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Abstract. This article is concerned with the study of Mather’s β-function

associated to Birkhoff billiards. This function corresponds to the minimal av-
erage action of orbits with a prescribed rotation number and, from a different

perspective, it can be related to the maximal perimeter of periodic orbits with

a given rotation number, the so-called Marked length spectrum. After having
recalled its main properties and its relevance to the study of the billiard dy-

namics, we stress its connections to some intriguing open questions: Birkhoff

conjecture and the isospectral rigidity of convex billiards. Both these prob-
lems, in fact, can be conveniently translated into questions on this function.

This motivates our investigation aiming at understanding its main features and
properties. In particular, we provide an explicit representation of the coeffi-

cients of its (formal) Taylor expansion at zero, only in terms of the curvature

of the boundary. In the case of integrable billiards, this result provides a rep-
resentation formula for the β-function near 0. Moreover, we apply and check

these results in the case of circular and elliptic billiards.

1. Introduction. In this note we would like to provide explicit computations for
Mather’s β-function (or minimal average action) in the case of Birkhoff billiards. In
particular, we aim at describing an explicit representation of the coefficients of its
(formal) Taylor expansion, in terms of the curvature of the boundary. This function
– which is related, at least in the case of rational rotation numbers, to the maximal
length of periodic orbits with a given rotation number (the so-called marked lenght
spetrum) – plays a crucial rôle in the comprehension of different rigidity phenomena
that appear in the study of convex billiards; moreover, many intriguing unanswered
questions and conjectures can be easily translated into questions on this function.
Hence, we believe that understanding its main features and properties – besides
being interesting per se – is an essention step in order to tackle and unravel these
compelling open questions.
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A Birkhoff billiard 1 is a dynamical model describing the motion of a mass point
inside a (strictly) convex domain Ω ⊂ R2 with smooth boundary. The massless bil-
liard ball moves with unit velocity and without friction following a rectilinear path;
when it hits the boundary it reflects elastically according to the standard reflection
law: the angle of reflection is equal to the angle of incidence. Such trajectories are
sometimes called broken geodesics.

Let us recall some properties of the billiard map. We refer to [19, 22] for a more
comprehensive introduction to the study of billiards.

Let Ω be a strictly convex domain in R2 with Cr boundary ∂Ω, with r ≥ 3. The
phase space M of the billiard map consists of unit vectors (x, v) whose foot points
x are on ∂Ω and which have inward directions. The billiard ball map f : M −→M
takes (x, v) to (x′, v′), where x′ represents the point where the trajectory starting
at x with velocity v hits the boundary ∂Ω again, and v′ is the reflected velocity,
according to the standard reflection law: angle of incidence is equal to the angle of
reflection (figure 1).

Remark 1. Observe that if Ω is not convex, then the billiard map is not continuous.
Moreover, as pointed out by Halpern [7], if the boundary is not at least C3, then
the flow might not be complete.

Let us introduce coordinates on M . We suppose that ∂Ω is parametrized by
arc-length s and let γ : [0, l] −→ R2 denote such a parametrization, where l = l(∂Ω)
denotes the length of ∂Ω. Let ϕ be the angle between v and the positive tangent
to ∂Ω at x. Hence, M can be identified with the annulus A = [0, l]× (0, π) and the
billiard map f can be described as

f : [0, l]× (0, π) −→ [0, l]× (0, π)

(s, ϕ) 7−→ (s′, ϕ′).

In particular f can be extended to Ā = [0, l]× [0, π] by fixing f(s, 0) = f(s, π) =
Id, for all s.

Let us denote by
`(s, s′) := ‖γ(s)− γ(s′)‖

the Euclidean distance between two points on ∂Ω. It is easy to prove that
∂`

∂s
(s, s′) = − cosϕ

∂`

∂s′
(s, s′) = cosϕ′ .

(1)

1 This conceptually simple model, yet dynamically very rich, has been first introduced by G.

D. Birkhoff [4] as a mathematical playground to prove, with as little technicality as possible, some

dynamical applications of Poincare’s last geometric theorem and its generalisations:

“[...]This example is very illuminating for the following reason: Any dynamical
system with two degrees of freedom is isomorphic with the motion of a particle on

a smooth surface rotating uniformly about a fixed axis and carrying a conservative

field of force with it (see [3]). In particular if the surface is not rotating and if the
field of force is lacking, the paths of the particles will be geodesics. If the surface is
conceived of as convex to begin with and then gradually to be flattened to the form

of a plane convex curve C, the ‘billiard ball’ problems results. But in this problem
the formal side, usually so formidable in dynamics, almost completely disappears,

and only the interesting qualitative questions need to be considered.[...] ”
(G. D. Birkhoff, [4, pp. 155-156])
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Figure 1.

Remark 2. If we lift everything to the universal cover and introduce new coordi-
nates (x, y) = (s,− cosϕ) ∈ R× (−1, 1), then the billiard map is a twist map with
` as generating function and it preserves the area form dx ∧ dy. See [19, 22].

Despite the apparently simple (local) dynamics, the qualitative dynamical prop-
erties of billiard maps are extremely non-local. This global influence on the dy-
namics translates into several intriguing rigidity phenomena, which are at the basis
of several unanswered questions and conjectures. Amongst many, two noteworthy
ones regard the rigidity of the length spectrum (see subsection 1.1) and the clas-
sification of integrable billiards, also known as Birkhoff conjecture (see subsection
1.2). Both questions are deeply tangled to properties of Mather’s β-function (see
definition 1.2) and can be translated into questions on its rigidity and regularity, as
we shall explain in the following (see subsection 1.3).

1.1 - Periodic orbits and Marked length spectrum.
The study of periodic orbits and their properties have been amongst the first

dynamical features of billiards that have been investigated. One of the first results
in the theory of billiards, for example, can be considered Birkhoff’s application of
Poincare’s last geometric theorem to show the existence of infinitely many distinct
periodic orbits [4]. Since then, new phenomena have been pointed out and many
interesting questions have been raised.

How do we distinguish distinct periodic orbits? One could try to classify them
in terms of their period, i.e., the minimal number of times that the ball reflects
before going back to the initial position with the initial direction. However, while
in some cases this quantity allows one to distinguish different periodic orbits, in
many cases it is not sufficient anymore: periodic orbits with the same periods may
wind a different number of times before closing; this will clearly translate into a
different topological shape.

A better invariant that one should consider is the so-called rotation number.
The rotation number of a periodic billiard trajectory (respectively, a closed broken
geodesic) is a rational number

p

q
=

winding number

number of reflections
∈
(
0,

1

2

]
,
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where the winding number p > 1 is defined as follows. Fix the positive orientation
of ∂Ω and pick any reflection point of the closed geodesic on ∂Ω; then follow the
trajectory and count how many times it goes around ∂Ω in the positive direction
until it comes back to the starting point. Notice that inverting the direction of
motion for every periodic billiard trajectory of rotation number p/q ∈ (0, 1/2], we
obtain a trajectory with rotation number (q − p)/q ∈ [1/2, 1).

In [4], Birkhoff proved that for every p/q ∈ (0, 1/2] in lowest terms, there are
at least two closed orbits of rotation number p/q: one maximizing the total length
and the other obtained by min-max methods (see also [19, Theorem 1.2.4]). This
result is clearly optimal: in the case of a billiard in an ellipse, for example, there
are only two periodic orbits of period 2 (also called diameters), which correspond
to the two semi-axis of the ellipse (see for example subsection 1.2 or Section 3.2).
However, it is easy to find cases in which there are more than two periodic orbits
for any given rotation number: think, for example, of a billiard in a disk where, due
to the existence of a 1-dimensional group of symmetries (rotations), each periodic
orbit generates a 1-dimensional family of similar ones; for example, all diameters
are periodic orbits with period 2 (see subsection 1.2 and Section 3.1).

This raises this natural question:
What information on the geometry of the billiard domain do closed orbits carry?
Does the knowledge of the lengths of periodic orbits allow one to reconstruct the
billiard domain?

One could ‘organize’ this set of information in a more functional way, for instance
by associating to each length the corresponding rotation number or even refining it
by considering only orbits with maximal length amongst those with a given rotation
number. This map is called the (maximal) marked length spectrum of Ω.

Definition 1.1 (Marked Length Spectrum). Given Ω a strictly convex planar
domain with smooth boundary, we define its Marked length spectrum MLΩ : Q ∩(
0, 1

2

]
−→ R+ as:

MLΩ(p/q) = max
{

lengths of periodic orbits with rotation number p/q
}
.

Question I (Guillemin–Melrose [6]). Let Ω1 and Ω2 be two strictly convex
planar domains with smooth boundaries and assume that they are isospectral, i.e.,
MLΩ1 ≡MLΩ2 . Is it true that Ω1 and Ω2 are isometric?

Remark 3. The above question could be reformulated – and it remains still mean-
ingful and interesting – by asking that they two domains are ‘only’ isospectral near
the boundary, i.e., MLΩ1

(p/q) = MLΩ2
(p/q) for all p/q ∈ Q ∩ [0, ε), for some

0 < ε ≤ 1/2.

See subsection 1.3 for a reformulation of this question in terms of Mather’s β
function (Questions I bis and ter).

