UNIVERSITÀ DI ROMA "TOR VERGATA"

Analisi Matematica II per Ingegneria — Prof. C. Sinestrari

Risposte (sintetiche) ai quesiti degli esercizi del 12.X.2018

- 1. (a) Ω è aperto, $\partial\Omega = \{0,1,2\}, \stackrel{\circ}{\Omega} = \Omega, \overline{\Omega} = [0,1] \cup [2,+\infty).$
 - (b) Ω né aperto né chiuso, $\partial\Omega=\{0,1\},$ $\overset{\circ}{\Omega}=(0,1),$ $\overline{\Omega}=[0,1].$
 - (c) Ω è chiuso, $\partial\Omega = \{0, 1, 2, 3\}, \stackrel{\circ}{\Omega} = (0, 1) \cup (3, \infty), \overline{\Omega} = \Omega.$
 - (d) Ω né aperto né chiuso, $\partial \Omega = \overline{\Omega} = \Omega \cup \{0\}, \stackrel{\circ}{\Omega} = \emptyset$.
 - (e) Ω né aperto né chiuso, $\overset{\circ}{\Omega}=(0,1)\times(0,1), \ \overline{\Omega}=[0,1]\times[0,1],$ $\partial\Omega=\{(x,y):\ 0\leq x\leq 1, y=0\ \text{o}\ y=1\}\cup\{(x,y):\ 0\leq y\leq 1, x=0\ \text{o}\ x=1\},$ cioè $\partial\Omega$ è l'unione dei quattro lati del quadrato.
 - (f) Ω è chiuso, $\partial\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cup \{(x,y) \in \mathbb{R}^2 : x \in (1,3], y = 0\},$ $\stackrel{\circ}{\Omega} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}, \overline{\Omega} = \Omega.$
 - (g) Ω né aperto né chiuso, $\partial \Omega = \overline{\Omega} = [0,1] \times [0,1]$, $\overset{\circ}{\Omega} = \emptyset$.
 - (h) Ω né aperto né chiuso, $\partial\Omega=\overline{\Omega}=\Omega\cup\{(x,y):x=0,y\in[-1,1]\}, \stackrel{\circ}{\Omega}=\emptyset.$
- 2. Se $x_0 \notin \Omega$ è di frontiera per Ω , ogni suo intorno sferico contiene punti di Ω , che quindi sono diversi da x_0 stesso perché x_0 non appartiene a Ω . Quindi è soddisfatta la proprietà che definisce i punti di accumulazione.

Viceversa, se $x_0 \notin \Omega$ è di accumulazione per Ω , ogni suo intorno sferico contiene punti di Ω (per definizione di punti di accumulazione) e non di Ω (x_0 stesso) quindi è soddisfatta la proprietà di punto di frontiera.

- 3. La dimostrazione è analoga al caso unidimensionale. La funzione f è continua sull'insieme chiuso e limitato D, quindi assume massimo e minimo su D. Se la funzione è costante su D, allora banalmente ogni punto $x_0 \in \overset{\circ}{D}$ soddisfa la tesi. Se la funzione non è costante su D, allora almeno uno tra il massimo e il minimo sarà diverso dal valore costante assunto su ∂D , e quindi sarà raggiunto in un punto $x_0 \in \overset{\circ}{D}$. In tale punto la f ha gradiente nullo per il teorema di Fermat, essendo un punto di massimo/minimo assunto nell'interno di D.
- 4. La funzione f è continua sull'insieme chiuso e limitato D, quindi assume massimo e minimo su D. Dalle ipotesi sul segno di f segue che il minimo è zero, ed è assunto su tutti i punti di frontiera, mentre il massimo è positivo ed è assunto in uno o più punti interni a D, che quindi devono essere critici per f. Poiché per ipotesi non ci sono punti critici interni di f interni a D oltre a x_0 , l'unica possibilità è che il massimo di f su D cada in x_0 . Essendo x_0 interno a D, esiste un intorno $B_d(x_0)$ contenuto in D, pertanto vale

$$f(x) \le \max_{D} f = f(x_0), \quad \forall x \in B_d(x_0),$$

cioè x_0 è un punto di massimo relativo per f.

