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Abstract
In this paper we show that for a generic strictly convex domain, one can recover
the eigendata corresponding to Aubry–Mather periodic orbits of the induced billiard
map from the (maximal) marked length spectrum of the domain.

1. Introduction
A mathematical billiard is a system describing the inertial motion of a point mass
inside a domain with elastic reflections at the boundary (which is assumed to have
infinite mass). This simple model was first proposed by Birkhoff as a mathemati-
cal playground, where “the formal side, usually so formidable in dynamics, almost
completely disappears, and only the interesting qualitative questions need to be con-
sidered” ([4, p. 361]).

Since then billiards have become a very popular subject. Not only is their law
of motion very physical and intuitive, but the billiard-type dynamics is ubiquitous.
Mathematically, they offer models in every subclass of dynamical systems (integrable,
regular, chaotic, etc.). More importantly, techniques initially devised for billiards have
often been applied and adapted to other systems, becoming standard tools and having
ripple effects beyond the field.

Moreover, despite their apparently simple (local) dynamics, their qualitative
dynamical properties are extremely nonlocal! This global influence on the dynam-
ics translates into several intriguing rigidity phenomena, which are at the basis of
many unanswered questions and conjectures. For instance, while the dependence of
the dynamics on the geometry of the domain is well perceptible, an intriguing chal-
lenge is to understand to what extent dynamical information can be used to reconstruct
the shape of the domain. In this article, we will address this inverse problem in the
case of periodic orbits in a strictly convex smooth planar domain �.
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The study of periodic orbits for billiard maps in strictly convex planar domains
has been among the first dynamical features of billiards that have been investigated.
One of the first results in the theory of billiards, for example, can be considered
Birkhoff’s application of Poincaré’s last geometric theorem to show the existence
of infinitely many periodic orbits, which can be topologically distinguished in terms
of their rotation number.1 In [4], Birkhoff proved that for every rotation number
p=q 2 .0; 1=2� in lowest terms, there are at least two closed orbits of rotation number
p=q: one maximizing the total length and the other obtained by min-max methods
(see also [21, Theorem 1.2.4]). This result is clearly optimal: in the case of a bil-
liard in an ellipse, for example, there are only two periodic orbits of period 2 (also
called diameters), which correspond to the two semiaxes of the ellipse. However, it is
easy to find cases in which there are more than two periodic orbits for a given rota-
tion number: think, for example, of a billiard in a disk where, due to the existence
of a 1-dimensional group of symmetries (rotations), each periodic orbit generates a
1-dimensional family of similar ones (all diameters are periodic orbits with period 2).

A natural question is to understand which information on the geometry of the
billiard domain the set of periodic orbits does encode. More ambitiously, one could
wonder whether a complete knowledge of this set allows one to reconstruct the shape
of the billiard and hence the whole of the dynamics.

Let us start by introducing the length spectrum of a domain �.

Definition 1 (Length spectrum)
Given a domain �, the length spectrum of � is given by the set of lengths of its
periodic orbits, counted with multiplicity:

L� WDN � ¹lengths of closed geodesics in �º [N � `.@�/;

where `.@�/ denotes the length of the boundary.

Remark 2
A remarkable relation exists between the length spectrum of a billiard in a convex
domain � and the spectrum of the Laplace operator in � with Dirichlet boundary
condition (similarly for Neumann boundary one):

1The rotation number of a periodic billiard trajectory is a rational number that can be roughly defined as

p

q
D

winding number

number of reflections
2
�
0;
1

2

i
;

where the winding number p > 1 is defined as follows. Fix the positive orientation of @�, and pick any reflec-
tion point of the closed geodesic on @�; then follow the trajectory and count how many times it goes around @�
in the positive direction until it comes back to the starting point. Notice that in inverting the direction of motion
for every periodic billiard trajectory of rotation number p=q 2 .0;1=2�, we obtain an orbit of rotation number
.q �p/=q 2 Œ1=2;1/.
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�f D �f in �;

f j@� D 0:
(1)

From the physical point of view, the eigenvalues � are the eigenfrequencies of
the membrane � with a fixed boundary.

Andersson and Melrose [1] proved the following relation between the Laplace
spectrum and the length spectrum. Call the function

w.t/ WD
X

�i2spec�

cos.t
p
��i /;

the wave trace.

THEOREM (Andersson–Melrose)
The wave trace w.t/ is a well-defined generalized function (distribution) of t , smooth
away from the length spectrum; namely,

sing:supp:
�
w.t/

�
�˙L� [ ¹0º: (2)

So if l > 0 belongs to the singular support of this distribution, then there exists either
a closed billiard trajectory of length l or a closed geodesic of length l in the boundary
of the billiard table.

Generically, equality holds in (2). More precisely, if no two distinct orbits have
the same length and the Poincaré map of any periodic orbit is nondegenerate, then the
singular support of the wave trace coincides with ˙L� [ ¹0º (see, e.g., [18]).

This theorem implies that, at least for generic domains, one can recover the length
spectrum from the Laplace one. This relation between periodic orbits and spectral
properties of the domain immediately recalls a more famous spectral problem (prob-
ably the most famous)—Can one hear the shape of a drum?—as formulated in a very
suggestive way by Kac [12] (although the problem had already been stated by Her-
mann Weyl). More precisely, is it possible to infer information about the shape of a
drumhead (i.e., a domain) from the sound it makes (i.e., the list of basic harmonics/
eigenvalues of the Laplace operator with Dirichlet or Neumann boundary conditions)?
This question has not been completely solved yet: there are several negative answers
(e.g., Milnor [17] and Gordon, Webb, and Wolpert [7]), as well as some positive ones.

Hezari and Zelditch [11], going in the affirmative direction, proved that, given
an ellipse E , any one-parameter C1-deformation �" which preserves the Laplace
spectrum (with respect to either Dirichlet or Neumann boundary conditions) and the
Z2�Z2 symmetry group of the ellipse has to be flat (i.e., all derivatives have to vanish
for " D 0). Popov and Topalov [19] recently extended these results (see also [27]).
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Further historical remarks on the inverse spectral problem can be also found in [11].
In [20], Sarnak conjectures that the set of smooth convex domains isospectral to a
given smooth convex domain is finite; for partial progress on this question, see [5].

One of the difficulties in working with the length spectrum is that all of this
information comes in a nonformatted way. For example, we lose track of the rotation
number corresponding to each length. A way to overcome this difficulty is to “orga-
nize” this set of information in a more systematic way, for instance, by associating
to each length the corresponding rotation number. This new set is called the marked
length spectrum of � and denoted by ML�.

One could also refine this set of information by considering not the lengths of all
orbits, but selecting just some of them. More precisely, for each rotation number p=q
in lowest terms, one could consider the maximal length among those having rotation
number p=q. We call this map MLmax

� W Q \ .0; 1
2
� �! RC the maximal marked

length spectrum:

MLmax
� .p=q/Dmax¹lengths of periodic orbits with rot. numberp=qº:

For convenience, we extend this map to .0; 1/\Q by symmetrizing with respect to 1
2

:

MLmax
� .p=q/DMLmax

� .1� p=q/; p=q 2
�1
2
; 1
�
\Q:

This map is closely related to Mather’s minimal average action (or ˇ-function), and
we will explain it in Section 3 (see also [21], [23]).

1.1. Main result
In [9, pp. 677–678], Guillemin and Melrose ask whether the length spectrum and
the eigenvalues of the linearizations of the (iterated) billiard map at periodic orbits
constitute a complete set of symplectic invariants for the system.

Our main result shows that for generic domains, the eigendata corresponding to
Aubry–Mather periodic orbits (i.e., periodic orbits of maximal perimeter among those
with the same rotation number) can be actually recovered from the (maximal) marked
length spectrum. More precisely, we have the following.

MAIN THEOREM

For a generic strictly convex C �C1-billiard table � (� � 2), we have that for each
p=q 2 Q \ .0; 1=2� in lowest terms: for any sequence Nn 2 N such that Nnp is
coprime with Nnq � 1, and Nn!C1 as n!C1,2

(1) the following limit exists:

2A simple choice is, for example,NnD np for n 2N.
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lim
n!C1

h
MLmax

�

� Nnp

Nnq � 1

�
�Nn �MLmax

�

�p
q

�i
D�Bp=q;

where Bp=q denotes the minimum value of Peierls’s barrier function of rota-
tion number p=q (see Section 5).

