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Abstract: This paper studies the existence of invariant smooth Lagrangian graphs for
Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli Hamil-
tonians with n independent but not necessarily involutive constants of motion and obtain
two theorems reminiscent of the Liouville-Arnol′d theorem. Moreover, we also obtain
results on the structure of the configuration spaces of such systems that are reminiscent
of results on the configuration space of completely integrable Tonelli Hamiltonians.

1. Introduction

In the study of Hamiltonian systems, a special role is played by invariant Lagrangian
manifolds. These objects arise quite naturally in many physical and geometric problems
and share a deep relation with the dynamics of the system and with the Hamiltonian
itself. Our concern in this paper is with Hamiltonian systems that possess invariant
Lagrangian graphs, or more precisely, with conditions that imply the existence of such
graphs. Specifically, we address the following question:

Question I. When does a Hamiltonian system possess an invariant smooth Lagrangian
graph?

It is natural to expect that “sufficiently” symmetric systems ought to possess an
abundance of invariant Lagrangian graphs. Inspired by the results in [33], this paper
demonstrates, with two different notions of symmetry, conditions that imply the exis-
tence of such graphs. This approach to Question I leads us to two theorems which in
important aspects mirror the classical theorem of Liouville-Arnol′d. While on the one
hand the first of these theorems can be seen as a (non-trivial) generalisation of the
main theorem in [33] (see Remark 1.1 for more details), on the other hand our pres-
ent analysis extends well beyond, providing a much deeper insight into the nature and
the properties of the so-called weakly-integrable systems. There is a large literature on
the structure of the configuration space of a completely integrable Tonelli Hamiltonian,
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see inter alia [9,20,37,38]; in pursuing the analogy between the present paper’s weak
Liouville-Arnol′d theorems and the classical theorem, we have proven two results on the
topological structure of the configuration spaces of weakly-integrable systems. Indeed,
we believe that the following is an interesting question

Question II. If a Hamiltonian system possesses an invariant smooth Lagrangian graph,
what is true of its configuration space?

To address each of these questions, we use two notions of “symmetry” in this paper. Let
us introduce those:

Classical symmetries. Let us recall some terminology used to describe classical symme-
tries. The cotangent bundle, T ∗M , of a smooth manifold M is equipped with a canonical
Poisson structure {·, ·}. Given a smooth function H , the vector field X H = {H, } is a
Hamiltonian system with Hamiltonian H . The skew-symmetry of {·, ·} implies that if
{H, F} ≡ 0, then the vector field X H is tangent to the level sets of F ; and, the Jacobi
identity implies it commutes with X F . In such a situation, these Hamiltonians are said
to Poisson-commute, or be in involution, and F is said to be a constant of motion, or first
integral. The Liouville-Arnol′d theorem describes the situation when H has n indepen-
dent, Poisson commuting integrals.

Theorem (Liouville-Arnol′d). Let (V, ω) be a symplectic manifold with dim V = 2n
and let H : V −→ R be a proper Hamiltonian. Suppose that there exists n integrals of
motion F1, . . . , Fn : V −→ R such that:

i) F1, . . . , Fn are C2 and functionally independent almost everywhere on V ;
ii) F1, . . . , Fn are pairwise in involution, i.e.

{
Fi , Fj

} = 0 for all i, j = 1, . . . n.

Suppose the non-empty regular level set �a := {F1 = a1, . . . , Fn = an} is connected.
Then �a is an n-torus, T

n and there is a neighbourhood O of 0 ∈ H1(�a; R) such that
for each c′ ∈ O there is a unique smooth Lagrangian �c′ that is a graph over �a with
cohomology class c′. Moreover, the flow of X H |�c′ is a rigid rotation.

Remark. There are numerous proofs of this theorem in its modern formulation, see
inter alia [3,5,13,22,25]. The map F := (F1, . . . , Fn) is referred to as an integral map,
first-integral map or a momentum map. The invariance of the level set �a simply follows
from F being an integral of motion; the fact that it is a Lagrangian torus and that the
Hamiltonian flow is conjugate to a rigid rotation, strongly relies on these integrals being
pairwise in involution and independent.

Inspired by the Liouville-Arnol′d theorem, we address Question I in the case of sys-
tems that possess a sufficiently large number of symmetries. Let us recall the definition
of a weakly integrable system.

Definition 1.1 (Weak integrability [33]). Let H ∈ C2(T ∗M). If there is a C2 map
F : T ∗Mn −→ R

n whose singular set is nowhere dense, and F Poisson-commutes with
H, then we say that H is weakly integrable.

1.1. Results. Recall that a Hamiltonian H ∈ C2(T ∗M) is Tonelli if it is fibrewise strictly
convex and enjoys fibrewise superlinear growth.1 This paper’s first result is

1 Section 2 provides a synopsis of Mather theory and Fathi’s weak KAM theory.
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Theorem 1.1 (Weak Liouville-Arnol′d). Let M be a closed manifold of dimension n
and H : T ∗M −→ R a weakly integrable Tonelli Hamiltonian with integral map
F : T ∗M −→ R

n. If for some cohomology class c ∈ H1(M; R) the corresponding
Aubry set A∗

c ⊂ Reg F, then there exists an open neighborhood O of c in H1(M; R)

such that the following holds:

i) For each c′ ∈ O there exists a smooth invariant Lagrangian graph �c′ of cohomol-
ogy class c′, which admits the structure of a smooth T

d -bundle over a base Bn−d

that is parallelisable, for some d > 0.
ii) The motion on each �c′ is Schwartzman strictly ergodic (see [16]), i.e. all invariant

probability measures have the same rotation vector and the union of their supports
equals �c′ . In particular, all orbits are conjugate by a smooth diffeomorphism
isotopic to the identity.

iii) Mather’s α-function αH : H1(M; R) −→ R is differentiable at all c′ ∈ O and
its convex conjugate βH : H1(M; R) −→ R is differentiable at all rotation vec-
tors h ∈ ∂αH (O), where ∂αH (O) denotes the set of subderivatives of αH at some
element of O.

Remark. i) We named this theorem as such because it drops the involutivity hypoth-
esis of the classical theorem and still obtains results that are quite analogous. ii) The
theorem remains true if one replaces the hypothesis A∗

c ⊂ Reg F with M∗
c ⊂ Reg F ,

where M∗
c denotes the Mather set. iii) We conjecture that weak integrability implies

that dim H1(M; R) ≤ dim M with equality if and only if M is a torus even without the
a priori assumption A∗

c ⊂ Reg F .

Remark 1.1. This theorem extends and improves the main result in [33] in many non-
trivial respects.

i) First of all, we provide a description of the topological structure of these invariant
Lagrangian graphs �c′ , showing that they admit the structure of a smooth T

d -bundle
over a parallelisable base.

ii) Then, we prove that each �c′ has a well-defined rotation vector, which implies the
differentiability of Mather’s α function.

iii) Moreover, we prove that the flow of X H |�c′ is a rotation on the T
d fibres of �c′ with

rotation vector hc′ = ∂αH (c′), where ∂αH (c′) is the derivative of αH at c′. This is
analogous to what happens in the classical Liouville-Arnol′d theorem, where the
rotation vector is the derivative of H at c′.

Let us then pursue the analogy with the Liouville-Arnol′d theorem and complete
integrability and turn now to the implications of Theorem 1.1 for the topology of the
configuration space M . Recall that a smooth manifold is irreducible if, when written as a
connect sum, one of the summands is a standard sphere. In 3-manifold topology, a central
role is played by those closed 3-manifolds which contain a non-separating incompress-
ible surface, or dually, which have non-vanishing first Betti number. Such manifolds
are called Haken; it is an outstanding conjecture that every irreducible 3-manifold with
infinite fundamental group has a finite covering that is Haken [18, Questions 1.1–1.3].
This conjecture is implied by the virtually fibred conjecture [1]. Given the proof of the
geometrisation conjecture, the virtual Haken conjecture is proven for all cases but hyper-
bolic 3-manifolds. Thurston and Dunfield have shown there is good reason to believe
the conjecture is true in this case [14].
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Theorem 1.2. Assume the hypotheses of Theorem 1.1. Then M is diffeomorphic to a
trivial T

d-bundle over a parallelisable base B such that all finite covering spaces of B
have zero first Betti number. Therefore

i) dim M ≤ 3 implies that M is diffeomorphic to a torus;
ii) dim M = 4 implies, assuming the virtual Haken conjecture, that M is diffeomor-

phic to either T
4 or T

1 × E, where E is an orientable 3-manifold finitely covered
by S3.

iii) If dim H1(M; R) ≥ dim M, then dim H1(M; R) = dim M and M is diffeomorphic
to T

n = R
n/Z

n.

Non-classical symmetries. In the second part of this article, we investigate the case
in which the system’s symmetries are not classical and do not come from conserved
quantities, but are induced by invariance under the action of an amenable Lie group on
the universal cover of the manifold. This action need not descend to the quotient and is
generally only evident in statistical properties of orbits. In particular, these symmetries
may only manifest themselves in the structure of the action-minimizing sets.

Recall that a topological group is amenable if it admits a left-invariant, finitely addi-
tive, Borel probability measure. Due to the Levi decomposition, an amenable Lie group
is a semi-direct product of its solvable radical and a compact subgroup. A solvable Lie
group is said to be exponential or type (E) if the exponential map of the Lie algebra
is surjective; we will say an amenable Lie group is of type (E) if its radical is of type
(E). For each bi-invariant 1-form φ on the simply-connected amenable Lie group G
with lattice subgroup �, let �c = � · graph(φ) ⊂ T ∗(�\G) be the Lagrangian graph
of cohomology class c. The union of such graphs is a submanifold M ⊂ T ∗(�\G)

naturally diffeomorphic to H1(�\G; R) × �\G and this diffeomorphism sends �c to
{c} × �\G.