- 5. Piano tangente: $z = \frac{1}{4}(13x 5y 7)$; la derivata direzionale vale 3/4.
- 6. Iperpiano tangente: w = -x + 3y 9z + 14; la derivata direzionale vale 15.
- 7. Per $(x,y) \neq (0,0)$ la funzione è di classe C^{∞} e le sue derivate parziali prime si calcolano nel modo usuale, trovando:

$$f_x = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$
 $f_y = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$.

Nel punto (0,0) invece, studiando il limite del rapporto incrementale, si trova

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{\frac{x \cdot 0}{x^2 + 0} - 0}{x} = \lim_{x \to 0} \frac{0}{x} = \lim_{x \to 0} 0 = 0.$$

Un calcolo analogo mostra che anche $f_y(0,0)$ esiste e vale zero.

Studiando il limite di f(x, y) su una retta per l'origine y = ax, si trova

$$\lim_{x \to 0} f(x, ax) = \frac{a}{1 + a^2}.$$

Poiché il limite è diverso da zero per tutte le rette con $a \neq 0$, concludiamo che la funzione non è continua.

La non continuità implica la non differenziabilità. Pertanto f_x e f_y non possono essere continue in (0,0), altrimenti ci sarebbe una contraddizione col teorema del differenziale totale. Ciò si verifica anche direttamente, studiando il limite sulle rette, ad es.

$$\lim_{x \to 0} f_x(x, ax) = \lim_{x \to 0} \frac{a(a^2 - 1)}{x(1 + a^2)^2} = \pm \infty.$$

8. Presa una qualunque direzione $v = (a, b) \in \mathbb{R}^2$, si trova

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \frac{f(at, bt) - f(0, 0)}{t} = \lim_{t \to 0} \frac{a^3 bt}{a^6 t^4 + b^2} = 0.$$

D'altra parte, studiando il limite lungo la curva $y = ax^3$, troviamo

$$\lim_{x \to 0} f(x, x^3) = \frac{1}{2} \neq f(0, 0),$$

quindi f non è continua.

9. La funzione di una variabile $\alpha \to \sqrt{\alpha}$ è continua per $\alpha \in [0, +\infty)$ e derivabile per $\alpha \in (0, +\infty)$. Poiché $x^2 + y^2 \ge 0$ per ogni (x, y) ed è nullo solo per (x, y) = (0, 0), deduciamo che $f(x, y) = \sqrt{x^2 + y^2}$ è continua in tutto \mathbb{R}^2 e derivabile in tutto \mathbb{R}^2 tranne eventualmente (0, 0). Uno studio diretto del rapporto incrementale mostra che le derivate parziali di f in (0, 0) non esistono.

Osserviamo che f(x,y) coincide con ||(x,y)||, la norma del vettore (x,y). Allora, presi due punti qualunque $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$ troviamo, usando la disuguaglianza triangolare soddisfatta dalla norma dei vettori:

$$f(tv_1 + (1-t)v_2) = ||tv_1 + (1-t)v_2|| \le ||tv_1|| + ||(1-t)v_2||$$

= $t||v_1|| + (1-t)||v_2|| = tf(v_1) + (1-t)f(v_2),$

che è la disuguaglianza richiesta per la convessità.

10. Una funzione convessa di classe C^1 soddisfa, per ogni x, y, la disuguaglianza

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Pertanto, se x è un punto critico, vale $f(y) \ge f(x)$ per ogni $y \in \mathbb{R}^n$, cioè x è un punto di minimo assoluto.