(2) Moreover,

lim
n!C1

1

Nn
log
ˇ̌̌
MLmax

�

� Nnp

Nnq � 1

�
�Nn �MLmax

�

�p
q

�
CBp=q

ˇ̌̌
D log�p=q;

where �p=q is the eigenvalue of the linearization of the Poincaré return map
at the Aubry–Mather periodic orbit with rotation number p

q
.

See Theorem 15 in Section 4 for a rephrasing of item (2) in the Main Theorem in
terms of Mather’s ˇ-function (which will be introduced in Section 3).

The set of generic billiard tables is a (Baire) generic set, that is, a set that con-
tains a countable intersection of open dense sets. See Section 4 for a precise set of
genericity assumptions.

Remark 3
Notice that for exact area-preserving twist maps, all of the above objects (Aubry–
Mather periodic orbits, Peierls’s barrier, and Mather’s ˇ-function) are well defined
and the argument in the proofs continues to be valid. Hence, our Main Theorem could
be rephrased in terms of a generic C �C1 smooth exact area-preserving twist map,
for � � 2. However, being that our primary interest in this problem is motivated by
spectral questions in billiard dynamics, we have opted to focus the presentation of our
main results in this context.

Remark 4
A natural question is the following: Does the limit in item (2) always exist? If yes,
does it determine to the eigenvalue �p=q?

In [26], Xia and Zhang show that for a generic domain every hyperbolic peri-
odic orbit admits some homoclinic orbit. This raises the following question: Can one
recover the eigenvalue of the linearization of the Poincaré return map at any hyper-
bolic periodic orbit of a generic domain from its marked length spectrum?

See Remark 22 for a more explicit connection between homoclinic orbits and our
construction and a description of the obstacles that one needs to overcome to extend
our result to a more general setting.

Remark 5
Quite interestingly, our main result could be applied to identify for which irrational
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rotation number there exists or does not exist an invariant curve (i.e., a caustic) with
that rotation number. In [8], Greene conjectured a criterion to test the existence of such
curves (nowadays called Greene’s residue criterion), which was tested numerically in
the case of the standard map. We recall here a version of this criterion as conjectured
in [14].

Let f be a symplectic twist map of the annulus, and let � 2 R be an irrational
number. Consider a sequence of rational numbers pn

qn
�! � as n goes to C1 and

for any minimizing periodic point Xn of rotation number pn
qn

associates to it its

residue, given by rn D
1
4
.2 � Tr.Df qn.Xn///. Then, the limit limn!C1 jrnj

1=qn D

�.�/ exists. Moreover, �.�/ � 1 if and only if there exists an invariant curve with
rotation number �.

In [2, Theorem 3], Arnaud and Berger proved a part of this criterion (the “only
if”). More specifically, they proved that if

lim sup
n!C1

jrnj
1=qn > 1;

then there is no homotopically nontrivial invariant curve with rotation number �. Our
result allows one to obtain a lower bound for this lim sup at all irrational rotation
numbers and hence apply the above result to deduce the nonexistence of invariant
curves.

Outline of the proof of the Main Theorem
Let us sketch here the main ideas involved in the proof.

Given a hyperbolic Aubry–Mather periodic orbit (A–M p.o.) of rotation number
p=q, in lowest terms, we compare its length (i.e., action) with the lengths of A–M
p.o. of periods Np=.Nq� 1/, with N � 2 and such that Np and Nq� 1 are coprime.

Pictorially, as N goes to infinity, these orbits become denser and denser and,
in the limit as N !C1, they approach the stable and the unstable manifolds of
the starting A–M p.o.; in particular, these orbits approximate the homoclinic Aubry–
Mather orbit of rotation number p=qC, and it is natural to expect that the asymptotic
speed of approximation of the homoclinic orbit encodes information on the eigen-
data of the first return map. Naively, the length of an A–M p.o. of rotation number
Np=.Nq � 1/ should be of order N times the length of the starting A–M p.o. How-
ever, this approximation is not sufficient to serve our needs; hence, a more precise
asymptotic that goes beyond the first-order approximation is required.

This analysis represents the core of this article and it is pursued in two steps,
which correspond to the two items of the Main Theorem.
� As we have already pointed out, in the limit as N goes to infinity, A–M p.o.’s

of rotation numbersNp=.Nq�1/ approximate the homoclinic Aubry–Mather
orbit of rotation number p=qC. In particular, the difference between their
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lengths and N times the length of the original A–M p.o. has a well-defined
limit, which corresponds to a finer invariant of the periodic orbit, the so-called
Peierls’s barrier, which is defined by means of Aubry–Mather theory and is
related to the minimal action of homoclinic configurations (see Section 5).
This is the content of item (1) in the Main Theorem, and it will be proved in
Section 5.

� The above convergence turns out to be exponential, and we show that the rate
of convergence is related to the eigenvalue of the first return map of the hyper-
bolic A–M p.o. of rotation number p=q. This is the content of item (2) in the
Main Theorem, and it will be proved in Section 6. The proof consists of a
precise asymptotic analysis of the lengths of approximating A–M p.o., as well
as of the construction of a normal form for Peierls’s barrier (see Theorem 15),
under suitable generic nondegeneracy conditions (Lemma 21). These generic
assumptions are explained in Section 4.

For the reader’s convenience, in Sections 2 and 3 we provide some background
material on billiard maps and Aubry–Mather theory, as well as their mutual relation.
Moreover, for the sake of a clearer exposition, we postpone some of the more technical
proofs to Appendices A and B.

2. The billiard map
In this section we would like to recall some properties of the billiard map. We refer to
[21] and [25] for a more comprehensive introduction to the study of billiards.

Let � be a strictly convex domain in R2 with C �C1-boundary @�, with � � 2.
The phase space M of the billiard map consists of unit vectors .x; v/ whose foot
points x are on @� and which have inward directions. The billiard ball map f W
M �!M takes .x; v/ to .x0; v0/, where x0 represents the point at which the trajectory
starting at x with velocity v hits the boundary @� again, and v0 is the reflected
velocity, according to the standard reflection law: angle of incidence is equal to the
angle of reflection (see Figure 1).

Remark 6
Observe that if � is not convex, then the billiard map is not continuous. Moreover, as
pointed out by Halpern [10], if the boundary is not at least C 3, then the flow might
not be complete.

Let us introduce coordinates on M . We suppose that @� is parameterized by arc
length s, and let 	 W Œ0; l� �! R2 denote such a parameterization, where l D l.@�/
denotes the length of @�. Let ' be the angle between v and the positive tangent to @�
at x. Hence, M can be identified with the annulus AD Œ0; l�� .0;
/ and the billiard
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Figure 1.

map f can be described as

f W Œ0; l�� .0;
/ �! Œ0; l�� .0;
/;

.s; '/ 7�! .s0; '0/:

In particular f can be extended to NA D Œ0; l� � Œ0;
� by fixing f .s; 0/ D f .s;

/D Id, for all s.

Let us denote by

`.s; s0/ WD
��	.s/� 	.s0/�� (3)

the Euclidean distance between two points on @�. It is easy to prove that8<
:
@`
@s
.s; s0/D� cos';

@`
@s0
.s; s0/D cos'0:

(4)

Remark 7
If we lift everything to the universal cover and introduce new coordinates .Qs; r/ D
.s; cos'/ 2R� .�1; 1/, then the billiard map is a twist map with ` as the generating
function (see [21], [25]).

Particularly interesting billiard orbits are periodic orbits, that is, billiard orbits
X D ¹xkºk2Z WD ¹.sk ; 'k/ºk2Z for which there exists an integer q � 2 such that
xk D xkCq for all k 2 Z. The minimal of such q’s represents the period of the orbit.
However, periodic orbits with the same period may be of very different topological
types. A useful topological invariant that allows one to distinguish among them is the
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so-called rotation number, which can be easily defined as follows. LetX be a periodic
orbit of period q, and consider the corresponding q-tuple .s1; : : : ; sq/ 2R=lZ. For all
1 � k � q, there exists �k 2 .0; l/ such that skC1 D sk C �k (using the periodicity,
sqC1 D s1). Since the orbit is periodic, �1 C � � � C �k 2 lZ and the orbit takes values
between l and .q � 1/l . The integer p WD �1C���C�k

l
is called the winding number

of the orbit. The rotation number of X will then be the rational number �.X/ WD p
q

.
Observe that changing the orientation of the orbit replaces the rotation number p

q
by

q�p
q

. Since, for the purpose of our result, we do not distinguish between two opposite

orientations, we can assume that �.X/ 2 .0; 1
2
�\Q.

