k∈Z

u2
k

] 1
2
[
∑

k∈Z

‖Ck − Vk‖2
r

] 1
2

.

By (8.2), we have

[
∑

k∈Z

‖Ck − Vk‖2
r

] 1
2

≤ C(e)

⎡

⎣
∑

|k|>q0,k∈Z

1
k2

⎤

⎦

1
2

< C(e)

√
π2

3
.

Therefore, the assertion of the lemma follows from (8.3) and the fact that ‖u‖2
r =

∑
k∈Z

u2
k.

Remark 8.4. Observe that the basis {C0, Ck, C−k, k ∈ Z+} of Hr(T) is not neces-
sarily an orthogonal basis.

Corollary 8.5. There exists C ′(e) > 0, with C ′(e) → 1 as e → 0+, such that for
each u ∈ Hr(T),

‖u‖2
r ≤ C ′(e)

∑

k∈Z

ũ2
k,

where ũk = 〈u, Ck〉r.

Proof. The operator L is bounded and invertible with a bounded inverse, so it is its
adjoint operator L∗. Let us denote

C ′(e) = ‖(L∗)−1‖Hr→Hr .

Hence we have that for each u ∈ Hr(T),

‖u‖2
r = ‖(L∗)−1L∗u‖r ≤ C ′(e)‖L∗u‖2

r

≤ C ′(e)
∑

k∈Z

〈L∗u, Vk〉2r = C ′(e)
∑

k∈Z

〈u, LVk〉2r .
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Since LVk = Ck, we have

‖u‖Cr ≤ C ′(e)
∑

k∈Z

ũ2
k.

The assertion that C ′(e) → 1 as e → 0+ follows from the fact that ‖L−I‖Hr→Hr → 0
as e → 0+. ��

Corollary 8.6. Let u(x) ∈ Hr+1(T). Then, there exists C ′′(e) > 0 such that

∣
∣〈u, Ck〉r

∣
∣ ≤ C ′′(e)‖u‖r+1

|k| ∀ k ∈ Z\{0}.

Proof. Using (8.2), we have

∣
∣〈u, Vk − Ck〉r

∣
∣ ≤ ‖u‖r‖Vk − Ck‖r ≤ C(e)‖u‖r

|k| .

Since u ∈ Hr+1, we have
∣
∣〈u, Vk〉r

∣
∣ ≤ ‖u‖r+1

|k| .

Therefore we have
∣
∣〈u, Ck〉r

∣
∣ ≤ C ′′(e)‖u‖r+1

|k| ,

where C ′′(e) = 1 + C(e). ��

Consider a domain Ω, whose boundary ∂Ω is close to the ellipse Ee, written in
elliptic coordinates associated to Ee as

∂Ω = Ee + μ(ϕ),

where ‖μ‖Cm ≤ M with m > r + 2 and ‖μ‖C1 is small enough. Let x denote the
Lazutkin parametrization of Ee. Define

fμ(x) = μ(ϕL(x)).

Then we have:

Lemma 8.7. For any integer r > 0, there exists Cr > 0 independent of ϕ and μ,
such that

(1 − Cre
2)‖μ‖Cr ≤ ‖fμ‖Cr ≤ (1 + Cre

2)‖μ‖Cr .

Moreover, the following holds.

Lemma 8.8. There exists C > 0 such that

|f̂k − μ̂k| ≤ Ce2‖μ‖C1 ,

where f̂k and μ̂k are the Fourier coefficients of the functions fμ and μ.
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The two lemmata above directly follow from Lemma 8.1.
Let us now show the following result, where we assume 0 < e ≤ e0 and Cre

2 ≤ 1
2 .

Lemma 8.9. For any integer q > q0, if the billiard dynamics inside the domain Ω
admits an integrable rational caustic with rotation number 1/q, then

∣
∣〈fμ, C±q〉r

∣
∣ ≤ C(M)q7‖fμ‖

2(m−r−2)
m−1

C1 .

Proof. By Lemmata 3.2 and 3.3, from the existence of a smooth convex caustic with
rotation number 1/q, we have that

q∑

k=1

fμ(Xq(θ +
k

q
2π)) = c1/q + Υ(Xq(θ)),

and denoting Υ̃ = Υ(Xq(θ)),

‖Υ̃‖C0 ≤ q8C‖fμ‖2
C1 , and ‖Υ̃‖Cm−1 ≤ q2C ′(M).

