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Uniqueness of invariant Lagrangian graphs
in a homology or a cohomology class

ALBERT FATHI, ALESSANDRO GIULIANI AND ALFONSO SORRENTINO

Abstract. Given a smooth compact Riemannian manifold M and a Hamiltonian
H on the cotangent space T∗M , strictly convex and superlinear in the momentum
variables, we prove uniqueness of certain “ergodic” invariant Lagrangian graphs
within a given homology or cohomology class. In particular, in the context of
quasi-integrable Hamiltonian systems, our result implies global uniqueness of
Lagrangian KAM tori with rotation vector ρ. This result extends generically to
the C0-closure of KAM tori.
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(secondary).

1. Introduction

A particularly interesting and fruitful approach to the study of local and global prop-
erties of dynamical systems is concerned with the study of invariant submanifolds,
rather than single orbits, paying particular attention to their existence, their “fate”
and their geometric properties. In the context of quasi-integrable Hamiltonian sys-
tems, one of the most celebrated breakthroughs in this kind of approach was KAM
theory, which provided a method to construct invariant submanifolds diffeomor-
phic to tori, on which the dynamics is conjugated to a quasi-periodic motion with
rotation vector ρ, sometimes referred to as KAM tori. KAM theory finally settled
the old question about existence of such invariant submanifolds in “generic” quasi-
integrable Hamiltonian systems, dating back at least to Poincaré, and opened the
way to a new understanding of the nature of Hamiltonian systems, of their stability
and of the onset of chaos in classical mechanics. However, the natural question
about the uniqueness of these invariant submanifolds for a fixed rotation vector ρ

remained open for many more years and, quite surprisingly, even nowadays, for
many respects it is still unanswered. A possible reason for this is that the analytic
methods, which the KAM algorithm is based on, are not well suited for studying
global questions, while, on the other hand, the natural variational methods to ap-
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proach this problem have been developed only much more recently and they are
still not so widely well-known.

In this paper we address the above problem and prove global uniqueness of
certain “ergodic” invariant Lagrangian graphs within a given homology or coho-
mology class, for a large class of convex Hamiltonians, known as Tonelli Hamilto-
nians. Our work will be based on the variational approach provided by the so-called
Aubry-Mather theory, as well as its functional counterpart called weak KAM the-
ory.

The paper is organized as follows. In Section 2 we define the geometric objects
we shall look at (the invariant Lagrangian graphs), we introduce some concepts (ho-
mology class of an invariant measure and Schwartzman ergodicity), which will turn
out to be useful for illustrating their dynamical properties, and we state our main
uniqueness results. In Section 3 we prove our main results. In Section 4 we discuss
the implications of our results for KAM theory and compare them with some previ-
ous local uniqueness theorems for KAM tori. In Appendix A we shall discuss some
details concerning the definition of Schwartzman ergodicity, give some examples
and describe some properties of Schwartzman ergodic flows.

ACKNOWLEDGEMENTS. We would like to thank Giovanni Gallavotti for having
drawn our attention to this problem and for useful discussions. Albert Fathi and
Alfonso Sorrentino are grateful to John Mather for many fruitful conversations.

2. Setting and main results

Let M be a compact and connected smooth manifold without boundary of dimen-
sion n. Denote by TM its tangent bundle and T∗M the cotangent one. A point of
TM will be denoted by (x, v), where x ∈ M and v ∈ Tx M , and a point of T∗M
by (x, p), where p ∈ T∗

x M is a linear form on the vector space Tx M . Let us fix
a Riemannian metric g on M and let ‖ · ‖x be the norm induced by g on Tx M ;
we shall use the same notation for the norm induced on the cotangent space T∗

x M .
This cotangent space T∗M can be canonically endowed with a symplectic struc-
ture, given by the exact 2-form ω = dx ∧ dp = −d(pdx), where (U , x) is a local
coordinate chart for M and (T∗U , x, p) the associated cotangent coordinates. The
1-form λ = pdx is also called tautological form (or Liouville form) and is intrisi-
cally defined, i.e. independently of the choice of local coordinates. A distinguished
role in the study of the geometry of a symplectic space is played by the so-called
Lagrangian submanifolds.
Definition 2.1. Let � be an n-dimensional C1 submanifold of (T∗M, ω). We say
that � is Lagrangian if for any (x, p) ∈ �, T(x,p)� is a Lagrangian subspace, i.e.
ω

∣∣
T(x,p)�

= 0.

We shall mainly be concerned with Lagrangian graphs, that is Lagrangian man-
ifolds � ⊂ T ∗M such that � = {(x, η(x)) , x ∈ M}. It is straightforward to check
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that the graph � is Lagrangian if and only if η is a closed 1-form. The element
c = [η] ∈ H1(M; R) is called the cohomology class, or Liouville class, of �. This
motivates the following extension of the notion of Lagrangian graph to the Lipschitz
case.

Definition 2.2. A Lipschitz section � of T∗M is a Lipschitz Lagrangian graph if it
locally coincides with the graph of an exact differential.

Observe that a Lipschitz Lagrangian graph � is differentiable almost every-
where and at each differentiability point (x, p) the tangent space T(x,p)� is a La-
grangian subspace. Such Lipschitz graphs, although less regular, enjoy many prop-
erties of C1-Lagrangian graphs (see for instance [26]). In the following, when
referring to a Lagrangian graph without specifying its regularity, we shall assume
that it is at least Lipschitz.

We shall consider the dynamics on T∗M generated by a Tonelli Hamiltonian.

Definition 2.3. A function H : T∗M −→ R is called a Tonelli (or optical) Hamil-
tonian if:

i) the Hamiltonian H is of class Ck , with k ≥ 2;
ii) the Hamiltonian H is strictly convex in the fiber in the C2 sense, i.e. the second

partial vertical derivative ∂2 H/∂p2(x, p) is positive definite, as a quadratic
form, for any (x, p) ∈ T∗M ;

iii) the Hamiltonian H is superlinear in each fiber, i.e.

lim‖p‖x →+∞
H(x, p)

‖p‖x
= +∞

(because of the compactness of M , this condition is independent of the choice
of the Riemannian metric).

Given H , we can define the associated Lagrangian, as a function on the tangent
bundle:

L : TM −→ R

(x, v) 	−→ sup
p∈T∗

x M
{〈p, v〉x − H(x, p)}

where 〈 ·, · 〉x represents the canonical pairing between the tangent and cotangent
space. If H is a Tonelli Hamiltonian, one can easily prove that L is finite every-
where, of class Ck , superlinear and strictly convex in the fiber in the C2 sense (i.e.
L is a Tonelli Lagrangian) and the associated Euler-Lagrange flow �L

t of L is con-
jugated to the Hamiltonian flow �H

t of H via the Legendre transform:

L : TM −→ T∗M

(x, v) 	−→
(

x,
∂L

∂v
(x, v)

)
. (2.1)
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From now on we shall fix H and denote by L its conjugated Lagrangian and,
when referring to an “invariant” measure or set, we shall understand “invariant with
respect to the Hamiltonian flow generated by H” or “with respect to the Euler-
Lagrange flow generated by L”.