1.2 - Integrable billiards and Birkhoff conjecture.
The easiest example of billiard is given by a billiard in a disc D (for example

of radius R). It is easy to check in this case that the angle of reflection remains
constant at each reflection (see also [22, Chapter 2] and Section 3.1). If we denote
by s the arc-length parameter (i.e., s ∈ R/2πRZ) and by θ ∈ (0, π/2] the angle of
reflection, then the billiard map has a very simple form:

f(s, θ) = (s+ 2Rθ, θ).
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In particular, θ stays constant along the orbit and it represents an integral of motion
for the map. Moreover, this billiard enjoys the peculiar property of having the phase
space – which is topologically a cylinder – completely foliated by homotopically
non-trivial invariant curves Cθ0 = {θ ≡ θ0}. These curves correspond to concentric
circles of radii ρ0 = R cos θ0 and are examples of what are called caustics, i.e.,
(smooth and convex) curves with the property that if a trajectory is tangent to one
of them, then it will remain tangent after each reflection (see figure 2).

Figure 2. Billiard in a disc

A billiard in a disc is an example of an integrable billiard. There are different ways
to define global/local integrability for billiards (the equivalence of these notions is
an interesting problem itself):

- either through the existence of an integral of motion, globally or locally near
the boundary (in the circular case an integral of motion is given by I(s, θ) = θ),

- or through the existence of a (smooth) foliation of the whole phase space (or
locally in a neighbourhood of the boundary {θ = 0}), consisting of invariant
curves of the billiard map; for example, in the circular case these are given by
Cθ. This property translates (under suitable assumptions) into the existence
of a (smooth) family of caustics, globally or locally near the boundary (in the
circular case, the concentric circles of radii R cos θ).

In [2], Misha Bialy proved the following beautiful result concerning global inte-
grability (see also [24]):

Theorem (Bialy). If the phase space of the billiard ball map is globally foliated
by continuous invariant curves which are not null-homotopic, then it is a circular
billiard.

However, while circular billiards are the only examples of global integrable bil-
liards, local integrability is still an intriguing open question. One could consider a
billiard in an ellipse: this is in fact (locally) integrable (see Section 3.2). Yet, the
dynamical picture is very distinct from the circular case: as it is showed in figure
3, each trajectory which does not pass through a focal point, is always tangent to
precisely one confocal conic section, either a confocal ellipse or the two branches of
a confocal hyperbola (see for example [22, Chapter 4]). Thus, the confocal ellipses
inside an elliptical billiards are convex caustics, but they do not foliate the whole
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domain: the segment between the two foci is left out (describing the dynamics
explicitly is much more complicated: see for example [23] and Section 3.2).

Figure 3. Billiard in an ellipse

Question II (Birkhoff). Are there other examples of (locally) integrable billiards?

A negative answer to this question would solve what is generally known as
Birkhoff conjecture: amongst all convex billiards, the only integrable ones are the
ones in ellipses (a circle is a distinct special case).

Despite its long history and the amount of attention that this conjecture has cap-
tured, it remains essentially open. As far as our understanding of integrable billiards
is concerned, the two most important related results are the above–mentioned the-
orem by Bialy [2] (see also [24]), a result by Delshams and Ramı́rez-Ros [5] in which
they study entire perturbations of elliptic billiards and prove that any nontrivial
symmetric perturbation of the elliptic billiard is not integrable, and a theorem by
Mather [13] which proves the non-existence of caustics (hence, the non-integrability)
if the curvature of the boundary vanishes at one point. This latter justifies the re-
striction of our attention to strictly convex domains.

We shall see in the next subsection how this conjecture/question can be rephrased
as a regularity question for Mather’s β function (see Question II bis).

1.3 - Mather’s minimal average action (or β-function) and billiards.
At the beginning of the eighties Serge Aubry and John Mather developed, in-

dependently, what nowadays is commonly called Aubry–Mather theory. This novel
approach to the study of the dynamics of twist diffeomorphisms of the annulus,
pointed out the existence of many action-minimizing orbits for any given rotation
number (for a more detailed introduction, see for example [15, 19, 20]).

More precisely, let f : R/Z × R −→ R/Z × R a monotone twist map, i.e., a

C1 diffeomorphism such that its lift to the universal cover f̃ satisfies the following
properties (we denote (x1, y1) = f̃(x0, y0)):

(i) f̃(x0 + 1, y0) = f̃(x0, y0) + (1, 0),
(ii) ∂x1

∂y0
> 0 (monotone twist condition),

(iii) f̃ admits a (periodic) generating function h (i.e., it is an exact symplectic
map):

y1 dx1 − y0 dx0 = dh(x0, x1).
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In particular, it follows from (iii) that:{
y1 = ∂h

∂x1
(x0, x1)

y0 = − ∂h
∂x0

(x0, x1) .
(2)

Remark 4. The billiard map f introduced above is an example of monotone
twist map. In particular, its generating function (see (1)) is given by h(x0, x1) =
−`(x0, x1), where `(x0, x1) denotes the euclidean distance between the two points
on the boundary of the billiard domain corresponding to γ(x0) and γ(x1).

As it follows from (2), orbits (xi)i∈Z of the monotone twist diffeomorphism f
correspond to ‘critical points’ of the action functional

{xi}i∈Z 7−→
∑
i∈Z

h(xi, xi+1).

Aubry-Mather theory is concerned with the study of orbits that minimize this
action-functional amongst all configurations with a prescribed rotation number;
recall that the rotation number of an orbit {xi}i∈Z is given by πω = limi→±∞

xi
i ,

if this limit exists (in the billiard case, this definition leads to the same notion of
rotation number introduced in subsection 1.2). In this context, minimizing is meant
in the statistical mechanical sense, i.e., every finite segment of the orbit minimizes
the action functional with fixed end-points.

Theorem (Aubry & Mather). A monotone twist map possesses minimal orbits
for every rotation number. For rational numbers there are always at least two peri-
odic minimal orbits. Moreover, every minimal orbit lies on a Lipschitz graph over
the x-axis.

We can now introduce the minimal average action (or Mather’s β-function).

Definition 1.2. Let xω = {xi}i∈Z be any minimal orbit with rotation number
ω. Then, the value of the minimal average action at ω is given by (this value is
well-defined, since it does not depend on the chosen orbit):

β(ω) = lim
N→+∞

1

2N

N−1∑
i=−N

h(xi, xi+1). (3)

This function β : R −→ R enjoys many properties and encodes interesting infor-
mation on the dynamics. In particular:

i) β is strictly convex and, hence, continuous (see [15]);
ii) β is differentiable at all irrationals (see [14]);
iii) β is differentiable at a rational p/q if and only if there exists an invariant circle

consisting of periodic minimal orbits of rotation number p/q (see [14]).

In particular, being β a convex function, one can consider its convex conjugate:

α(c) = sup
ω∈R

[ω c− β(ω)] .

This function – which is generally called Mather’s α-function – also plays an
important rôle in the study minimal orbits and in Mather’s theory (particularly in
higher dimension, see for example [12, 21]). We refer interested readers to surveys
[15, 19, 20].

Observe that for each ω and c one has:

α(c) + β(ω) ≥ ωc,
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where equality is achieved if and only if c ∈ ∂β(ω) or, equivalently, if and only
if ω ∈ ∂α(c) (the symbol ∂ denotes in this case the set of ‘subderivatives’ of the
function, which is always non-empty and is a singleton if and only if the function
is differentiable).

In the billiard case, since the generating function of the billiard map is the
euclidean distance −`, the action of the orbit coincides – up to a sign – to the
length of the trajectory that the ball traces on the table Ω. In particular, these
two functions encode many dynamical properties of the billiard (see [19] for more
details):

• For each 0 < p/q ≤ 1/2, one has: β(p/q) = − 1
qMLΩ(p/q).

• β is differentiable at p/q if and only if there exists a caustic of rotation number
p/q (i.e., all tangent orbits are periodic of rotation number p/q).

• If Γω is a caustic with rotation number ω ∈ (0, 1/2], then β is differentiable at
ω and β′(ω) = −length(Γω) =: −|Γω| (see [19, Theorem 3.2.10]). In particular,
β is always differentiable at 0 and β′(0) = −|∂Ω|.

• If Γω is a caustic with rotation number ω ∈ (0, 1/2], then one can associate to
it another invariant, the so-called Lazutkin invariant Q(Γω). More precisely

Q(Γω) = |A− P |+ |B − P | − |
_

AB | (4)

where | · | denotes the euclidean length and |
_

AB | the length of the arc on the
caustic joining A to B (see figure 4).

This quantity is connected to the value of the α-function. In fact, one can
show that (see [19, Theorem 3.2.10]):

Q(Γω) = α(β′(ω)) = α(−|Γω|).

44 3 The minimal action and convex billiards

Let us return to the general case of a convex billiard Ω. Suppose for a
moment that the billiard possesses a convex caustic c. Then one can associate
the following two parameters to c :

1. its rotation number ω ∈ (0, 1/2), defined as the rotation number of the
circle homeomorphism on c induced by the geodesic flow via the points of
tangency;

2. its length l(c).

It turns out that there is a third parameter associated to a convex caustic,
the so–called Lazutkin parameter.

Definition 3.1.8. Let Ω be a convex billiard with a convex caustic c. Then
the Lazutkin parameter of c is defined as

Q(c) = |A − P | + |P − B| − |
!

AB|,

where P is any point on ∂Ω and A, B ∈ c are the points of tangency of c seen

from P ; see Fig. 3.6. Moreover, |
!