In [4], as an application of Poincaré’s last geometric theorem, Birkhoff proved
the following result.

THEOREM (Birkhoff)
For every p=q 2 .0; 1=2� in lowest terms, there are at least two geometrically distinct
periodic billiard trajectories with rotation number p=q.

Remark 8
In [13], Lazutkin introduced a very special change of coordinates that reduces the
billiard map f to a very simple form.

Let L� W Œ0; l�� Œ0;
�! T� Œ0; ı� with small ı > 0 be given by

L�.s; '/D
�
x D C�1�

Z s

0

�2=3.s/ ds; y D 4C�1� ��1=3.s/ sin'=2
�
;

where �.s/ is its radius of curvature at s and C� WD
R l
0
�2=3.s/ ds is sometimes called

the Lazutkin perimeter (observe that it is chosen so that the period of x is one).
In these new coordinates the billiard map becomes very simple (see [13]):

fL.x; y/D
�
xC y CO.y3/; y CO.y4/

�
:

In particular, near the boundary ¹' D 0º D ¹y D 0º, the billiard map fL reduces to a
small perturbation of the integrable map .x; y/ 7�! .xC y;y/.

Using this result and a version of the Kolmogorov–Arnold–Moser (KAM) theo-
rem, Lazutkin [13] proved that if @� is sufficiently smooth (smoothness is determined
by the KAM theorem), then there exists a positive measure set of invariant curves (cor-
responding to caustics), which accumulates on the boundary and on which the motion
is smoothly conjugate to a rigid rotation.

3. Aubry–Mather theory and billiards
At the beginning of the 1980s, Serge Aubry and John Mather developed, indepen-
dently, what is now commonly called Aubry–Mather theory. This novel approach to



184 HUANG, KALOSHIN, and SORRENTINO

the study of the dynamics of twist diffeomorphisms of the annulus pointed out the
existence of many action-minimizing orbits for any given rotation number (for a more
detailed introduction, see, e.g., [3], [16], [21], [22]).

More precisely, let f WR=Z�R�!R=Z�R be a monotone twist map, that is,
a C 1-diffeomorphism such that its lift to the universal cover Qf satisfies the following
properties (we denote .x1; y1/D Qf .x0; y0/):
(i) Qf .x0C 1;y0/D Qf .x0; y0/C .1; 0/,
(ii) @x1

@y0
> 0 (monotone twist condition),

(iii) Qf admits a (periodic) generating function h (i.e., it is an exact symplectic
map):

y1 dx1 � y0 dx0 D dh.x0; x1/:

In particular, it follows from (iii) that8<
:
y1 D

@h
@x1
.x0; x1/;

y0 D�
@h
@x0
.x0; x1/:

(5)

Remark 9
The billiard map f introduced above is an example of monotone twist map. In par-
ticular, its generating function is given by h.x0; x1/ D �`.x0; x1/, where `.x0; x1/
denotes the Euclidean distance between the two points on the boundary of the billiard
domain corresponding to 	.x0/ and 	.x1/.

As it follows from (5), orbits x D ¹xiºi2Z of the monotone twist diffeomorphism
f correspond to critical points of the action functional

¹xiºi2Z 7�!
X
i2Z

h.xi ; xiC1/:

Aubry–Mather theory is concerned with the study of orbits that minimize this
action-functional among all configurations with a prescribed rotation number (these
orbits will be called action-minimizing or simply minimal); recall that the rotation
number of an orbit ¹xiºi2Z is given by 
! D limi!˙1

xi
i

, if this limit exists. (In the
billiard case, this definition leads to the same notion of rotation number introduced
in Section 2.) In this context, minimizing is meant in the statistical mechanical sense;
that is, every finite segment of the orbit minimizes the action functional with fixed
endpoints.

THEOREM (Aubry and Mather)
A monotone twist map possesses minimal orbits for every rotation number. Moreover,
every minimal orbit lies on a Lipschitz graph over the x-axis.
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Let us denote by M! the set of minimal trajectories x D ¹xiºi2Z with rotation
number ! and by Mrec

! the subset of recurrent ones. One can provide a detailed
description of the structure of these sets (see [3], [16]):
� If ! 2 R n Q, then M! is totally ordered; moreover, there exists a map f W

R! R, which is the lift of an orientation-preserving circle homeomorphism
with rotation number !, and a closed f -invariant set A! � R, such that M!

consists of the orbits of f contained in A! . Namely, x 2M! if and only if
x0 2A! and xi D f i .x0/ for all i 2 Z. The projection p0 (which to each x D
¹xiºi2Z associates x0) maps M! homeomorphically into A! . Furthermore,
x 2Mrec

! if and only if x0 is a recurrent point of f .
� If ! D p

q
2Q (with p and q relatively prime), then M! is the union of three

disjoint and nonempty3 sets,

M
per
p
q

[MCp
q

[M�p
q

;

where M
per
p
q

denotes the set of periodic minimal ones of rotation number p
q

.

We say that two elements x� < xC of M
per
p
q

are neighboring if there is no

other element of M
per
p
q

between them. We consider the sets MCp
q

.x�; xC/ of

all minimal orbits of rotation number p
q

that are asymptotic in the past (i.e., as
i!�1) to x� and in the future to xC. We define

MCp
q

D
[

.x�;xC/

MCp
q

.x�; xC/;

where .x�; xC/ varies among all neighboring elements of M
per
p
q

. In a similar

way, one defines M�p
q

(just reverse the behaviors in the past and in the future).

Usually orbits in M˙p
q

are said to have rotation symbol p
q
˙.

We can now introduce the minimal average action (or Mather’s ˇ-function).

Definition 10
Let x! D ¹xiºi2Z be any minimal orbit with rotation number !. Then, the value of
the minimal average action at ! is given by (this value is well defined, since it does
not depend on the chosen orbit):

ˇ.!/D lim
N!C1

1

2N

N�1X
iD�N

h.xi ; xiC1/: (6)

3These sets are nonempty if Mper
p
q

does not form an invariant curve.
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This function ˇ WR�!R enjoys many properties and encodes interesting infor-
mation on the dynamics. In particular:
(i) ˇ is strictly convex and, hence, continuous (see [16]);
(ii) ˇ is differentiable at all irrationals (see [15]);
(iii) ˇ is differentiable at a rational p=q if and only if there exists an invariant circle

consisting of periodic minimal orbits of rotation number p=q (see [15]).
In particular, ˇ being a convex function, one can consider its convex conjugate:

˛.c/D sup
!2R

�
!c � ˇ.!/

�
:

This function—which is generally called Mather’s ˛-function—also plays an
important role in the study of minimal orbits and in Mather’s theory. We refer inter-
ested readers to surveys [3], [16], [21], and [22].

Observe that for each ! and c one has

˛.c/C ˇ.!/� !c;

where equality is achieved if and only if c 2 @ˇ.!/ or, equivalently, if and only if
! 2 @˛.c/. (The symbol @ denotes in this case the set of subderivatives of the func-
tion, which is always nonempty and is a singleton if and only if the function is differ-
entiable.)

In the billiard case, since the generating function of the billiard map is the Eucli-
dean distance �`, the action of the orbit coincides—up to a sign—to the length of the
trajectory that the ball traces on the table �. In particular, these two functions encode
many dynamical properties of the billiard (see [21] for more details):
� For each 0 < p=q � 1=2, one has

ˇ.p=q/D�
1

q
MLmax

� .p=q/: (7)

� ˇ is differentiable at p=q if and only if there exists a caustic of rotation number
p=q (i.e., all tangent orbits are periodic of rotation number p=q).