Theorem 1.3. Let G be a simply-connected amenable Lie group and let ��G be a lattice
subgroup, M = �\G and H be induced by a left-invariant Cr Tonelli Hamiltonian on
T ∗G. Then

i) for all c ∈ H1(M; R), the Mather set M∗
c(H) equals the Lagrangian graph �c;

ii) the flow of X H |�c is a right-translation by a 1-parameter subgroup of G;
iii) the motion on �c is Schwartzman strictly ergodic;
iv) Mather’s α function αH : H1(M; R) −→ R is Cr .

Remark 1.2. (i–ii) provide analogues to the Lagrangian tori and action-angle coordinates
in the classical Liouville-Arnol′d theorem. However, there are some oddities: for exam-
ple, it is possible that these right-translations have positive topological entropy. Indeed,
this is exactly what happens in the Sol 3-manifold examples of Bolsinov-Taimanov [8]
(in that example, all such Tonelli Hamiltonians are also completely integrable). More-
over, in this case we can prove that the frequency map ∂αH has the same regularity as the
Hamiltonian vector field (see iv). Whether or not the same property holds in Theorem 1.1
remains an open question. Observe that this problem is strictly related to the regularity
of the family {�c′ } as a function of c′.

To prove this theorem we introduce a generalised notion of rotation vector and a
novel averaging procedure (see Sect. 4), which are likely to be of independent interest.

Finally, under some additional assumptions we can complete Theorem 1.3 and prove
the following implications for the topology of the configuration space.
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Theorem 1.4. Assume the hypotheses of Theorem 1.3. Assume additionally that G is of
type (E). If H is weakly integrable with integral map F : T ∗M −→ R

n and there is a
C1 Lagrangian graph � ⊂ H−1(h) and � ∩ Reg F �= ∅, then M is finitely covered by
a compact reductive Lie group with a non-trivial centre.

1.2. Methodological remarks. From a superficial perspective, Theorems 1.1 and 1.3
appear quite distinct. However, they are quite intimately related. In trying to weaken
the Liouville-Arnol′d theorem, one must find a substitute for its involutivity hypothesis.
Our substitute is to apply Mather theory and Fathi’s weak KAM theory to systems with
symmetry. It is natural to wonder if non-classical symmetries might also leave traces
of their existence in the form of invariant Lagrangian graphs–complete solutions of the
Hamilton-Jacobi equation. Theorem 1.3 shows that certain types of symmetry, that need
not be associated with conserved quantities, do manifest themselves in this fashion.

2. Action-Minimizing Sets and Integrals of Motion

In the study of weakly integrable systems, or more generally of convex and superlinear
Hamiltonian systems, the main idea behind dropping the hypothesis on the involution of
the integrals of motion consists in studying the relationship between the existence of inte-
grals of motion and the structure of some invariant sets obtained by action-minimizing
methods, which are generally called Mather, Aubry and Mañé sets.

In this section we want to provide a brief description of this theory, originally devel-
oped by John Mather, and the main properties of these sets. We refer the reader to
[15,21,23,24,32] for more exhaustive presentations of this material. Roughly speaking
these action-minimizing sets represent a generalization of invariant Lagrangian graphs,
in the sense that, although they are not necessarily submanifolds, nor even connected,
they still enjoy many similar properties. What is crucial for our study of weakly inte-
grable systems is that these sets have an intrinsic Lagrangian structure, which implies
many of their symplectic properties, including a forced local involution of the integrals
of motion, as noticed in [33].

More specifically, we are interested in studying the existence of action-minimizing
invariant probability measures and action-minimizing orbits in the following setting.

Let H : T ∗M → R be a C2 Hamiltonian, which is strictly convex and uniformly
superlinear in the fibres. H is called a Tonelli Hamiltonian. This Hamiltonian defines a
vector field on T ∗M , known as the Hamiltonian vector field, that can be defined as the
unique vector field X H such that ω(X H , ·) = d H , where ω is the canonical symplectic
form on T ∗M . We call the associated flow the Hamiltonian flow and denote it by 	t

H .
To any Tonelli Hamiltonian system one can also associate an equivalent dynamical

system in the tangent bundle T M , called the Lagrangian system. Let us consider the
associated Tonelli Lagrangian L : T M → R, defined as L(x, v) := maxp∈T ∗

x M (〈p, v〉
− H(x, p)). It is possible to check that L is also strictly convex and uniformly su-
perlinear in the fibres. In particular this Lagrangian defines a flow on T M , known as
the Euler-Lagrange flow and denoted by 	t

L , which can be obtained by integrating the
so-called Euler-Lagrange equations:

d

dt

∂L

∂v
(x, v) = ∂L

∂x
(x, v).

The Hamiltonian and Lagrangian flows are totally equivalent from a dynamical system
point of view, in the sense that there exists a conjugation between the two. In other



114 L. T. Butler, A. Sorrentino

words, there exists a diffeomorphism LL : T M −→ T ∗M , called the Legendre trans-
form, defined by LL(x, v) = (x, ∂L

∂v
(x, v)), such that 	t

H = L ◦ 	t
L ◦ L−1.

In classical mechanics, a special role in the study of Hamiltonian dynamics is repre-
sented by invariant Lagrangian graphs, i.e. graphs of the form � := {(x, η(x)) : x ∈ M}
that are Lagrangian (i.e. ω

∣
∣
�

≡ 0) and invariant under the Hamiltonian flow 	t
H . Recall

that being a Lagrangian graph in T ∗M is equivalent to say that η is a closed 1-form
([10, Sect. 3.2]). These graphs satisfy many interesting properties, but unfortunately
they are quite rare. The theory that we are going to describe aims to provide a gener-
alisation of these graphs; namely, we shall construct several compact invariant subsets
of the phase space, which are not necessarily submanifolds, but that are contained in
Lipschitz Lagrangian graphs and enjoy similar interesting properties.

Let us start by recalling that the Euler-Lagrange flow 	t
L can be also character-

ised in a more variational way, introducing the so-called Lagrangian action. Given
an absolutely continuous curve γ : [a, b] −→ M , we define its action as AL(γ ) =∫ b

a L(γ (t), γ̇ (t)) dt . It is a classical result that a curve γ : [a, b] −→ M is a solution
of the Euler-Lagrange equations if and only if it is a critical point of AL , restricted to
the set of all curves connecting γ (a) to γ (b) in time b − a. However, in general, these
extrema are not minima (except if their time-length b − a is very small). Whence the
idea of considering minimizing objects and seeing if - whenever they exist - they enjoy
special properties or possess a more distinguished structure.

Mather’s approach is indeed based on this idea and is concerned with the study
of invariant probability measures and orbits that minimize the Lagrangian action (by
action of a measure, we mean the collective average action of the orbits in its sup-
port, i.e. the integral of the Lagrangian against the measure). It is quite easy to prove
(see [16, Lem. 3.1] and [32, Sect. 3]) that invariant probability measures (resp. Ham-
iltonian orbits) contained in an invariant Lagrangian graph � (actually its pull-back
using L) minimize the Lagrangian action of L − η, which we shall denote AL−η, over
the set M(L) of all invariant probability measures for 	t

L (resp. over the set of all
curves with the same end-points and defined for the same time interval). This idea
of changing Lagrangian (which is at the same time a necessity) plays an important
role as it allows one to magnify some motions rather than others. For instance, con-
sider the case of an integrable system: one cannot expect to recover all these motions
(which foliate the whole phase space) by just minimizing the same Lagrangian action!
What is important to point out is that even if we modify L , because of the closedness
of η we do not change the associated Euler-Lagrange flow, i.e. L − η has the same
Euler-Lagrange flow as L (see [23, p. 177] or [32, Lem. 4.6]). This is a crucial step in
Mather’s approach in [23]: consider a family of modified Tonelli Lagrangians given by
Lη(x, v) = L(x, v) − 〈η(x), v〉, where η is a closed 1-form on M . These Lagrangians
have the same Euler-Lagrange flow as L , but different action-minimizing orbits and
measures. Moreover, these action-minimizing objects depend only on the cohomology
class of η [23, Lem. p. 176].

Hence, for each c ∈ H1(M; R), if we choose ηc to be any smooth closed 1-form on M
with cohomology class [ηc] = c, we can study action-minimizing invariant probability
measures (or orbits) for Lηc := L − ηc. In particular, this allows one to define several
compact invariant subsets of T M :

• M̃c(L), the Mather set of cohomology class c, given by the union of the supports
of all invariant probability measures that minimize the action of Lηc (c-action min-
imizing measure or Mather’s measures of cohomology class c). See [23].
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• Ñc(L), the Mañé set of cohomology class c, given by the union of all orbits that
minimize the action of Lηc on the finite time interval [a, b], for any a < b. These
orbits are called c- global minimizers or c-semi static curves. [21,23,24].

• Ãc(L), the Aubry set of cohomology class c, given by the union of the so called
c−regular minimizers of Lηc (or c-static curves). These are a special kind of
c-global minimizers that, roughly speaking, do not only minimize the Lagrang-
ian action to go from the starting point to the end-point, but that - up to a change of
sign - also minimize the action to go backwards, i.e. from the end-point to the start-
ing one. A precise definition would require a longer discussion. Since we are not
using this definition in the following, we refer the interested reader to [21,24,32].