By the Sobolev interpolating inequality

‖u‖Cr ≤ C‖u‖Hr+1 ≤ C‖u‖
r+1
m−1

Cm−1‖u‖
m−r−2

m−1

C0 ,

we have

‖Υ̃‖Cr ≤ q8C ′(M)‖fμ‖
2(m−r−2)

m−1

C1 .

Notice that
∫ 2π

0
Dr

q∑

k=1

fμ(Xq(θ +
k

q
2π)) sin qθ dθ

=
q∑

k=1

∫ 2π

0
Drfμ(Xq(θ +

k

q
2π)) sin qθ dθ

= q

∫ 2π

0
Drfμ(Xq(θ)) sin qθ dθ,

here we denote Dr for the rth derivative. Then

∣
∣
∣

∫ 2π

0
Drfμ(Xq(θ)) sin qθ dθ

∣
∣
∣ ≤ ‖Υ̃‖Cr

q
≤ q7C ′(M)‖fμ‖

2(m−r−2)
m−1

C1 .

Let x = Xq(θ) and θ = X−1
q (x), we have

dθ =
1

X ′
q(X

−1
q (x))

dx.
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Therefore,
∫ 2π

0
Drfμ(Xq(θ)) sin qθ dθ =

∫ 2π

0
Drfμ(x) sin qX−1

q (x)
1

X ′(X−1
q (x))

dx

=
√

π

∫ 2π

0
Drfμ(x)DrC−q(x)dx =

√
π〈fμ, C−q〉r.

Hence
∣
∣〈fμ, C−q〉r

∣
∣ ≤ q7C ′(M)‖fμ‖

2(m−r−2)
m−1

C1 .

Repeating a similar argument, we obtain the corresponding inequality for
〈fμ, Cq〉r. ��

9 Proof of the Main result

In this section, we prove Theorems 1.1 and 1.2.
Denote

n = 3q0, and m = 40q0.

Let Ee be an ellipse with eccentricity e ∈ (0, 4e0/5] and the semi-major axis 1, where
e0 is from Lemma 8.3. Consider a Cm-smooth domain Ω, which is a Cn-perturbation
of the ellipse Ee, i.e., in the elliptic coordinates associated to Ee,

∂Ω = Ee + μ(ϕ),

where

‖μ‖Cn ≤ ε, and ‖μ‖Cm ≤ M.

Here ε ≤ e6q0 is a small parameter to be determined below and M > 0 is a fixed
constant. We make the following assumption:

Assumption A: The domain Ω is q0-rationally integrable and the non-degeneracy
conditions in Proposition 7.10 hold true if q0 ≥ 6. More exactly, matrices (7.11)
and (7.17) are non-degenerate.

The proof consists of two main steps:

• Find an ellipse E ′′, close to Ee, which best approximates Ω.
• Show that Ω = E ′′.

Step 1. Denote Eε = Eε(Ee) the set of ellipses whose C0-Hausdorff distance to
Ee is not greater than 2ε, i.e.,

Eε := {E ′ ⊂ R
2 : distH(E ′, Ee) ≤ 2ε}.

Clearly, Eε is a compact set in any Cr-topology (it is completely determined by 5
parameters). We choose ε small enough so that the eccentricities of all ellipses in
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Eε are between 4e/5 and 5e/4. For each E ′ ∈ Eε, we can write the domain Ω in the
elliptic-coordinate frame associated to E ′, as

∂Ω = E ′ + μE ′(ϕ).

Choosing a smaller ε if necessary, assuming ‖μE ′‖Cm ≤ 2M , ∀E ′ ∈ Eε, from Lemma
A.1, we know that ‖μE ′‖Cn changes continuously with respect to E ′.

The proof is by contradiction. Assume that the statement of the theorem is not
true—namely, ∂Ω is not an ellipse—since Eε is compact, then we choose E ′′ ∈ E

such that

‖μE ′′‖Cn = min {E ′ ∈ E : ‖μE ′‖Cn} > 0.

We also have that

‖μE ′′‖Cm ≤ 2M and ‖μE ′′‖Cn ≤ ‖μE ′‖Cn .

Step 2. We prove the following:

Lemma 9.1. There exists an ellipse Ē ∈ Eε such that in the elliptic-coordinate frame
associated to Ē

‖μĒ‖Cn <
1
2
‖μE ′′‖Cn .