� If �! is a caustic with rotation number ! 2 .0; 1=2�, then ˇ is differentiable at
! and ˇ0.!/D�length.�!/DW �j�! j (see [21, Theorem 3.2.10]). In partic-
ular, ˇ is always differentiable at 0 and ˇ0.0/D�j@�j.

� If �! is a caustic with rotation number ! 2 .0; 1=2�, then one can associate to
it another invariant, the so-called Lazutkin invariant Q.�!/. More precisely,

Q.�!/D jA�P j C jB �P j � j
_

ABj; (8)

where j � j denotes the Euclidean length and j
_

ABj denotes the length of the arc
on the caustic joining A to B (see Figure 2).
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Figure 2. Lazutkin invariant.

This quantity is connected to the value of the ˛-function. In fact, one can show
that (see [21, Theorem 3.2.10])

Q.�!/D ˛
�
ˇ0.!/

�
D ˛

�
�j�! j

�
:

4. The generic assumptions
Let f W .s; r/! .s0; r 0/ denote the billiard map corresponding to a strictly convex
domain �, parameterized by arc length s, and h.s; s0/D �`.s; s0/ (see (3)) denotes
the corresponding generating function. Then we have´

r D�@1h.s; s
0/;

r 0 D @2h.s; s
0/:

Moreover,

Df.s; r/D

0
@ � @11h.s;s

0/
@12h.s;s0/

� 1
@12h.s;s0/

@12h.s; s
0/� @22h.s; s

0/ @11h.s;s
0/

@12h.s;s0/
�@22h.s;s

0/
@12h.s;s0/

1
A (9)

and

Df �1.s0; r 0/D

0
@ � @22h.s;s

0/
@12h.s;s0/

1
@12h.s;s0/

@11h.s; s
0/ @22h.s;s

0/
@12h.s;s0/

� @12h.s; s
0/ �@11h.s;s

0/
@12h.s;s0/

1
A : (10)

Here and after, we denote

@1hD @sh; @2hD @s0h; @11 D @
2
sh; @22 D @

2
s0h; @12hD @s@s0h:

Let us describe our main generic assumptions.
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Assumptions
For each 0 < p=q 2Q in lowest terms:
(1) There exists a unique minimal periodic orbit in M

per
p
q

.

(2) The minimal periodic orbit is hyperbolic.
(3) The stable and unstable manifolds of the minimal periodic orbit intersect

transversally.

Under these assumptions, we have the following well-known fact due to Aubry–
Mather theory (see, e.g., [16]).

PROPOSITION 11
For every 0 < p=q 2Q in lowest terms, there exists a unique minimal orbit in MCp

q

.

Observe that in Proposition 11, the unique orbit in MC
p=q

connects the unique
Aubry–Mather periodic orbit of rotation number p=q to one of its shifts.

Let � � 2, and denote by E� the set of all the strictly convex C �C1-billiard tables,
for which the corresponding billiard maps satisfy the assumptions in Section 4. The
set E� is a residual subset of the space formed by strictly convex C �C1-domains, with
C �C1-topology (see, e.g., [6]).

Hereafter, we fix � 2 E� , and f W .s; r/! .s0; r 0/ is the associated billiard map.
Without further specification, all of our discussions are about the billiard map f .

5. Approximation of the barrier
In this section, we will prove statement (1) in Main Theorem.

For p
q
2Q\ .0; 1

2
� in lowest terms, let

Xp=q W x0; : : : ; xq�1;

be the minimal periodic orbit with rotation number p
q

, and let Lp;q be its perimeter.
Denote by LNp;Nq�1 the perimeter of the minimal periodic orbit with rotation

number Np
Nq�1

. Then we have the following.

PROPOSITION 12
For any sequence Nn 2N such that Nnp is coprime with Nnq� 1 and Nn!C1 as
n!C1, we have

lim
n!C1

LNnp;Nnq�1 �Nn �Lp;q D�p=qˇ
0
C.p=q/C ˇ.p=q/;

where ˇ.�/ is the minimal averaged action of the billiard map f (introduced in Defi-
nition 10) and ˇ0C.�/ is its one-side derivative.
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Proof
Recall relation (7). Since Lp;q D �qˇ.p=q/ and LNnp;Nnq�1 D �.Nnq � 1/ �

ˇ. Nnp
Nnq�1

/, we have

LNnp;Nnq�1 �NnLp;q D�
h
.Nnq � 1/ˇ

� Nnp

Nnq � 1

�
�Nnqˇ.p=q/

i

D�.Nnq � 1/
�
ˇ
� Nnp

Nnq � 1

�
� ˇ.p=q/

�
C ˇ.p=q/

D�p=q
ˇ. Nnp
Nnq�1

/� ˇ.p=q/

Nnp
Nnq�1

� p
q

C ˇ.p=q/

�!�p=qˇ0C.p=q/C ˇ.p=q/ as n!C1:

In the last equality, we used the convexity of the minimal averaged action ˇ.�/. This
proves the assertion of Proposition 12.

Let now

Xp=qC W : : : ; z�1; z0; z1; : : : ;

be the minimal orbit in MCp
q

, and

d
�
f Nq.z0/; f

Nq.x1/
�
! 0; d

�
f �Nq.z0/; f

�Nq.x0/
�
! 0; as N !C1;

(11)

where d.�; �/ is the standard Euclidean distance in R2.
With slight abuse of notation, we will also use the same notation to denote the

s-coordinates of the points in the orbits when they are considered as variables of the
generating function h.s; s0/D �`.s; s0/. It follows from Aubry–Mather theory (see,
e.g., [16, Section 13]) that Xp=qC minimizes

Bp=q.z
0
0/D lim

M;K!C1

Mq�1X
iD�Kq

�
h.z0i ; z

0
iC1/� h.xi ; xiC1/

�

D lim
M;K!C1

Mq�1X
iD�Kq

h.z0i ; z
0
iC1/C .M CK/Lp;q;

among all the configurations : : : ; z0�1; z
0
0; z
0
1; : : : such that (as N !C1)

d.z0�NqCi ; xi /! 0; d.z0NqCi ; x1Ci /! 0; i D 0; : : : ; q � 1: (12)
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The function Bp=q.�/ is usually referred to as the Peierls’s barrier function. In
particular, it follows from [16, Section 13] that Bp=q.z0/ is finite and, due to the
hyperbolicity of the minimal periodic orbit Xp=q , one can show that the convergence
is exponentially fast (see also Section 6).

PROPOSITION 13
For any sequence Nn 2N such that Nnp is coprime with Nnq� 1 and Nn!C1 as
n!C1, we have

lim
n!C1

LNnp;Nnq�1 �NnLp;q D�Bp=q.z0/:

Remark 14
This result proves assertion (1) in the Main Theorem.

Proof
For any � > 0 and large enough N 2N such that Np is coprime with Nq � 1, N=3 <
M < 2N=3, K DN �M , let

XNp;Nq�1 W x
0
�Kq; : : : ; x

0
0; : : : ; x

0
Mq�2

be the minimal periodic orbit with rotation number Np
Nq�1

and d.x�Kq; x0/ < �. Then,
clearly the configuration

: : : x�2; x�1XNp;Nq�1x1; x2 : : :

satisfies (12). Therefore, by the minimality of the orbit Xp=qC, we have

�.LNp;Nq�1 �NLp;q/�Bp=q.z0/�C�;

where C is a constant that depends only on the billiard map f .
On the other hand, the configuration z�Kq; : : : ; z0; : : : ; zMq�2; z�Kq is of rotation

number Np
Nq�1

; hence

�LNp;Nq�1CNLp;q �Bp=q.z0/CC�:

Therefore, the assertion of the proposition follows.

Using Proposition 12, Proposition 13, and relation (7), observe that item (2) in
the Main Theorem can be rephrased in terms of Mather’s ˇ-function in the following
way.

THEOREM 15
For a generic strictly convex C �C1-billiard table � (� � 2), we have that for each
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p=q 2 Q \ .0; 1=2� in lowest terms: for any sequence Nn 2 N such that Nnp is
coprime with Nnq � 1 and Nn!C1 as n!C1,

lim
n!C1

1

Nn
log
ˇ̌̌
.Nnq � 1/ˇ

� Nnp

Nnq � 1

�
�Nnqˇ

�p
q

�
�Bp=q

ˇ̌̌
D log�p=q;

where �p=q is the eigenvalue of the linearization of the Poincaré return map at the
Aubry–Mather periodic orbit with rotation number p

q
and Bp=q D p=qˇ0C.p=q/ �

ˇ.p=q/.