Remark 2.1. i) These sets are non-empty, compact, invariant and moreover they satisfy
the following inclusions:

M̃c(L) ⊆ Ãc(L) ⊆ Ñc(L) ⊆ T M.

ii) The most important feature of the Mather set and the Aubry set is the so-called
graph property, namely they are contained in Lipschitz graphs over M (Mather’s
graph theorem [23, Thm. 2]). More specifically, if π : T M → M denotes the
canonical projection along the fibres, then π |Ãc(L) is injective and its inverse(
π |Ãc(L)

)−1: π
(Ãc(L)

) −→ Ãc(L) is Lipschitz. The same is true for the Mather
set (it follows from the above inclusion). Observe that in general the Mañé set does
not necessarily satisfy the graph property.

iii) As we have mentioned above, when there is an invariant Lagrangian graph � of
cohomology class c (i.e. it is the graph of a closed 1-form of cohomology class
c), then Ñc(L) = L−1(�). A priori Ãc(L) ⊆ L−1

L (�) and M̃c(L) ⊆ L−1
L (�).

In particular M̃c(L) = L−1
L (�) if and only if the whole Lagrangian graph is the

support of an invariant probability measure (i.e. the motion on it is recurrent).
iv) Similarly to what happens for invariant Lagrangian graphs, the energy E(x, v) =〈

∂L
∂v

(x, v), v
〉 − L(x, v) (i.e. the pull-back of the Hamiltonian to T M using the

Legendre transform) is constant on these sets, i.e. for any c ∈ H1(M; R) the corre-
sponding sets lie in the same energy level αH (c). Moreover, Carneiro [11] proved
a characterization of this energy value in terms of the minimal Lagrangian action
of L − ηc. More specifically:

αH (c) = − min
μ∈M(L)

AL−ηc (μ).

This defines a function αH : H1(M; R) −→ R that is generally called Mather’s
α-function or effective Hamiltonian (see also [23, p. 177]).

v) It is possible to show that Mather’s α-function is convex and superlinear
[23, Thm. 1]. In particular, one can consider its convex conjugate, using Fenchel
duality, which is a function on the dual space (H1(M; R))∗ � H1(M; R) and is
given by:

βH : H1(M; R) −→ R

h �−→ max
c∈H1(M;R)

(〈c, h〉 − αH (c)) .

This function is also convex and superlinear and is usually called Mather’s
β-function, or effective Lagrangian. It has also a meaning in terms of the minimal
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Lagrangian action. In fact, one can interpret elements in H1(M; R) as rotation vec-
tors of invariant probability measures [23, p. 177] (or ‘Schwartzman asymptotic
cycles’ [30]). In particular βH (h) represents the minimal Lagrangian action of L
over the set of all invariant probability measures with rotation vector h. Observe
that in this case we do not need to modify the Lagrangian, since the constraint on
the rotation vector will play somehow the role of the previous modification (it is
in some sense the same idea as with Lagrange multipliers and constrained extrema
of a function). We refer the reader to [23,32] for a more detailed discussion on the
relation between these two different kinds of action-minimizing processes.

Using the duality between Lagrangian and Hamiltonian, via the Legendre transform
introduced above, one can define the analogue of the Mather, Aubry and Mañé sets in
the cotangent bundle, simply considering

M∗
c(H) = LL

(M̃c(L)
)
, A∗

c(H) = LL
(Ãc(L)

)
and N ∗

c (H) = LL
(Ñc(L)

)
.

These sets continue to satisfy the properties mentioned above, including the graph
theorem. Moreover, it follows from Carneiro’s result [11], that they are contained in
the energy level {H(x, p) = αH (c)}. However, one could try to define these objects
directly in the cotangent bundle. For any cohomology class c, let us fix a representative
ηc. Observe that if � := {(x, η(x)) : x ∈ M} is an invariant Lagrangian graph of coho-
mology class c, i.e. η = ηc + du for some u : M → R, then H(x, ηc + du(x)) = const.
Therefore, the Lagrangian graph is a solution (and of course a subsolution) of the Ham-
ilton-Jacobi equation H(x, ηc + du(x)) = k, for some k ∈ R. In general solutions of
this equation, in the classical sense, do not exist. However Albert Fathi proved that it is
always possible to find weak solutions, in the viscosity sense, and use them to recover
the above results. This theory, that can be considered as the analytic counterpart of the
variational approach discussed above, is nowadays called weak KAM theory. We refer
the reader to [15] for a more complete and precise presentation.

It turns out that for a given cohomology class c these weak solutions can exist only in
a specific energy level, that - quite surprisingly - coincides with Mather’s value αH (c).
This is also the least energy value for which the Hamilton-Jacobi equation can have
subsolutions:

H(x, ηc + du(x)) ≤ k, (1)

where u ∈ C1(M). Observe that the existence of C1-subsolutions corresponding to
k = αH (c) is a non-trivial result due to Fathi and Siconolfi [17]. Moreover they proved
that these subsolutions are dense in the set of Lipschitz subsolutions. We shall call these
subsolutions, ηc-critical subsolutions. Patrick Bernard [6] improved this result proving
the existence and the denseness of C1,1 ηc-critical subsolutions, which is the best result
that one can generally expect to find. The main problem in fact is represented by the
Aubry set itself, that plays the role of a non-removable intersection (see also [27]). More
specifically, for any ηc-critical subsolution u, the value of ηc + dx u is prescribed on
π(A∗

c(H)), where π : T ∗M −→ M is the canonical projection. Therefore, if the Aubry
set is not sufficiently smooth (it is at least Lipschitz), then these subsolutions cannot be
smoother. However, on the other hand this obstacle provides a new characterization of
the Aubry set in terms of these subsolutions. Namely, if one denotes by Sηc the set of
C1,1 ηc-critical subsolutions, then:

A∗
c(H) =

⋂

u∈Sηc

{(x, ηc + dx u) : x ∈ M} . (2)
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As we have already recalled, in T ∗M , with the standard symplectic form, there is
a 1-1 correspondence between Lagrangian graphs and closed 1-forms (see for instance
[10, Sect. 3.2]). Therefore, we could interpret the graphs of the differentials of these
critical subsolutions as Lipschitz Lagrangian graphs in T ∗M . Therefore the Aubry set
can be seen as the intersection of these distinguished Lagrangian graphs and it is exactly
this property that provides to this set the intrinsic Lagrangian structure mentioned above
and that will play a crucial role in our proof.

In [33], in fact, Sorrentino used this characterization to study the relation between
the existence of integrals of motion and the size of the above action-minimizing sets.
Let H be a Tonelli Hamiltonian on T ∗M and let F be an integral of motion of H . If we
denote by 	H and 	F the respective flows, then:

Proposition 2.1 (See Lem. 2.2 in [33]). The Mather setM∗
c(H)and the Aubry setA∗

c(H)

are invariant under the action of 	t
F , for each t ∈ R and for each c ∈ H1(M; R).

Moreover one can study the implications of the existence of independent integrals of
motion, i.e. integrals of motion whose differentials are linearly independent, as vectors,
at each point of these sets. It follows from the above proposition that this relates to the
size of the Mather and Aubry sets of H . In order to make clear what we mean by the
‘size’ of these sets, let us introduce some notion of tangent space. We call generalised
tangent space to M∗

c(H) (resp. A∗
c(H)) at a point (x, p), the set of all vectors that are

tangent to curves in M∗
c(H) (resp. A∗

c(H)) at (x, p). We denote it by T G
(x,p)M∗

c(H)

(resp. T G
(x,p)A∗

c(H)) and define its rank to be the largest number of linearly independent
vectors that it contains. Then:

Proposition 2.2 (See Prop. 2.4 in [33]). Let H be a Tonelli Hamiltonian on T ∗M and sup-
pose that there exist k independent integrals of motion on M∗

c(H) (resp. A∗
c(H)). Then,

rank T G
(x,p)M∗

c(H) ≥ k (resp. rank T G
(x,p)A∗

c(H) ≥ k) at all points (x, p) ∈ M∗
c(H)

(resp. (x, p) ∈ A∗
c(H)).

Remark 2.2. In particular, the existence of the maximum possible number of integrals
of motion (i.e. k = n) implies that these sets are invariant smooth Lagrangian graphs
(see [33, Rem. 3.5] or [33, Lem. 3.4 and Lem. 3.6]). In particular, smoothness is a
consequence of the fact that these graphs lie in level sets of the integral map, which is
non-degenerate.

However the most important peculiarity of these action-minimizing sets observed in
[33], at least as far as we are concerned, is that they force the integrals of motion to
Poisson-commute on them. In fact, using the characterization of the Aubry set in terms
of critical subsolutions of Hamilton-Jacobi and its symplectic interpretation given above
(see (2) and the subsequent comment), one can recover the involution property of the
integrals of motion, at least locally.

Proposition 2.3 (See Prop. 2.7 in [33]). Let H be a Tonelli Hamiltonian on T ∗M and
let F1 and F2 be two integrals of motion. Then for each c ∈ H1(M; R) we have that

{F1, F2}(x, π̂−1
c (x)) = 0 for all x ∈ Int

(Ac(H)
)
, where π̂c = π |A∗

c(H) and Ac(H) =
π

(A∗
c(H)

)
.

Remark 2.3. Observe that the above set Int
(Ac(H)

)
may be empty. What the proposition

says is that whenever it is non-empty, the integrals of motion are forced to Poisson-com-
mute on it. In the cases that we shall be considering hereafter, Ac(H) = M and therefore
it is not empty.
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3. Proof of Theorem 1.1

Proposition 3.1. Let � ⊂ H−1(h) be a C1 Lagrangian graph. If H is a weakly inte-
grable Tonelli Hamiltonian and � ⊂ Reg F, then M admits the structure of a smooth
T

d-bundle over a parallelisable base Bn−d for some d > 0.