Given an invariant probability measure µ on TM one can associate to it an ele-
ment ρ(µ) of the homology group H1(M;R), known as rotation vector or Schwartz-
man asymptotic cycle, which generalizes the notion of rotation vector given by
Poincaré and describes how, asymptotically, a µ-average orbit winds around TM .
In fact, it is easy to show [20] that since µ is invariant by the Euler-Lagrangian flow
�L

t , if η = d f is an exact form, then
∫ 〈d f , v〉dµ = 0. Therefore, one can define a

linear functional

H1(M; R) −→ R

c 	−→
∫

TM
〈η, v〉dµ ,

where η is any closed 1-form on M , whose cohomology class is c. By duality, there
exists ρ(µ) ∈ H1(M; R) such that∫

TM
〈η, v〉dµ = 〈c, ρ(µ)〉 ∀ c ∈ H1(M; R).

ρ(µ) is what we call the rotation vector of µ and it coincides with the Schwartzman
asymptotic cycle of µ. See Appendix A and [20] for more details.

This allows us to define the homology class of certain invariant Lagrangian
graphs.

Definition 2.4. A Lagrangian graph � is called Schwartzman uniquely ergodic if
all invariant measures supported on � have the same rotation vector ρ, which will
be called homology class of �. Moreover, if there exists an invariant measure with
full support, � will be called Schwarztman strictly ergodic.

We are now ready to state our main result.

Main result. For any given ρ ∈ H1(M; R), there exists at most one Schwarzman
strictly ergodic invariant Lagrangian graph with homology class ρ. [Theorem 3.4,
Section 3.]

For sake of completeness, we also recall the following well-known result,
which is a corollary of the results in [20] (see Section 3 below for a proof).

Well-known result. For any given c ∈ H1(M; R), there exists at most one invari-
ant Lagrangian graph � with cohomology class c, carrying an invariant measure
whose support is the whole of �. [Theorem 3.2, Section 3.]

If M = Tn , it is natural to ask for the implications of our result for KAM
theory. In this case, the homology group H1(T

n; R) is canonically identified with
Rn , and the invariant manifolds of interest are the so-called KAM tori, defined as
follows.
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Definition 2.5. T ⊂ Tn × Rn is a (maximal) KAM torus with rotation vector ρ if:

i) T ⊂ Tn × Rn is a Lipschitz graph over Tn;
ii) T is invariant under the Hamiltonian flow �H

t generated by H ;
iii) the Hamiltonian flow on T is conjugated to a uniform rotation on Tn; i.e. there

exists a diffeomorphism ϕ : Tn → T such that ϕ−1 ◦ �H
t ◦ ϕ = Rt

ρ , ∀t ∈ R,
where Rt

ρ : x 	→ x + ρt .

The celebrated KAM Theorem, whose statement will be recalled in Section 4, gives
sufficient conditions on H and on the rotation vector ρ, allowing one to construct
a KAM torus with rotation vector ρ and prescribed regularity (depending on the
regularity class of H ). Its proof is constructive and the invariant torus one manages
to construct is locally unique (in a sense that will be clarified in Section 4). In
spite of the long history and the huge literature dedicated to the KAM theorem,
the issue of global uniqueness of such tori is still object of some debate and study,
see for instance [5]. Our main result settles such question in the case of Tonelli
Hamiltonians.

Corollary 2.6 (Global uniqueness of KAM tori). Every Tonelli Hamiltonian H
on T∗Tn possesses at most one Lagrangian KAM torus for any given rotation vec-
tor ρ. In particular, if H and ρ satisfy the assumptions of the KAM Theorem, then
there exists one and only one KAM torus with rotation vector ρ.

The property of being Lagrangian plays a crucial role. As it was observed by
Herman [15], when ρ is rationally independent, i.e. 〈ρ, ν〉 �= 0, ∀ν ∈ Zn \ {0}, as
assumed in the KAM theorem, every KAM torus with frequency ρ is automatically
Lagrangian. On the other hand, the existence of Lagrangian KAM tori with ratio-
nally dependent frequency is not typical. In some cases, a variant of the classical
KAM algorithm allows one to construct resonant invariant tori with a given rational
rotation vector ρ, also known as lower dimensional tori [13,14]. However, typically
they do not foliate any Lagrangian submanifold. Therefore, the question of unique-
ness of resonant tori is more subtle and, to our knowledge, apart from a few partial
results [7], it is still open.

In Section 4 we shall extend Corollary 2.6 to generic invariant tori contained
in the C0-closure of the set of KAM tori. As remarked by Herman [16], generically
this set is much larger than the set of KAM tori, and typically the flow on such
invariant manifolds is not conjugated to a rotation. See Section 4 for a more detailed
discussion of these issues.

3. Minimizing measures and Lagrangian graphs

In this section we shall prove the main results announced in Section 2. Our proof
will be based on Mather’s variational approach to the study of Lagrangian systems,
which is concerned with the study of action minimizing invariant probability mea-
sures (also called Mather’s measures) and action minimizing orbits of the Euler-
Lagrange flow. In particular, the keystone of such an approach consists in studying
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a family of modified Tonelli Lagrangians given by Lη(x, v) = L(x, v) − 〈η(x), v〉,
where η is a closed 1-form on M . These Lagrangians, in fact, have all the same
Euler-Lagrange flow as L , but different action minimizing orbits/measures, accord-
ing to the cohomology class of η. In this way, Mather defined for each cohomology
class c ∈ H1(M; R) two compact invariant subsets of TM :

• M̃c, the Mather set of cohomology class c, given by the union of the supports
of all invariant probability measures that minimize the action of Lη (c-action
minizimizing measures or Mather’s measures of cohomology class c), where η

is any closed 1-form on M with cohomology class [η] = c;
• Ãc, the Aubry set of cohomology class c, given by the union of all regular

global minimizers of the action of Lη (or c-regular minimizers); see [10, 21]
for a precise definition. It is convenient to recall here that, if: (i) α(c) is
Mather’s α-function, i.e., the maximum over the invariant probability measures
µ of − ∫

Lηdµ, with [η] = c, and (ii) Sη is the set of critical subsolutions of
Hη(x, p) := H(x, η + p), i.e., the set of locally Lipschitz functions u : M −→
R such that Hη(x, dx u) ≤ α(c) for almost every x ∈ M , then Ãc = L−1(A∗

c),
with

A∗
c =

⋂
u∈Sη

{(x, ηx + dx u) : u is differentiable at x} ⊂ T∗M , (3.1)

see [10, 12].

One can show that M̃c ⊆ Ãc and, as proved by Carneiro in [6], that they are
both contained in the energy level Ẽc = {(x, v) ∈ TM : H ◦ L(x, v) = α(c)}.
Moreover, one of the most important features of these sets is that they are graphs
over M (Mather’s graph theorem [20]); namely, if π : TM → M denotes the
canonical projection, then π |Ãc is injective and its inverse

(
π |Ãc

)−1 : Ac −→ Ãc
is Lipschitz. This is the multidimensional analogue of Birkhoff’s theorem for twist
maps [4].

Analogously, for any rotation vector h ∈ H1(M; R), one can define another
compact invariant subset of TM :

• M̃h , the Mather set of homology class h, given by the union of the supports of
all invariant probability measures with rotation vector h that minimize the action
of L (Mather’s measures of homology class h).

