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In this article we study the fragility of Lagrangian periodic 
tori for symplectic twist maps of the 2d-dimensional annulus 
and prove a rigidity result for completely integrable ones.
More specifically, we consider 1-parameter families of sym-
plectic twist maps (fε)ε∈R, obtained by perturbing the gener-
ating function of an analytic map f by a family of potentials 
{εG}ε∈R. Firstly, for an analytic G and for (m, n) ∈ Zd ×N∗

with m and n coprime, we investigate the topological structure 
of the set of ε ∈ R for which fε admits a Lagrangian periodic 
torus of rotation vector (m, n). In particular we prove that, 
under a suitable non-degeneracy condition on f , this set con-
sists of at most finitely many points. Then, we exploit this to 
deduce a rigidity result for integrable symplectic twist maps, 
in the case of deformations produced by a C2 potential.
Our analysis, which holds in any dimension, is based on a 
thorough investigation of the geometric and dynamical prop-
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erties of Lagrangian periodic tori, which we believe is of its 
own interest.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction and main results

In the study of Hamiltonian systems, an important role is played by so-called integrable 
systems. These systems – whose dynamics is quite simple to describe due to the presence 
of a large number of conserved quantities/symmetries – arise quite naturally in many 
physical and geometric problems. Investigating which of the properties of these systems 
break or are preserved in the passage from the integrable regime to non-integrable one is 
a very natural and enthralling question, which is part of what Henri Poincaré recognized
as “the general problem of dynamics” (see [50, Sec. 13]).

Among the many results in this direction, a place of honor goes undoubtedly to 
Kolmogorov’s breakthrough in 1954 [38] that, together with the subsequent works by 
Arnol’d [4,5] and Moser [48], paved the ground to what nowadays is known as KAM 
theory (see [51] for a detailed historical account and, for example, [22,23] and [20,45,
46], for more recent advances and generalizations in, respectively, Hamitonian and non 
necessarily conservative dynamics).

As a common feature, integrable systems reveal a certain rigidity: integrability appears 
to be a very fragile property that is not expected to persist under generic, yet small, 
perturbations. Understanding the essence of this feature is a very compelling task, which 
arises in various contexts, providing the ground for some of the foremost questions and 
conjectures in dynamics. Let us mention that there are different possible notions of 
integrability for a finite dimensional dynamical system: one that allows singularities of 
the invariant foliation, that we will refer to as integrability, and the other that requires 
a regular foliation everywhere, that we call complete integrability.

Among the most iconic questions related to integrability or complete integrability in 
finite dimension, we recall the following:

(i) The Birkhoff conjecture in billiard dynamics, which claims that the only 2-
dimensional billiard tables for which the corresponding dynamics is integrable, are 
elliptic ones. This question in the case of complete integrability has been solved in 
[9] (see also [54] by means of an integral-geometric approach).
Recently there have been several breakthroughs related to the integrable case: 
in the perturbative setting (namely, for domains that are small perturbations of 
ellipses) several versions of the conjecture have been proven in [7,30,33,40]; in non-
perturbative case, we recall the work [31] (see also [6]) and the recent proof of the 
conjecture for centrally-symmetric domains in [16].



M.-C. Arnaud et al. / Advances in Mathematics 429 (2023) 109175 3
A version of this conjecture related to the existence of an integral of motion poly-
nomial in the velocity (algebraic Birkhoff conjecture) was solved in [24] (see also 
previous results [15,17]).
We refer to [34] for a more detailed survey of these results and more references.

(ii) The problem of characterizing integrable Riemannian geodesic flows on the d-
dimensional torus Td. For completely integrable metrics, this question is related 
to the so-called Hopf conjecture (i.e., the metric must be flat) and it was solved in 
[19,29]. There exist on Td metrics that are integrable, but not completely integrable, 
namely metrics of the form:

ds2 = (f1(x1) + f2(x2) + . . . + fd(xd))(dx2
1 + dx2

2 + . . . + dx2
d),

the so-called Liouville metrics. A folklore conjecture states that these metrics are 
the only integrable metrics on Td. A partial answer to this conjecture in dimension 
d = 2 is provided in [18] under the assumption that the system admits an integral of 
motion which is quadratic in the momenta. Observe that while the case of quadratic 
integral of motion reduces to a system of linear partial differential equations, the 
case of higher degree integrals of motions is very challenging and it turns out to 
be equivalent to delicate questions on non-linear partial differential equations of 
hydrodynamic type (see [12–14]).
A deformational version of this conjecture on T 2 has been recently investigated in 
[27]. Finally, see for instance [10,39], where this question on surfaces different from 
the torus is addressed.

Remark 1.1. It is worthwhile to mention that also the study of infinite dimensional inte-
grable systems is a very active field of research, with many aspects related to the structure 
of their phase space, their dynamical properties, as well as the notion of integrability 
itself (clearly, asking for “infinitely many” integrals of motion only is not a well-posed 
condition), being very challenging and still missing a complete understanding. These 
systems naturally arise to model a wide variety of wave phenomena (e.g., the famous 
KdV equation or the Sine-Gordon equation) or in other areas of the applied sciences, for 
example, the Toda lattice, a simple integrable model for one-dimensional crystal in solid 
state physics.

A detailed review of infinite dimensional integrable systems would go well-beyond the 
scopes of this article. We refer interested readers to the nice expositions in [37,41,55] for 
integrability of PDEs, and to the ones in [36,53] for the Toda lattice.

In this article we would like to shed more light on the nature of this fragility and 
rigidity, in the setting of symplectic twist maps of the 2d-dimensional annulus Td ×Rd, 
where Td := Rd/Zd, and d ≥ 1.

More specifically, we will focus on two related aspects:
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a) The persistence and the properties of invariant tori that are foliated by periodic 
points (see Definition 1.8). These objects are at the core of the fragility of integrable 
systems, since – as already pointed out by Poincaré – they seem to be extremely 
easy to break and their persistence does not appear to be generic, in counterposition 
to the robustness of the non-periodic invariant tori considered by KAM theory.
More precisely, we consider a one-parameter perturbation of a twist map (not nec-
essarily integrable) and investigate the topological structure of the set of parameters 
for which the perturbed map admits a periodic torus of a given rotation vector. See 
section 1.2.1 and Theorem 1 for more details and precise statements.

b) The rigidity of integrable twist maps, namely, to which extent it is possible to deform 
in a non-trivial way an integrable twist map, preserving some (or all) of its features.
More precisely, we consider a one-parameter perturbation of an integrable twist map 
and point out dynamical conditions implying that the perturbation must be trivial. 
See section 1.2.2 and Theorem 2 for more details.

It is worth mentioning that our investigation relies on a thorough analysis of the 
geometric and dynamical properties of periodic tori, which – we believe – are interesting 
per se (see Sections 2, 2.3, and Appendix A).

Before stating our main results (sections 1.2.1 and 1.2.2), in the next section let us 
first clarify the setting that we consider and introduce the main objects that are involved.

1.1. Setting and definitions

In this paper we will consider symplectic twist maps of the 2d-dimensional annulus 
Td ×Rd, where d ≥ 1 and Td := Rd/Zd according to the following definition.

Definition 1.2 (Symplectic twist maps). A symplectic twist map of the 2d-dimensional 
annulus is a C1 diffeomorphism f : Td × Rd ý that admits a lift F : Rd ×Rd ý, 
F (q, p) =: (Q(q, p), P (q, p)) satisfying

(1) F (q + m, p) = F (q, p) + (m, 0) ∀m ∈ Zd;
(2) (Twist condition) the map (q, p) �→ (q, Q(q, p)) is a diffeomorphism of Rd ×Rd;
(3) (Exactness) there exists a generating function of the map F , namely a function 

S : Rd ×Rd → R such that
• S(q + m, Q + m) = S(q, Q), ∀m ∈ Zd,
• PdQ − pdq = dS(q, Q).

Note that in some of the literature, maps satisfying Definition 1.2 are often called 
exact symplectic twist maps.
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Example 1.3. Assume that �0 : Rd → R is at least C2 and that ∇�0 : Rd → Rd is a C1

diffeomorphism. A completely integrable symplectic twist map is defined via

f0(q, p) := (q + ∇�0(p), p). (1)

Such a map is a symplectic twist map. Moreover, Td × Rd is foliated by invariant La-
grangian tori Td×{r0} and the restriction of f0 to each of these tori is a rotation, which 
is periodic when ∇�0(r0) ∈ Qd.

The generating function of (1) is given by S0(q, Q) := h0(Q −q), where ∇h0 = (∇�0)−1.

In our results we will study a special family of symplectic twist maps, that we now 
describe.

Notations 1.4. Let G : Td → R be at least C2 and f a symplectic twist map. A symplectic 
deformation of f by a potential G is given by the family of maps

fε(q, p) := f(q, p + ε∇G(q)) ε ∈ R. (2)

Their generating functions are given by

(q,Q) �→ Sε(q,Q) := S(q,Q) + εG(q), (3)

where S(q, Q) denotes the generating function of f .
We remark that in the context of Aubry-Mather theory for Lagrangian systems, this 

kind of perturbations by a potential are often called perturbation in the sense of Mañé
(see, for instance [43]).

Definition 1.5 (Properties of symplectic twist maps). Let f : Td ×Rd ý be a symplectic 
twist map that admits a lift F : Rd ×Rd ý, F (q, p) =: (Q(q, p), P (q, p)). We denote a 
generating function of F by S.

(i) The symplectic twist map f is said to be positive if there exists α > 0 such that

∂q∂QS(q,Q)(v, v) ≤ −α‖v‖2 ∀ q,Q, v ∈ Rd,

where ‖.‖ denotes the Euclidean norm in Rd.
It is said to be strongly positive if there exist α, β > 0 such that

−β‖v‖2 ≤ ∂q∂QS(q,Q)(v, v) ≤ −α‖v‖2 ∀ q,Q, v ∈ Rd.

(ii) It has bounded rate if ‖∂q∂qS‖∞ + ‖∂Q∂QS‖∞ is bounded.

Remark 1.6. (i) These notions are independent of the chosen lift F of f and also of the 
chosen generating function of F .
(ii) If we write the Jacobian matrix of f at (q, p) by d-dimensional blocks
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Df(q, p) =:
(
a(q, p) b(q, b)
c(q, p) d(q, p)

)
then the positivity and strongly positivity of f can be written, respectively,

∃α > 0 : b(q, p)(v, v) ≥ α‖b(q, p)v‖2 ∀ (q, p) ∈ Td ×Rd, ∀ v ∈ Rd,

and

∃α, β > 0 : β‖b(q, p)v‖2 ≥ b(q, p)(v, v) ≥ α‖b(q, p)v‖2 ∀ (q, p) ∈ Td ×Rd,∀ v ∈ Rd.

Moreover, the bounded rate condition corresponds to the boundedness of ‖b−1a‖∞ +
‖db−1‖∞, which can be interpreted by saying that the direct and inverse images of the 
verticals {0} ×Rd by Df(q, p) are graphs of linear maps L±

(q,p) : Rd → Rd whose norms 
‖L±

(q,p)‖ are uniformly bounded.
(iii) If we consider a symplectic deformation of a map f by a potential, as introduced 
in (2), we observe that if f0 is positive (respectively, strongly positive/with bounded 
rate), then all the diffeomorphisms of the family (fε)ε∈R are also positive (respectively, 
strongly positive/with bounded rate).