Proof (Proposition 3.1). Since � is a C1 Lagrangian graph that lies in an energy surface
of H , � is the graph of a C1 closed 1-form λ with cohomology class c. It follows that λ

solves the Hamilton-Jacobi equation and from (2) that A∗
c(H) ⊆ � (see also [33, Sect.

3]). Moreover, Proposition 2.2 and Remark 2.2 allow us to conclude that A∗
c(H) = �.

Therefore, Proposition 2.1 implies that each vector field X Fi , i = 1, . . . , n is tangent to
�. Let Y = X H |� and Yi = X Fi |�. Since � ⊂ Reg F , {Yi } is a framing of T �.

Let φi (resp. φ) be the flow of Yi (resp. Y ). Let � be the group of diffeomorphisms
generated by the flows φi and φ. The Stefan-Sussman orbit theorem implies that � is

the orbit of �: � =
{∏m

j=1 φ
i j
t j

(p) : t j ∈ R, m ∈ N

}
for any p ∈ � [34–36]. Since H

Poisson-commutes with each of the Fi , the vector field Y commutes with Yi for all i .
Therefore, the flow φ of Y commutes with each φi , i.e. φ lies in the centre Z of �.

Let p ∈ � be a given point and q ∈ � a second point. Let 	 = ∏m
j=1 φ

i j
t j

be
an element in � satisfying 	(p) = q. If ϕt is a 1-parameter subgroup of Z , then
ϕt (q) = 	(ϕt (p)) for all t ∈ R. Therefore, each orbit of ϕ is conjugate by a smooth
conjugacy isotopic to the identity. We have seen that φt ∈ Z for all t , and the above
shows that each orbit of φt (indeed, of Z ) is conjugate.

Define a smooth Riemannian metric g on � by defining {Yi } to be an orthonormal
framing of T �. Then, we see that each element in Z preserves g. Therefore Z is a
group of isometries of a compact Riemannian manifold. The closure of Z in the group
of C1 diffeomorphisms of �, Z̄ , is therefore a compact connected abelian Lie group by
the Montgomery-Zippin theorem [26]. Therefore, Z̄ is a d-dimensional torus for some
d > 0 (since it contains the 1-parameter group φt ).

Since Z centralises �, so does its closure Z̄ . Therefore, each orbit of Z̄ is conjugate.
It follows that Z̄ acts freely on �. This gives � the structure of a principal T

d -bundle.
Finally, let p ∈ � be given. Possibly after a linear change of basis, we can suppose

that Yi , i = 1, . . . , d, is a basis of the tangent space to the T
d -orbit through p, and Yi ,

i = d +1, . . . , n is a basis of the orthogonal complement. Therefore, Yi , i = d +1, . . . , n
is a basis of the orthogonal complement to the fibre at all points on �. Since each vector
field Yi is T

d -invariant, it descends to B = �/T
d . Therefore, the vector fields on B

induced by Yi , i = d + 1, . . . , n, frame T B. ��
Remark 3.1. A few remarks are in order. First, there is a ξ ∈ t = Lie T

d such that
exp(tξ) · p = φt (p) for all t ∈ R and p ∈ �. This follows from the fact that {φt } ⊂ Z̄
is a 1-parameter subgroup. Therefore, there is a torus T of dimension c ≤ d which is
the closure of {exp(tξ)} in T

d such that each orbit closure of φ is the orbit of T . Second,
for almost all constants (αi ) ∈ R

d , the vector field Yα = Y +
∑d

i=1 αi Yi will have dense
orbits in each T

d orbit. Third, since each orbit of φ is conjugate by a diffeomorphism
isotopic to 1, the asymptotic homology of � is unique (see [16, Prop. A.1]). Finally, if,
as in Theorem 1.1, one has an upper semicontinuous family of such Lagrangian graphs
�c′ , then the dimension d ′ of the torus is an upper semicontinuous function of c′.

Proof (Theorem 1.1). Since A∗
c is contained in the set of regular points of F , it follows

from Proposition 2.2 and Remark 2.2 that the Aubry set A∗
c is a C1 invariant Lagrangian
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graph �c of cohomology class c and that it coincides with the Mather set M∗
c (see also

[33, Lems. 3.4 & 3.6]). Therefore, �c supports an invariant probability measure of full
support. In particular, since all c-critical subsolutions of the Hamilton-Jacobi equation
(1), with k = αH (c), have the same differential on the (projected) Aubry set [15, Thm.
4.11.5], it follows that, up to constants, there exists a unique c-critical subsolution, which
is indeed a solution. It follows then that the Mañé set N ∗

c = A∗
c (see [15, Def. 5.2.5]).

We can use the upper semicontinuity of the Mañé set (see for instance [2, Prop. 13]) to
deduce that the Mañé set corresponding to nearby cohomology classes must also lie in
Reg F (note in fact that in general the Aubry set is not upper semicontinuous [7]). Hence,
there exists an open neighborhood O of c in H1(M; R) such that A∗

c′ ⊆ N ∗
c′ ⊂ Reg F

for all c′ ∈ O and applying the same argument as above, we can conclude that each A∗
c′

is a smooth invariant Lagrangian graph of cohomology class c′ and that it coincides with
the Mather set M∗

c′ .
At this point (i) and (ii) follow from Proposition 3.1 and Remark 3.1.
The proof of (iii) is the same as in [33, Cor. 3.8], but in this case we also know that

these graphs are Schwartzman uniquely ergodic, i.e. all invariant probability measures
on �c′ have the same rotation vector hc′ ∈ H1(M; R) (see Remark 3.1). The differen-
tiability of αH follows then from [16, Cor. 3.6]. The differentiability of βH follows the
disjointness of these graphs (see for instance [16, Thm. 3.3] or [32, Rem. 4.26 (ii)]). ��
Proof (Theorem 1.2). Let d be the largest dimension of the torus fibre of �c for c ∈ O.
The upper semicontinuity of this dimension implies that there is an open set on which the
dimension of the fibre equals d; without loss of generality, it can be supposed that this
open set is O. By (iii) of Theorem 1.1, Mather’s α-function is differentiable on O. Since
αH is a locally Lipschitz function, it is continuously differentiable on O. Therefore, the
map

c � �� h = ∂αH (c), O ∂αH �� H1(M; R)

is continuous and one-to-one (by [16, Thm. 3.3]) and hence a homeomorphism onto its
image.

Let b1(M) = dim H1(M; R) be the first Betti number of M . Since the rotation vec-
tor of Y = X H |�c is the image of a cycle in H1(T

d; R), d ≥ b1(M). To prove that
d =b1(M), we need a few lemmata. (We follow the notation of the proof of Theorem 1.1.)

Lemma 3.1. H1(B; R) = {0}.
Proof. Let c ∈ O. The rotation vector of Y projects to 0 in H1(B; R), since Y is tangent
to the T

d fibres of �c. But the projection map πc : �c −→ B is surjective on H1 and
πc,∗(∂αH (O)) is open since πc,∗ is an open map. These facts imply H1(B; R) is trivial.

��
Lemma 3.2. For all f ∈ F∗C∞(Rn) and c ∈ O the rotation set of Y f = X f |�c
contains a unique point.

Proof. The proof of Theorem 1.1 shows that there is a T
d -connection on �c that per-

mits one to decompose Y f into a vertical component Yv and a horizontal component
Yh . Because �c is a level set of F , Yv (resp. Yh) is a linear combination of the basis
Yi ,i = 1, . . . , d (resp. Yi , i = d + 1, . . . , n) with constant coefficients. Therefore, Yv
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and Yh commute and the flow of Y f is a product of their commuting flows: φ f
t = φv

t ◦φh
t

(and φv
t lies in the centre of �). Since H1(B; R) = {0}, the rotation set of Yh is triv-

ial, so the rotation set of Y f equals that of Yv , which is a singleton from the proof of
Proposition 3.1. ��

Suppose now that d > b1(M). Let G = H + F∗α ∈ F∗C∞(Rn) be a Tonelli Ham-
iltonian such that for a residual set of c ∈ O, the vertical component of YG = XG |�c
generates a dense 1-parameter subgroup of the torus fibre. It is straightforward to see
that such G exist. Lemma 3.2 implies that αG |O is differentiable and therefore ∂αG |O
is a homeomorphism onto its image. If d > b1(M), then there are distinct c, c′ ∈ O
such that the rotation vectors ρ(�c) = ρ(�c′), which contradicts the injectivity of ∂αG .
Therefore, d = b1(M).

Let κ : M̌ −→ M be a finite covering. It is claimed that b1(M̌) = b1(M).

�̌c
� � ��

K|�̌c
����

T ∗M̌ �� ��

K
����

M̌

κ

����

η̌c=κ∗ηc

��

�c
� � �� T ∗M �� �� M

ηc

��

(3)

Since the cotangent lift of κ , K, is a local symplectomorphism, the Tonelli Hamiltonian
Ȟ = K∗ H is weakly integrable with the first-integral map F̌ = K∗F . Let c ∈ O be
a cohomology class and ηc a solution to the Hamilton-Jacobi equation for H whose
graph �c equals the Mather set M∗

c (diagram (3)). The pullback η̌c = κ∗ηc solves the
Hamilton-Jacobi equation for Ȟ and its graph �̌c is an invariant C1 Lagrangian graph.
By Proposition 3.1, there is a ď > 0 such that �̌c admits the structure of a principal

T
ď -bundle. This torus action is defined by ď commuting vector fields Y̌i = X F̌i

|�̌c,

i = 1, . . . , ď induced by the first-integral map F̌ . Since K is a local symplectomor-
phism, K|�̌c is a local diffeomorphism. This shows that the dimension ď equals d. By
the previous paragraph, weak integrability implies that ď = b1(M̌) so b1(M̌) = b1(M).