Notice that this contradicts minimality of ‖μE ′′‖Cn > 0 among all E ′ ∈ Eε.

Proof. By Lemma B.1, there exists an ellipse Ē ∈ Eε such that in the elliptic-
coordinate frame associated to Ē , the domain Ω reads as

∂Ω = Ē + μĒ(ϕ),

with

‖μĒ‖Cm ≤ 2M, ‖μĒ‖Cn ≤ 2‖μE ′′‖Cn .

and the first five Fourier coefficients of μĒ satisfy (9.1). Write μĒ as Fourier series,
i.e.,

μĒ(ϕ) :=
+∞∑

k=0

ak cos(kϕ) + bk sin(kϕ).

We split the perturbation into four parts:

(1) (Elliptic motions) |k|≤2;
(2) (Low-order modes) 2 < |k| ≤ q0;
(3) (Intermediate-order modes) q0 < |k| < N := ‖μE ′′‖−1/15

Cn ;
(4) (High-order modes) |k| ≥ N .
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Each of these regimes requires different type of estimates.
• Elliptic motions: |k|≤2.
By Lemma B.1, there exists C > 0 such that

|ak| ≤ Ce2‖μE ′′‖C1 , |bk| ≤ Ce2‖μE ′′‖C1 , |k| ≤ 2. (9.1)

• Low-order modes: 2 < |k| ≤ q0.
With Assumption A, from Proposition 7.10 we have that there exists Cq0 > 0

depending only on q0 such that

|ak|, |bk| ≤ Cq0e
2‖μĒ‖Cn ≤ 2Cq0e

2‖μE ′′‖Cn , 3 ≤ k ≤ q0. (9.2)

Denote by x the Lazutkin parametrization of the ellipse Ē . Define

F (x) := μĒ(ϕ(x)).

By Lemma 8.7, we have

‖μĒ‖Cn ≤ (1 − Cne2)−1‖F‖Cn

and

‖F‖Cn ≤ (1 + Cne2)‖μĒ‖Cn ≤ 2(1 + Cne2)‖μE ′′‖Cn .

We consider the Hilbert space Hn+1(T) and define the basis {Ck, k ∈ Z} for
Hn+1(T) like the one defined in Section 8. Denote

αF
k = 〈F, Ck〉n+1 k ∈ Z.

Then, due to Lemma 8.8, (9.1) and (9.2), we have that there exists C̄q0 > 0 such
that

|αF
k | ≤ (1 ∧ |k|n+1)C̄q0e

2‖μE ′′‖Cn |k| ≤ q0.

Therefore, we have
q0∑

k=−q0

(αF
k )2 ≤ 3C̄q0q

2n+3
0 e4‖μE ′′‖2

Cn .

• Intermediate-order modes: q0 < |k| < N := ‖μE ′′‖−1/15
Cn .

By Lemma 8.9, for q0 < |k| < N we have that

|αF
k | ≤ C(M)|k|7‖F‖

2(m−n−3)
m−1

C1 ≤ 4C(M)|k|7‖μE ′′‖
2(m−n−3)

m−1

C1 .

So we have,

∑

q0<|k|<N

(αF
k )2 ≤ C(M)N15‖μE ′′‖

4(m−n−3)
m−1

C1 .
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• High-order modes: |k| ≥ N .
For |k| ≥ N , due to Lemma 8.6, we have

|αF
k | ≤ ‖F‖Cn+2

|k| ≤ C‖μE ′′‖Cn+2

|k| .

So we have
∑

|k|≥N

(αF
k )2 ≤

∑

|k|≥N

C
‖μE ′′‖2

Cn+2

k2
≤ C

N
‖μE ′′‖2

Cn+2 .

Using Sobolev interpolation inequality, we have

‖μE ′′‖Cn+2 ≤ C‖μE ′′‖Hn+3 ≤ C‖μE ′′‖
3

m−n

Cm ‖μE ′′‖
m−n−3

m−n

Cn ≤ C(M)‖μE ′′‖
m−n−3

m−n

Cn .

Since m = 40q0 and n = 3q0, we have

2(m − n − 3)
m − n

≥ 72
37

and
4(m − n − 3)

m − 1
≥ 18

5
.