6. Eigenvalues of the Aubry–Mather periodic orbits
In this section, we describe the tools and the estimates which are needed to prove
assertion (2) of the Main Theorem (see the end of this section for its proof).

Let ƒp=q DDf q.x1/. Since Xp=q is hyperbolic, ƒp=q is hyperbolic; that is, it
has two distinguished eigenvalues 0 < �p

q
< 1 and ��1p

q

> 1. One of the main results

of this section is the following theorem, which can be interpreted as a sort of normal
form statement for Peierls’s barrier.

THEOREM 16
There exists Np;q > 0, Cp;q 2 R, and C 0p;q 2 R such that, if N > Np;q and Np is
coprime with Nq � 1, then there exists a periodic orbit XNp;Nq�1 with minimal
period Nq � 1, rotation number Np=.Nq � 1/, and perimeter L0Np;Nq�1 satisfying

L0Np;Nq�1 �N �Lp;q D�Bp=q.z0/CCp;q�
N
p
q

CO.�
9N=8
p
q

/; if N is even;

and

L0Np;Nq�1 �N �Lp;q D�Bp=q.z0/CC
0
p;q�

N
p
q

CO.�
9N=8
p
q

/; if N is odd:

Moreover d.z0;XNp;Nq�1/DO.�Np
q

/.

Remark 17
Notice that the constant Cp;q for the even case can be different from the constant C 0p;q
for the odd one (see (36) and (37), resp.). See also Remark 24 in Appendix A.

Remark 18
It seems that Theorem 16 holds true in general; namely, suppose that we have a hyper-
bolic periodic orbit of a billiard map and a transverse homoclinic orbit related to it.
Then, the difference of perimeters should satisfy the estimate from Theorem 16.

The proof of this theorem is quite technical, so for the sake of clearer exposition,
we postpone it to Appendix A.
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Let us now note the following fact.

LEMMA 19
When N is sufficiently large and Np is coprime with Nq � 1, the periodic orbit
obtained in Theorem 16 is the one with the maximal perimeter, that is, an A–M p. o.

Proof
Let X 0Np;Nq�1 denote the periodic orbit with minimal period Nq � 1, rotation num-

ber Np
Nq�1

, and the maximal perimeter (minimal action). Then the distance d.z0;
X 0Np;Nq�1/ tends to zero asN tends toC1. By hyperbolicity, there exists a neighbor-
hood U of z0 which contains exactly one periodic orbit with minimal period Nq � 1
and rotation number Np

Nq�1
. Therefore XNp;Nq�1 and X 0Np;Nq�1 coincide when N is

large enough.

In particular, combining together Theorem 16 and Lemma 19 we conclude the
following.

LEMMA 20
If the constants Cp;q and C 0p;q in Theorem 16 are not zero, then for any sequence
Nn 2 N such that Nnq is coprime with Nnq � 1 and Nn!C1 as n!C1, we
have

lim
n!C1

1

Nn
log
ˇ̌
LNnp;Nnq�1 �Nn �Lp;q CBp=q.z0/

ˇ̌
D log�p=q :

It turns out that the assumption in Lemma 20 is generic (see Appendix B for the
proof).

LEMMA 21
For a generic billiard map f , we have that for each p=q 2Q\ .0; 1=2/, the constants
Cp;q.f / and C 0p;q.f / in Theorem 16 are not zero.

We can now conclude this section by proving assertion (2) in the Main Theorem.

Proof of Main Theorem: Item (2)
Let us denote E 0 the set of strictly convex billiard tables, for which the induced billiard
maps belong to the residual set G 0, as defined in (45). Consider the set

E D E 0 \ E� :

Clearly, E is a residual set. Then the assertion (2) of the Main Theorem follows from
Lemmas 20 and 21. This concludes the proof.
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Remark 22
To extend the Main Theorem from A–M p.o.’s to arbitrary hyperbolic periodic orbits
of a generic domain (i.e., determine the eigenvalue of the linearization of the asso-
ciated Poincaré return map from the marked length spectrum), we face two types of
difficulties.
� By a result in [26], for a hyperbolic periodic orbit there is a homoclinic orbit,

which is generically transverse. Existence of a transverse homoclinic orbit
implies the existence of a sequence of hyperbolic periodic orbits accumulating
to it. To proceed with our scheme, we need to determine the corresponding
sequence in the marked length spectrum. In the light of Remark 18, this should
provide Theorem 16.

� To prove Lemma 20, we need to know that constant Cp;q and C 0p;q are non-
zero. In Lemma 25, we essentially use the graph property of p=qC orbits,
which is, however, not true in general.

Appendices

A. Proof of Theorem 16
To prove Theorem 16, let us start by recalling the following lemma, which is well
known (see, e.g., [24], [28]).

LEMMA 23
For any � > 0, there exists a C 1;

1
2 -diffeomorphism ˆ W V ! U , where U , V are a

neighborhood of x1 such that

ˆ�1 ı f q ıˆDƒp=q; kˆ� IdkC1 � �; and kˆ�1 � IdkC1 � �:

Moreover,

ˆ.z/�ˆ.z0/D z � z0CO
�
max

®
jzj1=2; jz0j1=2

¯
jz � z0j

�
:

Let us start now the proof of Theorem 16.

Proof of Theorem 16
From (11), we have that there exist n0 and m0 such that f m0q.z0/ 2 U and
f �n0qC1.z0/ 2 U . Let us denote their images under ˆ as

ADˆ
�
f m0q.z0/

�
and B Dˆ

�
f �n0qC1.z0/

�
:

For the sake of simplicity, hereafter in this proof, we will write ƒp=q and �p
q

as
ƒ and �.
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Figure 3. Saddle.

Now we consider the standard Nx- Ny plane, where x1 is located at the origin O .
The unit eigenvectors corresponding to the eigenvalues � and ��1 are, respectively,	

� sin
cos



and

	
cos
sin



:

See Figure 3. Using the change of coordinates

R� WR
2!R2;

	
N�

N�



DR�

	
Nx

Ny



WD

	
cos sin
� sin cos


	
Nx

Ny



;

we transform the map 	
Nx

Ny



7!ƒ

	
Nx

Ny




into 	
N�

N�



7!

	
��1 N�

� N�



:

In the N�– N� coordinate, we denote

AD .0; �/ and B D .�; 0/:
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We choose n 2N to be sufficiently large and such that .nCn0Cm0/p is coprime
with .nC n0 Cm0/q � 1. Let : : : ; y�1; y0; y1; : : : be a periodic orbit with minimal
period .nC n0Cm0/q � 1 and rotation number

.nC n0Cm0/p

.nC n0Cm0/q � 1
;

and let Uz0 be a small neighborhood of z0, containing y0, such that

f m0q.Uz0/� U and f �n0qC1.Uz0/� U:

Let us denote

A0 D f m0q.y0/; B 0 D f �n0qC1.y0/:

Then, in coordinates N�– N�, they become

A0 D

	
ıA

�C ı0A



and B 0 D

	
� C ıB
ı0B



:

Here the ı’s are small numbers to be determined.
Using the periodicity of y0, we have that	

��nıA

�n.�C ı0A/



D

	
� C ıB
ı0B




and 	
ıA

ı0A



D

	
a b

c d


	
ıB

ı0B



CO

�
ı
3=2
B C .ı0B/

3=2
�
;

where the (2 � 2)-matrix on the right-hand side is the linear part of the global map
R� ıˆ

�1 ı f .n0Cm0/q�1 ıˆ ıR�� at the point B (the global map is of C 1;1=2). Due
to the transversal intersections between the stable and unstable manifolds at points A
and B , we know that a¤ 0. Therefore,´

ıA D ��
nCO.�2n/; ı0A D

c��	
a
�nCO.�3n=2/;

ı0B D ��
nCO.�2n/; ıB D

��b	
a
�nCO.�3n=2/:

Now, let us denote n1 WD bn=2c and n2 WD n� n1.
In N�– N� coordinates, for i D 0; 1; : : : ; n1, the difference between the images of the

points f m0qCiq.y0/ and f m0qCiq.z0/ is	
��iıA

.�C ı0A/�
i



�

	
0

��i



D

	
��n�i

0



C

 
0

c��	
a
�nCi

!
CO.�3n=2/
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and for j D 0; 1; : : : ; n2, the difference between the images of the points
f �n0qC1�jq.y0/ and f �n0qC1�jq.z0/ is	

�j .� C ıB/

ı0B�
�j



�

	
��j

0



D

	
0

��n�j



C

 
��b	
a
�nCj

0

!
CO.�3n=2/:

Let us now switch back to the coordinate . Nx; Ny/.
For i D 0; 1; : : : ; n1, along the stable direction, the difference between the peri-

odic orbit and the homoclinic orbit is	
cos � sin
sin cos


 
��n�i

c��	
a
�nCi

!
CO.�3n=2/

D

	
cos
sin



��n�i C

	
� sin
cos



c� � �

a
�nCi CO.�3n=2/:

For j D 0; 1; : : : ; n2, along the unstable direction	
cos � sin
sin cos


 ��b	
a
�nCj

��n�j

!
CO.�3n=2/

D

	
� sin
cos



��n�j C

	
cos
sin



� � b�

a
�nCj CO.�3n=2/:

For the orbits : : : ; y�1; y0; y1; : : : and : : : ; z�1; z0; z1; : : : , by Lemma 23, we have
that for i D 0; 1; : : : ; n1,

zm0qCiq � ym0qCiq D�

	
cos
sin



��n�i CO.�i=2�n�i /; (13)

and for j D 0; 1; : : : ; n2,

z�n0qC1�jq � y�n0qC1�jq D�

	
� sin
cos



��n�j CO.�j=2�n�j /: (14)

Now, we want to study the quantity

I D

.m0Cn1/q�1X
iD�.n0Cn2/qC1

h.zi ; ziC1/� h.yi ; yiC1/:

We split it into three parts:
(a) the first part corresponds to the sum “far away” from the minimal periodic

orbit Xp=q :

I0 D

m0q�1X
iD�n0qC1

h.zi ; ziC1/� h.yi ; yiC1/I
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(b) the second part concerns the part along the unstable manifold, in a neighbor-
hood of the minimal periodic orbit Xp=q :

I1 D

�n0qX
iD�.n0Cn2/qC1

h.zi ; ziC1/� h.yi ; yiC1/I

(c) the third part concerns the part along the stable manifold, in a neighborhood
of the minimal periodic orbit Xp=q :

I2 D

.m0Cn1/q�1X
iDm0q

h.zi ; ziC1/� h.yi ; yiC1/:

Let us estimate these three contributions independently.
(a) Since along the (periodic) orbit yi , i 2 Z,

@2h.yi ; yiC1/C @1h.yiC1; yiC2/D 0; i 2 Z; (15)

by using Taylor’s expansion we get

I0 D

m0q�1X
iD�n0qC1

h.zi ; ziC1/� h.yi ; yiC1/

D @1h.y�n0qC1; y�n0qC2/.z�n0qC1 � y�n0qC1/

C @2h.ym0q�1; ym0q/.zm0q � ym0q/CO.�2n/; (16)

where in the last equality we have used that

jzi � yi j DO.�
n/; i D�n0qC 1; : : : ;m0q;

as it follows from (13) and (14) and the Lipschitzianity of the map (observe
that n0 and m0 are fixed).

(b) Next, we consider I1, which is the sum of the terms along the unstable mani-
fold. For j D 1; : : : ; n2, let us denote

Qz
j

k
D z�n0q�jqC1Ck; Qy

j

k
D y�n0q�jqC1Ck ; k D 0; : : : ; q;

and

Ij WD

q�1X
kD0

h. Qz
j

k
; Qz
j

kC1
/� h. Qy

j

k
; Qy
j

kC1
/:

Clearly, I1 D
Pn2
jD1 Ij . We split it into two other sums:
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I1 D

n2=2�1X
jD1

Ij C

n2X
jDn2=2

Ij :

Let us first consider the cases j D n2=2; : : : ; n2. By (14) and (15), we have

Ij D @1h. Qy
j
0 ; Qy

j
1 /. Qz

j
0 � Qy

j
0 /C @2h. Qy

j
q�1; Qy

j
q /. Qz

j
q � Qy

j
q /

C
1

2

q�1X
kD0

 
Qy
j

k
� Qz

j

k

Qy
j

kC1
� Qz

j

kC1

!T
D2h. Qy

j

k
; Qy
j

kC1
/

 
Qy
j

k
� Qz

j

k

Qy
j

kC1
� Qz

j

kC1

!

CO.�3.n�i//;

where

D2h. Qy
j

k
; Qy
j

kC1
/D

 
@11h. Qy

j

k
; Qy
j

kC1
/ @12h. Qy

j

k
; Qy
j

kC1
/

@21h. Qy
j

k
; Qy
j

kC1
/ @22h. Qy

j

k
; Qy
j

kC1
/

!

D

 
@11h.xkC1; xkC2/ @12h.xkC1; xkC2/

@21h.xkC1; xkC2/ @22h.xkC1; xkC2/

!
CO.�n=4/:

Here we have used that, as it follows from (13) and (14), for j D n2=2; : : : ; n2,
Qy
j

k
are at least O.�n=4/-close to xkC1, k D 0; : : : ; q.

From (14) we know that

Qz
j

k
� Qy

j

k
D �n�j

k�1Y
iD0

Df.xiC1/

	
sin
� cos



�CO.�n�jC

n
8 /; k D 1; : : : ; q:

Let us denote ZC0 D sin , and

ZC
k
D 
1

hk�1Y
iD0

Df.xiC1/

	
sin
� cos


i
; k D 1; : : : ; q; (17)

where 
1 is the projection on the first coordinate. Denote

ZC D .Z
C
0 ;Z

C
1 ; : : : ;Z

C
q /: (18)

Then we have

q�1X
kD1

 
Qy
j

k
� Qz

j

k

Qy
j

kC1
� Qz

j

kC1

!T
D2h. Qyik; Qy

i
kC1/

 
Qy
j

k
� Qz

j

k

Qy
j

kC1
� Qz

j

kC1

!

DZCW.Xp=q/Z
T
C�

2�2.n�j /CO.�2.n�j /C
n
8 /;
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where

W.Xp=q/D

0
BBBBBB@

�1 �1 0 : : : 0

�1 �2 �2 : : : 0
:::

: : :
: : :

: : :
:::

�q�1 �q �q

0 0 : : : �q �qC1

1
CCCCCCA
.qC1/�.qC1/

(19)

with �1 D @11h.x1; x2/, �qC1 D @22h.x0; x1/,

�i D @22h.xi�1; xi /C @11h.xi ; xiC1/; i D 2; : : : ; q

and

�i D @12h.xi ; xiC1/; i D 1; : : : ; q:

Then for j D n2=2; : : : ; n2, we have

Ij D @1h. Qy
j
0 ; Qy

j
1 /. Qz

j
0 � Qy

j
0 /C @2h. Qy

j
q�1; Qy

j
q /. Qz

j
q � Qy

j
q /

CCqC�
2�2.n�j /CO.�2.n�j /C

n
8 /; (20)

where

CqC D
1

2
ZCW.Xp=q/Z

T
C: (21)

Moreover, for j D 1; : : : ; n2=2� 1, by (14), we have

Ij D @1h. Qy
j
0 ; Qy

j
1 /. Qz

j
0 � Qy

j
0 /C @2h. Qy

j
q�1; Qy

j
q /. Qz

j
q � Qy

j
q /CO.�2.n�j //: (22)

Hence, using again (15), as well as estimates (20) and (22), we conclude that

I1 D

n2X
jD1

Ij D

n2=2�1X
jD1

Ij C

n2X
jDn2=2

Ij

D @1h.y�.n0Cn2/qC1; y�.n0Cn2/qC2/.z�.n0Cn2/qC1 � y�.n0Cn2/qC1/

C @2h.y�n0q; y�n0qC1/.z�n0qC1 � y�n0qC1/

CCqC�
2�

2.n�n2/

1� �2
CO.�9n=8/: (23)