Let us prove that M is a trivial principal T
d -bundle. This argument is indebted to

that of Sepe [31]. A principal T
d -bundle is classified up to isomorphism by a classifying

map

T
d

� �

������������� � �

��

� �

������������

M = f ∗ET
d ��

π f

����

ET
d

π

����

∏d
i=1 S∞

Hopf fib.
����

B
f �� BT

d
∏d

i=1 CP∞.

(4)

The classifying map f is null homotopic if and only if the pullback bundle is trivial.
Classical obstruction theory shows that the single obstruction to a null homotopy of f
is a cohomology class – the Chern class – with the following description. The trivial
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section ∗ �→ ∗ × 0 of ET
d restricted to its 0-skeleton extends over the 1-skeleton.

The obstruction to extending this section over the 2-skeleton defines a cohomology
class η ∈ H2(BT

d;π1(T
d)) = H2(BT

d; H1(T
d)). By naturality, the obstruction to

extending the trivial section of f ∗ET
d over the 2-skeleton is the cohomology class

η f = f ∗η ∈ H2(B; H1(T
d)) – called the Chern class.

In terms of the E2 page of the Leray-Serre spectral sequence with Z-coefficients
for the bundle T

d ↪→ M −→ B, one has the differential d0,1
2 : E0,1

2 = H1(Td) −→
E2,0

2 = H2(B). It has been shown above that the inclusion map T
d ↪→ M is injective

on H1, hence surjective on H1. Since a class in E0,1
2 survives to a class in E∞ if and

only if it is in the kernel of d0,1
2 , the differential d0,1

2 must therefore vanish. Since the

differential d2,0
2 vanishes, it follows that H2(B) survives to E∞.

On the other hand, for any cohomology class φ ∈ H1(Td), the class η ∪ φ = 〈η, φ〉
is a class in H2(BT

d) which satisfies π∗(η ∪ φ) = 0 in H2(ET
d). By naturality, the

class η f ∪ φ ∈ H2(B). This class, if non-zero, survives to E∞. On the other hand,
π∗

f (η f ∪ φ) = 0 in H2(M). This shows that η f ∪ φ = 0 in H2(B). Since the class φ

was arbitrary, it follows that η f vanishes. Therefore M = f ∗ET
d is a trivial principal

T
d -bundle.

Let us now prove (i–ii).
When dim M = 2, it follows from (i) in Theorem 1.1 that M is orientable and has

genus 0, therefore it must be T
2.

When dim M = 3, one cannot have d < 3, since there are no parallelisable (3 − d)-
dimensional manifolds with trivial first Betti number. Therefore, d = 3 and M = T

3.
When dim M = 4, there are two options: dim B ≤ 2 or dim B = 3. When dim B ≤ 2,

B has the homotopy type of a point, hence it is a point, so M = T
4. Assume that dim B =

3. If π1(B) is a free product of irreducible finitely-presented groups Gi (i = 0, . . . , g),
then Kneser’s theorem [19] implies that B = B0# · · · #Bg , where Bi is a closed 3-man-
ifold with π1(Bi ) = Gi . Since H1(B) = ⊕

i H1(Bi ), each homology group H1(Bi ) is
finite. According to [29, Prop. 2.1], if H1(B) is finite and π1(Bi ) is not perfect for some
i , then the universal abelian covering B̂, or a 2-fold cover thereof, is a finite cover of B
which has first Betti number at least 1. Thus, the only case to be resolved is that when
π1(Bi ) is perfect for all i = 0, . . . , g. By [29, Rem. at bottom of p. 570], Stallings’
theorem implies that Gi = [Gi , Gi ] is isomorphic to π1 of the Klein bottle – which is
absurd. This proves that B is an irreducible 3-manifold. If π1(B) is infinite, then the
virtual Haken conjecture implies that B has a finite covering with non-zero first Betti
number. Therefore, π1(B) is finite and so by the proof of the Poincaré conjecture, B is
finitely covered by S3.

Let us prove (iii). Let us denote �c′ = {(x, λc′(x)) : x ∈ M} as usual. Observe that
the map:

� : O × M −→ T ∗M

(c′, x) �−→ λc′(x)

is continuous. It is sufficient to show that if cn → c′ in O, then λcn converge uniformly to
λc′ . In fact, the sequence {λcn }n is equilipschitz (it follows from Mather’s graph theorem
[23, Thm. 2]) and equibounded, therefore applying the Ascoli-Arzelà theorem we can
conclude that - up to selecting a subsequence - λcn converge uniformly to λ̃ = ηc′ + du,
for some u ∈ C1(M). Observe that since H(x, λcn (x)) = αH (cn) for all x ∈ M and all
n, and αH is continuous, then H(x, λ̃(x)) = αH (c′) for all x . Therefore, u is a solution
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of the Hamilton-Jacobi equation H(x, ηc′ + du) = αH (c′). As we have observed in the
beginning of this proof, for each c′ ∈ O there is a unique solution of this equation, hence
λ̃ = λc′ . This concludes the proof of the continuity of �. Notice that this could be also
deduced from the fact that � is injective and semicontinuous.

If dim H1(M; R) ≥ dim M , then the continuity of � implies that these Lagrangian
graphs �c′ foliate an open neighborhood of �c. It follows from Proposition 2.3 that the
components of F commute in this open region. Therefore, each �c′ is an n-dimensional
manifold which is invariant under the action of n commuting vector fields, which are
linearly independent at each point. It is a classical result that �c′ is then diffeomorphic
to an n-dimensional torus and that the motion on it is conjugate to a rotation (see for
instance [3]). ��

4. Amenable Groups, Measures and Rotation Vectors

In this section it is assumed that X is a compact, path-connected, locally simply-con-
nected metrizable space and (G, mG) is a locally compact, simply-connected, metrizable,
amenable topological group with Haar measure mG . We will use d to denote a metric
on both spaces; it will be assumed that the metric on G is right-invariant, without loss of
generality. The space of mG-essentially bounded measurable functions on G is denoted
by L∞(G). L∞(G)∗ has a distinguished subspace of functionals invariant under G’s left
(resp. right) action; this subspace will be denoted by L∞(G)∗G− (resp. L∞(G)∗G+

). A
functional ν ∈ L∞(G)∗ which satisfies ν(1) = 1 is called a mean. The set of left-invari-
ant (resp. right-invariant) means is denoted by m(G)G− (resp. m(G)G+); amenability of
G implies that both m(G)G± is non-empty, as is the intersection m(G).

Let π̂ : X̂ −→ X be the universal abelian covering space of X , i.e. the regular cov-
ering space whose fundamental group is [π1 X, π1 X ] and on which H1(X; Z) (singular
homology) acts as the group of deck transformations of π̂ .

Let φ : G −→ X be a uniformly continuous map (it is not assumed that there is an
action of G on X ). The simple-connectedness of G implies that there is a lift φ̂ of φ to X̂ .
It is well-known that the first singular cohomology group of X is naturally isomorphic
to the group of homotopy classes of maps from X to S1, denoted by [X, S1]. For each
f ∈ [X, S1], let us construct the following commutative diagram:

X̂

π̂
����

f̂ ��
R

p
����

G φ ��

φ̂���

�����

g
		

ĝ 



X f ��

f̂

��

S1

(5)

where p(x) = x mod 1 and f̂ is a lift of f to X̂ — the dotted diagonal line exists if and
only if f is null-homotopic. Define the map

G × G
ζ ��

R
1 (s, t) � ζ �� g(st) − g(t). (6)

A priori, ζ is a map into S1, but the simple-connectedness of G implies there is a unique
lift of the map in (6) that is identically zero when s = 1 (the lift is trivially ĝ(st)− ĝ(t)).
For a fixed s ∈ G, let ζs(t) = ζ(s, t).
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Lemma 4.1. For each s ∈ G, ζs ∈ L∞(G).

Proof. Since X is compact, f is uniformly continuous. Since φ is assumed to be uni-
formly continuous, g and therefore ĝ is uniformly continuous. Therefore, there is a
δ > 0 such that if a, b ∈ G and d(a, b) < δ then |ĝ(a)− ĝ(b)| < 1. Let N be an integer
exceeding d(s, 1)/δ. Then the right-invariance of the metric d implies that for all t ∈ G,
d(st, t) = d(s, 1) < Nδ, so by the triangle inequality, one concludes |ĝ(st)−ĝ(t)| < N .
Thus |ζs(t)| < N for all t ∈ G. ��
Lemma 4.2. Let ν ∈ m(G)G−be a left-invariant mean on G. If ĝ ∈ L∞(G), then
〈ν, ζs〉 = 0 for all s ∈ G. In particular, if

(1) f is null-homotopic; or
(2) Im φ̂ is contained in a compact set,

then 〈ν, ζs〉 vanishes for all s ∈ G.