AB| denotes the length of the caustic’s part
from A to B, where we have oriented the caustic according to the geodesics
touching it.

PA

B

Fig. 3.6. The Lazutkin parameter of a convex caustic

In fact, if c is not a caustic but just any closed convex curve inside Ω, the
Lazutkin parameter can be defined in the same manner but may depend on
the point P ∈ ∂Ω. It is independent of P if, and only if, c is a caustic [55, 1].
Therefore, the Lazutkin parameter of a caustic is well defined.

What is the relation between (convex) caustics of a convex billiard Ω and
invariant circles for the corresponding billiard map φ? Certainly, to a convex
caustic in Ω corresponds an invariant circle for the billiard map, i.e. a simply
closed, homotopically nontrivial curve Γ in S1 × (−1, 1) with φ(Γ ) = Γ . The
converse, however, is not entirely true. By a theorem of Birkhoff (see [94]

Figure 4. Lazutkin invariant

We can now rephrase Questions I and II (see above) in terms of these new objects.

Question I (bis). Let Ω1 and Ω2 be two strictly convex planar domains with smooth
boundaries and assume that βΩ1

≡ βΩ2
. Is it true that Ω1 and Ω2 are isometric?

Actually, one could ask even more. In fact, the knowledge of the dynamics near
the boundary (for small angles) is sufficient to recover the curvature of the boundary
and hence the global dynamics. Therefore:
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Question I (ter). Let Ω1 and Ω2 be two strictly convex planar domains with
smooth boundaries and assume that βΩ1(ω) = βΩ2(ω) for all ω ∈ (0, ε) for some
small ε > 0. Is it true that Ω1 and Ω2 are isometric?

Question II (bis). Let Ω be a strictly convex planar domain with smooth boundary
and assume that βΩ is C∞([0, ε)) for some small ε > 0. Is it true that Ω is an
ellipse?

Observe that if βΩ is C∞([0, ε)), then the billiard map is locally integrable near
the boundary. In fact, β will be differentiable at all rationals in (0, ε) and therefore
there will be caustics corresponding to these rotation number. By semi-continuity
arguments, one obtains caustics corresponding to irrational rotation number and
hence a family of caustics that foliate a neighbourhood of the boundary. Observe
that if β is differentiable in the whole domain of definition (0, 1/2], then it must be
a circle by the aforementioned result by Bialy.

1.4 - Main results.
Motivated by the above discussion, we would like to study more in depth the

properties of Mather’s β and α functions and obtain explicit expressions for their
(formal) Taylor expansions at, respectively, ω = 0 and c = −`0 (where `0 denotes the
length of the boundary ∂Ω). The coefficients in these expressions will be obtained
only in terms of the curvature of the boundary (which, in fact, determines the
dynamics univocally).

Remark 5. As we shall explain more precisely in subsection 2.5, Mather’s β func-
tion of a smooth strictly convex billiard is C∞ à la Whitney on a Cantor set of
rotation numbers which accumulate on ω = 0; the rotation numbers in this Cantor
set correspond to smooth caustics which accumulate on the boundary of the billiard
domain. This property follows from a striking result by V. Lazutkin [9], who showed
that – up to a suitable change of coordinates – the corresponding billiard map is
a perturbation of an integrable system, and therefore (a version of) KAM theorem
can be applied.

The first order terms of these Taylor expansions have already appeared in [19,
Theorem 3.2.5], but due to the nature of the argument (a perturbative argument),
the analysis therein cannot be pushed further to higher orders. We shall follow here
a different approach (more geometric), inspired by Amiran’s work [1].

We shall prove the following.

Theorem 1.3. Let Ω be a strictly convex planar domain with smooth boundary.
Denote by k(s) > 0 the curvature of ∂Ω with arc-length parametrization s. Let
`0 := |∂Ω| be the length of the boundary and denote:

I1 :=

∫ `0

0

ds = `0

I3 :=

∫ `0

0

k2/3ds

I5 :=

∫ `0

0

(
9 k4/3 +

8 k̇2

k8/3

)
ds

I7 :=

∫ `0

0

(
9 k2 +

24 k̇2

k2
+

24 k̈2

k4
− 144 k̇2k̈

k5
+

176 k̇4

k6

)
ds
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I9 :=

∫ `0

0

[
281

44800
k8/3 +

281 k̇2

8400 k4/3
+

167 k̈2

4200 k10/3
− 167 k̇2 k̈

700 k13/3
+

...
k

2

42 k16/3

+
559 k̇4

2100 k16/3
− 473 k̈3

4725 k19/3
− 10

...
k k̇ k̈

21 k19/3
+

5
...
k k̇3

7 k22/3
+

13142 k̇2 k̈2

4725 k22/3

−10777 k̇4 k̈

1575 k25/3
+

521897 k̇6

127575 k28/3

]
ds.

Then:

• the formal Taylor expansion of β at ω = 0, β(ω) ∼ ∑∞k=0 βk
ωk

k! , has coeffi-
cients:

β2k = 0 for all k

β1 = −I1

β3 =
1

4
I3

3

β5 = − 1

144
I4

3 I5

β7 =
1

320
I5

3

(
14

81
I2

5 − I3I7

)
=
I5

3

(
14 I2

5 − 81 I3I7

)
25920

β9 = −7 I6
3

(
I2

3 I9 −
1

5600
I3 I5 I7 +

7

583200
I3

5

)
;

• the (formal) Taylor expansion of (c + `0)−3/2α(c) at c = −`0 (note that α
has in fact a square-root type singularity at the boundary), (c+ `0)−3/2α(c) ∼∑∞
k=0 αk

(c+`0)k

k! , has coefficients:

α0 =
4
√

2

3
I−3/2

3

α1 =

√
2

135
I−7/2

3 I5

α2 =
1

56700
√

2

(
72 I3I7 + 7 I5

2

I3
11/2

)
α3 =

1

826686000
√

2

(
261273600 I3

2I9 + 21384 I3I5I7 + 1001 I5
3

I3
15/2

)
.

Remark 6. (1) The techniques used in the proof of the Theorem 1.3, allow one to
obtain explicit expressions up to any arbitary high order (we restrict to order 11
just for the sake of this presentation).
(2) The coefficients βk are algebraically related to the set of spectral invariants
introduced by Marvizi and Melrose [11] for strictly convex planar regions in order
to investigate and give some partial answers to Kac’s question on the isospectral-
ity of planar domains. These computations provide explicit expressions for those
invariants as well (see the expressions for Ik’s).

An easy consequence of these formulae is the following corollary.
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Corollary 1. Let Ω be a strictly convex planar domain with smooth boundary.
Then:

β3 + π2β1 ≤ 0

and equality holds if and only if Ω is a disc.

Remark 7. In particular, the above corollary says that if the first two coefficients
β1 and β3 coincide to those of the β-function of a disc, then the domain must be
a disc. Therefore, the β-function univocally determines discs amongst all possi-
ble Birkhoff billiards. It would be interesting to find a similar characterization for
elliptic billiards. We can prove the following result: the β-function determines uni-
vocally a given ellipse in the family of all ellipses.

Proposition 1. If E1 and E2 are two ellipses such that βE1 ≡ βE2 , then E1 and E2
are the same ellipse. More generally: if the Taylor coefficients βE1,1 = βE2,1 and
βE1,3 = βE2,3, then the same conclusion remains true.

The rest of the article is organized as follows. In Section 2 we shall provide a
proof of Theorem 1.3, which will be divided into several steps (subsections 2.1 –
2.5), while in subsection 2.6 Corollary 1 will be deduced. Finally, in Section 3 we
shall discuss two families of examples: circular and elliptic billiards. In both case
we shall provide expressions for Mather’s β functions and check the above formulae.
In particular, in Section 3.2 we shall prove Proposition 1.

2. Proof of Theorem 1.3. In this section we prove Theorem 1.3. Let Ω be a
strictly convex region in the plane bounded by a C∞ curve ∂Ω, whose curvature is
denoted by k (it is a positive function since the domain is assumed to be strictly
convex) and whose radius of curvature by ρ. We aim at finding an expression of the
(formal) Taylor expansion of β at zero in terms of the curvature of the boundary.
In particular, if β is smooth near ω = 0 (and consequently the associated billiard
map is integrable, i.e., a neighbourhood of the boundary is smoothly foliated by
caustics), this expansion will provide an expression of β for sufficiently small rotation
numbers.

The proof will be splitted into several steps:

§2.1 - express the curvature of a caustic as a function of the curvature of the
boundary and the Lazutkin invariant;

§2.2 - express the length of a caustic as a function of the curvature of the boundary
and the Lazutkin invariant;

§2.3 - express the rotation number of a caustic as a function of the curvature of
the boundary and its length;

§2.4 - find – for rotation numbers for which a caustic exists – an expression of β
as a function of the curvature of the boundary;

§2.5 - discuss the existence of caustics near the boundary and find the (formal)
Taylor expansion of β at zero and other related quantities (for example, the α
function, the relation between the rotation number and the Lazutkin invariant,
etc ...). End of the proof.

Moreover, in §2.6 we shall prove Corollary 1.3.
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2.1. Curvature of caustics and Lazutkin invariant. In this subsection we
shall exploit some ideas already considered in [1] and push them further to obtain
information on the behaviour of higher order terms of the expansions (and correct
some computational mistakes therein).