(c) Finally, we deal with I2, that is, the sum of the contributions along the stable
manifold. For i D 1; : : : ; n1, let us denote

Nzik D zm0qC.i�1/qCk ; Nyik D ym0qC.i�1/qCk ; k D 0; : : : ; q;
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and

NIi D

q�1X
kD0

h. Nzik; Nz
i
kC1/� h. Ny

i
k; Ny

i
kC1/:

Clearly, I2 D
Pn1
iD1
NIi . We split it into two parts:

I2 D

n1=2�1X
iD1

NIi C

n1X
iDn1=2

NIi :

First, consider the cases i D n1=2; : : : ; n1. By (15), we have

NIi D @1h. Ny
i
0; Ny

i
1/. Nz

i
0 � Ny

i
0/C @2h. Ny

i
q�1; Ny

i
q/. Nz

i
q � Ny

i
q/

C
1

2

q�1X
kD0

	
Nyi
k
� Qzi

k

Nyi
kC1
� Nzi

kC1


T
D2h. Nyik; Ny

i
kC1/

	
Nyi
k
� Nzi

k

Nyi
kC1
� Nzi

kC1




CO.�3.n�i//:

Using (13), we have

Nzi0 � Ny
i
0 D��

n�iC1

	
cos
sin



� CO.�n�iC

n
8 /;

and for k D 1; : : : ; q,

Nzik � Ny
i
k D��

n�iC1
k�1Y
lD0

Df.xlC1/

	
cos
sin



� CO.�n�iC

n
8 /:

Denote Z�0 D� cos ,

Z�k D 
1

h
�

k�1Y
lD0

Df.xlC1/

	
cos
sin


i
; k D 1; : : : ; q; (24)

and

Z� D .Z
�
0 ; : : : ;Z

�
q /: (25)

Then,

NIi D @1h. Ny
i
0; Ny

i
1/. Nz

i
0 � Ny

i
0/C @2h. Ny

i
q�1; Ny

i
q/. Nz

i
q � Ny

i
q/

C
1

2
Z�W.Xp=q/Z

T
��

2�2.n�iC1/CO.�2.n�i/C
n
8 /;
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where W.Xp=q/ is defined in (19). Moreover, for i D 1; : : : ; n1=2� 1 we have

@1h. Ny
i
0; Ny

i
1/. Nz

i
0 � Ny

i
0/C @2h. Ny

i
q�1; Ny

i
q/. Nz

i
q � Ny

i
q/CO.�2.n�i//:

Therefore,

I2 D

n1=2�1X
iD1

NIi C

n1X
iDn1=2

NIi

D @1h.ym0q; ym0qC1/.zm0q � ym0q/

C @2h.y.m0Cn1/q�1; y.m0Cn1/q/.z.m0Cn1/q � y.m0Cn1/q/

CCq��
2�

2.n�n1C1/

1� �2
CO.�9n=8/; (26)

where

Cq� D
1

2
Z�W.Xp=q/Z

T
� : (27)

Summing up the contributions (16), (23), and (26), we obtain

I D I0C I1C I2

D @1h.y�.n0Cn2/qC1; y�.n0Cn2/qC2/.z�.n0Cn2/qC1 � y�.n0Cn2/qC1/

C @2h.y.m0Cn1/q�1; y.m0Cn1/q/.z.m0Cn1/q � y.m0Cn1/q/

CCqC�
2�

2.n�n2/

1� �2
CCq��

2�
2.n�n1C1/

1� �2
CO.�9n=8/: (28)

Now, we need to consider the tail:

IC D

C1X
iDm0qCn1q

h.zi ; ziC1/� h.xiC1; xiC2/:

Since along the periodic orbit Xp=q ,

@2h.xi ; xiC1/C @1h.xiC1; xi /D 0; i 2 Z; (29)

we have

IC D @1h.x1; x2/.zm0qCn1q � x1/

C
1

2

C1X
iDm0qCn1q

	
zi � xiC1
ziC1 � xiC2


T
D2h.xiC1; xiC2/

	
zi � xiC1
ziC1 � xiC2




CO.�3n=2/:
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Since xm0qCn1qC1 D x1 and

zm0qCn1q � x1 D �
n1

	
� sin
cos



�CO.�3n1=2/;

by means of the same calculation done for I1, we obtain

IC D @1h.x1; x2/.zm0qCn1q � x1/C
�2n1

1� �2
�2

2
ZCW.Xp=q/Z

T
CCO.�5n=4/

D @1h.x1; x2/.zm0qCn1q � x1/C
�2n1

1� �2
CqC�

2CO.�5n=4/: (30)

Similarly, we can estimate the other tail and obtain

I� D

�.n0Cn2/qC1X
iD�1

h.zi�1; zi /� h.xi�1; xi /

D @2h.x0; x1/.z�.m0Cn2/qC1 � x1/CCq��
2�

2.n2C1/

1� �2
CO.�5n=4/: (31)

Summing up all contributions (28), (30), and (31) together,

I WD I C I�C IC

D @1h.y�.n0Cn2/qC1; y�.n0Cn2/qC2/.z�.n0Cn2/qC1 � y�n0q�n2qC1/

C @2h.y.m0Cn1/q�1; y.m0Cn1/q/.z.m0Cn1/q � y.m0Cn1/q/

C @2h.x0; x1/.z�.m0Cn2/qC1 � x1/C @1h.x1; x2/.zm0qCn1q � x1/

C 2CqC�
2 �

2n1

1� �2
C 2Cq��

2�
2.n2C1/

1� �2
CO.�9n=8/: (32)

Since y.m0Cn1/q D y�.n0Cn2/qC1, by (15), we have

@2h.y.m0Cn1/q�1; y.m0Cn1/q/.z.m0Cn1/q � y.m0Cn1/q/

C @1h.y�.n0qCn2/qC1; y�.n0Cn2/qC2/.z�.n0Cn2/qC1 � y�.n0Cn2/qC1/

D @2h.y.m0Cn1/q�1; y.m0Cn1/q/.z.m0Cn1/q � z�.n0Cn2/qC1/:

Note that

y.m0Cn1/q � x1 D y.m0Cn1/q � z.m0Cn1/q C z.m0Cn1/q � x1

D

	
cos
sin



��n�n1 C

	
� sin
cos



��n1 CO.�3n=4/;
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y.m0Cn1/q�1 � x0 D

	
a0.��n2 cos � ��n1 sin/C b0.��n2 sin C ��n1 cos/

	 00




CO.�3n=4/;

and

z.m0Cn1/q � z�.n0Cn2/qC1 D

	
���n1 sin � ��n2 cos

	 01



CO.�3n=4/;

where a0 and b0 are from the expression

Df �1.x1/D

	
a0 b0

	 	



;

with

a0 D
�@22h.x0; x1/

@12h.x0; x1/
; b0 D

1

@12h.x0; x1/

(here we used (10)). Thus we have

@2h.y.m0Cn1/q�1; y.m0Cn1/q/

D @2h.x0; x1/C @12h.x0; x1/.y.m0Cn1/q�1 � x0/

C @22h.x0; x1/.y.m0Cn1/q � x1/CO.�n/

D @2h.x0; x1/C @22h.x0; x1/Œ��
n2 cos � ��n1 sin�CO.�3n=4/

C @12h.x0; x1/
h
�
@22h.x0; x1/

@12h.x0; x1/
.��n2 cos � ��n1 sin/

C
1

@12h.x0; x1/
.��n2 sin C ��n1 cos/

i
D @2h.x0; x1/C .��

n2 sin C ��n1 cos/CO.�3n=4/:

Therefore,

@2h.y.m0Cn1/q�1; y.m0Cn1/q/.z.m0Cn1/q � z�.n0Cn2/qC1/

D @2h.x0; x1/.z.m0Cn1/q � z�.n0Cn2/qC1/

C .��n2 sin C ��n1 cos/.���n2 cos � ��n1 sin/CO.�5n=4/

D @2h.x0; x1/.z.m0Cn1/q � z�.n0Cn2/qC1/

� sin cos.�2�2n2 C �2�2n1/� ���nCO.�5n=4/: (33)
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Using (29),