Remark 1.7. Coming back to Example 1.3, f0 is positive if D2�0(p) is positive definite 
and there exists α > 0 such that

D2�0(p)(v, v)≥
1
α
‖v‖2 ∀ p, v ∈ Rd.

Similarly, f0 is strongly positive if there exist α, β > 0 such that

1
α
‖v‖2≤D2�0(p)(v, v)≤

1
β
‖v‖2 ∀ p, v ∈ Rd.

Observe that a positive completely integrable symplectic twist map has always bounded 
rate.

Our study will focus on the existence and the properties of the following dynamical 
objects: periodic and completely periodic graphs of a symplectic twist map.

Definition 1.8 (Periodic and completely-periodic tori). Let F : Rd × Rd ý be a lift of a 
symplectic twist map f : Td×Rd ý. Let γ : Rd −→ Rd be a Zd-periodic and continuous 
function, and let L := graph(γ). For (m, n) ∈ Zd × N∗ with m and n coprime, we say 
that:

(i) L is a (m, n)-periodic graph of F if

Fn(q, γ(q)) = (q + m, γ(q)) ∀ q ∈ Rd;
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(ii) L is a (m, n)-completely periodic graph of F if it is invariant by F and a (m, n)-
periodic graph of F .

We might refer to the projection of L to Td×Rd as a periodic (resp., completely periodic) 
torus of f . Then a (m, n)-periodic graph L satisfies fn(L) = L and a (m, n)-completely 
periodic torus is f -invariant.

Remark 1.9. Coming back to Example 1.3, if F0(q, p) := (q + ∇�0(p), p) is a lift of f0, 
then, for every p0 ∈ Rd such that ∇�0(p0) = m

n ∈ Qd, where (m, n) ∈ Zd ×N∗ with m
and n coprime, the graph Lp0 := Rd × {p0} is a (m, n)-completely periodic graph of F0.

In the following, the periodic invariant graphs we will look at are Lipschitz (or C0) 
Lagrangian graphs. More precisely:

Definition 1.10. Let γ : Rd −→ Rd be a Lipschitz function. Then L := graph(γ) is said 
to be a Lagrangian graph if for every C1 loop ν : T −→ Rd, we have∫

T

γ(ν(t))ν̇(t)dt = 0.

Remark 1.11. (i) Let graph(γ) be a Lipschitz Lagrangian graph. If we denote γ(q) :=
(γ1(q), . . . , γd(q)), it follows from the definition of being Lagrangian that the 1-form ∑d

i=1 γi(q) dqi is exact in Rd. In particular, if γ is Zd-periodic, then γ = c + du where 
c ∈ Rd and u : Rd → R is C1,1 and Zd-periodic.
(ii) Observe that the limit of a family of uniformly Lipschitz Lagrangian graphs is also 
a Lipschitz Lagrangian graph.
(iii) We will prove in Proposition 2.8 that for positive symplectic twist maps, if one con-
siders Lipschitz Lagrangian graphs, then the notions of periodic and completely periodic 
graphs coincide.

To conclude this subsection, let us introduce a regularity assumption that will be 
assumed in our main results (Theorems 1 and 2), namely that the unperturbed symplectic 
twist map f0 to satisfy the following analyticity condition.

Definition 1.12 (Analyticity property). A symplectic twist map f : Td×Rd ý satisfies the 
analyticity property if there exists a holomorphic map F : Cd ×Cd ý, where F(q, p) =:
(Q(q, p), P (q, p)), such that:

(1) F is a holomorphic diffeomorphism of Cd ×Cd;
(2) F|Rd×Rd is a lift of f ;
(3) (Twist condition) the map (q, p) �→ (q, Q(q, p)) is a diffeomorphism of Cd ×Cd;
(4) (Exactness) there exists a generating function S : Cd ×Cd → C such that

• S(q + m, Q + m) = S(q, Q) ∀m ∈ Zd;
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• PdQ − pdq = dS(q, Q).

Remark 1.13. Coming back to Example 1.3, let �0 : Cd → C be an analytic function such 
that �0|Rd is real and ∇�0 : Cd → Cd is a diffeomorphism. Then, f0(θ, r) = (θ+∇�0(r), r)
is a completely integrable symplectic twist map of Td ×Rd that satisfies the analyticity 
property as in Definition 1.12.

1.2. Main results

In this section we will state our two main results, which are both concerned with 
the existence of (m, n)-periodic tori for families of symplectic twist maps obtained as 
symplectic deformations by potentials (see (2)) of a map f which will be assumed to be 
strongly positive and to satisfy the analyticity property.

We can briefly outline the content of our results as follows:
The first result (Theorem 1) will investigate, for fixed (m, n) ∈ Zd×N∗ with m and n

coprime, the “size” of the set of parameters ε ∈ R for which the corresponding perturbed 
map in the symplectically deformed family admits a Lipschitz Lagrangian (m, n)-periodic 
graph. As far as the regularity of the perturbing potential is concerned, we will assume 
that it admits a holomorphic extension to Cd.

In the second result (Theorem 2), we will be interested in the “rigidity” of completely 
integrable symplectic twist maps (see Example 1.3), proving that any symplectic defor-
mation by a non-constant potential cannot preserve integrability or part of it (we will 
provide a precise description of this “trace” of integrability that guarantees rigidity). 
The regularity assumptions on the perturbing potential will be relaxed (if compared to 
Theorem 1), not requiring any analyticity assumption.

1.2.1. Main results I: on the fragility of periodic tori
Let us state our first main result concerning the possible existence and persistence of 

Lagrangian (m, n)-periodic tori – for a given (m, n) ∈ Zd × N∗ with m and n coprime 
– in the case of a 1-parameter family of symplectic twist maps, obtained as symplectic 
deformations by a potential, as defined in (2). We remark that our maps will satisfy suit-
able non-degeneracy and regularity assumptions (i.e., analyticity, see Definition 1.12), 
but no extra dynamical requirement will be imposed.

Theorem 1. Let f : Td ×Rd ý be symplectic twist map and let F : Rd ×Rd ý be a lift 
of f and let S : Rd × Rd −→ R be its generating function. Let also G : Td → R be a 
potential function.

Consider the family of symplectic twist maps fε : Td × Rd ý, with ε ∈ R, obtained 
as symplectic deformation of f by G, as in (2), and denote by Fε a continuous family of 
lifts of fε.
I. Assume that:
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(i) f is strongly positive,
(ii) f satisfies the analyticity property,
(iii) G admits a holomorphic extension to Cd.

Then, for every (m, n) ∈ Zd ×N∗, with m and n coprime, the set

{ε ∈ R : Fε has a Lipschitz Lagrangian (m,n)-periodic graph}

is either the whole R or consists of isolated points.
II. If, in addition, f has also bounded rate and G is non-constant, then the above set 
consists of at most finitely many points.

Remark 1.14. It is not necessary in the proof that F admits a holomorphic extension to 
the whole Cd×Cd (see Definition 1.12): it would be enough that the analyticity property 
holds on a strip Σ2d

σ , where Σσ := {z ∈ C : |Im z| < σ} for some σ > 0. Similarly, G
can be assumed to admit a holomorphic extension only to a strip and the dependence 
on ε being at higher orders, i.e. G(q, ε). However, we decided not to pursue this further 
generality, in order to ease the notation and make the presentation clearer.

One can deduce from Theorem 1 the following rigidity result.

Corollary 1.15. Assume the hypotheses and the notations of Theorem 1, including f being 
bounded-rate. Let (m, n) ∈ Zd×N∗, with m and n coprime, such that the maps fε admit 
a Lipschitz Lagrangian (m, n)-periodic torus for infinitely many values of ε ∈ R. Then, 
G must be constant.

To the best of our knowledge, Theorem 1 (as well as Corollary 1.15) is the first result 
of this kind for symplectic twist maps. We underline that the analysis of the persistence 
of Lagrangian periodic tori for a single rotation vector (m, n), which seems to be a weak 
requirement, is made possible by the regularity assumption on the family of symplectic 
twist maps, namely analyticity.

In the next section, we will discuss how to weaken this latter assumption and still 
obtain a similar rigidity result.

For 2-dimensional Birkhoff billiards, some results concerning the preservation and the 
existence of periodic caustics have been discussed in [32,35,56].

Remark 1.16. (This remark has been pointed out by one of the referees.) Theorem 1
and Corollary 1.15 could be read in the usual framework of rigidity theories and mod-
uli spaces. In the space of all symplectic twist maps with bounded rate satisfying the 
analyticity condition, one can define a natural “broken line” equivalence relation. Given 
f0, f1 symplectic twist maps with bounded rate and satisfying the analyticity condition, 
we say that f0 ∼ f1 if:
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• there exists G : Td → R, analytic with holomorphic extension to Cd, such that the 
generating function of f1 is given by S+G, where S is the generating function of f0,

• there is a coprime pair (m, n) ∈ Zd×N∗, such that for an infinite set of ε’s, the map 
fε generated by S + εG admits an (m, n)-Lagrangian periodic torus.

We say that f is equivalent to g if there exists a sequence of maps f0 = f, f1, . . . , fn = g

such that fk ∼ fk+1. This is an equivalence relation and Corollary 1.15 implies that it 
is trivial, i.e., equivalence classes reduce to singletons.

1.2.2. Main results II: on the rigidity of integrable symplectic twist maps
Our original motivation for this work was to investigate the rigidity of integrable 

symplectic twist maps, namely whether to understand under which deformations of the 
map it is possible to preserve integrability or some of its features. As we mentioned before, 
this problem is in fact related to important conjectures in billiard and Hamiltonian 
dynamics, and such an investigation seems to be a preliminary step in order to tackle 
them.

Let us state our second main result.

Theorem 2. Let f : Td ×Rd ý be symplectic twist map and let F : Rd ×Rd ý be a lift 
of f and S : Rd ×Rd −→ R its generating function.

Let G ∈ C2(Td). Consider the family of symplectic twist maps fε : Td ×Rd ý, with 
ε ∈ R, obtained as symplectic deformation of f by G, as in (2), and denote by Fε a 
continuous family of lifts of fε.
Assume that:

(i) f is completely integrable (as in Example 1.3);
(ii) f is strongly positive;
(iii) f satisfies the analyticity property;
(iv) there exist a basis (q1, . . . , qd) of Qd and I1, . . . , Id ⊂ R open intervals, such that 

for any mn ∈
⋃d

j=1 Ijqj ∩Qd, Fε has a Lipschitz Lagrangian (m, n)-periodic graph 
for infinitely many values of ε ∈ R, accumulating to 0.

Then, G must be identically constant.

Remark 1.17. Differently from Theorem 1, we do not ask any extra assumption on the 
regularity of G. In fact, as we will see in Proposition 4.2, the assumption on the existence 
of “sufficiently many” Lagrangian periodic graphs for (Fε)ε∈R (in the sense of item (iv))
implies that G must be a trigonometric polynomial, thus allowing us to apply Theorem 1. 
Note that being f completely integrable, the hypothesis of strong positivity automatically 
implies that f is of bounded-rate (see also Remark 1.7). We remark that it is important 
in the proof that the sets of ε ∈ R (which might vary for different rotation vectors) 
accumulate to 0 (see Lemma 4.1).
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For a given ε ∈ R, the assumption on Fε in item (iv) is satisfied, for example, if there 
exists an open set A ⊂ Rd such that Fε has a Lipschitz Lagrangian (m, n)-periodic graph 
for any mn ∈ A ∩Qd. This property can be considered as a weaker notion of integrability, 
in some literature called weak rational integrability (see for instance [16,30,33]).