One can show that M̃h also enjoys the graph property. See Lemma 3.5 for the
relation between M̃h and M̃c. For more details on Mather’s theory for Lagrangian
systems, we refer the reader to [8, 10, 20].

Let us start now by proving some action minimizing properties of probability
measures supported on Lagrangian graphs.

Given a Lagrangian graph � with Liouville class c, we shall say that � is c-
subcritical, or simply subcritical, if � ⊂ {(x, p) ∈ T∗M : H(x, p) ≤ α(c)},
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where α is Mather’s α-function (see the lines preceding Equation (3.1) for a def-
inition). The interest in such graphs comes from the fact that this is the smallest
energy sub-level of H , containing Lagrangian graphs of cohomology c (see [10]).

Given a subcritical Lagrangian graph � with Liouville class c, we shall call
�cri t = {(x, p) ∈ � : H(x, p) = α(c)} its critical part. The key result we need to
prove is the following characterization of minimizing measures.

Lemma 3.1. Let µ be an invariant probability measure on TM and µ∗ = L∗µ
its push-forward to T∗M, via the Legendre transform L. Then, µ is a Mather’s
measure if and only if supp µ∗ is contained in the critical part of a subcritical
Lagrangian graph. In particular, any invariant probability measure µ∗ on T∗M,
whose support is contained in an invariant Lagrangian graph with Liouville class
c, is the image, via the Legendre transform, of a c-action minimizing measure.

Proof. (i) If µ is a Mather measure of cohomology class c, then the support of µ∗ is
contained in L(M̃c) ⊆ L(Ãc). Since L(Ãc) can be obtained as the intersection of
all c-subcritical Lagrangian graphs [3,10], then supp µ∗ is contained in at least one
c-subcritical Lagrangian graph �. In particular supp µ∗ is contained in the critical
part of �, simply because, as recalled above, L(M̃c) is contained in the energy
level E∗

c = {(x, p) ∈ T∗M : H(x, p) = α(c)}.
(ii) Let us fix η to be a smooth closed 1-form with [η] = c, and let us assume

that supp µ∗ is contained in the critical part of the c-subcritical Lagrangian graph
� = {(x, η(x)+du(x)) , x ∈ M}, where u : M → R is C1,1. In order to show that
µ is a c-action minimizing measure, it is enough to show that any orbit γ in supp µ

is a c-minimizer (i.e., for every finite time-interval [a, b], {γ (t)}t∈[a,b] minimizes
the action of Lη, [η] = c, among the curves with the same end-points γ (a) and
γ (b)), see [10, 19].

To this purpose, let us consider (x, v) ∈ supp µ and let γ (t) ≡ π(�t (x, v)),
where �t is the Euler-Lagrange flow and π the canonical projection on M . Given
any interval [a, b] ⊂ R, let us consider the difference u(γ (b))−u(γ (a)) and rewrite
it as:

u(γ (b)) − u(γ (a)) =
∫ b

a
dγ (s)u(γ (s))γ̇ (s) ds

=
∫ b

a

[
Lη(γ (s), γ̇ (s)) + Hη(γ (s), dγ (s)u)

]
ds ,

(3.2)

where the second equality follows from the definition of the Hamiltonian as the
Legendre-Fenchel transform of the Lagrangian and the fact that γ (s) is an orbit
of the Euler-Lagrange flow. Note that along the orbit Hη(γ (s), dγ (s)u) = α(c),
because supp µ is invariant and supp µ∗ is in the critical part of �. Then

∫ b

a
Lη(γ (s), γ̇ (s))ds = u(γ (b)) − u(γ (a)) − α(c)(b − a) . (3.3)
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On the other hand, any other curve γ1 : [a, b] → M such that γ1(a) = γ (a) and
γ1(b) = γ (b) satisfies:

u(γ (b)) − u(γ (a)) =
∫ b

a
dγ1(s)u(γ1(s))γ̇ (s) ds

≤
∫ b

a

[
Lη(γ1(s), γ̇1(s)) + Hη(γ1(s), dγ1(s)u)

]
ds

(3.4)

where the second inequality follows again by the duality between Hamiltonian and
Lagrangian. Note that now Hη(γ1(s), dγ1(s)u) ≤ α(c), because � = {(x, η(x) +
du(x))} is subcritical. Then∫ b

a
Lη(γ1(s), γ̇1(s))ds ≥ u(γ (b)) − u(γ (a)) − α(c)(b − a) (3.5)

and this proves that γ is a c-minimizer.
Let us finally observe that the Hamilton function on any invariant Lagrangian

graph � = {(x, η + du)} is a constant: H(x, η + du) = k (the classical proof
easily extends to the case of Lipschitz Lagrangian graphs, see for instance [26]).
Then u is a classical solution of the Hamilton-Jacobi equation (corresponding to
the cohomology class c). As showed in [10, 18], there is only one possible value
of k for which such solutions can exist, namely k = α(c), and this shows that �

coincides with its critical part. By the result proved in item (ii), if µ∗ is supported
on �, then µ is a c-action minimizing measure and this proves the last claim in the
statement of the lemma.

We can now prove the well-known uniqueness result for Lagrangian graphs
supporting invariant measures of full support, in a fixed cohomology class, stated
in Section 2.

Theorem 3.2. If � ⊂ T∗M is a Lagrangian graph on which the Hamiltonian dy-
namics admits an invariant measure µ∗ with full support, then � = L

(
M̃c

) =
L

(
Ãc

)
, where c is the cohomology class of �. Therefore, if �1 and �2 are two

Lagrangian graphs as above, with the same cohomology class, then �1 = �2.

This theorem can be also obtained as a corollary of the results in [20, Appendix
2]. Our proof is essentially a rehash of the same ideas, using a different point of
view. In fact the Weierstrass method, used in [20] to show that orbits on a KAM
torus are action minimizing, or the use of Hamilton-Jacobi equation are essentially
two sides of the same coin.

Proof. By Lemma 3.1, the measure µ = L−1∗ µ∗ is c-action minimizing. This
means that L−1(�) = supp µ ⊆ M̃c ⊆ Ãc. Note however that M̃c and Ãc are
graphs and, since supp µ is a graph over the whole M , it follows that

L−1(�) = supp µ = M̃c = Ãc .
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One can deduce something more from the above proof. Recall the definition of
Mather’s β-function: β(h) is the minimum of the average action

∫
Ldµ over the in-

variant measures µ with a given rotation vector h [20]. This function is convex and
its conjugate function (given by Fenchel’s duality) coincides with the α-function:
α(c) = maxh∈H1(M;R)(〈c, h〉 − β(h)).

Theorem 3.3. If � and µ are as in Theorem 3.2 and ρ is the rotation vector of
µ = L−1µ∗, then � = L

(
M̃ρ

)
. Therefore, if �1 and �2 are two Lagrangian

graphs supporting measures of full support and the same rotation vector ρ, then
�1 = �2. Moreover, Mather’s β-function is differentiable at ρ with ∂β(ρ) = c,
where c is the cohomology class of �.