Proof. If ĝ ∈ L∞(G), then 〈ν, ζs〉 = 〈s∗ν, ĝ〉 − 〈ν, ĝ〉 = 0 by left-invariance of ν. If
f is null-homotopic, then the image of f̂ is a compact subset of R, so ĝ ∈ L∞(G);
likewise, if Im φ̂ has compact closure. ��
Lemma 4.3. Let φ, φ′ : G −→ X be uniformly continuous maps. If there is a K > 0
such that their lifts φ̂, φ̂′ : G −→ X̂ satisfy d(φ̂(s), φ̂′(s)) < K for all s ∈ G, then
〈ν, ζs − ζ ′

s〉 vanishes for all s ∈ G and ν ∈ m(G)G− .

Proof. The proof of this lemma mirrors the preceding. By the assumption that
d(φ̂(t), φ̂′(t)) < K for all t ∈ G, one has that ĥ(t) := f̂ φ̂(t) − f̂ φ̂′(t) lies in L∞(G).
Therefore, 〈ν, ζs − ζ ′

s〉 = 〈s∗ν, ĥ〉 − 〈ν, ĥ〉 = 0 by left-invariance of the mean ν. ��
Lemma 4.4. Let ν ∈ m(G)G− be a left-invariant mean and φ : G −→ X a uniformly
continuous map. For each s ∈ G, the map

f �−→ 〈ν, ζs〉 (7)

(see (6)) induces a linear function ρs(ν) : H1(X; R) −→ R. The function ρs :
m(G)G− −→ H1(X; R) is affine and continuous in the weak-* topology on L∞(G)∗∗.

Proof. It suffices to show that this map is additive on H1(X; Z) = [X, S1], since it
is extended by multiplicativity to a map on H1(X; R). First, let us show the map is
well-defined on homotopy classes. Let f, f ′ be representatives of the homotopy class
[ f ]. By compactness of X × [0, 1], there is an N > 0 such that | f̂ (x) − f̂ ′(x)| < N
for all x ∈ X̂ . Therefore, |ĝ(st) − ĝ′(st)| < N and |ĝ(t) − ĝ′(t)| < N for all t ∈
G (using the obvious notation), so both s∗(ĝ − ĝ′) and ĝ − ĝ′ are in L∞(G). Thus,
〈ν, ζs − ζ ′

s〉 = 〈s∗ν, ĝ − ĝ′〉 − 〈ν, ĝ − ĝ′〉 = 0 by left-invariance of ν. This proves the
map (7) is well-defined on [X, S1].

To prove that the map (7) is additive, let f, h : X −→ S1 be representatives of the
homotopy classes [ f ], [h]. The homotopy class [ f ]+ [h] is represented by [ f +h]. From
the diagram (5), it is clear that ζ f +h = ζ f + ζ h , where ζ • denotes ζ constructed with •.
This suffices to prove additivity, and that suffices to show that ρs(ν) is a linear form on
H1(X; R).

Since the pairing defining ρs(ν) is the bilinear pairing between L∞(G)∗ and L∞(G),
it follows that ρs is an affine map that is continuous in the weak-* topology on linear
maps Hom(L∞(G)∗; H1(X; R)∗). ��
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Definition 4.1. Let s ∈ G. The set

Rs = ρs

(
m(G)G−

)
(8)

is the rotation set of the left translation s.

Theorem 4.1. The map ρ : G −→ Hom(m(G)G−; H1(X; R)) is continuous. For each
s ∈ G, the rotation set Rs is a compact, convex subset of H1(X; R). The rotation-set
map

s �−→ Rs (9)

is an upper semi-continuous set function.

Proof. If sn −→ s in G, then for a fixed f : X −→ S1, one sees that ζsn −→ ζs in
L∞(G) ∩ C0(G; R). Therefore, for any ν ∈ m(G)G− , 〈ρsn (ν), [ f ]〉 −→ 〈ρs(ν), [ f ]〉.
This proves ρ is continuous in the weak-* topology.

Clearly m(G)G− is convex. Since m(G)G− ⊂ L∞(G)∗ is a closed subset of the unit
ball in L∞(G)∗, it is a compact set in the weak-* topology. Since ρs is continuous and
affine, its image is compact and convex. ��

4.1. Examples. Let us compute some rotation sets.

4.1.1. Translations on tori. Let X = T
n and let G = R

n = X̃ be the universal cover-
ing group acting in the tautological manner; the map φ is the orbit map of θ0 ∈ T

n . A
cohomology class f ∈ [X, S1] has a canonical representative, viz. f (θ) = 〈v, θ〉 mod 1,

where v ∈ Hom(Zn; Z). One arrives at the map g̃(t) = 〈v, t + θ̃0〉 and ζs(t) = 〈v, s〉
– which is independent of t ∈ G – whence the mean of ζs equals 〈v, s〉 for any mean
ν ∈ m(G)G . If one employs the tautological isomorphism between the real homology
(resp. cohomology) group of T

n and R
n (resp. Hom(Rn; R)), one obtains

ρs(ν) = s

for all s ∈ G, ν ∈ m(G)G− .
We note that this calculation computes the rotation vector/set of a subgroup, given a

mean on the whole group. Lemma 4.6 below shows that there is no loss of generality.

4.1.2. Translations on quotients of contractible amenable Lie groups of type (E). Let G
be a contractible, amenable Lie group of type (E) (hence a solvable Lie group of type
(E)), ��G be a co-compact subgroup and X = �\G. Let g, g′ ∈ G and let φ : G −→ X
be the map φ(t) = �gt−1g′. Let N be the commutator subgroup of G; it is known that
� ∩ N is a lattice in N , that the commutator subgroup of � is of finite index in � ∩ N
and therefore �N is a closed subgroup of G [12, Lem. 3]. The map F : X −→ N\X
is therefore a submersion onto a torus whose dimension is the codimension of N in G.
From the fact that the derived subgroup of � is of finite index in � ∩ N , one sees that
[X, S1] = F∗[N\X, S1].

Therefore, we have reduced the problem to the case of a translation on a torus, whence
ρs(ν) = −Ns in the simply-connected abelian Lie group N\G, ν ∈ m(G)G− .
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4.1.3. Translations on quotients of amenable Lie groups of type (E). The situation with
simply-connected amenable Lie groups of type (E) is somewhat more complicated than
the previous example, as exemplified by [12, Exs. 1 & 2]. These examples show how
the first Bieberbach theorem may fail, but in these examples the Levi decomposition is
trivial: the groups themselves are solvable and one might be led to believe that this is
the only way that such pathological examples can arise.

Example. Let us give an example where the Levi decomposition is non-trivial and the
first Bieberbach theorem fails. That is, let us give an example where G = SK is a
simply-connected amenable Lie group of type (E) where S is its solvable radical and K
is a maximal compact subgroup, and � < G is a lattice subgroup such that � ∩ S is not
a lattice subgroup of S.

Let k > 2 be integers and let N be the nilpotent Lie group whose multiplication is
defined by

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
1

2
(x1 ⊗ y2 − x2 ⊗ y1))

where xi , yi ∈ R
k, zi ∈ R

k ⊗ R
k . (10)

The cyclic group generated by

a =
⎡

⎣
2 1 0
1 1 0
0 0 1

⎤

⎦ (11)

acts as a group of automorphisms of N , and this group is a discrete subgroup of a
1-parameter group of automorphisms A. Let S = N A, a solvable group of type (E). On
the other hand, let K be the universal covering group of SOk × SOk (since k > 2, K is
compact) and let K act on N via

κ · g = (u · x, v · y, (u ⊗ v) · z)

where g = (x, y, z) ∈ N , κ ∈ K �−→ (u, v) ∈ SOk × SOk . (12)

This is an action by automorphisms of N and this action commutes with the action of
A, so this action induces a natural action of K on S. This suffices to describe the group
G = SK , an amenable Lie group of type (E).

The lattice subgroup � is described as follows. Let

NZ =
{

g = (x, y, z) ∈ N : x, y ∈ Z
k, 2z ∈ Z

k ⊗ Z
k
}

,

and observe that a preserves NZ. Let b ∈ K and let γ = ab. The group � generated by
γ and NZ is discrete and co-compact in G for any choice of b. If b is of infinite order,
then the intersection of � with S is just NZ and is not a lattice in S. The projection of
� to K = S\G is the group generated by b; if b is chosen in general position, then the
identity component of the closure is a maximal torus.

This example shows how the first Bieberbach theorem can fail for type (E) amena-
ble Lie groups. However, the representation of K as a group of automorphisms of S is
almost faithful, and this implies many of the nice properties mentioned in the previous
paragraph. On the other hand, if one takes the amenable Lie group G = C

n × SUn with
the lattice subgroup � generated by the set

{
(e j , ρ j ), (ie j , ρ j ) : j = 1, . . . , n

}
, where

each ρ j is a generic element in the maximal torus of diagonal matrices, then one sees
that the intersection of � with S is trivial and the projection of � onto SUn is dense in
the maximal torus.
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Let G = SK be a simply-connected, amenable Lie group where S is its radical and
K its maximal compact subgroup, and let � < G be a lattice subgroup. Let us consider
two cases in successive generality:

K is virtually a subgroup of Aut(S). In this case, we suppose that the action of K on S
by conjugation has a finite kernel. In this case, the machinery of [4,12] is applicable.

Let S∗ be the identity component of the closure of �S in G and let �∗ = S∗ ∩ �.
By [12, Lem. 3] and [4], one knows that S∗ is a solvable subgroup containing S, �∗ is
of finite index in �, S\S∗ is a torus subgroup, T , of K , the nilradical of S∗ equals the
nilradical R of S, � ∩ R is a lattice subgroup of R. Likewise, the derived subgroup of
S, N = [S, S] = [S∗, S∗], intersects � in a lattice subgroup of N . This information is
summarised in the commutative diagram (13), where B = �∩ N , F = B\N , Z = B\G,
T ∗ = (B\N )\(N\S∗) (a torus) and A = S\S∗.