In order to see that the condition of item (iv) is satisfied, one can choose q1, . . . , qd ∈
Qd linearly independent, such that the half-lines

σqi : [0,∞) −→ Rd

t �−→ tqi

intersect A (this is possible since A is open). For every j = 1, . . . , d, choose 0 < aj < bj
such that σqj ((aj , bj)) ⊂ A, and let Ij := (aj , bj).

Remark 1.18. Note that in dimension d = 1 weak rational integrability implies the exis-
tence of an open set foliated by invariant curves (i.e., local C0-integrability). Although 
this property is not needed for our results, we provide a sketch of its proof for interested 
readers (see also [44, Theorem 3], where a similar argument has been used).

By assumption, for every pq ∈ (a, b) ∩Q, with a < b, there exists an invariant curve 
of rotation number p

q that is foliated by periodic points; this curve is the Lipschitz 
graph of a function γp/q : T −→ R. Applying Arzelà-Ascoli theorem (these graphs 
are equiLipschitz, see Proposition A.1 (ii)), one can obtain an invariant curve for every 
rotation number h ∈ (a, b), which is the graph of a Lipschitz function γh : T −→ R. 
Observe that all these graphs are disjoint and that for every h ∈ (a, b) there exists a 
unique invariant curve of rotation number h (when h is rational, uniqueness follows from 
the fact that all of its points are periodic).

We denote by Λ the union of the graphs of γh for h ∈ (a, b). We want to show that Λ
is open. Let us define

Φ : T × (a, b) −→ T ×R

(q, h) �−→ (q, γh(q)).

One can prove that Φ : T × (a, b) → T × R is continuous and injective, hence it is an 
open map (it follows from the invariance of domain theorem, see [26, Theorem 2B.3]). 
Therefore, Λ = Φ(T × (a, b)) is open.

Hence, we can deduce the following Corollary from Theorem 2.

Corollary 1.19. Under the hypotheses (i) − (iii) and the notations of Theorem 2, and 
assuming (instead of (iv))

(iv∗) there exists an open set A ⊂ Rd such that, for infinitely many ε ∈ R accumulating 
to 0, the map Fε has a Lipschitz Lagrangian (m, n)- periodic graph for any m

n ∈
A ∩Qd,
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then, G must be identically constant.

Remark 1.20. (i) Bialy and MacKay proved in [11] that a generalized standard map of 
Td × Rd that has no conjugate point1 (e.g., a completely integrable symplectic twist 
map has no conjugate point) has to be of the form (q, p) �→ (q + p, p). Their proof uses 
in a crucial way the fact that the whole 2d-dimensional annulus is foliated by invariant 
tori and then it does not imply our results, even for their choice of a particular function 
�0.
(ii) In dimension 2, Suris [52] exhibited an example of a generalized standard map that 
is integrable (for all values of the parameter ε for which it is defined), but his example 
has singularities and does not satisfy the assumptions of Theorem 2.
(iii) In a different direction, Chen, Damjanović and Petrović investigate in [21] sufficient 
conditions for an exact symplectic twist map to be integrable; in particular, they show 
that if such a map is close to (q, p) �→ (q + p, p) and commutes with a map that is close 
to (q, p) �→ (q +α, p) and semi-conjugate to the Diophantine rotation q �→ q +α, then it 
is integrable.
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2. Some properties of (m, n)-periodic graphs

In this section we collect and prove several properties of (m, n)-periodic tori, which 
will be used in the proofs of our main results, as well as being interesting per se.
We shall discuss:

1 We recall that, for a map f : Td × Rd
ý, two points (q, p) and fn(q, p) with n �= 0 are said to be 

conjugate if Dfn(q, p)
(
{0} × Rd

)
∩

(
{0} × Rd

)
�= {(0, 0)}.
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• Action-minimizing properties of Lipschitz Lagrangian (m, n)-periodic graphs (sec-
tion 2.1). In particular, we prove that:
– orbits starting on a Lipschitz Lagrangian (m, n)-periodic graph have all the same 

action (Proposition 2.4) and, under suitable growth conditions on the generating 
function, they are action-minimizing (Proposition 2.5);

– for positive symplectic twist maps, there is at most on Lipschitz Lagrangian (m, n)-
periodic graph (Proposition 2.7);

– for positive symplectic twist maps, Lipschitz Lagrangian (m, n)-periodic graphs 
are indeed invariant, hence completely periodic (Proposition 2.8).

• Regularity properties of Lipschitz Lagrangian (m, n)-periodic graphs (section 2.2). 
In particular, we prove that:
– for symplectic twist maps, Lipschitz Lagrangian (m, n)-periodic graphs are as reg-

ular as the maps is (Proposition 2.10).
• Symplectic properties of (m, n)-periodic graphs (section 2.3). In particular:

– we provide sufficient conditions that ensures that a (m, n)-periodic graph is La-
grangian (Proposition 2.11).

2.1. Action-minimizing properties of Lipschitz Lagrangian (m, n)-periodic graphs

In the following, let us assume that F : Rd ×Rd ý is a lift of a symplectic twist map 
f : Td ×Rd ý with generating function S(q, Q).

Let us start with the definition of action.

Definition 2.1 (Action). Let n ∈ N. Given a finite sequence (q0, . . . , qn) ∈ Rd(n+1), we 
define its action as:

A(q0, . . . , qn) :=
n−1∑
j=0

S(qj , qj+1).

Remark 2.2. It is a classical result in the study of symplectic twist maps that a sequence 
(q0, . . . , qn) ∈ Rd(n+1) is the projection of an orbit segment of F on the q-component 
(i.e., there exists (q0, p0) ∈ Rd×Rd such that qj = π1 ◦F j(q0, p0), for every j = 1, . . . , n, 
where π1(q, p) := q), if and only if it is a critical point of A restricted to the subspace 
of sequences (w0, . . . , wn) ∈ (Rd)n+1 with fixed endpoints w0 = q0 and wn = qn. See for 
instance [25, Corollary 5.5].

Definition 2.3 (Action-minimizing sequences and orbits). A sequence (qj)j∈Z ∈ (Rd)Z is 
called action-minimizing (or simply minimizing) if for any k, h ∈ Z, with k < h, the 
sequence (qk, . . . , qh) minimizes the action on the subspace of sequences (w0, . . . , wn) ∈
(Rd)n+1 with fixed endpoints w0 = q0 and wn = qn.

An orbit of F is said to be action-minimizing, if its projection on the first component 
is an action-minimizing sequence.
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Let us first prove the following result on the action of sequences obtained as projection, 
on the q-coordinate, of orbits starting on Lipschitz Lagrangian (m, n)-periodic graphs.

Proposition 2.4. We assume that L is a Lipschitz Lagrangian (m, n)-periodic graph. For 
every (q, p) ∈ L, if we denote its orbit by (qj(q, p), pj(q, p)) := F j(q, p), j = 0, . . . , n, 
then the function

W(q, p) := A(q, q1(q, p), . . . , qn(q, p))

is constant on L.

Proof. Since L is a Zd-periodic Lipschitz Lagrangian graph, it corresponds to the graph 
of c +du, where c ∈ Rd and u : Rd → R is a Zd-periodic C1,1 function (see Remark 1.11). 
Let us consider the function E : (Rd)n+1 → R defined by

E(q0, . . . , qn) := c · (q0 − qn) + u(q0) − u(qn) +
n−1∑
j=0

S(qj , qj+1).

A point (q0, . . . , qn) is a critical point of E if and only if

c + ∇u(q0) = −∂qS(q0, q1), c + ∇u(qn) = ∂QS(qn−1, qn) (4)

and

∂QS(qj−1, qj) + ∂qS(qj , qj+1) = 0 ∀j ∈ {1, . . . , n− 1}. (5)

The two first equations mean that

(q0,−∂qS(q0, q1)) ∈ L and (qn, ∂QS(qn−1, qn)) ∈ L,

while the latter ones state that qj = π1 ◦ F j(q0, −∂qS(q0, q1)) for every j = 0, . . . , n, 
where π1(q, p) := q denotes the projection on the q-component, hence, they correspond 
to an orbit of F . Moreover, since L is (m, n)-periodic, we also have that qn = q0 + m

and, since u is Zd-periodic, u(qn) = u(q0). Therefore, if (q0, . . . , qn) is a critical point, 
then

E(q0, . . . , qn) = −c ·m + W(q0, c + ∇u(q0)). (6)

In particular, if (q, c + ∇u(q)) ∈ L and qj := π1 ◦ F j(q, c + ∇u(q)), j = 0, . . . , n, the 
corresponding sequence of points (q0, . . . , qn) give rise to a subset of (Rd)n+1 consisting 
of critical points of E . This implies that E is constant on this set. Using (6), one concludes 
that W(q, p) restricted to L is constant. �
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Let us now prove the following property of action-minimizing property for Lipschitz 
Lagrangian (m, n)-periodic graphs (see also [25, Theorem 35.2] and [42, Appendix 2]
where it is attributed to Herman).

Proposition 2.5. Let L be a Lipschitz Lagrangian (m, n)-periodic graph for F . Assume 
that F admits a generating function S(q, Q) that satisfies the following superlinearity 
condition

lim
‖Q−q‖→+∞

S(q,Q)
‖Q− q‖ = +∞. (7)

Then, every orbit of F starting at a point of L is action-minimizing.

Proof. We use the same notation that as in Proposition 2.4. For q0, . . . , qn ∈ Rd let

E(q0, . . . , qn) = c · (q0 − qn) + u(q0) − u(qn) +
n∑

j=1
S(qj−1, qj).

Observe that

E(q0 + ν, . . . , qn + ν) = E(q0, . . . , qn) ∀ν ∈ Zd;

moreover, the superlinearity hypothesis implies that

lim
max1≤j≤n ‖qj−qj−1‖→+∞

E(q0, . . . , qn) = +∞.

Hence, E has a minimum, which is attained on projections of orbits that start on L, as 
all critical points of E (see the proof of Proposition 2.4). Observe that for any k ∈ N∗, 
the hypotheses of the proposition are satisfied for (km, kn) replacing (m, n). We deduce 
that every piece of projected orbit with length kn that starts on L has minimal action 
amongst all sequences with the same length and the same end-points. This implies that 
every piece of projected orbit of a point of L is indeed an action-minimizer (otherwise 
one could reduce the action of a suitable segment of projected orbit of length kn, for k
sufficiently large, contradicting its minimality). �
Remark 2.6. (i) The superlinearity condition (7) is satisfied by any positive symplectic 
twist map f : Td ×Rd ý (see, for example, [25, Lemma 27.2]).
(ii) Recall that two points (q, p) and Fn(q, p) with n �= 0 are said to be conjugate if

DFn(q, p)
(
{0} ×Rd

)
∩
(
{0} ×Rd

)
�= {(0, 0)}.

It is known that along every action-minimizing orbit of a positive symplectic twist map, 
there are no conjugate points (see [3, Proposition 6] or [11]). Therefore, if L is a Lipschitz 
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Lagrangian (m, n)-periodic graph for F , then for every (q, p) ∈ L, if we denote by 
(qn, pn) := Fn(q, p), we have det(∂pqn) �= 0.