Proof. The first claim follows from the fact that M̃ρ is a graph over M and that
by definition M̃ρ ⊇ supp µ = L−1(�). As far as the differentiability of β at ρ is
concerned, suppose that c′ ∈ H1(M; R) is a subderivative of β at ρ. Then, using
Fenchel’s duality and the fact that α and β are conjugated, β(ρ) = 〈c′, ρ〉 − α(c′)
and this implies that each Mather’s measure µ with rotation vector ρ is also c′-
action minimizing; in fact:∫

TM
(L(x, v) − 〈η′(x), v〉) dµ =

∫
TM

L(x, v) dµ −
∫

TM
〈η′(x), v〉 dµ

= β(ρ) − 〈c′, ρ〉 = −α(c′) ,

where η′ is a closed 1-form of cohomology c′. As a result, M̃ρ = L−1 (�) ⊆ M̃c′ .
The graph property of M̃c′ and of Ãc′ implies that Ãc′ = M̃c′ = L−1 (�) and
therefore L

(
Ãc′

) = �. Since the cohomology class of � is c, it follows that
c′ = c.

We are now in the position of proving the main uniqueness result in a homology
class, stated in Section 2.

Theorem 3.4. Let � be a Schwartzman strictly ergodic invariant Lagrangian
graph with homology class ρ. The following properties are satisfied:

(i) if � ∩L
(
Ãc

) �= ∅, then � = L
(
Ãc

)
and c = c�, where c� is the cohomology

class of �.
(ii) the Mather function α is differentiable at c� and ∂α(c�) = ρ.

Therefore,

(iii) any invariant Lagrangian graph that carries a measure with rotation vector ρ

is equal to the graph �;
(iv) any invariant Lagrangian graph is either disjoint from � or equal to �.

We shall need the following lemma.
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Lemma 3.5. Let ρ, c be respectively an arbitrary homology class in H1(M; R) and
an arbitrary cohomology class in H1(M; R). We have

(1) M̃ρ ∩ M̃c �= ∅ ⇐⇒ (2) M̃ρ ⊆ M̃c ⇐⇒ (3) ρ ∈ ∂α(c) .

Proof of Lemma 3.5. The implication (2) =⇒ (1) is trivial. Let us prove that
(1) =⇒ (3). If M̃ρ ∩ M̃c �= 0, then there exists a c-action minimizing invari-
ant measure µ with rotation vector ρ. Let η be a closed 1-form with [η] = c; from
the definition of α and β:

−α(c) =
∫

TM
(L(x, v) − 〈η(x), v〉) dµ

=
∫

TM
L(x, v) dµ − 〈c, ρ〉 = β(ρ) − 〈c, ρ〉 ;

since β and α are convex conjugated, then ρ is a subderivative of α at c.
Finally, in order to show (3) =⇒ (2), let us prove that any Mather’s measure

with rotation vector ρ is c-action minimizing. In fact, if ρ ∈ ∂α(c) then α(c) =
〈c, ρ〉 − β(ρ); therefore for any µ is a Mather’s measure with rotation vector ρ and
η as above:

−α(c) = β(ρ) − 〈c, ρ〉 =
∫

TM
(L(x, v) − 〈η(x), v〉) dµ.

This proves that µ is c-action minimizing and concludes the proof.

Proof of Theorem 3.4. (i) From Theorem 3.2, it follows that L−1
(
�

) = Ãc� . Let
us show that it does not intersect any other Aubry set. Suppose by contradiction
that L−1

(
�

)
intersects another Aubry set Ãc. By Theorem 3.3, L−1

(
�

) = M̃ρ ,
then M̃ρ ∩ Ãc �= ∅ and, because of Lemma 3.1, Lemma 3.5 and the graph property
of Ãc, we can conclude that Ãc = L−1

(
�

)
. The same argument used in the proof

of Theorem 3.3 allows us to conclude that c = c�.
(ii) Suppose that h ∈ ∂α(c�). The previous lemma implies that M̃h ⊆ �;

the Schwartzman unique ergodicity property of � implies h = ρ. Therefore α is
differentiable at c� and ∂α(c�) = ρ.

To prove (iv), let �1 be an invariant Lagrangian graph, and call c1 its coho-
mology class. If the compact invariant set � ∩ �1 is not empty, then we can find a
probability measure µ∗ invariant under the flow and whose support is contained in
this intersection. Since µ∗ is contained in the Lagrangian graph �1, by Lemma 3.1,
it is c1-action minimizing. Hence, the support of µ∗ is contained in L

(
Ãc1

)
. This

shows that the intersection � ∩ L
(
Ãc1

)
contains the support of µ∗ and is there-

fore not empty. By (i), � = L
(
Ãc1

)
. Moreover, note that L

(
Ãc1

) ⊆ �1, because
�1 = Graph(η1 + du1), with [η1] = c1 and u1 a classical solution to the Hamilton-
Jacobi equation (see [10]). Therefore, � = �1, since they are both graphs over M .
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To prove (iii), consider an invariant Lagrangian graph �1, with cohomology
class c1, which carries an invariant measure µ∗ whose rotation vector is ρ. By
Lemma 3.1, the measure µ∗ is c1-minimizing. Therefore, we have M̃ρ ∩M̃c1 �= ∅.
By Lemma 3.5, it follows that L−1(�) = M̃ρ ⊆ M̃c1 ⊆ Ãc1 ⊆ L−1(�1). Again,
this forces the equality � = �1 by the graph property.

Finally, observe that using Lemma 3.5, one can also deduce the following property.

Corollary 3.6. Mather’s α-function is differentiable at c if and only if the restric-
tion of the Euler-Lagrange flow to Ãc is Schwartzman uniquely ergodic, i.e. if and
only if all invariant measures supported on Ãc have the same rotation vector.

4. Global uniqueness of KAM tori

In this section we motivate more precisely the problem of uniqueness of KAM tori
and prove Corollary 2.6. We also show how to generalize Corollary 2.6 to cover the
case of invariant tori belonging to the closure of the set of KAM tori.

KAM theory concerns the study of existence of KAM tori (see Definition 2.5)
in quasi-integrable Hamiltonian systems of the form H(x, p) = H0(p)+ ε f (x, p),
where: (x, p) are local coordinates on Tn × Rn , ε is a “small” parameter and
f (x, p) a smooth function. If ε = 0 the system is integrable, in the sense that the
dynamics can be explictly solved: in particular each torus Tn × {p0} is invariant
and the motion on it corresponds to a rotation with frequency ρ(p0) = ∂ H0

∂p (p0).
The question addressed by KAM theory is whether this foliation of phase space into
invariant tori, on which the motion is (quasi-)periodic, persists even if ε �= 0. In
1954 Kolmogorov stated (and Arnol’d [1] and Moser [22] proved it later in different
contexts) that, in spite of the generic disappearence of the invariant submanifolds
filled by periodic orbits, pointed out by Poincaré, for small ε it is always possible to
find KAM tori corresponding to “strongly non-resonant”, i.e. Diophantine, rotation
vectors. The celebrated KAM Theorem (in one of its several versions) not only
shows the existence of such tori, but also provides an explicit method to construct
them.