B ��

��

����
� B

��

���

N ��

��

�� �����
G �� ��

��

�� �����
N\G = AK

����

F ��

��

Z

����

�� ���������

B\�∗
��		

�∗ ��

��

�����
���� �∗

��

��




N\S∗
�� �����

S∗ ��

��

�� �����
���� G �� ��

��

 ���
S∗\G = T \K

����

T ∗ Y ∗ ��

����

���� X∗

����

�� ���������

� ��
�����

�





�S ��
�� �����

G �� ��
 

�S\G = W T \K

Y �� X
�� ���������

(13)

In diagram (13), all southeast sequences are fibrations with discrete fibre (covering
spaces), all eastern sequences are fibrations, as are the backwards L sequences. In par-
ticular, X∗ is a finite regular covering space of X which is fibred by the solvmanifold
Y ∗ over the K -homogeneous space T \K ; the solvmanifold Y ∗ is itself fibred by the
nilmanifold F over the torus T ∗. Since S∗ is the identity component of �S, the group
W = �∗\� permutes the components of �S, which shows that Y ∗ = Y , so X is fibred
by solvmanifolds, also.

Since W T \K has finite fundamental group, its first cohomology group over Z van-
ishes. Therefore, the Leray-Serre spectral sequence for the fibring of X by Y shows that
the restriction to a fibre induces an injection of H1(X; R) into H1(Y ; R) (the image is
the kernel of d0,1

2 in Fig. 1). The fibring of Y by the nilmanifold F over the torus T ∗ is
exactly as described in the previous example. In particular, the projection map induces
an isomorphism of H1(Y ; R) and H1(T ∗; R). Since S∗ = ST , we see that N\S∗ = AT ,
where A = N\S. Since T is contractible in G, one sees that the first real homology
group of X∗ is naturally identified with A; or Z is visibly the universal abelian covering
space of X∗. It follows that H1(X; R) is naturally identified with AW , the fixed-point
set of W acting on A.

Let φ : G −→ X be defined by φ(t) = �gt−1g′ for some g, g′ ∈ G. A few applica-
tions of Lemma 4.3 imply that one can suppose, without changing the rotation map, that
φ(t) = �aκα−1κ−1b, where a, b ∈ S, κ ∈ K and t = βα is the decomposition into
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Fig. 1. E2 page of the spectral sequence

β ∈ K and α ∈ S. Let F̂ : Z −→ A = N\G/K be the map that induces the isomor-
phism of [X∗, S1]⊗R with A. Concretely, if Nt ∈ Z , let t = βtαt be the decomposition
of t into βt ∈ K , αt ∈ S; then F̂(Nt) = Kαt N . One computes that

ζs(t) = −K (κβ−1
t ) · αs · (κβ−1

t )−1 N s, t ∈ G. (14)

It is clear that ζs is S-invariant since t �→ βt is the projection G −→ K . Since the
restriction of any mean on a compact Lie group to its continuous functions is the Haar
probability measure [28], one sees that for any ν ∈ m(G)G− , ρs(ν) = −ᾱs N is the
projection of αs N onto the subspace of K -invariant vectors.

Note that if one restricts φ to S, then the rotation vector of s ∈ S with respect to
the mean ν ∈ m(S)S− is the projection of −κsκ−1 N onto the subspace of W -invariant
vectors.

When K is not a virtual subgroup of Aut(S). Let us now examine the case where the
kernel of representation K −→ Aut(S) is not finite. Let K1 � K be the identity compo-
nent of this kernel. Since K is compact and simply-connected, K is semi-simple and so
K = K0 ⊕ K1 is a sum of semi-simple factors, and the representation of K0 −→ Aut(S)

has finite kernel. By construction, K1 is a normal subgroup of G and the lattice � inter-
sects K1 in a compact set, hence � ∩ K1 is a finite, normal subgroup of �. We obtain
the fibration

� ∩ K1\K1 �� �\G ρ �� �� �̄\Ḡ = (� ∩ K1\�)\(K1\G). (15)

The quotient Ḡ = SK0 has the property that K0 is a virtual subgroup of Aut(S). The fibre
�∩K1\K1 has a finite fundamental group. It follows that the map ρ∗ : H1(�̄\Ḡ; R) −→
H1(�\G; R) is an isomorphism. From this, one concludes that the preceding computa-
tions of the ζ -map (14) and the rotation vectors of a mean remain correct in this enlarged
setting.

4.1.4. Quotients of amenable Lie groups of type (E) – II. Let us continue with the nota-
tions of the previous example. Let H = G × G ′ be a product of simply-connected
amenable Lie groups (in applications, G ′ = R, but what follows is perfectly general).
Let ϕ : G ′ −→ X be a uniformly continuous map and let

φ : H −→ X φ(h) = �g−1ϕ(g′), where h = (g, g′) ∈ H. (16)
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Similar to that above, one computes that with s = (1, b) and t = (g, a), one has

ζs(t) = −K δb(a)N δb(a) = the projection of ϕ(ba)−1 · ϕ(a) onto S, (17)

using the factorisation of an element in G as in the previous example. In particular, this
implies that ζs is independent of g when s = (1, b). This implies that if ν ∈ m(H)H−
is a mean on H , then the rotation vector ρs(ν) (s = (1, b)) equals the rotation vector
ρb(ν̄) for the map ϕ and the projected mean ν̄ ∈ m(G ′)G ′− .

In the next section we show how this result can be interpreted in terms of the rotation
vector of two measures with differently-sized support.

4.2. Relation to Schwartzman cycles. Let us suppose that 	 : G × X −→ G is a left-
action of G on X . For each x ∈ X , one has the orbit map φx (t) := 	(t, x). The action
will also be denoted by 	(t, x) = t · x .

Lemma 4.5. The orbit map φx : G −→ X is uniformly continuous for all x ∈ X.

Proof. Let us define ε(δ) = max {d(	(1, x),	(t, x)) : x ∈ X, d(1, t) ≤ δ}. By local
compactness of G and compactness of X , the maximum is attained. Moreover, ε is a con-
tinuous increasing function of δ that vanishes at δ = 0. This implies uniform continuity
of the orbit map φx . ��

Let ν ∈ m(G)G− be a left-invariant mean on G. For each x ∈ X , the pull-back of
C0(X) by the orbit map φx lies inside L∞(G). Thus, φx,∗ν determines a positive, con-
tinuous linear functional on C0(X) and so by the Riesz representation theorem, φx,∗ν
induces a Borel probability measure μx on X . It is clear that μx is G-invariant. The
support of μx is clearly contained in the ω-limit set of x ,

ωG(x) =
⋂

T >0

{t · x : d(1, t) > T }. (18)

In [16, App. A], one finds a definition of the rotation vector of an invariant measure
of a flow (an R-action). Let μ be an invariant Borel probability measure of the flow
ϕ : R × X −→ X and [ f ] ∈ [X, S1] a cohomology class. The rotation vector of μ is
defined as

〈[ f ], ρϕ(μ)〉 =
∫

x∈X
ζϕ(x) dμ(x), (19)

where ζϕ(x) = f (ϕ1(x)) − f (x) similar to (6). We have:

Theorem 4.2. Let 	 : G × X −→ X be a G-action, ϕ be an action of a 1-dimensional
subgroup with ϕ1 = s, and let ν ∈ m(G)G− , μx = φx,∗ν for some x ∈ X. Then

ρx
s (ν) = ρϕ(μx ), (20)

where ρx is the rotation map for the orbit map φx .

The proof is an application of change of variables.
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4.3. Averaged rotation vectors. In this subsection, let us suppose that G fits in the exact
sequence of (amenable) groups

H
� � � G �� �� F. (21)

Let νH ∈ m(H)H− (resp. νF ∈ m(F)F−) be left-invariant means. One can define an
invariant mean νG as follows: let f ∈ L∞(G) and define fH ∈ L∞(F) by averaging
over H , fH (Ht) = 〈νH , ft 〉, where ft (x) = f (t x). The normality of H and left-invari-
ance of νH implies that fH is well-defined and fH ∈ L∞(F). Then, one defines the
left-invariant mean νG by 〈νG , f 〉 := 〈νF , fH 〉.
Definition 4.2. The mean νG ∈ m(G)G− is denoted by νG = νF × νH and called a
product mean.

Let us suppose that H acts on X by an action ϕ and that there is a uniformly continuous
map φ : G −→ X satisfying

φ(s · t) = ϕ(s) · φ(t) ∀s ∈ H, t ∈ G. (22)

Let t0 ∈ G, x = φ(t0) and μH,x = ϕx,∗νH is the pushed forward measure on X . The
measure μG = φ∗νG (where νG = νF ×νH ) is H -invariant due to the cocycle condition
(22) and supp μH,x ⊂ supp μG .

The following lemma shows that under a suitable condition on the map φ, one can
average over the group G to obtain a measure μG with a larger support and the same
rotation set.

Lemma 4.6. Suppose that the lift φ̂ (see (5)) has the property that for each t ∈ G, there
is a K > 0 such that d(ϕ̂(s) · φ̂(t0), ϕ̂(s) · φ̂(t)) < K for all s ∈ H. Then for all s ∈ H,
ρs(μH,x ) is independent of the point x ∈ Im φ. In particular,

ρs(μH,x ) = ρs(μG). (23)

To be clear, ρs refers to the rotation map of the flow generated by the 1-parameter
group through s, as in (19). The proof of this lemma follows from Lemma 4.3 and
Theorem 4.2 along with an unraveling of the product mean.