Using the action-minimizing property proved in Proposition 2.5, it follows the follow-
ing uniqueness result for Lipschitz Lagrangian (m, n)-periodic graphs.

Proposition 2.7. Assume that f : Td ×Rd ý is a positive symplectic twist map.
(i) For every (m, n) ∈ Zd×N∗ and for every q ∈ Rd, there exists at most one p ∈ Rd such 
Fn(q, p) = (q+m, p) and the corresponding orbit starting at (q, p) is action-minimizing.
(ii) For every (m, n) ∈ Zd×N∗, there is at most one Lipschitz Lagrangian (m, n)-periodic 
graph of F .

Proof. (i) Let us assume that two such points (q, p) and (q, P ) exist. We use the notation 
(qj , pj) = F j(q, p) and (Qj , Pj) = F j(q, P ). Then, the sequence (q, q1, . . . , qn = q +
m, Q1 + m, Q2 + m, . . . , Qn + m = q + 2m) is such that its action equals

A(q, q1, . . . , qn) + A(Qn, Qn+1, . . . , Q2n) = A(q0, . . . , q2n).

We deduce that this sequence is action-minimizing and hence the projection of an orbit 
(see Remark 2.2). In particular:

∂QS(qn−1, qn) + ∂qS(q + m,Q1 + m) = 0

or equivalently ∂QS(qn−1, qn) = −∂qS(q + m, Q1 + m). It follows from the definition of 
generating function that p = P .
(ii) We know that every orbit that starts on a Lipschitz Lagrangian (m, n)-periodic graph 
of F is action-minimizing (see Proposition 2.5). Hence the conclusion is a consequence 
of what has been proven in item (i). �

Finally, let us prove that for positive symplectic twist maps, Lipschitz Lagrangian 
(m, n)-periodic tori are indeed invariant, hence they are (m, n)-completely periodic.

Proposition 2.8. Assume that f : Td × Rd ý is a positive symplectic twist map. Then, 
every Lipschitz Lagrangian (m, n)-periodic graph of F is invariant.

Proof. We denote by L the Lagrangian (m, n)-periodic graph of F . Let us consider 
(q, p) ∈ L and let us prove that F (q, p) ∈ L. We know from Proposition 2.5 that 
the projected orbit of (q, p) is action-minimizing. Hence, the projected orbit starting 
at F (q, p) = (q1, p1) is also action-minimizing. Moreover, there exists p2 ∈ Rd such that 
(q1, p2) ∈ L and the projected orbit of (q1, p2) is also action-minimizing (Proposition 2.5). 
By Proposition 2.7 (i), we deduce that p1 = p2 and therefore F (q, p) = (q1, p1) ∈ L, thus 
concluding that L is invariant for F . �
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2.2. Regularity of Lipschitz Lagrangian (m, n)-periodic graphs

Let F : Rd×Rd ý be a lift of a symplectic twist map f : Td×Rd ý. In this subsection 
we prove that Lipschitz Lagrangian (m, n)-periodic graphs of F are as regular as F is.

Let us start with the following lemma.

Lemma 2.9. Let Φ : Rd×Rd ý be the lift of a Ck diffeomorphism ϕ : Td×Rd ý, k ≥ 1, 
k = ∞, or analytic. Let η : Rd → Rd a continuous Zd-periodic function and denote 
L := graph(η) ⊂ Rd ×Rd and by IdL the identity function on L. Assume that:

• for every (q, p) ∈ L, ∂p(π1 ◦Φ)(q, p) is invertible, where π1 : Rd ×Rd −→ Rd denotes 
the projection on the q-component;

• Φ|L ≡ IdL.

Then, η is as regular as Φ is.

Proof. For q0 ∈ Rd, let us solve π1 ◦ Φ(q, p) = q in a neighborhood of (q0, η(q0)) ∈ L. 
Since ∂p(π1 ◦ Φ)(q0, η(q0)) is invertible, by the implicit function theorem, there exists a 
neighborhood U × V of (q0, η(q0)), where U, V ⊂ Rd, and a function ν : U → V , which 
is as regular as Φ, such that

∀(q, p) ∈ U × V : π1 ◦ Φ(q, p) = q ⇐⇒ p = ν(q).

The continuity of η and ν at q0 implies that η = ν in a neighborhood of q0. Hence η is 
as regular as Φ is. �

We can now deduce the following regularity result for Lipschitz Lagrangian (m, n)
periodic graphs of a positive symplectic twist map.

Proposition 2.10. Let F : Rd × Rd ý be a lift of a positive symplectic twist map f :
Td × Rd ý. If L is a Lipschitz Lagrangian (m, n)-periodic graph of F , then L is as 
regular as F is.

Proof. First of all, observe that since L is a (m, n)-periodic graph, then Fn
|L ≡ IdL.

Moreover, it follows from Proposition 2.5 that every orbit of F starting at a point of 
L is action-minimizing (we noticed in Remark 2.6 (i) that the superlinearity condition 
for the generating function is satisfied for positive symplectic twist maps). This implies 
that along an orbit starting at (q, p) ∈ L, there are no conjugates points (see Remark 2.6
(ii)), i.e., if we denote by (qn, pn) := Fn(q, p), we have det(∂pqn) �= 0. This means that 
∂p(π1 ◦ Fn)(q, p) is invertible for every (q, p) ∈ L. Hence, Lemma 2.9 implies that L is 
as regular as F is. �
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2.3. Symplectic properties of (m, n)-periodic graphs

All properties that we proved in sections 2.1 and 2.2 are based on the assumptions 
that the (m, n)-periodic graphs are Lagrangian. In this section, we provide some sufficient 
conditions that imply this property.

More specifically, we shall prove the following proposition.

Proposition 2.11. Let F : Rd ×Rd ý be a lift of a symplectic twist map f : Td ×Rd ý. 
Assume that L = graph(γ) is a continuous (m, n)-periodic graph of F such that for all 
q ∈ Rd

det
(
∂p(π1 ◦ Fn)(q, γ(q))

)
�= 0 and det

(
DFn(q, γ(q)) −X I2d

)
= (X − 1)2d,

where I2d denotes the 2d-dimensional identity matrix and X is a complex variable.
Then, L is C1 and the two following assertions are equivalent.

(i) L is Lagrangian;
(ii)

(
DFn(q, γ(q)) − I2d

)2
= O2d, ∀q ∈ Rd.

Let us first prove the following Lemma.

Lemma 2.12. Under the assumptions of Proposition 2.11, L is C1 and we have

T(q,γ(q))L = ker(DFn(q, γ(q)) − I2d) ∀ q ∈ Rd

where T(q,γ(q))L denotes the tangent space to L at the point (q, γ(q)).

Proof of Lemma 2.12. Let x := (q, γ(q)) ∈ L. Since det
(
∂p(π1 ◦ Fn)(q, γ(q))

)
�= 0 for 

every q ∈ Rd, by applying Lemma 2.9, we deduce that L is at least C1. Since L is (m, n)-
periodic, then DFn

|TxL = IdTxL and therefore TxL ⊆ ker(DFn(x) − I2d). Moreover, 
observing that dimTxL = d, in order to prove the claim, it is enough to show that 
dim ker(DFn − I2d) ≤ d.

Assume by contradiction that dim ker(DFn(x) − I2d) ≥ d + 1. Denote V (x) :=
kerDπ1(x), using the fact that dimV (x) = d, we can deduce that the intersection 

V (x) ∩ker(DFn(x) − I2d) contains at least one non-zero vector that we denote by 
(

0
v

)
. 

Since det
(
∂p(π1 ◦ Fn)(x)

)
�= 0, we have

dπ1 ◦DFn(x)
(

0
v

)
= ∂p(π1 ◦ Fn)(x)v �= 0

and therefore DFn(x) 
(

0
v

)
�=

(
0
v

)
, which contradicts the fact that
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(
0
v

)
∈ ker(DFn(x) − I2d). �

Let us now prove Proposition 2.11.

Proof of Proposition 2.11. The fact that L is C1 follows from Lemma 2.12. Let us now 
prove the equivalence between (i) and (ii). Hereafter, we denote by V (x) := kerDπ1(x)
the vertical space at x ∈ L.

• We assume (ii), i.e., that(
DFn(x) − I2d

)2
= O2d ∀ x ∈ L (8)

and we prove that L is Lagrangian. Equation (8) implies that the minimal polynomial 
of DFn(x) is a divisor of (X − 1)2, hence DFn(x) has no other eigenvalue than 
1. It follows from Lemma 2.12 that for every x ∈ L, the eigenspace of DFn(x)
corresponding to the eigenvalue 1 is TxL. Therefore DFn(x) is not diagonalizable 
and its minimal polynomial is (X−1)2. Choosing a basis (not necessarily symplectic) 
in which the first d vectors form a basis of TxL, the matrix of DFn(x) becomes

M :=
(

Id D(x)
Od Id

)
where Od is the d-dimensional zero square matrix, Id the d-dimensional identity 
matrix and D(x) is a d × d invertible matrix. Since the vertical V (x) is transverse to 
TxL, there exists a d-dimensional square matrix H(x) such that in these coordinates

V (x) = {(H(x) y, y) : y ∈ Rd}.

The image by Mk of a vector 
(
H(x) y

y

)
of V (x) is then 

(
H(x) y + kD(x) y

y

)
. For 

k large enough, D(x) + 1
kH(x) is invertible and in coordinates

DFnkV (x) = {(x, 1
k

(
D + 1

k
H

)−1

x);x ∈ Rd}

converges as k tends to ∞ to TxL in the Grasmannian of d-dimensional subspaces 
of Tx(Rd ×Rd).
Being the limit of a sequence of Lagrangian subspaces, then TxL is Lagrangian.

• Now, we assume that L is Lagrangian. Let us fix x ∈ L. Then we have V (x) ⊕TxL =
Rd × Rd. Then for every (v, w) ∈ V (x) ⊕ TxL, a result of Lemma 2.12 is that 
DFn(x)w = w. We deduce

ω(w, (DFn(x) − I2d)v) = ω(w,DFn(x)v) − ω(w, v)

= ω(DFn(x)w,DFn(x)v) − ω(w, v) = 0,
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where in the last equality we have used that DFn(x) is a symplectic matrix. Hence 
(DFn(x) − I2d)v is ω-orthogonal to the Lagrangian space TxL. This implies that 
(DFn(x) −I2d)v ∈ TxL = ker(DFn(x) −I2d) and therefore V ⊆ ker(DFn(x) −I2d)2. 
Since also ker(DFn(x) − I2d) ⊆ ker(DFn(x) − I2d)2, then

ker(DFn(x) − I2d)2 ⊇ V (x) ⊕ TxL = Rd ×Rd

and therefore 
(
DFn(x) − I2d

)2 = O2d, as claimed. �
3. Proof of Theorem 1

Before proving Theorem 1 (see section 3.2), we discuss several results concerning the 
set of (m, n)-periodic or radially transformed points (see definition below, Remark 3.3) 
of a family of symplectic twist maps obtained by a symplectic deformation by a potential 
(see Notations 1.4).

3.1. Sets of (m, n)-periodic and radially transformed points of symplectic twist maps

Let f : Td ×Rd ý be symplectic twist map and let F : Rd ×Rd ý be a lift of f and 
S : Rd ×Rd −→ R its generating function.