Let Γ be a caustic and denote by v its curvature, by r its radius of curvature and
by L its Lazutkin parameter. The first step consists in relating the curvature of ∂Ω
to the curvature of Γ.

We identify smooth strictly invariant curves in R2 by their curvatures (see also
[11, Proposition 2.7]). To each closed curve we associate its curvature when the
curve is parametrized by tangent angle (i.e., the angle between tangent and x-axis),
and to each positive k ∈ C∞(R/2πZ,R) with∫ 2π

0

k−1(t) cos t dt =

∫ 2π

0

k−1(t) sin t dt = 0,

we associate the curve with coordinates

x(θ) =

∫ θ

0

k−1(t) cos t dt and y(θ) =

∫ θ

0

k−1(t) sin t dt.

Let us introduce the following parametrizations (we translate and rotate ∂Ω so
that it passes through (0, 0) and its positive tangent direction at this point is (1, 0)):

∂Ω : b(ϕ) =

(∫ ϕ

0

k−1(t) cos t dt,

∫ ϕ

0

k−1(t) sin t dt

)
∀ ϕ ∈ R/2πZ.

and

Γ : a(θ) =

(
x0

Γ +

∫ θ

0

v−1(t) cos t dt, y0
Γ +

∫ θ

0

v−1(t) sin t dt

)
∀ θ ∈ R/2πZ.

Since Γ is a caustic of ∂Ω, it has a well-defined Lazutkin invariant L = L(Γ),
defined as in (4); in particular, one could also say that ∂Ω is an L-evolute of Γ
(see [1, Definition 3.2] for a more precise definition). Hence, one could reconstruct
a parametrization of ∂Ω from a parametrization of Γ and L (see figure 5). More
precisely, for each ϕ ∈ R/2πZ there exist θ1, θ2 ∈ R/2πZ and t1, t2 > 0 such that:

b(ϕ) = a(θ1) + t1(cos θ1, sin θ1) = a(θ2)− t2(cos θ2, sin θ2) and (5)

L = t1 + t2 − (s(θ2)− s(θ1)),

where s(θ) :=
∫ θ

0
v−1(t) denotes the arc-length along a between a(0) and a(θ):

Since Γ is assumed to be an invariant curve for the billiard map on ∂Ω, then one
can deduce that ϕ = θ1+θ2

2 (see figure). Moreover:{
t1 cos θ1 + t2 cos θ2 =

∫ θ2
θ1
v−1(t) cos t dt

t1 sin θ1 + t2 sin θ2 =
∫ θ2
θ1
v−1(t) sin t dt.

(6)

It follows from above that:2

2It is sufficient to expand (t1 cos θ1 + t2 cos θ2)(sin θ1 − sin θ2) + (t1 sin θ1 + t2 sin θ2)(cos θ2 −
cos θ1) and simplify.
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Figure 5.

t1 + t2

=
1

sin(θ2 − θ1)

∫ θ2

θ1

v−1(t)[sin θ2 cos t− cos θ2 sin t+ cos θ1 sin t− sin θ1 cos t] dt

=
1

cos ∆

∫ ϕ+∆

ϕ−∆

cos(ϕ− t)v−1(t) dt,

where

∆ := θ2 − ϕ = ϕ− θ1 and therefore θ2 − θ1 = 2∆. (7)

In particular, this shows that (use the change of variable t = u+ ϕ):

L = t1 + t2 − (s(θ2) − s(θ1)) = t1 + t2 −
∫ θ2

θ1

v−1(t) dt (8)

=
1

cos ∆

∫ ϕ+∆

ϕ−∆

cos(ϕ− t)v−1(t) dt−
∫ θ2

θ1

v−1(t) dt

=
1

cos ∆

∫ ∆

−∆

cos(u) v−1(ϕ+ u) du−
∫ ∆

−∆

v−1(ϕ+ u) du ,

=
1

cos ∆

∫ ∆

0

cos(u)
(
v−1(ϕ+ u) + v−1(ϕ− u)

)
du

−
∫ ∆

0

(
v−1(ϕ+ u) + v−1(ϕ− u)

)
du.

Expanding in ∆ (and recalling that r = v−1), we obtain:

L =
2

3
r(ϕ) ∆3 +

1

15
[r′′(ϕ) + 4 r(ϕ)] ∆5 +

[
3 r(4)(ϕ) + 32 r′′(ϕ) + 136 r(ϕ)

1260

]
∆7

+

[
r(6)(ϕ) + 20 r(4)(ϕ) + 232 r′′(ϕ) + 992 r(ϕ)

22680

]
∆9 +O

(
∆11

)
. (9)
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We can now invert the above expression and obtain an expansion of ∆ in terms
of L (we write r instead of r(ϕ)):

∆ =

(
3

2

)1/3

r−1/3L1/3 +

[
−r′′ − 4r

20r2

]
L (10)

+

(
3

2

)2/3 [−15 r(4) r + 288 r r′′ + 56 r′′2 + 216 r2

8400 r11/3

]
L5/3

+

(
3

2

)1/3
1

100800 r16/3

[
−5 r(6) r2 + 260 r(4) r2 − 1976 r2 r′′ − 1224 r r′′2

−182 r′′3 + 90 r(4) r r′′ − 288 r3
]
L7/3

+ O
(
L3) .

The curvature of ∂Ω at a point b(ϕ) = (x(ϕ), y(ϕ)) is given by:

k(ϕ) =

((
dx

dϕ

)2

+

(
dy

dϕ

)2
)− 1

2

.

In particular, it follows from (5) and the definition of ∆ = ϕ− θ1 = θ2 − ϕ that:{
dx
dϕ = cos(ϕ−∆)

v(ϕ−∆) ·
d(ϕ−∆)
dϕ − t1 sin(ϕ−∆) · d(ϕ−∆)

dϕ + cos(ϕ−∆) · dt1dϕ
dy
dϕ = sin(ϕ−∆)

v(ϕ−∆) ·
d(ϕ−∆)
dϕ + t1 cos(ϕ−∆) · d(ϕ−∆)

dϕ + sin(ϕ−∆) · dt1dϕ .

Therefore,(
dx

dϕ

)2

+

(
dy

dϕ

)2

=

[
v−1(ϕ−∆)

(
1− d∆

dϕ

)
+
dt1
dϕ

]2

+ t21

(
1− d∆

dϕ

)2

. (11)

Let us express 3 this quantity in terms of L.
First of all, it follows from (6) that:

t1 = − 1

2 sin ∆

∫ ∆

−∆

sin(u) v−1(u+ ϕ) du+
1

2 cos ∆

∫ ∆

−∆

cos(u) v−1(u+ ϕ) du

= − 1

2 sin ∆

∫ ∆

0

sin(u)
[
v−1(u+ ϕ) − v−1(u− ϕ)

]
du

+
1

2 cos ∆

∫ ∆

0

cos(u)
[
v−1(u+ ϕ) + v−1(u− ϕ)

]
du

= r ∆ − 1

3
r′ ∆2 +

1

6

[
r′′ + 2r

]
∆3 +

1

90

[
−3r(3) − 2r′

]
∆4

+
1

120

[
r(4) + 4r′′ + 16r

]
∆5 +

[
−9r(5) − 12r(3) − 16r′

7560

]
∆6

+

[
r(6) + 6r(4) + 64r′′ + 272r

5040

]
∆7

+

−32r(3) − 48r′ − 5
(
r(7) + 2r(5)

)
226800

∆8 +O
(
∆9) . (12)

3Observe that the corresponding formula in [1, p.352] is not correct due to some computational
mistake.
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Recalling (10), we also obtain (we write r instead of r(ϕ)):

v
−1

(ϕ−∆) = r(ϕ−∆) = r −
(

3

2

)1/3
[
r′

r1/3

]
L

1/3
+

(
3

2

)2/3
[

r′′

2r2/3

]
L

2/3

+

[
r′
(
r′′ + 4r

)
− 5rr(3)

20 r2

]
L +

(
3

2

)1/3
[

5rr(4) − 4r′′
(
r′′ + 4r

)
80r7/3

]
L

4/3

+

(
3

2

)2/3
−56r′r′′2 − 3r2

(
72r′ + 35

(
r(5) − 8r(3)

))
+ 3r

(
70r(3)r′′ + r′

(
5r(4) − 96r′′

))
8400 r11/3

L5/3

+

 126r′′3 + 2r
(
344r′′ − 85r(4)

)
r′′ + r2

(
656r′′ + 35

(
r(6) − 16r(4)

))
11200r4

L2

+

(
3

2

)1/3
 182r′r′′3 + 9r3

(
32r′ − 5

(
r(7) − 28r(5) + 88r(3)

))
+ 18rr′′

(
r′
(
68r′′ − 5r(4)

)
− 35r(3)r′′

)
100800 r16/3

+
r2
(
r′
(
5r(6) − 260r(4) + 1976r′′

)
+ 45

(
7r(5)r′′ + r(3)

(
3r(4) − 80r′′

)))
100800 r16/3

L7/3

−
(

3

2

)2/3
 8624r′′4 + 528r

(
116r′′ − 25r(4)

)
r′′2 + 8r2

(
225r(4)

2
+ 13984r′′2 +

(
340r(6) − 8320r(4)

)
r′′
)

4032000 r17/3

+
9r3

(
−25r(8) + 1120r(6) − 7360r(4) + 3584r′′

)
4032000 r17/3

L8/3
+ O

(
L

3
)
. (13)