Choose N = ‖μE ′′‖−1/15
Cn . Then, we obtain

1
N

C‖μE ′′‖2
Cn+2 ≤ CM‖μE ′′‖72/37+1/15

Cn = C(M)‖μE ′′‖2+7/555
Cn

and

C(M)N15‖μE ′′‖
4(m−n−3)

m−1

Cn ≤ C(M)‖μE ′′‖13/5
Cn .

Then, due to Corollary 8.5, we conclude

‖F‖2
Hn+1 ≤ C ′(e)

(
3C̄q0q

2n+3
0 e4‖μE ′′‖2

Cn + C(M)‖μE ′′‖2+7/555
Cn

)
.

By Sobolev embedding theorem, we have

‖μĒ‖2
Cn ≤ 1

(1 − Cne2)−2
‖F‖2

Cn ≤ C ′
n

(1 − Cne2)−2
‖F‖2

n+1

≤ 3C ′
nC ′(e)C̄q0

(1 − Cne2)−2
q2n+3
0 e4‖μE ′′‖2

Cn + C(M)‖μE ′′‖2+7/555
Cn .

Hence, if
3C ′

nC ′(e)C̄q0

(1 − Cne2)−2
q2n+3
0 e4 <

1
16

(9.3)

and ε is small enough, we get

‖μĒ‖Cn <
1
2
‖μE ′′‖Cn ,

which contradicts the minimality of ‖μE ′′‖Cn . So ∂Ω must be an ellipse. ��
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Appendix A: Elliptic Polar Coordinates

Consider an ellipse

E =
{

(x, y) ∈ R
2 :

x2

a2
+

y2

b2
= 1

}
, a > b > 0.

Associated to E , there exists an elliptic-coordinate frame (μ, ϕ) given by the relations
{

x = c cosh μ cos ϕ
y = c sinh μ sinϕ,

where c =
√

a2 − b2 is the semi-focal distance of E .
Let e denote the eccentricity and μ0 := cosh−1(e−1); then, E in this elliptic-coordinate frame
is represented by

E = {(μ0, ϕ) : ϕ ∈ [0, 2π)}.

Hence, any (small) smooth perturbation ∂Ω of the ellipse E can be written in elliptic-
coordinate frame as

∂Ω = {(μ0 + μ(ϕ), ϕ) : ϕ ∈ [0, 2π)},

where μ(ϕ) is a 2π-periodic smooth functions; hereafter we will use the shorthand

∂Ω = E + μ(ϕ).

Lemma A.1. [KS, Lemma 35] Let Ee0,c be an ellipse of eccentricity e0 = 1/ cosh μ0 and
semi-focal distance c, and suppose that ∂Ω is a perturbation of Ee0,c, which can be written
(in the elliptic-coordinate frame (μ, ϕ) associated to Ee0,c) as ∂Ω = Ee0,c + μΩ(ϕ). Consider
another ellipse E sufficiently close to Ee0,c, which can be written (in elliptic-coordinates frame
associated to Ee0,c) as

E = Ee0,c + μE .
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If E is sufficiently close to Ee0,c, we can write (in the elliptic-coordinate frame (μ, ϕ) associ-
ated to E) ∂Ω = E + μΩ(ϕ), for some function μΩ. Then, there exists C = C(e0, c, n) such
that

‖μΩ(ϕ) − (μE(ϕ) + μΩ(ϕ))‖Cn ≤ C‖μE‖Cn‖‖μΩ − μE‖Cn . (A.1)
In particular, for any C ′ > 1, if E is sufficiently close to Ee0,c then we have

1
C ′ ‖μΩ − μE‖Cn ≤ ‖μΩ‖Cn ≤ C ′‖μΩ − μE‖Cn . (A.2)

Remark A.2. Lemma 35 in [KS] is stated for C1-norm. The same arguments also work for
Cn-norm, n = 1, . . . ,m.

Appendix B: Elliptic Motions in Elliptic Coordinates

In this section we consider a special class of perturbations of the ellipse Ee,c (see also [KS,
Appendix B]). These perturbations written in the corresponding elliptic coordinates are of
the form

∂Ω = Ee,c + μ̃(ϕ),

with

μ̃(ϕ) = a0 + a1 cos ϕ + a−1 sinϕ + a2 cos 2ϕ + a−2 sin 2ϕ.

We show that for this type of perturbations, there exists an ellipse Ē , represented in elliptic
coordinates as Ē = Ee,c + μ̄(ϕ) such that

μ̃(ϕ) − μ̄(ϕ) = O(e2μ̃).