Theorem 4.1 (Kolmogorov–Arnol’d–Moser [24]). Let n ≥ 2, τ > n − 1, C > 0,
� > 2τ + 2, M > 0 and r > 0 be given. Let Br ∈ Rn be the open ball of radius r
centered at the origin. Let H ∈ C�(Tn × Br ) be of the form

H(x, p) = H0(p) + ε f (x, p) (4.1)

with |H0|C� ≤ M, | f |C� ≤ M,
∣∣∣ ∂2 H0

∂p2

∣∣∣ ≥ M−1 and ρ = ∂ H0
∂p (0) ∈ D(C, τ ).

Then, for any s < � − 2τ − 1, there exists ε0 > 0 such that for any ε ≤ ε0 the
Hamiltonian (4.1) admits a Cs,s+τ KAM torus with rotation vector ρ, i.e. a Cs+τ

invariant torus such that the Hamiltonian flow on it is Cs-conjugated with a rotation
with frequency ρ.
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The invariant torus constructed in the proof of the KAM Theorem is locally
unique, in the sense that for any prescribed (and admissible) s there is at most one
Cs,s+τ KAM torus with rotation vector ρ within a Cs-distance δ(n, s, C, τ ) to the
one constructed in the proof of the KAM Theorem, see [5, 23, 24]. Note that the
Cs-distance δ within which one can prove uniqueness of the KAM torus in a pre-
scribed regularity class depends both on the irrationality properties of ρ and on the
regularity class s itself. It is then a priori possible that even for small ε there exist
different KAM tori within a prescribed C1-distance from the one constructed in the
proof of the Theorem, possibly less regular than that torus. Quite surprisingly, even
in the analytic case, we are not aware of any proof of “global” uniqueness of the
invariant analytic KAM torus with rotation vector ρ (of course in the analytic case
the analytic torus one manages to construct is unique within the class of analytic
tori – however nothing a priori guarantees that less regular invariant tori with the
same rotation vector exist).

Our result, in the form stated in Corollary 2.6, settles the question and shows
that, at least in the case of Tonelli Hamiltonians, it is not possible to have two
different KAM tori with the same rotation vector. Note that the assumption of
strict convexity of the Hamiltonian is necessary to exclude trivial sources of non-
uniqueness: for instance, in the context of quasi-integrable Hamiltonians, global
uniqueness could be lost simply because the unperturbed Hamiltonian induces a
map p 	→ ∂p H0(p) from actions to frequencies that is not one to one. Let us
also remark that, apparently, the Hamiltonian considered in KAM Theorem is not a
Tonelli Hamiltonian, since the latter, by definition, is defined globally on the whole
Tn ×Rn . However any C� strictly convex Hamiltonian defined on Tn × Br for some
r > 0 can be extended to a global C� Tonelli Hamiltonian. Then in the statement
of the KAM Theorem above it is actually enough to assume H to be a C� Tonelli
Hamiltonian, locally satisfying the (in)equalities listed after (4.1).

Given the proof of our main results in Section 3, the proof of Corollary 2.6
becomes very simple.

Proof of Corollary 2.6. Since the Lagrangian KAM torus T admits an invariant
measure µ∗ of full support, which is the image via the conjugation ϕ of the uni-
form measure on Tn , then the claims follow from Theorem 3.3. Note that for ratio-
nally independent rotation vectors, a classical remark by Herman [15] implies that
T is automatically Lagrangian (it is sufficient that the flow on it is topologically
conjugated to a transitive flow on Tn).

An interesting generalization of the result of Corollary 2.6 concerns the invari-
ant tori belonging to the C0-closure ϒ of the set ϒ of all Lagrangian KAM tori.
Note that, for quasi-integrable systems, ϒ is not empty. The set ϒ can be seen
as a subset of Lip(Tn, Rn). This follows from Theorem 3.3, and from Mather’s
graph theorem and the other results in [20]. Moreover, any family of invariant La-
grangians graphs on which the function α (or H ) is bounded gives rise to a family
of functions in Lip(Tn, Rn) with uniformly bounded Lipschitz constant. This is
because, given � in such a family and denoting by (η + du) its graph, for any pair
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of points x, y ∈ Tn and any smooth curve γ (t) on � connecting x to y with unit
speed, we have that u(x) − u(y) ≤ ∫ |x−y|

0 Lη(γ (t), γ̇ (t)) + α(c)|x − y|, where
c = [η], see (3.4). By the Ascoli-Arzelà theorem, it follows that ϒ is also a subset
of Lip(Tn, Rn), consisting of functions whose graphs are invariant (Lipschitz) La-
grangian tori. Herman [16] showed that, for a generic Hamiltonian H close enough
to an integrable Hamiltonian H0, the dynamics on the generic tori in ϒ is not conju-
gated to a rotation. These “new” tori therefore represent the majority, in the sense of
topology, and hence most invariant tori cannot be obtained by the KAM algorithm.
More precisely, Herman showed that in ϒ there exists a dense Gδ-set (i.e. a dense
countable intersection of open sets) of invariant Lagrangian graphs on which the
dynamics is strictly ergodic and weakly mixing, and for which the rotation vector,
in the sense of Section 2, is not Diophantine. These invariant graphs are therefore
not obtained by the KAM theorem, however our uniqueness result do still apply to
these graphs since strict ergodicity implies Schwartzman strict ergodicity.

More generally, given any Tonelli Lagrangian on Tn , we consider the set ϒ̃ of
invariant Lagrangian graphs on which the dynamics of the flow is topologically con-
jugated to an ergodic linear flow on Tn (of course, far from the canonical integrable
Lagrangian the set ϒ̃ may be empty). The dynamics on anyone of the invariant
graphs in ϒ̃ is strictly ergodic. Since the set of strictly ergodic flows on a compact
set is a Gδ-set in the C0 topology, see for example [11, Corollaire 4.5], it follows
that there exists a dense Gδ-subset G of the C0 closure of ϒ̃ in Lip(Tn, Rn), such
that the dynamics on any � ∈ G is strictly ergodic. Therefore we get the following
proposition.

Proposition 4.2. There exists a dense Gδ-set G in the C0 closure of ϒ̃ consisting
of strictly ergodic invariant Lagrangian graphs. Any � ∈ G satisfies the following
properties:

(i) the invariant graph � has a well-defined rotation vector ρ(�).
(ii) Any invariant Lagrangian graph that intersects � coincides with �.

(iii) Any Lagrangian invariant graph that carries an invariant measure whose ro-
tation is ρ(�) coincides with �.

Appendix A. Schwartzman unique and strict ergodicity

In this section we prove some results on the structure of the set of Schwartzman
uniquely/strictly ergodic graphs that we have introduced in Section 2, and provide
some examples.

Let us start from the notion of Schwartzman asymptotic cycle of a flow, in-
troduced by Sol Schwartzman in [25], as a first attempt to develop an algebraic
topological approach to the study of dynamics. This is closely related to the con-
cept of rotation vector of a measure, that we have introduced in Section 2. We shall
give a different description of the Schwartzman asymptotic cycle of a flow using the
flux homomorphism in volume preserving and symplectic geometry (see [2, Chap-
ter 3]), from the same perspective as [9]. The definition used below has the technical
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advantage of not relying on the Krylov-Bogolioubov theory of generic orbits in a
dynamical system, although a more geometrical definition showing that “averaged”
pieces of long orbits converge almost everywhere in the first homology group for
any invariant measure is certainly more heuristic and intuitive.