Moreover, it follows from (10), (12), and the fact that L is constant with respect
to ϕ (since Γ is a caustic) that

d∆

dϕ

=−
(

3

2

)1/3
[

r′

3 r4/3

]
L

1/3
+

[
−r(3) − 4r′

20r2
−
r′
(
−r′′ − 4r

)
10 r3

]
L (14)

+

(
3

2

)2/3
[
−15rr(5) + 288rr(3) + 432rr′ − 15r(4)r′ + 112r(3)r′′ + 288r′r′′

8400 r11/3

−
11r′

(
−15r(4)r + 288rr′′ + 56r′′2 + 216r2

)
25200 r14/3

L5/3

+

(
3

2

)1/3
[
−5r(7)r2 + 260r(5)r2 − 1976r(3)r2 − 864r2r′ − 10r(6)rr′ + 90r(5)rr′′ + 90r(3)r(4)r

100800 r16/3

+
520r(4)rr′ − 2448r(3)rr′′ − 546r(3)r′′2 − 3952rr′r′′ − 1224r′r′′2 + 90r(4)r′r′′

100800 r16/3

−
r′
(
−5r(6)r2 + 260r(4)r2 − 1976r2r′′ − 1224rr′′2 − 182r′′3 + 90r(4)rr′′ − 288r3

)
18900 r19/3

L7/3

+ O
(
L

3
)

and

dt1

dϕ

=

(
3

2

)−2/3
[
r′

r1/3

]
L

1/3
+

(
3

2

)2/3
[

2r′2 − 3rr′′

9 r5/3

]
L

2/3
+

[
rr(3) − r′r′′

5 r2

]
L (15)

+

(
3

2

)1/3
 9r2

(
2r′′ − r(4)

)
− 14r′2r′′ + 6r

(
r′′2 − 4r′2 + 3r(3)r′

)
180}r(f)10/3

L4/3

+

(
3

2

)2/3
 616r′r′′2 − 9r2

(
−15r(5) + 92r(3) + 24r′

)
+ 3r

(
5r′

(
92r′′ − 15r(4)

)
− 154r(3)r′′

)
12600 r11/3

L5/3
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+

 168r′2r′′2 − 3r3
(
5r(6) − 68r(4) + 32r′′

)
+ 6r

(
−7r′′3 + r′2

(
96r′′ − 5r(4)

)
− 42r(3)r′r′′

)
5600 r5

+
2r2

(
28r(3)

2 − 96r′′2 + 96r′2 + 33r(4)r′′ + 20
(
r(5) − 15r(3)

)
r′
)

5600 r5

L2

+

(
3

2

)1/3
−728r′r′′3 + 3r3

(
5r(7) − 125r(5) + 248r(3) + 48r′

)
+ 18rr′′

(
28r(3)r′′ + 5r′

(
5r(4) − 33r′′

))
37800 r16/3

+
−r2

(
7r′

(
5r(6) − 125r(4) + 248r′′

)
+ 27

(
5r(5)r′′ + r(3)

(
5r(4) − 66r′′

)))
37800 r16/3

L7/3
+

+

(
3

2

)2/3
−36652r′2r′′3 − 9r4

(
25r(8) − 1030r(6) + 5344r(4) + 48r′′

)
4536000 r20/3

+
924rr′′

(
7r′′3 + 3r′2

(
5r(4) − 68r′′

)
+ 63r(3)r′r′′

)
− 22r2

(
27r′′

(
28r(3)

2 − 68r′′2 + 19r(4)r′′
))

4536000 r20/3

+
−22r2

(
r′2

(
9232r′′ + 25

(
r(6) − 52r(4)

))
+ 135r′

(
3r(3)r(4) + 4

(
r(5) − 21r(3)

)
r′′
))

4536000 r20/3

+
6r3

(
270r(4)

2
+ 9232r′′2 + 192r′2 + 27r(3)

(
25r(5) − 284r(3)

)
+
(
430r(6) − 8968r(4)

)
r′′
)

4536000 r20/3

+
6r3

((
125r(7) − 5420r(5) + 30608r(3)

)
r′
)

4536000 r20/3

L8/3

+ O
(
L

3
)
.

Let us now substitute these estimates in (11) and consider its Taylor expansion:

ρ(ϕ) = k−1(ϕ) =

√[
r(ϕ− ∆)

(
1 − d∆

dϕ

)
+
dt1
dϕ

]2

+ t21

(
1 − d∆

dϕ

)2

= (16)

=r(ϕ) + C1[r(ϕ)] · L2/3 + C2[r(ϕ)] · L4/3 + C3[r(ϕ)] · L2 + C4[r(ϕ)] · L8/3 +O
(
L10/3

)
where C1, C2, C3, C4 : C∞(R/2πZ,R+) −→ C∞(R/2πZ,R) are operators given by:

C1[r(ϕ)] :=

(
3

2

)2/3
[

3r
(
r′′ + 3r

)
− 2r′2

18 r5/3

]

C2[r(ϕ)] :=

(
3

2

)1/3
 9r2

(
r(4) − 2r′′

)
+ 28r′2r′′ + 12r

(
−r′′2 + 3r′2 − 2r(3)r′

)
+ 81r3

720 r10/3


C3[r(ϕ)] :=−

168r′2r′′2 + r3
(
−5r(6) + 77r(4) + 73r′′

)
+ 6r

(
−7r′′3 + r′2

(
82r′′ − 5r(4)

)
− 28r(3)r′r′′

)
11200 r5

−
2r2

(
14r(3)

2 − 75r′′2 + 9r′2 + 19r(4)r′′ + 2
(
5r(5) − 82r(3)

)
r′
)

+ 9r4

11200 r5

C4[r(ϕ)] :=

(
3

2

)2/3
 146608 r′2r′′3 + 9r4

(
25r(8) − 1140r(6) + 4638r(4) + 12988r′′

)
36288000 r20/3

+
−3696 rr′′

(
7r′′3 + 3r′2

(
5r(4) − 61r′′

)
+ 42r(3)r′r′′

)
36288000 r20/3

+
88r2

(
18r′′

(
21r(3)

2 − 88r′′2 + 18r(4)r′′
))

36288000 r20/3

+
88r2

(
r′2

(
25r(6) − 1165r(4) + 5803r′′

)
+ 54r′

(
5r(3)r(4) +

(
5r(5) − 122r(3)

)
r′′
))

36288000 r20/3

−
24r3

(
135r(4)

2
+ 4156r′′2 + 7185r′2 + 54r(3)

(
5r(5) − 61r(3)

)
+
(
160r(6) − 4324r(4)

)
r′′
)

36288000 r20/3

−
24r3

(
2
(
25r(7) − 1165r(5) + 5803r(3)

)
r′
)

+ 38799 r5

36288000 r20/3

 .
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Next goal is to invert the above expression and write r(ϕ) in terms of ρ(ϕ).

r(ϕ) = ρ(ϕ)− C1[r(ϕ)] · L2/3 − C2[r(ϕ)] · L4/3 − C3[r(ϕ)] · L2 − C4[r(ϕ)] · L8/3
+ O

(
L

10/3
)

= ρ(ϕ) + C1

[
ρ(ϕ)− C1

[
ρ(ϕ)− C1

[
ρ(ϕ)− C1 [ρ(ϕ)] · L2/3

]
· L2/3 − C2 [ρ(ϕ)] · L4/3

]
· L2/3

−C2

[
ρ(ϕ)− C1 [ρ(ϕ)] · L2/3

]
· L4/3 − C3 [ρ(ϕ)] · L2

]
· L2/3

+ C2

[
ρ(ϕ)− C1

[
ρ(ϕ)− C1 [ρ(ϕ)] · L2/3

]
· L2/3 − C2 [ρ(ϕ)] · L4/3

]
· L4/3

+ C3 [ρ(ϕ)− C1[ρ(ϕ)] · L2/3
] · L2

+ C4 [ρ(ϕ)] · L8/3
+ O

(
L

10/3
)

= ρ(ϕ)− A(ϕ) · L2/3
+ B(ϕ) · L4/3

+ C(ϕ) · L2
+D(ϕ) · L8/3

+ O
(
L

10/3
)

(17)

where:

A(ϕ) := −
(

3

2

)2/3 [
2ρ′2 − 3ρ (ρ′′ + 3ρ)

18 ρ5/3

]
=

(
3

2

)2/3 [
1

2
ρ1/3 +

1

2

d2

dϕ2

(
ρ1/3

)]
=

(
3

2

)2/3
1

2
ρ1/3 +

dfA
dϕ

B(ϕ) :=

(
3

2

)1/3
1

720

[
9

ρ1/3
+ 8

ρ′2

ρ7/3

]
+
dfB
dϕ

C(ϕ) :=
1

11200

[
9

ρ
+ 24

(
ρ′2 + ρ′′2

ρ3

)
− 40

ρ′4

ρ5

]
+
dfC
dϕ

D(ϕ) :=

(
3

2

)2/3
1

90

[
281

44800
· 1

ρ5/3
+

1

ρ11/3

(
281

8400
ρ′2 +

167

4200
ρ′′2 +

ρ(3)2

42

)