Let us consider a domain D ⊂ R
2 close to Ee,c,

∂D :

{
x = c cosh

(
μ0 + μ(ϕ)

)
cos ϕ,

y = c sinh
(
μ0 + μ(ϕ)

)
sin ϕ,

ϕ ∈ [0, 2π],

where μ0 = cosh−1(1/e), μ(ϕ) is a smooth 2π-periodic function and we assume that ‖μ‖C1

is small enough.
Let us define

rμ(ϕ) := (c cosh(μ0 + μ(ϕ)) cos ϕ)2 + (c sinh(μ0 + μ(ϕ)) sin ϕ)2

= (a cos ϕ + a
√

1 − e2μ(ϕ) cos ϕ + O(μ2))2

+ (a
√

1 − e2 sin ϕ + aμ(ϕ) sin ϕ + O(μ2))2

= a2 cos2 ϕ + 2a2
√

1 − e2μ(ϕ) cos2 ϕ + O(μ2)

+ a2(1 − e2) sin2 ϕ + 2a2
√

1 − e2μ(ϕ) sin2 ϕ + O(μ2)

= a2(1 − e2 sin2 ϕ) + 2a2
√

1 − e2μ(ϕ) + O(μ2).

Here we have used Taylor’s expansion and the fact that

c cosh μ0 = a, c sinh μ0 = b = a
√

1 − e2.
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B.1 Homotheties. For any λ ∈ R, let us denote the homothety of the ellipse Ee,c by

E [λ, Ee,c] := exp[λ]Ee,c.

Let μλ(ϕ) be the function representing E [λ, Ee,c] in the elliptic-coordinate frame associated
to Ee,c. Then we have

(
c cosh

(
μ0 + μλ(ϕ)

)
cos ϕ

c sinh
(
μ0 + μλ(ϕ)

)
sinϕ

)

= exp[λ]
(

c cosh(μ0) cos
(
ϕλ(ϕ)

)

c sinh(μ0) sin
(
ϕλ(ϕ))

)

,

where ‖ϕλ(ϕ) − ϕ‖Cn ≤ Cnλ. For |λ| small enough, using Taylor’s expansion, denoting
Δϕλ := ϕλ − ϕ, we have

rλ(ϕ) : = (exp[λ]a cos(ϕλ))2 + (exp[λ]a
√

1 − e2 sinϕλ)2

= a2
(
cos ϕ − Δϕλ sin ϕ + λ cos ϕ + O(λ2)

)2

+ a2(1 − e2)
(
sinϕ + Δϕλ cos ϕ + λ sinϕ + O(λ2)

)2

= a2(cos2 ϕ − 2Δϕλ sin ϕ cos ϕ + 2λ cos2 ϕ + O(λ2))

+ a2(1 − e2)(sin2 ϕ + 2Δϕλ sinϕ cos ϕ + 2λ sin2 ϕ + O(λ2))

= a2[1 − e2 sin2 ϕ + 2λ − 2λe2 sin2 ϕ − e2Δϕλ sin 2ϕ + O(λ2)].

From rμλ
(ϕ) = rλ(ϕ), we get

μλ(ϕ) =
λ√

1 − e2
− 2λe2 sin2 ϕ − e2Δϕ sin 2ϕ

2
√

1 − e2
+ O(λ2) = λ + O(e2λ).

B.2 Translations. For any α = (α1, α2) ∈ R
2, let us denote the translation of Ee,c

in the direction of the vector α by

T [α, Ee,c] := Ee,c + α.

We look for the function μα(ϕ) that defines T [α, Ee,c] in the elliptic coordinates of the ellipse
Ee,c. Then, we have

(
c cosh

(
μ0 + μα(ϕ)

)
cos ϕ

c sinh
(
μ0 + μα(ϕ)

)
sinϕ

)

=
(

c cosh(μ0) cos
(
ϕα(ϕ)

)
+ α1

c sinh(μ0) sin
(
ϕα(ϕ)) + α2

)

,

where

‖ϕα − ϕ‖Cn ≤ Cn|α|.
For |α| small enough, using Taylor’s expansion and denoting

Δϕα := ϕα − ϕ,

we have

rα(ϕ) : = (a cos ϕα + α1)2 + (a
√

1 − e2 sin ϕα + α2)2

= (a cos ϕ − aΔϕα sin ϕ + O(|α|2) + α1)2

+ (b sin ϕ + bΔϕα cos ϕ + O(|α|2) + α2)2

= a2 cos2 ϕ − 2a2Δϕα cos ϕ sin ϕ + 2α1a cos ϕ + O(|α|2)
+ b2 sin2 ϕ + 2b2Δϕα cos ϕ sin ϕ + 2bα2 sin ϕ + O(|α|2)