Let X be a topological space and (φt )t∈R a continuous flow on X . We shall
define � : X × [0, 1] → X by �(x, t) = φt (x). Consider a continuous function
f : X → T and let F( f, �) : X × [0, 1] → T be

F( f, �)(x, t) = f (φt (x)) − f (x).

F( f, �) is continuous and identically 0 on X × {0}, it is therefore homotopic to a
constant and can be lifted to a continuous map F̄( f, �) : X × [0, 1] → R, with
F̄( f, �)|X × {0} identically 0. We define

V( f, φt )(x) := F̄( f, �)(x, 1).

Note that if f is homotopic to 0 then it can be lifted continuously to f̄ : X → R.
In that case F̄( f, �) = f̄ � − f̄ , and

V( f, φt )(x) = f̄ (φ1(x)) − f̄ .

If µ is a measure with compact support invariant under the flow φt , for a continuous
f : X → T, we define S(µ, φt )( f ), or simply S(µ)( f ) when φt is fixed, by

S(µ)( f ) =
∫

X
V( f, φt )(x) dµ(x).

If we denote by [X, T] the set of homotopy classes of continuous maps from X to
T, it is not difficult to verify that S(µ) is a well-defined additive homomorphism
from the additive group [X, T] to R.

When X is a good space (like a manifold or a locally finite polyhedron), it is
well-known that [X, T] is canonically identified with the first cohomology group
H1(X; Z). In that case S(µ) is in Hom(H1(X; Z), R). Since the first cohomology
group with real coefficients H1(X; R) is H1(X; Z) ⊗ R, we can view S(µ) as an
element of the dual H1(X; R)∗ of the R-vector space H1(X; R). When H1(X; R)

is finite-dimensional (for instance, when X is a finite polyhedron or a compact
manifold) then H1(X; R)∗ is in fact equal to the first homology group H1(X; R),
and therefore S(µ) defines an element of H1(X; R), i.e. a 1-cycle. This 1-cycle
S(µ) is called the Schwartzman asymptotic cycle of µ.

Let us now consider the case of a C1 flow φt on a manifold N . We call X the
continuous vector field on N generating φt , i.e.

∀x ∈ N , X (x) = dφt (x)

dt

∣∣∣
t=0

.

By the flow property φt+t ′ = φt ◦ φt ′ , this implies

∀x ∈ N , ∀t ∈ R,
dφt (x)

dt
= X (φt (x)).
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In the case of a manifold N , the identification of [N , T] with H1(N ; Z) is best de-
scribed with the de Rham cohomology. We consider the natural map IN : [N , T] →
H1(N ; R) defined by

IN ([ f ]) = [ f ∗θ ],
where [ f ] on the left-hand side denotes the homotopy class of the C∞ map f :
N → T, and [ f ∗θ ] on the right hand side is the cohomology class of the pullback
by f of the closed 1-form on T whose lift to R is dt . Note that any homotopy
class in [N , T] contains smooth maps because C∞ maps are dense in C0 maps (for
the Whitney topology). Therefore the map IN is indeed defined on the whole of
[N , T]. As it is well-known, this map IN induces an isomorphism of [N , T] on
H1(N ; Z) ⊂ H1(N ; R) = H1(N ; Z) ⊗ R.

Given a C∞ map f : N → T, the C1 flow φt on N , and x ∈ N , we compute
V( f, φt )(x). If γx : [0, 1] → N is the path t 	→ φt (x), since γx is C1, we get

V( f, φt )(x) =
∫

f ◦γx

θ =
∫

γx

f ∗θ.

Moreover, since γx (t) = φt (x), we have γ̇x (t) = X (φt (x)). It follows that

V( f, φt )(x) =
∫ 1

0
( f ∗θ)φt (x)(X [φt (x)]) dt =

∫ 1

0
(iX f ∗θ)(φt (x)) dt,

where iX denotes the interior product of a differential form with X . Therefore if µ

is an invariant measure for φt , which we shall assume to have a compact support,
we obtain

S(µ) =
∫

N

∫ 1

0
(iX f ∗θ)(φt (x)) dtdµ(x) =

∫ 1

0

∫
N
(iX f ∗θ)(φt (x)) dµ(x)dt

=
∫ 1

0

∫
N
(iX f ∗θ)(x) dµ(x)dt =

∫
N
(iX f ∗θ) dµ.

This shows that as an element of H1(M; R)∗, the Schwarztman asymptotic cycle
S(µ) is given by

S(µ)([η]) =
∫

N
iXη dµ.

We would like now to relate the Schwartzman asymptotic cycles to the rotation
vectors ρ(µ) defined in section 2 for Euler-Lagrange flows. In this case N = T M
and φt is an Euler-Lagrange flow φL

t of some Lagrangian L . If we call X L the
vector field generating φL

t , since this flow is obtained from a second order ODE on
M , we get

∀x ∈ M, ∀v ∈ Tx M, T π(X L(x, v)) = v,

where T π : T (T M) → T M denotes the canonical projection. Since this pro-
jection π is a homotopy equivalence, to compute S(µ) we only need to consider
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forms of the type π∗η where η is a closed 1-form on the base M . In this case
(iX L π∗η)(x, v) = ηx (T π(X L(x, v)) = ηx (v). Therefore, for any probability mea-
sure µ on T M with compact support and invariant under φL

t , we obtain

S(µ)[π∗η] =
∫

T M
ηx (v) dµ(x, v) =

∫
T M

〈η, v〉 dµ.

This is precisely ρ(µ) as it was defined above in section 2. Note that the only
property we have used is the fact that φt is the flow of a second order ODE on the
base M .

Examples

– We can now easily compute Schwartzman asymptotic cycles for linear flows on
Tn . Such a flow is determined by a constant vector field α ∈ Rn on Tn (here
we use the canonical trivialization of the tangent bundle of Tn), the associated
flow Rα

t : Tn → Tn is defined by Rα
t (x) = x + [tα], where [tα] is the class in

Tn = Rn/Zn of the vector tα ∈ Rn . If ω is a 1-form with constant coefficients,
i.e. ω = ∑n

i=1 ai dxi , with ai ∈ R, the interior product iαω is the constant
function

∑n
i=1 αi ai . Therefore, it follows that S(µ) = α ∈ Rn ≡ H1(T

n; R).
– Suppose that x is a periodic point of φt or period T > 0. One can define an

invariant probability measure µx,t0 for φt by∫
X

g(x) dµx,t0 = 1

t0

∫ t0

0
g((φt (x)) dt,

where g : X → R is a measurable function. We let the reader verify that
S(µx,t0) is equal in H1(X; R) to the homology class [γx,t0]/t0, where γx,t0 is
the loop t 	→ φt (x), t ∈ [0, t0].

– When x is a fixed point of φt , then the Dirac mass δx at x is invariant under φt ,
and in that case S(δx ) = 0.

Let us now study the behavior of Schwartzman asymptotic cycles under semi-
conjugacy.

Proposition A.1. Suppose φi
t : Xi → Xi , i = 1, 2 are two continuous flows.