@2h.x0; x1/.z.m0Cn1/q � z.n0Cn2/qC1/

C @2h.x0; x1/.z�.m0Cn2/qC1 � x1/

C @1h.x1; x2/.zm0qCn1q � x1/D 0I (34)

hence we have

ID 2CqC�
2 �

2n1

1� �2
C 2Cq��

2�
2.n2C1/

1� �2

� sin cos.�2�2n2 C �2�2n1/� ���nCO.�9n=8/: (35)

If n is even, then we have

ID
�2CqC�2
1� �2

C
2Cq��

2�2

1� �2
� �2 sin cos � �2 sin cos � ��

��n0Cm0Cn
��m0�n0

CO.�9n=8/

WD Cp;q�
n0Cm0CnCO.�9n=8/; (36)

and if n is odd (i.e., nD 2n1C 1), then

ID
� 2CqC�2
�.1� �2/

C
2Cq��

2�3

1� �2

� �2� sin cos � �2��1 sin cos � ��
��m0Cn0Cn
��m0�n0

CO.�9n=8/

DW C 0p;q�
n0Cm0CnCO.�9n=8/: (37)

Summarizing, the proof of the assertion follows by denoting N D n0Cm0C n.
This completes the proof of Theorem 16.

Remark 24
The constants in (35) are independent of the choice of the basepoint where we apply
the normal form Lemma 23. Namely, if we choose x2 as the basepoint, then in (23)
and (30), the terms of the order �2n1 become

CqC
�2�2n1

1� �2

�
1

2

�
h11.x1; x2/.Z

C
0 /
2C 2h12.x1; x2/Z

C
0 Z
C
1 C h22.x1; x2/.Z

C
1 /
2
�
�2�2n1 ;
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and the terms of order �2.n2C1/ in (26) and (31) turn into

Cq�
�2�2.n2C1/

1� �2

C
1

2

�
h11.x1; x2/.Z

�
0 /
2C 2h12.x1; x2/Z

�
0 Z
�
1 C h22.x1; x2/.Z

�
1 /
2
�
�2�2n2 :

Those in (33) become�
@12h.x1; x2/.x1; x2/.Z

�
0 Z
C
1 �Z

C
0 Z
�
1 /

C @22h.x1; x2/.Z
�
1 Z
C
1 �Z

�
1 Z
C
1 /
�
���n

C
�
@12h.x1; x2/Z

C
0 Z
C
1 C @22h.x1; x2/.Z

C
1 /
2
�
�2�2n1

C
�
�@12h.x1; x2/Z

�
0 Z
�
1 � @22h.x1; x2/.Z

�
1 /
2
�
�2�2n2 :

Then adding them up, using (9), (10), (17), and (24), we have exactly (35).

B. Proof of Lemma 21
In this appendix we want to prove Lemma 21, namely, that constants Cp;q.f /,
C 0p;q.f / appearing in Theorem 16 are generically nonzero.

From now on, we use the notations Cp;q.f /, C 0p;q.f /, �.f /, �.f /, and so on,
to indicate explicitly the dependence on f .

We start first with the following Lemma.

LEMMA 25
There exist N�1 > 0, N�2 > 0 and a family of billiard maps f
1;
2 parameterized by
�1 2 Œ�N�1; N�1� and �2 2 Œ�N�2; N�2� such that

f0;0 D f; �.f
1;
2/D �.f /; .f
1;
2/D .f /; (38)

and

d

d�1
�.f
1;
2/¤ 0;

d

d�2
�.f
1;
2/¤ 0: (39)

Moreover,

kf
1;
2 � f kC� ! 0; as �1! 0; �2! 0: (40)

Proof
Let us denote

s0i D 
1
�
f i .z0/

�
; i D�2;�1; 0; 1; 2: (41)

Because of the graph property of the orbit Xp=qC, for i D �2;�1; 0; 1; 2, there
exist 	�i < 0, 	Ci > 0 and functions 'i such that the following holds:
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(1) ¹.s; r/ W s 2 Œs0i C 	
�
i ; s
0
i C 	

C
i �; r 2 Œ0; 1�º \Xp=qC D ¹ziº.

(2) Denote

�i WD
®�
s; 'i .s/

�
W s 2 Œs0i C 	

�
i ; s
0
i C 	

C
i �
¯
; i D˙2;

and

�˙0 WD
®�
s; '˙0 .s/

�
W s 2 Œs00C 	

�
0 ; s
0
0C 	

C
0 �
¯
:

The graphs ��0 and ��2 are the local graphs of the unstable manifold of x0
near the points zi , i D 0;�2, and the graphs �C0 and �2 are the local graphs
of the stable manifold of x1 near the points zi , i D 0; 2.

(3) There exist strictly increasing C � -functions

�i .t/ W Œs
0
i C 	

�
i ; s
0
i C 	

C
i �! Œs0iC2C 	

�
iC2; s

0
iC2C 	

C
iC2�; i D�2; 0

such that �.s0i /D s
0
iC2, i D�2; 0,

f 2
�
s; '�2.s/

�
D
�
��2.s/; '

�
0

�
��2.s/

��
; s 2W Œs0�2C 	

�
�2; s

0
�2C 	

C
�2�;

and

f 2
�
s; 'C0 .s/

�
D
�
�0.s/; '2

�
�0.s/

��
; s 2W Œs00C 	

�
0 ; s
0
0C 	

C
0 �:

Let 0 < N�1 < 1
3

min¹j	C�2j; j	
�
�2jº, 0 < N�2 <

1
3

min¹j	C0 j; j	
�
0 jº, and N�1, N�2 be

small enough. For �1 2 Œ�N�1; N�1� and �2 2 Œ�N�2; N�2�, we define a deformation �
1;
2
of the domain �, with the corresponding billiard map f
1;
2 such that:
(i) If s 2 Œs0�2 � �1; s

0
�2C �1� and r D '�2.s/, then

f 2
1;
2.s; r/D
�
��2.sC �1/; '

�
0

�
��2.sC �1/

��
:

(ii) If s 2 Œs00 � �2; s
0
0C �2�, and r D 'C0 .s/, then

f 2
1;
2.s; r/D
�
�0.sC �2/; '2

�
�1.sC �2/

��
:

(iii) Let

�01 Dmax
®ˇ̌

1
�
f
�
s�2˙ �1; '�2.s�2˙ �1/

��
� s0�1

ˇ̌¯
(42)

and

�02 Dmax
®ˇ̌

1
�
f
�
s0˙ �2; '

C
0 .s0˙ �2/

��
� s01

ˇ̌¯
: (43)

If s … Œs0�1 � 3�
0
1; s
0
�1C 3�

0
1�[ Œs

0
1 � 3�

0
2; s
0
1C 3�

0
2�, then

@�
1;
2.s/D @�.s/: (44)
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The existence of such a domain is due to the implicit function theorem for small
enough N�1 and N�2.

By the construction, we could see that for f
1;
2 :
(a) Xp=q is still the minimal periodic orbit in Mp

q
;

(b) the orbit ¹f i
1;
2.z0/; i 2 Zº is the minimal orbit in Mp
qC

;
(c) near Xp=q , the billiard maps f
1;
2 and f are the same;
(d) the point f �n0qC1
1;
2 .z0/moves nondegenerately as �1 change. So does the point

f
m0q

1;
2 with respect to �2.

These imply that the parameterized family of billiard maps f
1;
2 satisfy the require-
ments of the lemma.

We can now prove Lemma 21.

Proof of Lemma 21
For each p=q 2 Q \ .0; 1=2�, let us denote Gp=q the set of billiard maps f such
that Cp=q.f /¤ 0 and C 0

p=q
.f /¤ 0. Clearly Gp=q is an open set, since Cp=q.f / and

C 0
p=q
.f / are continuous with respect to f in the C � -topology. If Cp=q.f /D 0, by

Lemma 25, we could find a billiard map f 0, which is arbitrary close to f in the C � -
topology, such that Cp=q.f 0/¤ 0. Therefore, Gp=q is a dense open subset. Then we
can choose the generic set to the residual set

G 0 D
\

p=q2Q\.0;1=2�

Gp=q : (45)

In particular, each billiard map f 2 G 0 verifies the assertion of the lemma.
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