= a2 − a2e2 sin2 ϕ + 2α1a cos ϕ + 2α2b sin ϕ − a2e2Δϕα sin 2ϕ + O(|α|2).
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Since rμα
= rα, we obtain

μα(ϕ) =
α1 cos ϕ + α2

√
1 − e2 sin ϕ − 1

2ae2 sin 2ϕ + O(|α|2)
a
√

1 − e2

=
α1

a
cos ϕ +

α2

a
sinϕ + O(e2|α|).

B.3 Hyperbolic rotations. For any β = (β1, β2), let us denote by H[β, Ee,c] the
ellipse obtained by applying to Ee,c the hyperbolic rotation generated by the linear map

H[β] = exp
(

β1 β2

β2 −β1

)

=
(

1 + β1 β2

β2 1 − β1

)

+ O(|β|2).

Let μβ(ϕ) be the function that defines H[β, Ee,c] in the elliptic-coordinate frame associated
to Ee,c. Then we have

(
c cosh

(
μ0 + μβ(ϕ)

)
cos ϕ

c sinh
(
μ0 + μβ(ϕ)

)
sin ϕ

)

= H[β]
(

c cosh(μ0) cos
(
ϕβ(ϕ)

)

c sinh(μ0) sin
(
ϕβ(ϕ))

)

=
(

(1 + β1)a cos ϕβ + β2b sin ϕβ

β2a cos ϕβ + (1 − β1)b sin ϕβ

)

+ O(|β|2),

where ‖ϕβ − ϕ‖Cn ≤ Cn|β|. For |β| small enough, using Taylor’s expansion and denoting
Δϕβ := ϕβ − ϕ, we have

rβ(ϕ) : = [(1 + β1)a cos ϕβ + β2b sin ϕβ ]2

+ [β2a cos ϕβ + (1 − β1)b sin ϕβ ]2 + O(|β|2)
= [a cos ϕ − aΔϕβ sinϕ + β1a cos ϕ + β2b sin ϕ + O(|β|2)]2

+ [β2a cos ϕ + b sin ϕ + bΔϕβ cos ϕ − bβ1 sinϕ + O(|β|2)]2

= a2 cos2 ϕ − a2Δϕβ sin 2ϕ + 2β1a
2 cos2 ϕ + β2ab sin 2ϕ

+ b2 sin2 ϕ + abβ2 sin 2ϕ + b2Δϕβ sin 2ϕ − 2b2β1 sin2 ϕ + O(|β|2)
= a2 − a2e2 sin2 ϕ + 2abβ2 sin 2ϕ + 2a2β1 cos 2ϕ

+ 2a2e2 sin2 ϕ + a2e2Δβ sin 2ϕ + O(|β|2).

From rμβ
(ϕ) = rβ(ϕ), we get

μβ =
2abβ2 sin 2ϕ + 2a2β1 cos 2ϕ + 2a2e2 sin2 ϕ + a2e2Δβ sin 2ϕ + O(|β|2)

2a2
√

1 − e2

= β1 cos 2ϕ + β2 sin 2ϕ + O(e2|β|).

To sum up, combining with Lemma A.1, we obtain the following result.

Lemma B.1. Let Ee,c be an ellipse of eccentricity e ∈ (0, 1
2 ), and Ω be a small perturbation

of Ee,c, which written in the elliptic-coordinate frame associated to Ee,c as

μ(ϕ) = a0 + a1 cos ϕ + a−1 sinϕ + a2 cos 2ϕ + a−2 sin 2ϕ.
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Assume ‖μ‖Cn small enough for some n ≥ 2, then there exists Cn, independent of the
eccentricity e and μ, and an ellipse Ē ,

Ē = Ee,c + μ̄(ϕ),

such that

‖μ − μ̄‖Cn ≤ Cne2‖μ‖Cn .