+
473

4725
· ρ′′3

ρ14/3
− 1

ρ17/3

(
11

120
ρ′4 +

473

945
ρ′2ρ′′2

)
+

781

1458

ρ′6

ρ23/3

]
+
dfD
dϕ

and fA, fB , fC , fD ∈ C∞(R/2πZ) given by:

fA(ϕ) =
1

2

(
3

2

)2/3 d

dϕ

(
ρ
1/3

)
=

1

6

(
3

2

)2/3 ρ′

ρ2/3

fB(ϕ) =
1

2160

(
3

2

)1/3
 140ρ′3 + 9ρ2

(
7ρ(3) + 6ρ′

)
− 204ρρ′ρ′′

ρ10/3


fC(ϕ) = −

31ρ(5)

6720ρ2
−

7ρ(3)

4800ρ2
−

25ρ′5

108ρ6
+

ρ′3

30240ρ4
+

79ρ′

33600ρ2
+

23ρ(4)ρ′

672ρ3
+

73ρ(3)ρ′′

1200ρ3
−

23ρ(3)ρ′2

144ρ4

+
283ρ′3ρ′′

540ρ5
−

1607ρ′ρ′′2

7200ρ4
+

19ρ′ρ′′

16800ρ3

fD(ϕ) =
1

3

(
3

2

)2/3
[

127ρ(7)

89600ρ8/3
−

31ρ(5)

67200ρ8/3
−

67ρ(3)

96000ρ8/3
+

211945ρ′7

52488ρ26/3
−

9613ρ′5

97200ρ20/3
−

ρ′3

37800ρ14/3

+
839ρ′

1008000ρ8/3
−

207ρ(6)ρ′

11200ρ11/3
−

4661ρ(5)ρ′′

100800ρ11/3
+

44473ρ(5)ρ′2

302400ρ14/3
−

41ρ(3)ρ(4)

576ρ11/3
−

389257ρ(4)ρ′3

453600ρ17/3

+
89ρ(4)ρ′

12600ρ11/3
+

121393ρ(3)ρ′′2

216000ρ14/3
+

197ρ(3)ρ′′

18000ρ11/3
+

1034933ρ(3)ρ′4

272160ρ20/3
−

31ρ(3)ρ′2

672ρ14/3
+

6763ρ(3)
2
ρ′

16800ρ14/3

−
56771ρ′5ρ′′

4536ρ23/3
+

14493167ρ′3ρ′′2

1360800ρ20/3
+

1621ρ′3ρ′′

8400ρ17/3
−

14553127ρ′ρ′′3

6804000ρ17/3
−

3421ρ′ρ′′2

54000ρ14/3
+

3ρ′ρ′′

4000ρ11/3

+
63689ρ(4)ρ′ρ′′

100800ρ14/3
−

1040447ρ(3)ρ′2ρ′′

226800ρ17/3

]
.

2.2. Length of a caustic as a function of the curvature of the boundary
and the Lazutkin invariant. Integrating the previous relations, we obtain an
expression for the length of the caustic Γ in terms of the Lazutkin invariant L
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(recall that `0 denotes the length of the boundary ∂Ω):

Length(Γ) =

∫ 2π

0

r(ϕ) dϕ =

=

∫ 2π

0

[
ρ(ϕ) −A(ϕ) · L2/3 +B(ϕ) · L4/3 + C(ϕ) · L2 +D(ϕ) · L8/3 +O

(
L10/3

)]
dϕ

= `0 −
(∫ 2π

0

A(ϕ) dϕ

)
· L2/3 +

(∫ 2π

0

B(ϕ) dϕ

)
· L4/3 +

(∫ 2π

0

C(ϕ) dϕ

)
· L2

+

(∫ 2π

0

D(ϕ) dϕ

)
· L8/3 +O

(
L10/3

)
=: `0 − a L2/3 + b L4/3 + c L2 + d L8/3 +O

(
L10/3

)
(18)

where

a =
1

2

(
3

2

)2/3 [∫ 2π

0

ρ1/3 dϕ

]
b =

1

720

(
3

2

)1/3 [∫ 2π

0

(
9

ρ1/3
+ 8

ρ′2

ρ7/3

)
dϕ

]
c =

1

11200

[∫ 2π

0

(
9

ρ
+ 24

(
ρ′2 + ρ′′2

ρ3

)
− 40

ρ′4

ρ5

)
dϕ

]
d =

1

90

(
3

2

)2/3
[∫ 2π

0

(
281

44800
· 1

ρ5/3
+

1

ρ11/3

(
281

8400
ρ′2 +

167

4200
ρ′′2 +

ρ(3)2

42

)

+
473

4725
· ρ
′′3

ρ14/3
− 1

ρ17/3

(
11

120
ρ′4 +

473

945
ρ′2ρ′′2

)
+

781

1458

ρ′6

ρ23/3

)
dϕ

]
.

2.3. Rotation number of the caustic as a function of the curvature of
the boundary and the length of the caustic. Let us denote I = −Length(Γ).
Oberve that I ≥ −`0 and it is equal to −`0 when L = 0 (on the boundary). Now we
would like to invert relation (18) to obtain an expansion of the Lazutkin invariant
in terms of the length of the caustic (it plays the rôle of a cohomology class):

L(I) =
(I + `0)3/2

a3/2
+

3 b

2 a7/2
(I + `0)5/2 +

3
(
9 b2 + 4 ac

)
8 a11/2

(I + `0)7/2

+

(
24 a2d+ 132 abc+ 143 b3

)
16 a15/2

(I + `0)9/2 +O
(

(I + `0)11/2
)
. (19)

This function corresponds to Mather’s α function (at least for values of I near
`0 for which there exists a caustic):

α : [−`0,−`0 + δ) −→ R
I 7−→ L(I).

This allows us to find the rotation vector corresponding to a caustic Γ with
Lazutkin invariant L and length −I; recall, in fact, that ω = ∂α(I) (see subsection
1.3).

Therefore:

ω = ∂α(I) =
3

2a3/2
(I + `0)1/2 +

15b

4a7/2
(I + `0)3/2 +

21
(
9b2 + 4ac

)
16a11/2

(I + `0)5/2

+
9
(
24a2d+ 132abc+ 143b3

)
32a15/2

(I + `0)7/2 +O
(

(I + `0)9/2
)
. (20)
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2.4. Computing Mather’s β-function on caustics. Inverting the above expres-
sion, we obtain:

I(ω) = −`0 +
4a3

9
ω2 − 80

81

(
a4b
)
ω4 +

[
16

729
a5
(
87b2 − 28ac

)
+

400a5b2

729

]
ω6 +

+

[
32a6

(
−72a2d+ 724abc− 909b3

)
6561

− 160a6b
(
87b2 − 28ac

)
6561

]
ω8 +O

(
ω10
)
.

In conclusion, we obtain a representation of Mather’s β-function at ω:

β(ω) = I(ω) · ω − α (I(ω)) = (21)

= −`0ω +
4a3

27
ω3 − 16

81

(
a4b
)
ω5 +

64

729

(
4a5b2 − a6c

)
ω7

− 256
(
3a8d− 36a7bc+ 56a6b3

)
19683

ω9 +O
(
ω11
)
.

2.5. Existence of caustics and end of the proof of Theorem 1.3. In order
to conclude the proof of Theorem 1.3, we need to address the following question:
which billiards possess caustics? We have already mentioned a negative result by
John Mather [13] which says that caustics do not exist as soon as the curvature of
the boundary vanishes at some point.

However, in our case – i.e., for strictly convex billiards – the situation turns out
to be completely different.

Let us recall an important result in the theory of billiards: Birkhoff billiards are
nearly-integrable. In fact, in [9] V. Lazutkin introduced a very special change of
coordinates that reduces the billiard map f to a very simple form.

Let LΩ : [0, `]× [0, π]→ T× [0, δ] with small δ > 0 be given by

LΩ(s, ϕ) =

(
x = C−1

Ω

∫ s

0

k2/3(s)ds, y = 4C−1
Ω k−1/3(s) sin

ϕ

2

)
, (22)

where CΩ :=
∫ `

0
k2/3(s)ds is sometimes called the Lazutkin perimeter (observe that

it is chosen so that period of x is one).
In these new coordinates the billiard map becomes very simple (see [9]):

fL(x, y) =
(
x+ y +O(y3), y +O(y4)

)
(23)

In particular, near the boundary {ϕ = 0} = {y = 0}, the billiard map fL
reduces to a small perturbation of the integrable map (x, y) 7−→ (x + y, y), with a
perturbation of size O(y3).

Using this result and an adapted version of KAM theorem, Lazutkin proved in
[9] that if ∂Ω is sufficiently smooth (smoothness is needed and determined by KAM
theorem), then there exists a positive measure set of caustics, which accumulates
on the boundary and on which the motion is smoothly conjugate to a rigid rotation
(see [8] for an improved version of Lazutkin’s result). The corresponding rotation
numbers form a positive measure Cantor set in the space of rotation numbers, which
accumulates to zero (these rotation numbers are of Diophantine type).