Note that the example in Sect. 4.1.3 does not contradict this lemma. In that example,
the map φ does not satisfy the uniform boundedness condition.

5. Homogeneous Structures

This section proves Theorems 1.3 and 1.4. We begin by establishing some terminology
and notation.

Let G be a connected Lie group. Define the left (resp. right) translation map by

Lh(g) := hg, Rh(g) := gh (24)

for all g, h ∈ G. These two maps define a left action of G− = G (resp. G+ = Gop) on
G and therefore on T ∗G by Hamiltonian symplectomorphisms. The momentum maps
of these actions are

�− : T ∗G −→ g∗−, �+ : T ∗G −→ g∗
+, (25)

�−(g, μg) := (T1 Rg)
∗μg, �+(g, μg) := (T1Lg)

∗μg,

for each g ∈ G, μg ∈ T ∗
g G.



130 L. T. Butler, A. Sorrentino

� co-vector fieldμ : G −→ T ∗G is left- (resp. right-) invariant ifμ(1) = (T1Lg)
∗μ(g)

(resp. μ(1) = (T1 Rg)
∗μ(g)) for all g ∈ G. If one trivialises T ∗G with respect to the

left-invariant co-vectors, then the momentum maps are simply

�−(g, μ) := Ad∗
g−1μ, �+(g, μ) := μ, (26)

for all g ∈ G, μ ∈ g∗ = T ∗
1 G, where Ad∗

g = (T1Lg Rg−1)∗.
One says that a function H : T ∗G −→ R is collective for the left-action (resp. right-

action) if H = �∗−h (resp. H = �∗
+h) for some h : g∗ −→ R. If H is collective for the

left-action (resp. right-action) then (25) shows it is right-invariant (resp. left-invariant).
In particular, a Hamiltonian that is collective for the left-action [right-invariant] (resp.
right-action [left-invariant]) Poisson-commutes with �+ (resp. �−).

Let H : T ∗G −→ R be a smooth, left-invariant (= right collective) Tonelli Ham-
iltonian. Therefore, there is a smooth convex Hamiltonian h : g∗ −→ R such that
H = �∗

+h. Moreover, since H is left-invariant, it Poisson-commutes with the momen-
tum map of the left action �−.

Let � � G be a co-compact lattice subgroup and M = �\G. It is assumed that G
is simply-connected, so that the universal cover of M , M̃ , is G. Let [�,�] = �1 be
the commutator subgroup of �, which is the fundamental group of the universal abelian
cover M̂ . This leads to the commuting diagram of covering maps:

T ∗G = T ∗M̃ �� ��

�̂����
�



 



G = M̃

π̃
����

π

����

T ∗(�1\G) = T ∗M̂ �� ��

�̂
����

�1\G = M̂

π̂
����

T ∗(�\G) = T ∗M �� �� �\G = M.

(27)

We adopt the notational convention that the pull-back of x to M̂ (resp. M̃) is denoted by
x̂ (resp. x̃).

Let c ∈ H1(M; R) be a cohomology class, let (x, p) ∈ M∗
c(H) be a recurrent

point in the Mather set and let δ : R −→ M be the minimizer with initial conditions
δ(0) = x and L(x, δ̇(0)) = (x, p), where L denotes the associated Legendre transform
(see Sect. 2). By the arguments of [23], we can suppose that the rotation set of δ is a
singleton {h} ⊂ H1(M; R) and any weak-* limit of uniform measures along the orbit
is a minimizing measure. Fix a lift δ̃ of δ to M̃ . For each g ∈ G, let δ̃g = Lg−1 ◦ δ̃ be

a left-translate of this lift. Left invariance of H implies that δ̃g is the projection of an
integral curve, which implies that the projection of δ̃g to M̂ and M are also projections
of orbits. All of this allows the definition of a map

G × R
φ ��

φ̄ ����
��

��
��

��
T ∗M

��

φ(g, t) = � ◦ (T Lg−1)∗ϕ̃t (x, p),

M φ̄(g, t) = �g−1δ̃(t) = �δg(t),

(28)
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where ϕ̃ is the flow of H on the universal cover T ∗G. By the example in Sect. 4.1.4, the
rotation vector of the map δg is independent of g for any mean on G × R. This implies
the same is true for φ(g, t).

Let νR ∈ m(R)R be an invariant mean such that the rotation vector of νR at s = 1
under the map δ is h. By hypothesis, there is such a mean. The preceding discussion
proves the following lemma.

Lemma 5.1. Let νR ∈ m(R)R, νG ∈ m(G)G− and μ = φ∗(νR ×νG). Then μ minimizes
Ac - i.e. it is c-action minimizing - and the projection of supp μ covers M.

Proof (Theorem 1.3). By [23, Thm. 2], we know that supp μ is a Lipschitz graph over M .
Therefore, the lift to T ∗M̃ contains the smooth manifold φ̃(G × 0) which is a smooth
graph over M̃ . Therefore supp μ is a smooth Lagrangian graph over M , supp μ =
graph(η), and lifting this picture to T ∗M̃ shows that η̃ is closed and left-invariant.
Therefore, η̃ is a bi-invariant 1-form. Since M∗

c(H) = graph(η), where c is the coho-
mology class of η, this proves item (i) of Theorem 1.3. Lemma 5.1 and the preced-
ing discussion implies that the rotation set of M∗

c(H) is a singleton, which implies
item (iii).

Let us now examine Hamilton’s equations for H on the Mather set M∗(H) =
graph(η). Since H is left-invariant, it follows that

H(q, η(q)) = h ◦ �+(q, η(q)) = h((T1Lg)
∗η(q)) = h(η(1)) = E, (29)

�−(q, η(q)) = η(1), (30)

for all q ∈ M . Equation (30) follows because η is bi-invariant, which implies that the
co-adjoint orbit of η(1) is a single point.

Hamilton’s equations for the Hamiltonian H are

X H (g, μ) :
{

ġ = (T1Lg) · dh(μ),

μ̇ = −ad∗
dh(μ)μ.

∀g ∈ G, μ ∈ g∗. (31)

In particular, if μ is a closed form, then ad∗
ξμ vanishes for all ξ ∈ g. Therefore, the

orbit of (g, μ) is {(T1 Rexp(tξ))
∗(g, μ) = (g exp(tξ), μ) : t ∈ R}, where ξ = dh(μ),

i.e. it is the orbit of a 1-parameter subgroup. This proves item (ii).
Finally, the discussion around (1) and (29) shows that the following diagram com-

mutes:

H1(M; R)
αH ��

R c � �� αH (c) = h(η(1))

(T ∗
1 G)G

∼=
��

h

������������
η
�

��

�

��������������

(32)

where (T ∗
1 G)G is the set of bi-invariant 1-forms on G. By hypothesis, h is Cr . This

completes the proof. ��
Proof (Theorem 1.4). The sole remaining thing to prove is that if H is weakly integra-
ble and � ⊂ T ∗M lies inside an iso-energy surface and intersects Reg F , then M is a
homogeneous space of a compact reductive Lie group. By Theorem 1.3, � = graph(η),
where η is a bi-invariant, closed 1-form on G. By Theorem 1.2, M is diffeomorphic to
T

b × B, where B is a parallelisable manifold with finite coverings having zero first Betti
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number. Therefore, the lattice � = π1(M) splits as � = Z
b ⊕ P , where P = π1(B).

From the description in (13), one knows that B and hence N must be trivial. This implies
that dim S = b (we do not claim that the Z

b factor is a lattice in S). On the other
hand, one also sees that P = π1(B) must be finite: since � is virtually polycyclic, so is
Z

b\� = P , but a virtually polycyclic group is either finite or it contains a finite index
subgroup that has non-zero first Betti number.2 Additionally, since P < G is a finite
subgroup, it is compact and therefore a subgroup of a maximal compact subgroup; up
to an inner automorphism, we can assume that P < K .

Therefore M is finitely covered by M̂ = T
b × B̃ and Theorems 1.2 & 1.3 show that

T
b is the closure of the projection of a 1-parameter subgroup of S. This proves that S is

abelian.
Finally, let �1 < � be a torsion-free subgroup such that M̂ = �1\G. One knows that

�1 is generated by elements εi = eiδi for i = 1, . . . , b, where ei ∈ S, δi ∈ K . Since
�1 is abelian, the δi pairwise commute and ei commutes with δ j for all i �= j . From the
argument of Sect. 4.1.3 one knows that there are integers ni > 0 such that δ

ni
i generate a

torus subgroup T < K . It follows that there are torsion elements ci ∈ K and ξi ∈ Lie T
such that δi = ci exp(ξi ) and the ci pairwise commute and commute with all δ j . Let us
define εi,t = ei ci exp(tξi ) and �t be the lattice subgroup of G generated by εi,t . The
identity map on G induces a diffeomorphism of �0\G with �1\G = M̃ . The lattice �0
is generated by εi,0 = ei ci . Since �0 is abelian, the ci must fix each c j , j �= i , and ci

must send ei to ±ei . If ci ei c
−1
i = −ei , then εi,0 is a torsion element in the free abelian

group �0, hence it is 1, absurd. Therefore, ci fixes ei , too. Since {ei } generates a lattice
in S, each ci commutes with S. Therefore, ci ∈ ker(K −→ Aut(S)) for each i .

To sum up: let �t
0 ��0 be the sublattice generated by the pure translations in �0. Then

�t
0\G is diffeomorphic to T

b × K , a reductive Lie group and it is a smooth covering
space of M . ��
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