Appendix C: Expansion with Respect to e

The action-angle parametrization θ of the elliptic coordinate ϕ corresponding to the caustic
Cλ, expanded up to order O(e2N+2), J ∈ N is as follows:

ϕ(θ, λ, e) = θ +
N∑

j=1

ϕj(θ)
aje2j

(a2 − λ2)j
+ O(e2N+2), (C.1)

where the functions ϕN (θ) are of the form

ϕj(θ) =
j∑

l=1

βj,l sin(2lθ).

We give below the explicit formulae for ϕN (θ) for j = 1, . . . , 6.

ϕ1(θ) =
1
8

sin 2θ,

ϕ2(θ) =
1

256
(16 sin 2θ + sin 4θ),

ϕ3(θ) =
83 sin 2θ

2048
+

sin 4θ

256
+

sin 6θ

6144
,

ϕ4(θ) =
121 sin 2θ

4096
+

29 sin 4θ

8192
+

sin 6θ

4096
+

sin 8θ

131072
,

ϕ5(θ) =
12071 sin 2θ

524288
+

13 sin 4θ

4096
+

37 sin 6θ

131072
+

sin 8θ

65536
+

sin 10θ

2621440
,

ϕ6(θ) =
19651 sin 2θ

1048576
+

47955 sin 4θ

16777216
+

235 sin 6θ

786432
+

45 sin 8θ

2097152
+

sin 10θ

1048576
+

sin 12θ

50331648
.

Lemma C.1. Let

μ(ϕ) = a0 +
+∞∑

k=1

ak cos(kϕ) + bk sin(kϕ),

and μ(ϕ) ∈ Cm(T). Then for N ≤ m − 1, the expansion of the function μ(ϕ(θ, λ, e)) with
respect to e up to order O(e2N+2) is

μ(ϕ(θ, λ, e)) = μ(θ) +
N∑

j=1

Pj(θ)
aje2j

(a2 − λ2)j
+ O(e2N+2‖μ‖CN+1), (C.2)



GAFA NEARLY CIRCULAR DOMAINS WHICH ARE INTEGRABLE

where the functions Pj(θ) are of the form

Pj(θ) =
+∞∑

k=1

j∑

l=−j

ξj,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
.

The coefficients ξj,l(k) can be explicitely computed and, for small j and l, they are presented
below.

The functions Pj(θ), j = 1, . . . , 6 are explicitly given by

P1(θ) = μ′(θ)ϕ1(θ) =
+∞∑

k=1

1∑

l=−1

ξ1,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,

where

ξ1,−1(k) = − k

16
, ξ1,0(k) = 0, and ξ1,1(k) =

k

16
.

P2(θ) = μ′(θ)ϕ2(θ) +
1
2
μ′′(θ)(ϕ1(θ))2

=
+∞∑

k=1

2∑

l=−2

ξ2,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,

where

ξ2,−2(k) =
k2 − k

512
, ξ2,−1(k) = −16k

512
, ξ2,0 = −2k2

512
,

ξ2,1(k) =
16k

512
, ξ2,2(k) =

k2 + k

512
.

P3(θ) = μ′(θ)ϕ3(θ) +
2
2
μ′′(θ)ϕ1(θ)ϕ2(θ) +

1
6
μ′′′(θ)(ϕ1)3

=
+∞∑

k=1

3∑

l=−3

ξ3,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,

where

ξ3,−3(k) = − k

12288
+

k2

8192
− k3

24576
,

ξ3,−2(k) = − k

512
+

k2

512
, ξ3,−1(k) = − 83k

4096
− k2

8192
+

k3

8192
,

ξ3,0(k) = − k2

256
, ξ3,1(k) =

83k

4096
− k2

8192
− k3

8192
, ξ3,2(k) =

k + k2

512
,

ξ3,3(k) =
k

12288
+

k2

8192
+

k3

24576
.

P4(θ) = μ′(θ)ϕ4(θ) +
1
2
μ′′(θ)[(ϕ2(θ))2 + 2ϕ1(θ)ϕ3(θ)]

+
1
6
μ′′′(θ)3(ϕ1(θ))2ϕ2(θ) +

1
24

μ(4)(θ)(ϕ1(θ))4

=
+∞∑

k=1

4∑

l=−4

ξ4,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,
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where ξ4,j(k), j = −4, . . . , 4 are polynomials in k of at most degree 4, and

ξ4,4(k) =
k

262144
+

11k2

1572864
+

k3

262144
+

k4

1572864
.