We consider the symplectic deformation of f by a potential G ∈ C2(Td) (see No-
tations 1.4), given by fε : Td × Rd ý, with ε ∈ R, whose generating functions are 
Sε(q, Q) := S(q, Q) + εG(q). We denote by Fε a continuous family of lifts of fε.

Notations 3.1. In the case in which (fε)ε satisfy the analyticity property (i.e., when f
satisfies the analyticity property, see Definition 1.12, and G admits a analytic extension 
to Cd), it will be useful to consider the complex extension of this family of maps, namely 
(fε)ε∈C and (Fε)ε∈C.

Let us introduce the following sets for a fixed ε ∈ K, where K = R or C.
We denote by π1 : Rd×Rd −→ Rd the projection on the q-component, i.e., π1(q, p) =

q.

Definition 3.2. We introduce the following sets of points and parameters for the family 
of maps (Fε)ε∈K:

R∗
(m,n)(K) := {(ε, q, p) ∈ K2d+1 : π1 ◦ Fn

ε (q, p) = q + m, det
(
∂p(π1 ◦ Fn

ε (q, p))
)
�= 0}

P(m,n)(K) := {(ε, q, p) ∈ K2d+1 : Fn
ε (q, p) = (q + m, p)}

P∗
(m,n)(K) := P(m,n)(K) ∩R∗

(m,n)(K).

Remark 3.3. (i) A point (q, p) ∈ Kd × Kd such that π1 ◦ Fn
ε (q, p) = q + m is said to 

be (m, n)−radially transformed by Fε. Hence, the set R∗ (K) consists of the points 
(m,n)
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that are (m, n)−radially transformed by Fε and on which the map Fn
ε satisfies a non-

degeneracy condition, namely ∂p(π1 ◦ Fn
ε (q, p)) is invertible.

(ii) Similarly, P(m,n)(K) consists of the (m, n)− periodic points of Fε, and P∗
(m,n)(K) of 

non-degenerate (m, n)-periodic points (non-degeneracy is meant in the same way as in 
item (i)).

Definition 3.4. We introduce the following sets of (real) parameters for the family of 
maps (Fε)ε∈R:

J ∗
(m,n)(R) := {ε ∈ R : ∃ γε : Rd → Rd Lipschitz and Zd-periodic, s.t.

{ε} × graph(γε) ⊆ R∗
(m,n)(R)}

I(m,n)(R) := {ε ∈ R : ∃ γε : Rd → Rd Lipschitz and Zd-periodic, s.t. graph(γε) is

Lagrangian, invariant by Fε, and {ε} × graph(γε) ⊆ P(m,n)(R)}

I∗
(m,n)(R) := {ε ∈ R : ∃ γε : Rd → Rd Lipschitz and Zd-periodic, s.t. graph(γε) is

Lagrangian, invariant by Fε, and {ε} × graph(γε) ⊆ P∗
(m,n)(R)}.

Lemma 3.5. Assume that f is strongly positive. The sets of Definitions 3.2 and 3.4 satisfy 
the following properties.

(i) R∗
(m,n)(K) is a (d +1)-dimensional submanifold of K ×Kd×Kd, which is as regular 

as F is (e.g., Ck, k ≥ 1 or ∞, or analytic) and it locally coincides with the graph 
of a function Γm,n : V(m,n) ⊂ K ×Kd → Kd defined for (ε, q) in some open subset 
V(m,n) of K ×Kd.

(ii) J ∗
(m,n)(R) is an open subset of R.

(iii) I(m,n)(R) ≡ I∗
(m,n)(R).

(iv) I∗
(m,n)(R) is closed and for every ε ∈ I∗

(m,n)(R), Fε has exactly one Lagrangian 
(m, n)-completely periodic graph, denoted graph(γε). Moreover, the map (ε, q) ∈
I∗

(m,n)(R) ×Rd �→ γε(q) is as regular as the map (ε, q, p) �→ Fε(q, p) (in Whitney’s 
sense, see [1]), and Zd-periodic in the q-variable.

Proof. (i) The set

U(m,n)(K) := {(ε, q, p) ∈ K×Kd ×Kd : det
(
∂p(π1 ◦ Fn

ε (q, p)
)
�= 0}

is an open subset of K × Kd × Kd. At every point (ε, q, p) ∈ U(m,n)(K), the map 
(ε, q, p) ∈ K × Kd × Kd �→ π1 ◦ Fn

ε (q, p) − q − m is a submersion, whose partial 
derivative with respect to p is invertible. This implies, by the implicit function 
theorem, that

R∗
(m,n)(K) = {(ε, q, p) ∈ U(m,n)(K) : π1 ◦ Fn

ε (q, p) = q + m}
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is a (d +1)-dimensional submanifold of K ×Kd×Kd that locally coincides with the 
graph of a function

Γ(m,n) : (ε, q) ∈ V(m,n) ⊂ K×Kd �→ p = Γ(m,n)(ε, q) ∈ Kd

defined on an open subset V(m,n) of K ×Kd, which is as regular as the map (ε, q, p) �→
Fε(q, p) is. Observe that Γ(m,n) is Zd-periodic in the variable q.

(ii) We assume that ε̃ ∈ J ∗
(m,n)(R). Then, by definition, there exists a Lipschitz Zd-

periodic function γε̃ : Rd → Rd such that for all q ∈ Rd

π1 ◦ Fn
ε̃ (q, γε̃(q)) = q + m and det

(
∂p
(
π1 ◦ Fε̃(q, γε̃(q))

))
�= 0.

This implies that {ε̃} ×graph(γε̃) is a subset of R∗
(m,n)(R). We know that R∗

(m,n)(R)
is a (d + 1)-dimensional submanifold which is locally a graph of a function Γ(m,n)
and Zd-periodic in the variable q ∈ Rd by item (i). Hence, there exists 0 < σ < ε̃

such that {ε̃} × graph(γε̃) is contained in Γ(m,n)
(
(ε̃ − σ, ̃ε + σ) × Rd

)
. Then, for 

every ε ∈ (ε̃−σ, ̃ε+σ), the function γε := Γ(m,n)(ε, .) is Lipschitz, Zd-periodic and 
such that for every q ∈ Rd

π1 ◦ Fn
ε (q, γε(q)) = q + m and det

(
∂p(π1 ◦ Fn

ε (q, γε(q))
)
�= 0.

This exactly means that (ε̃−σ, ̃ε+σ) ⊂ J ∗
(m,n)(R), proving that J ∗

(m,n)(R) is open.
(iii) By definition I∗

(m,n)(R) ⊆ I(m,n)(R). Let us now consider ε̃ ∈ I(m,n)(R). Then Fε̃

has an (m, n)-periodic Lipschitz Lagrangian invariant graph, that we denote by 
Lε̃ := graph(γε̃). Proposition 2.5 and Remark 2.6 (ii) imply that

det
(
∂p
(
π1 ◦ Fn

ε̃ )(q, γε̃(q)
))

�= 0 ∀q ∈ Rd,

since there are no conjugate points for the orbits on Lε̃. This means that ε̃ ∈
I∗

(m,n)(R).
(iv) Let us consider a sequence (εk)k≥1 in I∗

(m,n)(R) = I(m,n)(R) that converges to ε∞. 
All the εk are contained in a compact subset of R and bounded by some constant 
K > 0.

Since f is positive, S(q, Q) satisfies the following superlinearity condition (see 
Remark 2.6 (i) and [25, Lemma 27.2]):

lim
‖Q−q‖→+∞

S(q,Q)
‖Q− q‖ = +∞,

and therefore there is a compact subset K ⊂ (R2d)n such that

n−1∑
j=0

S(qj , qj+1) > 2Kn‖G‖∞ + max
q∈Rd

n−1∑
j=0

S
(
q + j

m

n
, q + (j + 1)m

n

)
∀(Δq , . . . ,Δq ) /∈ K,
0 n−1
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where q0 := q and qj+1 := qj + Δqj for j = 0, . . . , n − 1.
We deduce that for k ∈ N and (Δq1, . . . , Δqn) /∈ K we have

n−1∑
j=0

(S(qj , qj+1) + εkG(qj))

> 2Kn ‖G‖∞ + max
‖q‖∞≤1

n−1∑
j=0

S
(
q + j

m

n
, q + (j + 1)m

n

)
+ εk

n∑
j=1

G(qj)

≥ max
q∈Rd

n−1∑
j=0

S
(
q + j

m

n
, q + (j + 1)m

n

)
+ n

(
2K − εk) ‖G‖∞

≥ max
q∈Rd

n−1∑
j=0

S
(
q + j

m

n
, q + (j + 1)m

n

)
+ nK‖G‖∞

≥ max
q∈Rd

⎛⎝n−1∑
j=0

(
S
(
q + j

m

n
, q + (j + 1)m

n

)
+ εkG

(
q + j

m

n

))⎞⎠ .

Hence every minimizing (m, n)-periodic orbit starting at (q, p) ∈ Rd × Rd, is 
such that p belongs to a fixed compact subset Π(m,n)

K ⊂ Rd, independent of 
ε ∈ [−K, K]. Using Proposition 2.5, we deduce that (m, n)-periodic graphs of Fε, 
with ε ∈ [−K, K], are contained in Rd × Π(m,n)

K .
Proposition 2.10 implies that these graphs are C1 and, using that they are con-

tained in Rd × Π(m,n)
K , estimate (18) from Proposition A.1 implies that they are 

uniformly Lipschitz.
By Arzelà-Ascoli theorem (equiboundedness and equicontinuity follow from what 

remarked above), there exists a subsequence of (εkj
)j such that the (m, n)-periodic 

invariant graphs of Fεkj
converge to a Lipschitz graph, which is then an invariant 

(m, n)-periodic graph of Fε∞ and Lagrangian, being a uniform limit of Lipschitz 
Lagrangian graphs; observe that this limit graph is also Zd-periodic, being the 
uniform limit of Zd-periodic graphs. Again, from Proposition 2.5 and Remark 2.6
(ii) we deduce that all orbits starting at points of graph(γε∞) are action-minimizing 
and

det
(
∂p
(
π1 ◦ Fn(q, γε∞(q))

))
�= 0 ∀q ∈ Rd.

Hence, {ε∞} × {(q, γε∞(q)) : q ∈ Rd} ⊆ R∗
(m,n)(R). We conclude that ε∞ ∈

I∗
(m,n)(R), which implies that I∗

(m,n)(R) is closed.
Finally, we deduce from item (i) that the map (ε, q) ∈ I∗

(m,n)(R) × Rd �→ γε(q)
is as regular as (ε, q, p) �→ Fε(q, p) is, in Whitney’s sense (it coincides, in fact, with 
the restriction of the map Γm,n on this set), and Zd-periodic in the q variable. 
Moreover, it follows from Proposition 2.7 (ii) that for every ε ∈ I∗ (R), Fε has 
(m,n)



24 M.-C. Arnaud et al. / Advances in Mathematics 429 (2023) 109175
exactly one invariant Lagrangian (m, n) periodic graph, that must then coincide 
with graph(γε). �

3.2. Proof of Theorem 1

This section is organized as follows:

• We shall first prove that the set of ε ∈ R for which Fε admits a Lipschitz Lagrangian 
(m, n)-periodic graph is either the whole R or it has empty interior (see Lemma 3.6). 
A key tool in the proof is provided by the identity theorem for holomorphic functions.