Suppose also that ψ : X1 → X2 is a continuous semi-conjugation between the
flows, i.e. ψ ◦ φ1

t = φ2
t ◦ ψ , for every t ∈ R. Given a probability measure µ

with compact support on X1 invariant under φ1
t , then, for every continuous map

f : X2 → T, we have

S(ψ∗µ, φ2
t )([ f ]) = S(µ, φ1

t )([ f ◦ ψ]),
where ψ∗µ is the image of µ under ψ . In particular, if we are in the situation where
Hom([Xi , T]) ≡ H1(Xi ; R), i = 1, 2, we obtain

S(ψ∗µ, φ2
t ) = H1(ψ)(S(µ, φ1

t )).
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Proof. Notice that f ψφ1
t (x) − f ψ(x) = f φ2

t (ψ(x)) − f (ψ(x)). Therefore by
uniqueness of liftings V( f ψ, φ1

t )(x) = V( f, φ2
t )(ψ(x)). An integration with re-

spect to µ finishes the proof.

To simplify things, in the remainder of this appendix, we shall assume that X
is a compact space, for which we have [X, T] = H1(X; Z), and H1(X; Z) is finitely
generated. In that case, the dual space H1(X; R)∗ is H1(X; R), and for every flow
φt on X and every probability measure µ on X invariant under φt , the Schwartzman
asymptotic cycle is an element of the finite dimensional-vector space H1(X; R).

Definition A.2. For a flow φt on X , we denote by S(φt ) the set of all Schwartzman
asymptotic cycles S(µ), where µ is an arbitrary probability measure on X invariant
under φt .

Since X is compact, note that for the weak topology the set M(X) of proba-
bility Borel measures on X is compact and convex. It is even metrizable, since we
are assuming X metrizable. Furthermore the subset M(X, φt ) ⊆ M(X) of proba-
bility measures invariant under φt is, as it is well-known, compact convex and non
empty. Therefore S(φt ) is a compact convex non-empty subset of H1(X; R). For
the case of a linear flow Rα on Tn , we have shown above that S(Rα

t ) = {α} ⊂
Rn ≡ H1(T

n; R).
The following corollary is an easy consequence of Proposition A.1.

Corollary A.3. For i = 1, 2, suppose that φi
t is a continous flow on the compact

space Xi , which satisfies Hom([Xi , T], R) ≡ H1(Xi ; R). If ψ : X1 → X2 is a
topological conjugacy between φ1

t and φ2
t (i.e. the map ψ is a homeomorphism that

satisfies ψφ1
t = φ2

t ψ , for all t ∈ R), then we have

S(φ2
t ) = H1(ψ)[S(φ1

t )].
We denote by F(X) the set of continuous flows on X . We can embed F(X) in
C0(X × [0, 1], X) by the map φt 	→ Fφt ∈ C0(X × [0, 1], X), where

Fφt (x, t) = φt (x).

The topology on C0(X × [0, 1], X) is the compact open (or uniform) topology, and
we endow F(X) with the topology inherited from the embedding given above.

Lemma A.4. The map φt 	→ S(φt ) is upper semi-continuous on F(X). This means
that for each open subset U ⊆ H1(X; R), the set {φt ∈ F(X) | S(φt ) ⊂ U } is open
in F(X).

Proof. Since the topology on C0(X × [0, 1], X) is metrizable, if this were not true
we could find an open set U ⊂ H1(X; R) and a sequence φn

t of continuous flows on
X converging uniformly to a flow φt , with S(φt ) ⊂ U , and S(φn

t ) is not contained
in U . This means that for each n we can find a probability measure µn on X invari-
ant under φn

t and such that its Schwartzman asymptotic cycle S(µn, φ
n
t ) for φt

n is
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not in the open set U . Since M(X) is compact for the weak topology, extracting a
subsequence if necessary, we can assume that µn → µ. It is not difficult to show
that µ is invariant under the flow φt . We now show that S(µn, φ

n
t ) → S(µ, φt ).

This will yield a contradiction and finish the proof because S(µn, φ
n
t ) is in the

closed set H1(X; R) \ U , for every n, and S(µ, φt ) ∈ U .
To show that the linear maps S(µn, φ

n
t ) ∈ H1(X; R) = H1(X; R)∗ converge to

the linear map S(µ, φt ), it suffices to show that S(µn, φ
n
t )([ f ]) → S(µ, φt )([ f ]),

for every [ f ] ∈ [X, T] = H1(X; Z) ⊂ H1(X; R) = H1(X; Z) ⊗ R. Fix now a
continuous map f : X → T. Denote by Fn, F : X × [0, 1] → T the maps defined
by

Fn(x, t) = f (φn
t (x)) − f (x) and F(x, t) = f (φt (x)) − f (x).

By the uniform continuity of f on the compact metric space X , the sequence Fn

converges uniformly to F . Since Fn|X ×{0} ≡ 0, if we call F̃n : X ×[0, 1] → R the
lift of Fn such that F̃n|X ×{0} ≡ 0, then the sequence F̃n also converges uniformly
to F̃ , that is the lift of F such that F̃ |X × {0} ≡ 0. Since the µn are probability
measures, we have∣∣∣∣

∫
X

F̃n(x, 1)µn(x) −
∫

X
F̃(x, 1)µn(x)

∣∣∣∣ ≤ ‖F̃n − F̃‖∞ −→ 0.

Since µn → µ weakly, we also have∣∣∣∣
∫

X
F̃(x, 1)µn(x) −

∫
X

F̃(x, 1)µ(x)

∣∣∣∣ −→ 0.

Therefore

S(µn, φ
n
t )([ f ]) =

∫
X

F̃n(x, 1)µn(x) → S(µ, φt )([ f ]) =
∫

X
F̃(x, 1)µ0(x).

Definition A.5 (Schwartzman unique ergodicity). We say that a flow φt is
Schwartzman uniquely ergodic if S(φt ) is reduced to one point.

Theorem A.6. The set S(N ) of Schwartzman uniquely ergodic flows is a Gδ-set in
F(X).

Proof. . Fix some norm on H1(X; R). We shall measure diameters of subsets of
H1(X; R). with respect to that norm. Fix ε > 0. Call Uε the set of flows φt such
that the diameter of S(φt ) ⊂ H1(X; R) is < ε. If φ0

t ∈ Uε , we can find U an open
subset of H1(X; R) of diameter < ε and containing S(φ0

t ). By the lemma above
the set {φt ∈ F(X) | S(φt ) ⊂ U } is open in F(X) contains φ0

t and is contained in
Uε . The set of Schwartzman uniquely ergodic flows is ∩n≥1U1/n .

Example A.7. By the computation done above, linear flows on the torus Tn

are Schwartzman uniquely ergodic. Of course, all uniquely ergodic flows (i.e.
flows having exactly one invariant probability measure) are also Schwartzman
uniquely ergodic. Moreover, by Corollary A.3, any flow topologically conjugate
to a Schwartzman uniquely ergodic flow is itself Schwartzman uniquely ergodic.
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Moreover, other examples can be obtained by the following result:

Proposition A.8. Let ϕt : X −→ X be a continuous flow on the compact path con-
nected space X. Suppose that there exist ti ↑ +∞ such that ϕti −→ϕ in C(X, X)

(with the C0-topology). Then, ϕt is Schwartzman uniquely ergodic. In particular,
periodic flows and (uniformly) recurrent flows are Schwartzman uniquely ergodic
(in both cases ϕ = Id).