This fact and the above discussion complete the proof of Theorem 1.3. In fact,
on this positive-measure set of rotation numbers for which caustics exists, the above
expression for β holds and this family accumulates at ω = 0. In particular, β is C∞

on a Cantor set, in the sense of Whitney (see also Pöschel [17]).
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We can recover from expression (21) Taylor’s coefficients of β-function: β(ω) =∑∞
k=0 βk

ωk

k! . First of all, β2k = 0 for all k’s (in fact, β can be extended to an even
function w.r.t. ω). Then, let us introduce the following invariants (s denotes the
arc-length and by ˙ we mean the derivative w.r.t s):

I1 :=

∫ 2π

0
ρ dϕ =

∫ `0
0

ds = `0

I3 :=

∫ 2π

0
ρ
1/3

dϕ =

∫ `0
0

k
2/3

ds

I5 :=

∫ 2π

0

(
9

ρ1/3
+ 8

ρ′2

ρ7/3

)
dϕ =

∫ `0
0

(
9 + 8 ρ̇2

ρ4/3

)
ds

=

∫ `0
0

(
9 k

4/3
+

8 k̇2

k8/3

)
ds

I7 :=

∫ 2π

0

[
9

ρ
+ 24

(
ρ′2 + ρ′′2

ρ3

)
− 40

ρ′4

ρ5

]
dϕ

=

∫ 2π

0

[
9

ρ2
+

24

ρ2

(
ρ̇
2

+ ρ
2
ρ̈
2

+ 2ρρ̇
2
ρ̈
)
−

16 ρ̇4

ρ2

]
ds

=

∫ `0
0

(
9 k

2
+

24 k̇2

k2
+

24 k̈2

k4
−

144 k̇2k̈

k5
+

176 k̇4

k6

)
ds

I9 :=

∫ 2π

0

 281

44800
·

1

ρ5/3
+

1

ρ11/3

 281

8400
ρ
′2

+
167

4200
ρ
′′2

+
ρ(3)

2

42

 +
473

4725
·
ρ′′3

ρ14/3

−
1

ρ17/3

(
11

120
ρ
′4

+
473

945
ρ
′2
ρ
′′2
)

+
781

1458

ρ′6

ρ23/3

]
dϕ

=

∫ `0
0

[
ρ
−8/3

(
281

44800
+

281

8400
ρ̇
2 −

109

2100
ρ̇
4

+
20291

127575
ρ̇
6
)

+ ρ
−5/3

(
167

2100
ρ̇
2
ρ̈−

2411

4725
ρ̇
4
ρ̈

)
+ ρ
−2/3

(
167

4200
ρ̈
2

+
122

675
ρ̇
2
ρ̈
2

+
1

21
ρ̇
3 ...
ρ

)
+ ρ

1/3
(

473

4725
ρ̈
3

+
4

21
ρ̇ρ̈

...
ρ

)
+

1

42
ρ
4/3 ...

ρ 2
]
ds

=

∫ `0
0

[
281

44800
k
8/3

+
281 k̇2

8400 k4/3
+

167 k̈2

4200 k10/3
−

167 k̇2 k̈

700 k13/3
+

...
k

2

42 k16/3
+

559 k̇4

2100 k16/3

−
473 k̈3

4725 k19/3
−

10
...
k k̇ k̈

21 k19/3
+

5
...
k k̇3

7 k22/3
+

13142 k̇2 k̈2

4725 k22/3
−

10777 k̇4 k̈

1575 k25/3
+

521897 k̇6

127575 k28/3

]
ds.

In particular, we have:

a =
1

2

(
3

2

)2/3

I3

b =
1

720

(
3

2

)1/3

I5

c =
1

11200
I7

d =
1

90

(
3

2

)2/3

I9

and therefore:

β1 = −I1

β3 =
1

4
I3

3

β5 = − 1

144
I4

3 I5 (24)



COMPUTING MATHER’S β-FUNCTION FOR BIRKHOFF BILLIARDS 5075

β7 =
1

320
I5

3

(
14

81
I2

5 − I3I7

)
=
I5

3

(
14 I2

5 − 81 I3I7

)
25920

β9 = −7 I6
3

(
I2

3 I9 −
1

5600
I3 I5 I7 +

7

583200
I3

5

)
.

Moreover, from (19), recalling the definition of the coefficients a, b, c and d, one
obtains:

α(c) = α0·(c+ `0)3/2+α1·(c+`0)5/2+α2·(c+`0)7/2+α3·(c+`0)9/2+O
(

(c+ `0)11/2
)
,

where:

α0 =
4
√

2

3
I−3/2

3

α1 =

√
2

135
I−7/2

3 I5

α2 =
1

56700
√

2

(
72 I3I7 + 7 I5

2

I3
11/2

)
α3 =

1

826686000
√

2

(
261273600 I3

2I9 + 21384 I3I5I7 + 1001 I5
3

I3
15/2

)
.

As a byproduct, one could also compute the rotation vector as a function of the
Lazutkin invariant L. In fact, from (18), (20) and the relation I = −Length(Γ),
one obtains:

ω(L) =

(
3

2

)1/3
2

I3
L1/3 +

I5

90 I3
3

L+

(
3

2

)2/3 (243 I3I7 + 14 I2
5

)
340200 I3

3

L5/3

+

(
3

2

)1/3 (5443200 I2
3I9 + 243 I3I5I7 + 7 I3

5

)
30618000 I4

3

L7/3 +O
(
L3
)

and its inverse:

L(ω) =

[I3
3

12

]
ω3 −

[I4
3I5

4320

]
ω5 +

[
I5

3

(
14 I2

5 − 81 I3I7

)
21772800

]
ω7 (25)

−
[
I6

3

(
4082400 I2

3I9 − 729 I3I5I7 + 49 I3
5

)
26453952000

]
ω9 +O

(
ω11
)
.

Observe that this latter expression could be also obtained as L(ω) = ωβ′(ω)−β(ω).

2.6. Proof of Corollary 1. Let us now prove Corollary 1. The proof easily follows
from the expressions of β1 and β3, found in Theorem 1.3. In fact, observe that:

β3 + π2β1 ≤ 0 ⇐⇒ I3
3 − 4π2I1 ≤ 0.

Now, using Hölder inequality (with p = 3
2 and q = 3):

I3 =

∫ `0

0

k2/3ds ≤
(∫ `0

0

(k2/3)3/2ds

)2/3(∫ `0

0

13ds

)1/3

= (2π)2/3`0
1/3 = (4π2I1)1/3.
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Moreover, equality holds if and only if it holds in Hölder inequality. This means
that k must be constant (and strictly positive) and therefore, the curve must be a
circle.

3. Some examples.

3.1. Billiard in a disc. As we have already recalled in the Introduction, the bil-
liard in a disc is one of the easiest examples of billiards. Let D be a disc of radius R.
It follows from elementary arguments that at each reflection of the ball the angle
of incidence is the same as the previous angle of reflection. Therefore, the angle
of reflection remains constant along the orbit. If we denote by s the arc-length
parameter (i.e., s ∈ R/2πRZ) and by θ ∈ (0, π/2] the angle of reflection, then the
billiard map has a very simple form:

f(s, θ) = (s+ 2Rθ, θ).

Let us now compute the previous invariants in this case.
Let us start by observing that the β-function is given by:

β(ω) = −2R sin (πω) .

Let us verify this. First of all, it is easy to check it for orbits of rotation number
ωn = 1/n. These orbits coincide with regular n-gons inscribed in D. It is easy to
compute that each side of these polygons has length equal to 2R sin π

n and therefore
the total perimeter is 2nR sin π

n . It follows that

β(1/n) = − 1

n

(
2nR sin

π

n

)
= −2R sin

π

n
.

More generally, the orbits of rotation number ω have (constant) angle of reflec-
tion θ = πω (it follow from the definition of rotation number and the fact that it
must remain constant). The segment joining two subsequent bounces have length
R sin(πω) (see figure 6), therefore it follows from the definition of β (see (3)) that:

β(ω) = − lim
N→+∞

1

2N

N−1∑
i=−N

R sin(πω) = −R sin(πω).

Let us compute its Taylor expansion:

β(ω) = −2R sin (πω) (26)

= −2πR ω +
1

3!

(
2Rπ3

)
ω3 +

1

5!

(
−2Rπ5

)
ω5 +

1

7!

(
2Rπ7

)
ω7

+
1

9!

(
−2Rπ9

)
ω9 +O

(
ω11
)
.

In particular, k(s) ≡ 1
R and `0 = 2πR. The above invariants are therefore:

I1 = 2πR

I3 = 2πR1/3

I5 = 18πR−1/3 (27)

I7 = 18πR−1

I9 =
281

22400
πR−5/3.

Substituting these values in (25), one can easily check that they match with (26).
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Figure 6.

Moreover, one also obtains (by geometric reasoning) that:

L(ω) = −2πRω cos(πω) + 2R sin(πω)

=
2

3
π3R ω3 − 1

15

(
π5R

)
ω5 +

1

420
π7R ω7 −

(
π9R

)
22680

ω9 +O
(
ω11
)
.

One can check that this expression matches with (25) once the invariants (27) are
substituted in it.

Finally, observe that:

ω(L) =

(
3

2

)1/3
L1/3

πR1/3
+

L

20 πR
+

(
3

2

)2/3
41 L5/3

8400 π R5/3

+

(
3

2

)1/3
97 L7/3

100800 π R7/3
+O

(
L3
)
.

3.2. Billiard in an ellipse. Let us consider now the billiar inside an ellipse

E =

{
(x, y) :

x2

a2
+
y2

b2
= 1

}
with 0 < b ≤ a. Up to rescaling, we can assume that a = 1 (see also Remark 8)

and therefore the eccentricity of the ellipse is given by 0 ≤ h =
√

1− b2 < 1 and
the two foci by F± = (±h, 0).