• We then improve the previous result and prove Theorem 1. Namely, we show that 
when the set of ε ∈ R for which Fε admits a Lipschitz Lagrangian (m, n)-periodic 
graph is not the whole R, then it is more than with empty interior: it consists of 
isolated points. Moreover, we show that with the additional assumption that f has 
bounded rate, then this set is at most finite.
The proof strongly relies on the fact that non-identically zero 1-dimensional holo-
morphic functions on a connected set, cannot vanish on sets with an accumulation 
point.
Moreover, under the assumption that f has bounded rate, we show this set is bounded 
(see Corollary A.2), from which one deduces that if the potential is not constant (in 
which case the corresponding deformation is trivial, hence the set is either the empty 
set or the whole R), then this set must be at most finite.

Let us start with the following Lemma.

Lemma 3.6. Under the hypotheses (i)-(iii) of Theorem 1, the set

{ε ∈ R : Fε has a Lipschitz Lagrangian (m,n)-periodic graph}

is the whole R or it has empty interior.

Proof. We will prove that, under these assumptions, if I(m,n)(R) has non-empty interior, 
then it must be the whole R; observe in fact that I(m,n)(R) coincides with the set in the 
statement of the theorem, see Proposition 2.8.

Recall from Lemma 3.5 that In,m(R) is closed. We also denote by Fε the analytic 
extension of Fε to Cd × Cd. Assume by contradiction that In,m(R) has a connected 
component A that is not a single point.

Step 1 (Definition and properties of the map Δ): We proved in Lemma 3.5 item (i) that 
R∗

(m,n)(C) is a (d + 1)-dimensional complex submanifold of C2d+1. Observe that as a 
result of Lemma 3.5 items (iii) and (iv), the following inclusion holds:

Γ :=
{
(ε, q, γε(q)) : ε ∈ A, q ∈ Rd

}
⊆ R∗

(m,n)(C). (9)
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Observe that Γ is connected; we denote by V the connected component of R∗
(m,n)(C)

that contains Γ and define the map

Δ : V −→ Cd

(ε, q, p) �−→ π2 ◦ Fn
ε (q, p) − p, (10)

where π2 denotes the projection on the p-component. The map Δ is holomorphic and 
vanishes on Γ. As the real dimension of Γ is d + 1 and the complex dimension of V is 
d + 1, we deduce that all coefficients in the expansion of Δ at points of Γ are zero and 
thus Δ vanishes on the whole V.

Step 2 (Definition and properties of the map χ): We also define

χ : V −→ C2d[X] ×M2d(C)

(ε, q, p) �−→
(

det
(
DFn

ε (q, p) −X I2d
)
,
(
DFn

ε (q, p) − I2d
)2)

, (11)

where the C2d[X] denotes the set of complex polynomials with degree at most 2d, which 
is identified with C2d+1, while M2d(C) is the set of square 2d-dimensional matrices and 
I2d is the 2d-dimensional identity matrix. The map χ is holomorphic and constant on 
Γ, with value 

(
(X − 1)2d, O2d

)
, where O2d is the 2d-dimensional zero square matrix. 

Indeed, for ε ∈ A, the graph of γε is analytic and Lagrangian and Fn
ε restricted to this 

graph coincides with the map (q, p) �→ (q + m, p). Since Fn
ε is symplectic, then at every 

point of graph(γε) all the eigenvalues of DFn
ε must be equal to 1. Moreover, we deduce 

from Proposition 2.11 and Remark 2.6 that (DFn
ε − I2d)2 = O2d. Therefore, χ must be 

equal to ((X − 1)2d, O2d) on the whole V.

Step 3 (The connected component A must be unbounded): We now show that A is un-
bounded, both from above and from below, hence A ≡ R, thus concluding the proof.

In fact, let us assume that A has a least upper bound β (one can argue simi-
larly assuming that it has a greatest lower bound or substituting G with −G). Since 
In,m(R) is closed, we have β ∈ In,m(R) = I∗

n,m(R) ⊆ J ∗
n,m(R). Recall that J ∗

(m,n)(R)
is open (Lemma 3.5 item (ii)) and that it consists of parameters ε ∈ R for which 
there exists a Lipschitz Zd-periodic (real) graph, that we denote graph(ηε), such that 
{ε} × graph(ηε) ⊂ R∗

(m,n)(R). Let I be the connected component of J ∗
(m,n)(R) that con-

tains β and, consequently, it contains an open neighborhood of β and hence it properly 
contains A.

Let us then consider the connected subset of R∗
(m,n)(C)

⋃
ε∈I

{ε} × graph(ηε) ⊆ V

and observe that Δ must vanish on it, which means that the graphs of the function 
ηε for ε ∈ I are (m, n)-periodic. Moreover, on each of these graphs, χ is constantly 
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equal to ((X − 1)2d, O2d). We deduce from Proposition 2.11 and Remark 2.6 that these 
graphs are Lagrangian, and then from Proposition 2.8 that they are invariant. Therefore, 
I ⊆ In,m(R), which contradicts the fact that A is a connected component of In,m(R). �

We can now prove Theorem 1.

Proof of Theorem 1. As observed before, In,m(R) coincides with the set in the statement 
of the theorem, see Proposition 2.8.

Proof of part I. Let us assume that In,m(R) has an accumulation point ε̃, which belongs 
to In,m(R) since it is a closed set (see Lemma 3.5 items (iii)-(iv)).

Step 1 (Definition of the function Δ̃): Let us consider

Γε̃ :=
{
(ε̃, q, γε̃(q)) : q ∈ Rd

}
⊂ R∗

(m,n)(C)

and let us denote by V the connected component of R∗
(m,n)(C) that contains Γε̃. Since 

Fε is Zd-periodic in q, so it is its holomorphic extension. Hence R∗
(m,n)(C) is invariant 

by the translation (ε, q, p) �→ (ε, q + k, p) for every k ∈ Zd. In particular, it follows from 
Lemma 3.5 item (i) that there exists an open neighborhood U of Γε̃ in V that coincides 
with the graph of an analytic function

Γm,n : O ⊂ C ×Cd −→ Cd

(ε, q) �−→ Γm,n(ε, q)

where O ⊂ C×Cd is a δ-neighborhood of {ε̃} ×Rd, for some δ > 0, Γm.n is Zd-periodic 
in q and {ε̃} × graph(Γm,n({ε̃}, ·)) ≡ Γε̃.

Recalling the definition of the function Δ in (10), let us define

Δ̃ : O ⊂ C ×Cd −→ Cd

(ε, q) �−→ Δ(ε, q,Γm,n(ε, q)),

which is clearly analytic in O.

Step 2 (Identity theorem and vanishing of Δ̃): Since ε̃ is an accumulation point of 
In,m(R), there exists a sequence of {εn}n ⊂ In,m(R) such that εn → ε̃ and the cor-
responding graphs

Γεn :=
{
(εn, q, γεn(q)) : q ∈ Rd

}
⊂ U

(here we use the uniqueness of these graphs, see Lemma 3.5 (iv)).
Observe that for every q ∈ Rd, the function Δ̃(., q) is an analytic function of one 

complex variable, that vanishes on the set {εn}n ∪ {ε̃}, which has an accumulation 
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point; hence, it vanishes identically on Bδ(ε̃) ⊂ C. Since this holds for every q ∈ Rd, we 
can conclude that Δ̃ vanishes on Bδ(ε̃) ×Rd ⊂ O; observe that this set contains subset 
of real dimension d + 1 and therefore Δ̃ ≡ 0 on O, which implies that Δ ≡ 0 on U and 
hence on V.

Step 3 (Identity theorem applied to the function χ): In the same way, one can show that 
χ (see (11)) is identically equal to ((X − 1)2d, O2d) on the whole V.

Step 4 (Conclusion of the proof of part I ): Therefore, for every ε ∈ (ε̃−δ, ̃ε+δ) the graphs 
of Γm,n(ε, ·), with q ∈ Rd, are (m, n)-periodic (as it follows from the vanishing on them of 
Δ), Lagrangian (as it follows from the fact that χ is constantly equal to ((X−1)2d, O2d)
on them, see Proposition 2.11) and invariant (as it follows from Proposition 2.8).

Therefore (ε̃− δ, ̃ε + δ) ⊂ In,m(R); it follows from Lemma 3.6 that In,m(R) ≡ R and 
this completes the first part of the proof: the set is either R or it must consist of isolated 
points.

Proof of part II. If in addition f has bounded rate and G is not constant, then it follows 
from Corollary A.2 that In,m(R) must be bounded; therefore, we deduce that it consists 
of at most finitely many points (otherwise, these points would have an accumulation 
point, thus contradicting the property of being isolated). �
4. Proof of Theorem 2

The proof of Theorem 2 consists of the following steps (we assume the notations and 
assumptions of Theorem 2):

• Let (m, n) ∈ Zd×N∗, with m and n coprime. We show that the existence of infinitely 
many ε ∈ R, accumulating to 0, for which Fε has an (m, n)-completely periodic La-
grangian graph, implies the vanishing of certain Fourier coefficients of G, determined 
by (m, n) (see Lemma 4.1).

• Using assumption (iv) of Theorem 2, we deduce that all but at most finitely many 
Fourier coefficients of G must vanish (see Proposition 4.2 and Lemma 4.3).

• Finally, being G a trigonometric polynomial, the proof of Theorem 2 will follow from 
Theorem 1.

Let us start with proving the following Lemma.

Lemma 4.1. Under the notation and assumptions (i)-(iii) of Theorem 2. Let (m, n) ∈
Zd × N∗, with m and n coprime, and assume that there exist infinitely many values of 
ε ∈ R, accumulating to 0, for which Fε has an (m, n)-completely periodic Lagrangian 
graph. Then, for every ν ∈ Zd \{0} such that 〈ν, mn 〉 ∈ Z, we have Ĝ(ν) = 0 (where Ĝ(ν)
denotes the ν-th Fourier coefficient of G).

Proof. The result is trivial when G is constant. Hence we assume that G is not constant.
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Step 1 (Preliminaries): Recall Lemma 3.5 (and notations therein) and Proposition 2.8. It 
follows that there exist some open subset V(m,n) of R ×Rd containing a δ-neighborhood
of {0} × Rd, and a C1 function (ε, q) ∈ V(m,n) ⊂ R × Rd �−→ Γm,n(ε, q) ∈ Rd, such 
that Γm,n is Zd-periodic in q, its graph is in R∗

(m,n)(R) and the graph γ0 := Γm,n(0, ·)
is Lagrangian and (m, n)-completely periodic for F .

Let us denote by {εk}k≥1 the values of ε, accumulating to 0, whose existence is 
assumed in the statement. We can assume that ∀k, |εk| < δ. If we denote by γεk : Rd →
Rd the Zd-periodic maps whose graphs are (m, n)-completely periodic and Lagrangian 
for Fεk , then – following the same argument as in the proof of Lemma 3.5 item (iv) 
– we can verify the hypotheses to apply Arzelà-Ascoli theorem and deduce that, as k
tends to ∞, γεk tends to γ0 uniformly in q (up to extracting a subsequence). Hence, for 
sufficiently large k, γεk = Γm,n(εk, ·).