Proof. Fix a continuous map f : X → T. Consider the function F : X ×
[0, +∞) → T, (x, t) 	→ f (φt (x)) − f (x). We have F(x, 0) = 0, for every
x ∈ X . Call F̄ : X × [0, +∞) → R the (unique) continuous lift of F such that
F̄(x, 0) = 0, for every x ∈ X . The definition of the Schwartzman asymptotic cycle
gives

S(µ)([ f ]) =
∫

X
F̄(x, 1) dµ(x),

for every probability measure invariant under φt . We claim that we have

∀t, t ′ ≥ 0, ∀x ∈ X, F̄(x, t + t ′) = F̄(φt (x), t ′) + F(x, t).

In fact, if we fix t and we consider each side of the equality above as a (continuous)
function of (x, t ′) with values in R, we see that the two sides are equal for t ′ = 0,
and that they both lift the function

(x, t ′) 	→ f (φt+t ′(x)) − f (x) = f (φ′
t (φt (x)) − f (φt (x)) + f (φt (x)) − f (x)

with values in T. By induction, it follows easily that

∀k ∈ N, F̄(x, k) =
k−1∑
j=0

F̄(φ j (x), 1).

Therefore, if t ≥ 0 and [t] is its integer part, we also obtain

F̄(x, t) = F̄(φ[t](x), t − [t]) +
[t]−1∑
j=0

F̄(φ j (x), 1). (∗)

It follows that

∀t ≥ 0, ∀x ∈ X, |F̄(x, t)| ≤ ([t] + 1)‖F̄ |X × [0, 1]‖∞. (∗∗)

By compactness ‖F̄ |X ×[0, 1]‖∞ is finite. If we integrate equality (∗) with respect
to a probability measure µ on X invariant under the flow φt , we obtain∫

X
F̄(x, t) dµ(x) =

∫
X

F̄(x, t − [t]) dµ(x) + [t]
∫

X
F̄(x, 1) dµ(x).



678 ALBERT FATHI, ALESSANDRO GIULIANI AND ALFONSO SORRENTINO

Therefore we have

S(µ)([ f ]) = lim
t→+∞

∫
X

F̄(x, t)

t
dµ(x). (∗∗∗)

If γ : [a, b] → T is a continuous path, with a ≤ b, denote V(γ |[a, b]) := γ̄ (b) −
γ̄ (a), where γ̄ : [a, b] → R is a continuous lift of γ (this quantity does not depend
on the chosen lift).

Suppose now that we set γx (s) = φs(x); we have F̄(x, t) = V( f γx |[0, t]).
Fix now some point x0 ∈ X , and consider ti → +∞ such that φti → φ in the C0

topology. Since F̄(x0, t)/t is bounded in absolute value by 2‖F̄ |X × [0, 1]‖∞, for
t ≥ 1, extracting a subsequence if necessary, we can assume that F̄(x0, ti )/ti →
c ∈ R. If x ∈ X , we can find a continuous path γ : [0, 1] → M with γ (0) = x0
and γ (1) = x . The map � : [0, 1] × [0, t] → T, (s, s′) 	→ φs′(γ (s)) is continuous,
therefore we can lift it to a continuous function with values in R, and this implies
the equality

V(�|[0, 1] × {0}) +V(�|{1} × [0, t]) −V(�|[0, 1] × {1}) −V(�|{0} × [0, t]) = 0.

This can be rewritten as

V( f γx |[0, t]) − V( f γx0 |[0, t]) = V( f φtγ ) − V( f γ ),

which translates to

F̄(x, t) − F̄(x0, t) = V( f φtγ ) − V( f γ ).

Since φti → φ uniformly, by continuity of V , the left hand-side remains bounded
as t = ti → +∞. It follows that (F̄(x, ti ) − F̄(x0, ti ))/ti → 0. Hence for every
x ∈ X , we also have that F̄(x, ti )/ti tends to the same limit c as F̄(x0, ti )/ti .
Since F̄(x, t)/t is uniformly bounded for t ≥ 1, by (∗∗), by Lebesgue’s dominated
convergence we obtain from (∗∗∗) that S(µ)([ f ]) = c, where c is independent of
the invariant measure µ. This is of course true for any f : X → T. Therefore S(µ)

does not depend on the invariant measure µ.

An interesting property of Schwartzman uniquely ergodic flows (which also shows
that they have some kind of rigidity) is the following proposition, that follows im-
mediately from the definition of Schwartzman unique ergodicity and what we re-
marked, in the examples above, about the asymptotic cycles of fixed and periodic
points (see also [25]).

Proposition A.9. Suppose that φt is a Schwartzman uniquely ergodic flow on X. If
there exists either a fixed point or a closed orbit homologous to zero, then all closed
orbits are homologous to zero. In the remaining case, if C1 and C2 are closed orbits
with periods τ1 and τ2, then C1

τ1
and C2

τ2
are homologous. Since [C1] and [C2] are

in H1(X; Z), it follows in this case that the ratio of the periods of any two closed
orbits must be rational. Consequently, for any continuous family of periodic orbits
of ϕt , all orbits have the same period.
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Definition A.10 (Schwartzman strict ergodicity). We say that a flow φt is
Schwartzman strictly ergodic if it is Schwartzman uniquely ergodic and it has an
invariant measure µ of full support (i.e. µ(U ) > 0 for every non-empty open subset
U of X ).

Example A.11. Linear flows on the torus Tn are Schwartzman strictly ergodic
(they preserve Lebesgue measure). Of course, all strictly ergodic flows (i.e. flows
having exactly one invariant probability measure, and the support of this measure
is full) are also Schwartzman strictly ergodic. A minimal flow which is Schwartz-
man uniquely ergodic is in fact Schwartzman strictly ergodic (because all invari-
ant measures have full support). Moreover, any flow topologically conjugate to a
Schwartzman strictly ergodic flow is also Schwartzman strictly ergodic.
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compact manifolds, Ann. Sci. École Norm. Sup. (3) 40 (2007), 445–452.

[4] G. D. BIRKHOFF, Surface transformations and their dynamical applications, Acta Math.
(1) 43 (1920); Sur quelques courbes fermées remarquables, Bull. Soc. Math. France (1) 60
(1932); reprinted in Collected Mathematical Papers, Vol. II, 111–418, respectively (New
York: AMS 1950).

[5] H. BROER and F. TAKENS, Unicity of KAM tori, Ergodic Theory Dynam. Systems (3) 27
(2007), 713–724.

[6] M. J. DIAS CARNEIRO, On minimizing measures of the action of autonomous Lagrangians,
Nonlinearity (6) 8 (1995), 1077–1085.

[7] O. COSTIN, G. GALLAVOTTI, G. GENTILE and A. GIULIANI, Borel summability and
Lindstedt series, Comm. Math. Phys. (1) 269 (2007), 175–193.

[8] G. CONTRERAS and R. ITURRIAGA, Global minimizers of autonomous Lagrangians. In:
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