P5(θ) = μ′(θ)ϕ5(θ) +
2
2
μ′′(θ)[ϕ2(θ)ϕ2(θ) + ϕ1(θ)(ϕ2(θ))2]

+
3
6
μ′′′(θ)[ϕ1(θ)(ϕ2(θ))2 + (ϕ1(θ))2ϕ3(θ)]

+
4
24

μ(4)(ϕ1(θ))3ϕ2(θ) +
1

120
μ(5)(θ)(ϕ1(θ))5

=
+∞∑

k=1

5∑

l=−5

ξ5,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,

where ξ5,j , j = −5, . . . , 5 are polynomials in k of at most degree 5, and

ξ5,5(k) =
k

5242880
+

5k2 + k4

12582912
+

7k3

25165824
+

k5

125829120
.

P6(θ) = μ′(θ)ϕ6(θ) +
1
2
μ′′(θ)[2ϕ1(θ)ϕ5(θ) + 2ϕ2(θ)ϕ4(θ) + (ϕ3(θ))2]

+
1
6
μ′′′(θ)[3(ϕ1(θ))2ϕ4(θ) + 3ϕ1(θ)ϕ2(θ)ϕ3(θ) + (ϕ2(θ))3]

+
1
24

μ(4)(θ)[4(ϕ1(θ))3ϕ3(θ) + 6(ϕ1(θ))2(ϕ2(θ))2]

+
1

120
μ(5)(θ)[5(ϕ1(θ))4ϕ2(θ)] +

1
720

μ(6)(θ)[(ϕ1(θ))6]

=
+∞∑

k=1

6∑

l=−6

ξ6,l(k)
(
ak cos((k + 2l)θ) + bk sin((k + 2l)θ)

)
,

where ξ6,j(k) are polynomials in k of at most order 6, and

ξ6,6(k) =
k

100663296
+

137k2

6039797760
+

11k3 + k5

805306368
+

17k4

2415919104
+

k6

12079595520
.

Appendix D: The Inverse and Adjugate of a Matrix

We recall the definition of the adjugate of a matrix and its relation to the inverse of a square
matrix in this section.
Let A be a n × n matrix with real entries. The adjugate adj(A) of A is the transpose of the
cofactor matrix C of A,

adj(A) = CT .

The cofactor matrix of A is the n × n matrix C whose (i, j)-entry is the (i, j)-cofactor of A,

Cij = (−1)i+jMij ,

where Mi,j is the determinant of the (n − 1) × (n − 1) matrix that results from deleting the
ith row and the jth column of A. Therefore, the adjugate of matrix A is the n × n matrix
adj(A) whose (i, j)-entry is the (j, i)-cofactor of A,

adj(A)ij = Cji = (−1)j+iMji.
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Theorem D.1. For a square matrix A = (aij),

(1) det(A) =
∑n

i=1 aijCij , for j = 1, . . . , n.
(2) A is invertible if and only if det(A) �= 0. Moreover, the inverse has the form

A−1 =
1

det(A)
adj(A).

Now consider the coefficient matrix in (6.4), which has the form

A = (aij) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11e
4 A12e

2 1 0 0 0
A21e

6 A22e
4 A23e

2 1 0 0
A31e

8 A32e
6 A33e

4 A34e
2 1 0

A41e
8 A42e

6 A43e
4 A44e

2 1 0
A51e

10 A52e
8 A53e

6 A54e
4 A55e

2 1
A61e

10 A62e
8 A63e

6 A64e
4 A65e

2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Direct calculation shows that

det(A) =
∑

σ∈S6

sgn(σ)
6∏

i=1

aiσi
=

∑
(· · · )e16 = Ae16,

where S6 is the group of all permutations of {1, . . . , 6}. One key feature here is that the
nonzero quantities in the summation are all exactly of order e16. Using part (1) of Theorem
D.1, we obtain that

C11 = c1e
12, C12 = c2e

10, C13 = c3e
8, C14 = c4e

8, C15 = c5e
6, C16 = c6e

6.

Then, using part (2) of Theorem D.1, if detA �= 0, then the first row of the inverse A−1 has
the form

(O(e−4), O(e−6), O(e−8), O(e−8), O(e−10), O(e−10)).

In the same way, we obtain that the second row of A−1 is of the form

(O(e−2), O(e−4), O(e−6), O(e−6), O(e−8), O(e−8)).

All of the matrices appearing in Sections 4–7 could be treated similarly.
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