Step 2 (Computing the action and its Taylor expansion in ε): For ε ∈ (−δ, δ) and q ∈ Rd, 
we denote by {qεj}j∈N the projection of the orbit of Fε starting at qε0 = q and lying on 
the graph of Γm,n(ε, ·). Hence, for k ≥ 1 and q ∈ Rd, {qεkj }j∈N is the orbit of Fεk

of rotation vector m
n , starting at qεk0 = q and lying on the (m, n)-completely periodic 

invariant Lagrangian graph corresponding to γεk . The Lagrangian action of {qεj}0≤j≤n

is given by

Aε
(m.n)(q):=

n−1∑
j=0

Sε(qεj , qεj+1) =
n−1∑
j=0

(
S(qεj , qεj+1) + εG(qεj )

)
. (12)

Since the Lagrangian graph γεk is (m, n)-completely periodic, it follows that Aεk
(m,n)(q)

must be constant as a function of q (see Proposition 2.4).
By following a perturbative approach, we are going to get information on its first-order 

expansion in power of ε, namely2

Aε
(m,n)(q) = A(0)

(m,n)(q) + εA(1)
(m,n)(q) + o(ε), (13)

with the remainder o(ε) uniform in q (in fact, using Zd-periodicity, q can be assumed to 
vary in a compact subset).

First of all, observe that we have that qεj = q0
j + O(ε) for every j = 0, . . . , n, where 

q0
j := q + jm

n and the estimate ‖qεj − q0
j ‖ = O(ε) is uniform in q. This follows from the 

fact that the map

(ε, q) �−→ qεj = π1 ◦ F j(q,Γm,n(ε, q))

is C1 and Zd periodic in q.

2 In some literature, Aε
(m,n) is referred to as the subharmonic potential, while its first order term as its 

(subharmonic) Melnikov potential (see, for instance, [49, p. 1882]).
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Now, expanding Aε
(m,n) with respect to ε we get:

Aε
(m,n)(q) =

n−1∑
j=0

S(qεj , qεj+1) + εG(qεj )

=
n−1∑
j=0

S(q0
j , q

0
j+1) + ε

n−1∑
j=0

〈
(qεj − q0

j , q
ε
j+1 − q0

j+1), ∇S(q0
j , q

0
j+1)

〉
+ ε

n−1∑
j=0

G(q0
j ) + o(ε),

(14)

with the remainder o(ε) uniform in q.
Let us now observe that

n−1∑
j=0

〈
(qεj − q0

j , q
ε
j+1 − q0

j+1), ∇S(q0
j , q

0
j+1)

〉

=
n−1∑
j=0

(qεj − q0
j )∂qS(q0

j , q
0
j+1) + (qεj+1 − q0

j+1)∂QS(q0
j , q

0
j+1)

=
n−1∑
j=0

−(qεj − q0
j )γ0(q0

j ) + (qεj+1 − q0
j+1)γ0(q0

j+1)

= −(qε0 − q0
0)γ0(q0

0) + (qεn − q0
n)γ0(q0

n) = 0,

where in the second-last equality we have used that it is a telescopic sum, while in the 
last equality that qε0 = q0

0 = q and qεn = q0
n = q + m.

Hence, we get

Aε
(m,n)(q) =

n−1∑
j=0

S(q0
j , q

0
j+1) + ε

n−1∑
j=0

G(q(0)
j ) + o(ε). (15)

Step 3 (Annihilation of certain Fourier coefficients of G): By identifying terms in (15)
with those in equation (13) we conclude:

A(0)
(m,n)(q) :=

n−1∑
j=0

S(q0
j , q

0
j+1) =

n−1∑
j=0

S(q + j
m

n
, q + (j + 1)m

n
)

=
n−1∑
j=0

h(m
n

) = nh(m
n

)

and
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A(1)
(m,n)(q) :=

n−1∑
j=0

G(q + j
m

n
).

Since A(0)
(m,n)(q) is constant, we conclude that in order to have Aεk

(m,n)(q) constant for 
k ≥ 1 (as it follows from Proposition 2.4), we necessarily need

A(1)
(m,n)(q) =

n−1∑
j=0

G(q + j
m

n
) ≡ const.

In particular, let ν ∈ Zd \ {0} such that ν · m
n ∈ Z and multiply the above relation by 

e−2πi〈ν,q〉; integrating and changing variables, we get:

0 =
∫
Td

n−1∑
j=0

G(q + j
m

n
)e−2πi 〈ν,q〉 dq =

n−1∑
j=0

∫
Td

G(q + j
m

n
)e−2πi 〈ν,q〉 dq

=
n−1∑
j=0

∫
Td

G(u)e−2πi 〈ν,u−j m
n 〉 du =

n−1∑
j=0

∫
Td

G(u)e−2πi 〈ν,u〉 du = n Ĝ(ν),

(16)

where Ĝ(ν) denotes the ν-th Fourier’s coefficient of the function G. �
We can then prove the following.

Proposition 4.2. Under the assumptions of Theorem 2, it follows that G must be trigono-
metric polynomial.

We need an auxiliary result.

Lemma 4.3. Let q1, . . . , qd ∈ Qd be linearly independent vectors over R and let 0 < ai < bi
for every i = 1, . . . , d. Then, the set

I := {ν ∈ Zd s.t. 〈ν, λqi〉 /∈ Z ∀ λ ∈ (ai, bi) ∩Q ∀ i ∈ {1, . . . , d}}

is finite.

Proof of Lemma 4.3. For i = 1, . . . , d, we denote by fi the linear form v �→ 〈v, qi〉. Since 
q1, . . . , qd ∈ Qd form a basis, it follows that the map f := (f1, . . . , fd) is an isomorphism 
of Rd, therefore we can define a norm on Rd, given by ‖ · ‖f := max{|f1(·)|, . . . , |fd(·)|}. 
Observe that for every r > 0, Bf (0, r) := {v ∈ Rd : ‖v‖f ≤ r} is a compact subset of 
Rd, and therefore Zd ∩Bf (0, r) is finite.

Let α := max{(bi − ai)−1, 1 ≤ i ≤ d}; we will prove that for every v ∈ Zd\Bf (0, α), 
there exist i ∈ {1, . . . , d}, λ ∈ (ai, bi) ∩ Q such that fi(λv) ∈ Z. This implies that 
I ⊂ Bf (0, α) ∩ Zd, hence proves the thesis.
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Let v ∈ Zd \Bf (0, α); since ‖v‖f > α, there exists i ∈ {1, . . . , d} such that |fi(v)| > α. 
This implies that fi((ai, bi)v) is an interval of length greater than α(bi − ai) > 1; hence 
there exists λ ∈ (ai, bi) such that fi(λv) ∈ Z. We know that fi(v) = 〈v, qi〉 ∈ Q, since 
v ∈ Zd and qi ∈ Qd; therefore, λ ∈ (ai, bi) ∩Q. �
Remark 4.4. In a similar way, one can show that if we have a family of linearly inde-
pendent (qi)1≤i≤m ⊂ Qd, with m < d, then the corresponding set I (defined as above) 
would be the union of a finite number of translated copies of E⊥ ∩ Zd, where E is the 
linear subspace generated by q1, . . . , qm. Hence, it is not finite.

Proof of Proposition 4.2. Up to changing qj with −qj and, possibly, restricting to a sub-
interval, we can assume that Ij = (aj , bj) with 0 < aj < bj for every j = 1, . . . , d.

Let I denote the set from Lemma 4.3 with this choice of q1, . . . , qd ∈ Qd and 
a1, . . . , ad, b1, . . . , bd.

We claim that if ν /∈ I then Ĝ(ν) = 0, where Ĝ(ν) denotes the ν-th Fourier coefficient 
of G. Being I a finite set (see Lemma 4.3), this allows us to conclude that G is a 
trigonometric polynomial:

G(q) =
∑
ν∈I

Ĝ(ν)e2πi 〈ν,q〉.

Let us prove the above claim. If ν /∈ I, then there exists i ∈ {1, . . . , d} and λ ∈
(ai, bi) ∩ Q such that 〈ν, λqi〉 ∈ Z. Hence we can apply Lemma 4.1 with mn = λqi and 
conclude that Ĝ(ν) = 0. �

We can now complete the proof of Theorem 2.

Proof of Theorem 2. Since G is a trigonometric polynomial (see Proposition 4.2), then 
it admits a holomorphic extension to Cd. Moreover, since f is completely integrable 
and strongly positive, then it has also bounded rate (see Remark 1.7). Therefore, the 
claim follows from Theorem 1, applied to any choice of (m, n) ∈ Zd × N∗ such that 
m
n ∈

⋃d
j=1 Ijqj ∩Qd. �

Appendix A. Lipschitz inequalities and Green bundles along invariant Lagrangian tori

Here we provide some results for Lagrangian tori that are invariant by strongly positive 
symplectic twist maps, without any prescription on their dynamics. Namely, given a 
strongly positive symplectic twist map:

• we provide a Lipschitz bound for all its C1 Lagrangian invariant tori (Proposi-
tion A.1);

• for every symplectic deformation of such a map by a potential, we prove that the 
Lipschitz bound can be chosen uniformly for elements of the family corresponding to 
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parameters belonging to a compact set (Corollary A.2 (i)). Moreover, we also prove 
that when the potential is not identically constant, for every parameter large enough, 
the corresponding element of the family has no invariant tori (Corollary A.2 (ii)).

Let us start with this Proposition.

Proposition A.1. Let f : Td × Rd ý be a strongly positive symplectic twist map. Let 
F (q, p) =: (Q(q, p), P (q, p)) be a lift of f and let S(q, Q) denote a generating function.

(i) Let ν : Rd −→ Rd be Zd-periodic and C1, and such that L := graph(ν) is Lagrangian 
and invariant by F . Then we have:

∂q∂qS(q,Q(q, ν(q))) + ∂Q∂QS(Q−1(q, ν(q)), q) > 0 ∀q ∈ Rd (17)

i.e., it is positive definite as a matrix.
(ii) Moreover, the following Lipschitz bound holds for L:

‖Dν(·)‖∞ ≤ max
{∥∥∂q∂qS(·, Q(·, ν(·))

∥∥
∞,

∥∥∂Q∂QS(·, Q(·, ν(·))
∥∥
∞

}
. (18)

Proof. Part (i): We begin with proving positive definiteness, as in (17).

Step 1 (Formula for DF−1): Let us start with a preliminary computation. Define

ψ(q, p) := (q,Q(q, p)) and φ(q,Q) := (q,−∂qS(q,Q));

it follows from the definition of generating function that ψ and φ are one the inverse of 
the other. In particular:

Dψ(q, p) =
(

Id Od

∂qQ(q, p) ∂pQ(q, p)

)
= (Dφ(ψ(q, p)))−1

=
(

Id Od

−∂q∂qS −∂q∂QS

)−1

|(q,Q)=(ψ(q,p))

=
(

Id Od

−(∂q∂QS)−1∂q∂qS −(∂q∂QS)−1

)
|(q,Q)=(ψ(q,p))

.

It follows from this that

DF (q, p) =
(
∂qQ(q, p) ∂pQ(q, p)
∂qP (q, p) ∂pP (q, p)

)
=

(
−(∂q∂QS)−1∂q∂qS −(∂q∂QS)−1

∂q∂QS − ∂Q∂QS(∂q∂QS)−1∂q∂qS −∂Q∂QS(∂q∂QS)−1

)
.

|(q,Q)=(ψ(q,p))
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Recall that DF is a symplectic matrix, hence its inverse is given by the expression below 
(we denote by T the transposed matrix):

DF−1(Q,P ) = (DF (F (q, p)))−1

= −
(
Od −Id
Id Od

)
(DF )T (F (q, p))

(
Od −Id
Id Od

)
=

(
−(∂Q∂QS(∂q∂QS)−1)T ((∂q∂QS)−1)T

−(∂q∂QS − ∂Q∂QS(∂q∂QS)−1∂q∂qS)T −((∂q∂QS)−1∂q∂qS)T
)

|(q,Q)=(ψ(F (q,p)))
.