Optical properties of conics (an alternative way to consider the billiard ball mo-
tion inside a conic) were already well known to ancient Greeks. We refer to [22] for
a more detailed discussion (see also [19]). In particular, billiard trajectories can be
classified in the following way:

a) trajectories that always intersect the open segment between the two foci,
b) trajectories that never intersect the closed segment between the two foci, and
c) trajectories that alternatively pass through one of the two foci.
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In particular, each trajectory in a) is tangent to a confocal hyperbola, each
trajectory in b) is tangent to a confocal ellipse, while trajectories of kind c) tend
asymptotically to the major semiaxis. Confocal ellipses are therefore examples of
caustics (also hyperbolae can be considered a sort of generalized caustics) which
foliate everything but the closed segment between the two foci (see figure 3 in
subsection 1.2). Hence, this is an example of an integrable billiard, as we have
already recalled in the Introduction.

Let us now try to describe the dynamics and provide some expression for its
β-function. Differently from the circular case, here the situation is much more
complicated due to the appearance of elliptic integrals, which make the dynamics
much less explicit. A description of the dynamics is carried out, for example, in
[23].

Let us introduce the following elliptic coordinates

Eµ :

{
x = h coshµ cosϕ
y = h sinhµ sinϕ

ϕ ∈ [0, 2π), 0 < µ ≤ µ0,

where µ0 is such that coshµ0 = 1
h . Observe that Eµ0

corresponds to our boundary
ellipses, while Eµ are the confocal ones.

Let us denote I(µ) = cosh2 µ. In particular, the lengths of these caustics are (let
us denote by aµ the major semi-axis of Eµ):

|Eµ| = 4aµE

(
1√
I(µ)

)
= 4h

√
I(µ)E

(
1√
I(µ)

)
,

where E(k) =
∫ π/2

0

√
1− k2 sin2 θdθ is a complete elliptic integral of second type.

It follows from [23, formula 1.7] that4:

ω(I(µ)) = Rot(I(µ)) =
1

4F
(

1√
I

)F (arcsin

(
√
I

2 tanhµ0

√
cosh2 µ0 − I

cosh2 µ0 − I + I tanh2 µ0

)
,

1√
I

)

where F (z, k) =
∫ z

0
dθ√

1−k2 sin2 θ
denotes an elliptic integral of first type. In the

following, we shall denote the complete elliptic integral of first type by K(k) =
F (π2 , k).

Using these results we can compute Mather’s β-function in this case. Here are
the needed steps:

I - let c(I) = −|Eµ| denote the cohomology class, seen as a function of I;

II - one could invert the function ω(I), which is a function of
√
I − 1

h2 , and obtain

a function I(ω) in a neighbourhood of ω = 0;
III - then, one obtains an expression c = c(ω); recalling that c(ω) = β′(ω) and

integrating, one finds an expression for β.

Carrying out these computations, we get:

β(ω) = −4E(h)ω +

[
8

3
(1− h2

)K(h)
3
]
ω
3

+

[
8

15
(1− h2)K(h)

4
[
15E(h)− 8(2− h2

)K(h)
]]
ω
5

4The different factor in front of it, follows from a slightly different definition of rotation number.
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+

[
16

315

(
1− h2

)
K(h)

5
[
630E(h)

2 − 630
(
2− h2

)
K(h)E(h) +

(
136h

4 − 631h
2

+ 631
)
K(h)

2
]]
ω
7

−

 8
(
h2 − 1

)
K(h)6

[
75600

(
h2 − 2

)
K(h)E(h)2 + 4

(
h2 − 2

) (
992h4 − 5741h2 + 5741

)
K(h)3

2835

+1323
(
24h4 − 109h2 + 109

)
K(h)2E(h) + 52920E(h)3

]
2835

ω9
+ O(ω

11
). (28)

It is easy to check that in the limit as h → 0, we recover the β-function for the
circular billiard of radius R = 1. Observe in fact that:

lim
h→0+

E(h) = lim
h→0+

K(h) =
π

2
.

We can also verify this expression, computing the invariants Ik’s directly from
Theorem 1.3. For the sake of this presentation, we shall compute only I1, I3 and I5

and verify the corresponding coefficients β1, β2, β3. The others could be computed
similarly, but, for simplicity, we omit those lenghty – yet, similar – computations.

Let us consider the parametrizion of Eµ0 by polar coordinates (as above). Recall

that the arc-length is given by ds =
√

1− h2 cos2 ϕdϕ, while the curvature in polar
coordinate is:

k(ϕ) =

√
1− h2

(1− h2 cos2 ϕ)3/2
.

It is easy to check that:

i)

I1 =

∫ `0

0

ds =

∫ 2π

0

√
1− h2 cos2 ϕdϕ = 4

∫ π
2

0

√
1− h2 sin2 ϕdϕ = 4E(h).

Therefore, β1 = −4E(h), which matches with the expression in (28).
ii)

I3 =

∫ `0

0

k2/3ds =

∫ 2π

0

(1− h2)1/3

1− h2 cos2 ϕ

√
1− h2 cos2 ϕdϕ =

= 4(1− h2)1/3

∫ π
2

0

1√
1− h2 cos2 ϕ

dϕ = 4(1− h2)1/3K(h).

In particular, using Theorem 1.3 we also obtain

β3

3!
=

1

3!

(
1

4
I3

3

)
=

8

3
(1− h2)K(h)3.

iii) First of all, let us observe that

k̇ =
dk

ds
=
dk

dϕ
· dϕ
ds

=

=
dk

dϕ
· 1√

1− h2 cos2 ϕ
=

= −3h2
√

1− h2
cosϕ sinϕ

(1− h2 cos2 ϕ)3
.
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Hence:

I5 =

∫ `0

0

(
9 k4/3 +

8 k̇2

k8/3

)
ds =

=

∫ 2π

0

(
9

(1− h2)2/3

(1− h2 cos2 ϕ)3/2
+ 72h4(1− h2)−1/3 cos2 ϕ sin2 ϕ

(1− h2 cos2 ϕ)3/2

)
dϕ =

= 4

∫ π
2

0

(
9

(1− h2)2/3

(1− h2 cos2 ϕ)3/2
+ 72h4(1− h2)−1/3 cos2 ϕ sin2 ϕ

(1− h2 cos2 ϕ)3/2

)
dϕ =

= 36(1− h2)−1/3E(h) + 288(1− h2)−1/3
(
−2E(h) + (2− h2)K(h)

)
=

= 36(1− h2)−1/3
[
−15E(h) + 8(2− h2)K(h)

]
.

Substituting in the expression of β5 (see Theorem 1.3):

β5

5!
=− 1

144 · 5!
I4

3I5 =

=− 44

144 · 5!
(1− h2)4/3K(h)4

[
36(1− h2)−1/3

(
−15E(h) + 8(2− h2)K(h)

)]
=

=
8

15
(1− h2)K(h)4

[
15E(h)− 8(2− h2)K(h)

]
.

In the same way one could compute I7 and I9.

Remark 8. Similar formulae hold in the general case, i.e., without assuming that
the major semiaxis a = 1. Let us consider an ellipse E with semiaxis 0 < b ≤ a

and eccentricity h =

√
1−

(
b
a

)2
. It follows easily from the definition of β-function,

that rescaling the ellipse, this function will rescale by the same amount. Therefore,
one could consider the rescaled ellipse 1

aE – which has major semiaxis equal to 1
and the same eccentricity h as E – and use the above formulae for computing the
corresponding β-function. The β-function associated to the original ellipse E will
be given by βE = aβ 1

aE
.

To conclude this section, we would like to address the following question: is it
true that the β-function determines univocally an ellipse amongst other ellipses?
In other words: is it possible that two different ellipses have the same β-function?
We shall show that the first question (resp. the second question) has an affirmative
answer (resp. negative answer).

Proposition 1. If E1 and E2 are two ellipses such that βE1 ≡ βE2 , then E1 and E2
are the same ellipse. More generally: if the Taylor coefficients βE1,1 = βE2,1 and
βE1,3 = βE2,3, then the same conclusion remains true.

Proof. We prove the second statement, which clearly implies the first one. Let

us denote by 0 < bi ≤ ai the semi-axis of Ei, and by hi =

√
1−

(
bi
ai

)2

their

eccentricities. If βE1,1 = βE2,1 and βE1,3 = βE2,3, then using the above expressions
and Remark 8, we can conclude that:{

a1E(h1) = a2E(h2)
a1 (1− h2

1)K(h1)3 = a2 (1− h2
2)K(h2)3.

(29)

In particular, since ai 6= 0 and E(hi) 6= 0, it follows that:

(1− h2
1)K(h1)3

E(h1)
=

(1− h2
2)K(h2)3

E(h2)
.



COMPUTING MATHER’S β-FUNCTION FOR BIRKHOFF BILLIARDS 5081

One can check that the function f(x) = (1−x2)K(x)3

E(x) is strictly decreasing5 in

[0, 1], with f(0) = π2

4 (which corresponds to the circular case) and f(1) = 0 (degen-
eration of the ellipse into a parabola). Therefore, if f(h1) = f(h2), then h1 = h2,
i.e., the two ellipses have the same eccentricity. Substituting this piece of informa-
tion in the first equation of (29), one also obtains that a1 = a2 and consequently
b1 = b2. This concludes the proof.
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