Step 2 (Order relation of subspaces and proof of (17)): Let L as in the hypotheses. Let 
x := (q, p) ∈ Rd ×Rd; we recall that there is an order relation on the set of Lagrangian 
subspaces of Tx(Rd ×Rd) that are transverse to the fibers V (x) := kerDπ1(x).

In [3, Section 2.1] (see also [2, Section 3.1]), to every L−, L+ Lagrangian subspaces 
that are transverse to V (x), is associated a quadratic form defined on the quotient linear 
space

Q(L−, L+) : Tx(Rd ×Rd)/V (x) → R

in the following way: in the usual coordinates (δq, δp) of Tx(Rd×Rd), L± is the graph of 
a symmetric matrix3 S± and in the coordinates δq the matrix associated to Q(L−, L+)
is given by S+ − S−. This allows one to define an order relation on the set of these 
Lagrangian subspaces: L+ > L− if and only if Q(L−, L+) is positive definite.

In [3, Proposition 7] (see also [11]), it is proven that if f is a strongly positive sym-
plectic twist map, then at every x ∈ Rd ×Rd whose (lifted) orbit is minimizing, the two 
Lagrangian subspaces

G1(x) := DF (F−1(x))V (F−1(x)) and G−1(x) := DF−1(F (x))V (F (x))

are transverse to the vertical V (x) and satisfy

G−1(x) < G1(x). (19)

As the orbit of every point that is contained in L is minimizing, see [25, Theorem 35.2], 
this inequality is true for all the points of L. Moreover, for (q, p) ∈ Rd ×Rd:

– the direct image of the vertical G1(q, p) := DF (F−1(q, p)))V (F−1(q, p)) turns out 
to be the graph of the matrix ∂Q∂QS(ψ(F−1(q, p))),

– the inverse image of the vertical G−1(q, p) := DF−1(F (q, p)))V (F (q, p)) turns out 
to be the graph of the matrix −∂q∂qS(ψ(F (q, p))).

3 The corresponding matrix is symmetric because L± is Lagrangian.
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Hence, the condition G−1(q, p) < G1(q, p) reads:

∂q∂qS(ψ(F (q, p))) + ∂Q∂QS(ψ(F−1(q, p))) > 0,

thus proving (17).
Part (ii): We will now prove that ∂q∂qS(q, Q) and ∂Q∂QS(q, Q) provide some Lipschitz 
inequalities for L, thus proving (18).

The idea is the following: we will construct a family (f̃t)t∈(0,1] of symplectic twist 
maps such that f̃1 = f and such that for every t ∈ (0, 1] the tangent space to f̃t(L)
is transverse to G1 and G−1. Proving that there is an inequality among these three 
Lagrangian subspaces (or more exactly, among the symmetric matrices that define these 
subspaces) for t small enough and that these three subspaces are transverse for every 
t ∈ (0, 1], we will deduce the same inequality for t = 1, i.e., for f .

Since f is strongly positive, there exists a constant α > 0 such that

∂q∂QS(v, v) ≤ −α‖v‖2 ∀q,Q, v ∈ Rd.

Step 1 (Interpolation of symplectic twist maps): We use a 1-parameter family of sym-
plectic twist maps that is built in the proof of [25, Theorem 41.6].

We fix a smooth non-negative and non-increasing function η : (0; +∞) → [0, +∞)
such that η(1) = η′(1/2) = 0, η(1/2) = 1 and limt→0+ η(t) = +∞. We also choose η
such that the extension of 1/η at 0, which is continuous, is differentiable at 0. Then we 
consider the 1-parameter family of generating functions (S̃t)t∈(0,1] that are defined by

S̃t(q,Q) :=
{

α
2 η(t) ‖Q− q‖2 for 0 < t ≤ 1/2
α
2 η(t) ‖Q− q‖2 + (1 − η(t))S(q,Q) for 1/2 ≤ t ≤ 1.

For every t ∈ (0, 1], the function S̃t is the generating function of a symplectic twist map 
f̃t that is strongly positive. More precisely, we have f̃1 = f ; let (F̃t)t denote a continuous 
family of lifts of f̃t such that for 0 < t ≤ 1/2,

F̃t(q, p) = (q + (aη(t))−1p, p).

We associate ψ̃t to F̃t as ψ was associated to F at the beginning of the proof.
We introduce for 0 < t ≤ 1

– the direct image of the vertical G̃t
1(q, p) := DF̃t(F̃−1

t (q, p))V (F̃−1
t (q, p)) turns out to 

be the graph of the matrix ∂Q∂QS̃t(ψ̃t(F̃−1
t (q, p))),

– the inverse image of the vertical G̃t
−1(q, p) := DF̃−1

t (F̃t(q, p))V (F̃t(q, p)) turns out 
to be the graph of the matrix −∂q∂qS̃t(ψ̃t(F̃t(q, p))).

– when (q, p) ∈ F̃t(L), T(q,p)F̃t(L) is the tangent space to F̃t(L). For t > 0 small 
enough, this is the graph of a symmetric matrix that we denote by Tt(q, p).
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For t ∈ (0, 1/2], we have

∂Q∂QS̃t(ψt(F̃−1
t (q, p))) = (αη(t))−1Id and ∂q∂qS̃t(ψ̃t(f−1

t (q, p))) = −(αη(t))−1Id.

Because Tt is bounded for t > 0, sufficiently small, there exists ε > 0 such that

−∂q∂qS̃t(ψ̃t(F̃−1
t (q, p))) < Tt(q, p) < ∂Q∂QS̃t(ψ̃t(F̃−1

t (q, p)))

for all (q, p) ∈ F̃t(L) and t ∈ (0, ε].

Step 2 (Extension of the interpolation): Observe that all these matrices continuously 
depend on t, when they are defined. Observe also that for t ∈ (0, 1] and (q, p) ∈ F̃t(L):

a) all the subspaces G̃t
1(q, p) and G̃t

−1(q, p) are transverse to the vertical;
b) since G̃t

1(q, p) = DF̃t(F̃−1
t (q, p))V (F̃−1

t (q, p)) and

T(q,p)F̃t(L) = DF̃t(F̃−1
t (q, p))

(
TF̃−1

t (q,p))L
)
,

G̃t
1(q, p) and T(q,p)F̃t(L) are the image by an isomorphism of two transverse sub-

spaces, therefore they are also transverse;
c) the same argument proves that G̃t

−1(q, p) and T(q,p)F̃t(L) are also transverse.

Let us deduce that for all t ∈ (0, 1], and all (q, p) ∈ F̃t(L), T(q,p)F̃t(L) is the graph of 
a symmetric matrix Tt(q, p) such that

−∂q∂qS̃t(ψ̃t(F̃−1
t (q, p))) < Tt(q, p) < ∂Q∂QS̃t(ψ̃t(F̃−1

t (q, p))). (20)

We know that (20) is true for t ∈ (0, ε]. Assume that this is not true for some t ∈ (0, 1]. 
Let t0 be the infimum of the t ∈ (0, 1] for which there exists (q, p) ∈ F̃t(L) such that 
(20) does not hold. This means that either the inequality in (20) does not hold or that 
Tt(q, p) is not defined because T(q,p)F̃t(L) is not transverse to the vertical.

Since the inequality is true for all t ∈ (0, t0), this implies, by continuity in t, that for 
all (q, p) in L, TF̃t0 (q,p)F̃t0(L) is a graph that satisfies the same inequalities by replacing 
< by ≤.

Then, there exists (q0, p0) ∈ F̃t0(L) such that ∂Q∂QS̃t0(ψ̃t0(F̃−1
t0 (q, p))) − Tt0(q, p) is 

positive semidefinite, but not definite, or that Tt0(q, p) − ∂q∂qS̃t0(ψ̃t0(F̃−1
t0 (q, p))) is pos-

itive definite, but not definite. Since the kernel of a positive semidefinite matrix is equal 
to its isotropic cone, this implies either that G̃t0

1 (q, p) and T(q,p)F̃t0(L) are not transverse 
or that T(q,p)F̃t0(L) and G̃t0

−1(q, p) are not transverse, thus providing a contradiction to 
what observed in items b) and c) above.

Step 3 (Conclusion): Now, using inequality (20) for t = 1, we deduce

G−1(q, p) < T(q,p)L < G1(q, p) ∀(q, p) ∈ L, (21)
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which provides Lipschitz inequalities

‖Dν‖∞ ≤ max
{∥∥∂q∂qS(ψ)

∥∥
∞,L,

∥∥∂Q∂QS(ψ)
∥∥
∞,L

}
,

where ‖ · ‖∞,L denotes the sup-norm on L. �
Let us now prove the following result, that plays a crucial role in the proof of Theo-

rem 1, part II.

Corollary A.2. Let f : Td×Rd ý be a strongly positive symplectic twist map with bounded 
rate, let G : Td → R be a C2 function and let (fε)ε∈R be a symplectic deformation of f
by G (see Notations 1.4). Then:

(i) For every ε0 ≥ 0, there exists K(ε0) ≥ 0 such that every C1-Lagrangian graph 
invariant by some fε, with |ε| ≤ ε0, is Lipschitz with Lipschitz constant K(ε0).

(ii) If G is not constant, there exists Λ > 0 such that for all ε ∈ R such that |ε| ≥ Λ, fε
does not admit any C1 Lagrangian invariant graph.4

Remark A.3. In dimension 2 and for the standard map, the second point is due to 
Mather [47] and Aubry-Le Daeron [8]. In any dimension, but only for generating functions 
S(q, Q) = h(Q − q), with h positive definite quadratic form, Herman proved the result 
in [28].

Proof. We consider the symplectic deformation of f by a potential G ∈ C2(Td), given by 
fε : Td×Rd ý, with ε ∈ R, whose generating functions are Sε(q, Q) := S(q, Q) + εG(q). 
We denote by Fε a continuous family of lifts of fε.

Part (i): Let ν : Td −→ Rd be C1 and such that L := graph(ν) is Lagrangian and 
invariant by some fε, with |ε| ≤ ε0. Then, considering its lift to Rd × Rd, we deduce 
from (18) that

‖Dν‖∞ ≤ max
{∥∥∂q∂qS∥∥∞,

∥∥∂Q∂QS∥∥∞}
+ ε0‖G‖∞ =: K(ε0),

which is finite since f has bounded rate.

Part (ii): We now assume that G is not constant. Then, there exist q1, q2 ∈ Td and 
v1, v2 ∈ Rd such that D2G(q1)(v1, v1) > 0 and D2G(q2)(v2, v2) < 0. Since f has bounded 
rate, there exists Λ > 0 such that for every ε > Λ and Q, Q′ ∈ Rd

(∂q∂qS(q2, Q) + ∂Q∂QS(Q′, q2) + εD2G(q2))(v2, v2) < 0

and

4 This gives another argument for the result of MacKay and Bialy [11], that we cited in Remark 1.20.
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(∂q∂qS(q1, Q) + ∂Q∂QS(Q′, q1) − εD2G(q1))(v1, v1) < 0.

Therefore, by (17), we deduce that fε cannot have an invariant Lagrangian graph when 
|ε| > Λ. �
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