- 11. Ricordiamo che il determinante e la traccia sono rispettivamente il prodotto e la somma degli autovalori dell'hessiano. Se n > 2, è possibile trovare n numeri che abbiano somma e prodotto positivo, ma che non siano tutti positivi. Un semplice esempio, con n = 3, sono i numeri -1, -1, 3. Basta quindi costruire una funzione $f : \mathbb{R}^3 \to \mathbb{R}$ che abbia un punto critico con hessiano avente questi numeri come autovalori: ad esempio la funzione $f(x, y, z) = \frac{1}{2}(-x^2 y^2 + 3z^2)$ nel punto (0, 0, 0).
- 12. (a) Usando la definizione si vede facilmente che, se ϕ è crescente, un punto di massimo locale per f è di massimo locale anche per g, e lo stesso vale per i minimi locali. Se invece ϕ è decrescente, un punto di massimo per f diventa di minimo per g, e viceversa. Se la monotonia di ϕ non è stretta, l'implicazione inversa potrebbe non valere.
 - (b) Le note regole di derivazione per funzioni di una variabile implicano

$$\frac{\partial g}{\partial x}(x,y) = \phi'(f(x,y))\frac{\partial f}{\partial x}(x,y), \qquad \frac{\partial g}{\partial y}(x,y) = \phi'(f(x,y))\frac{\partial f}{\partial y}(x,y).$$

Quindi, nei punti in cui $\nabla f(x,y) = 0$, si ha anche $\nabla g(x,y) = 0$. Il viceversa può non valere: se in un punto si ha $\nabla f(x,y) \neq 0$ ma $\phi'(f(x,y)) = 0$ allora $\nabla g(x,y) = 0$, quindi il punto è critico per g ma non per f. Se ϕ' non si annulla mai, ciò non si può verificare, e quindi f e g hanno gli stessi punti critici.

- 13. (a) $(0, \frac{1}{2})$ sella.
 - (b) (0,0) sella, $(\frac{2}{3},-\frac{4}{3})$ minimo.
 - (c) (0,0) minimo, $(\frac{2}{3}\sqrt{2},\sqrt{2})$ sella, $(-\frac{2}{3}\sqrt{2},-\sqrt{2})$ sella.
 - (d) (0,0) sella.
 - (e) (0,0) sella, (0,-1) sella, (-1,0) sella, $(-\frac{1}{3},-\frac{1}{3})$ massimo.
 - (f) (2,0) massimo.
 - (g) (0,0) sella, (2,0) minimo, (-2,0) minimo.

- (h) (4, 2) minimo
- (i) (1,1,1) massimo
- (j) $(1, 1, -\frac{1}{2})$ sella
- (k) (0,0,0) sella, $(1,1,1/\sqrt{2})$ sella, $(-1,-1,1/\sqrt{2})$ sella.
- 14. La restrizione di f su una retta generica soddisfa $f(at,bt) = 2a^4t^4 3a^2bt^3 + b^2t^2$. Per t=0 questa quantità ha derivata prima nulla e derivata seconda pari a b^2 ; quindi, se $b \neq 0$, ha un minimo. Per b=0, la funzione vale a^4t^4 , che ha anch'essa un minimo per t=0. Quindi la funzione ha un minimo su ogni retta.

D'altra parte, è facile studiare il segno di f. La funzione si annulla lungo le due parabole $y=2x^2$ e $y=x^2$ (in particolare, nell'origine). E' positiva al di sopra della parabola $y=2x^2$ e al di sotto della parabola $y=x^2$, mentre è negativa nella regione tra le due parabole. Pertanto, ogni intorno dell'origine contiene sia punti con f positiva che punti con f negativa. Ne segue che (0,0) non è né di massimo né di minimo.

- 15. Per tutte le funzioni proposte, si verifica che l'origine è un punto critico con hessiano a determinante nullo, e quindi le derivate non danno informazioni per concludere. Studiando il comportamento della funzione con altri metodi (es. restrizioni lungo le rette, studio diretto del segno dell'incremento) si trovano i risultati seguenti.
 - (a) massimo assoluto, non stretto
 - (c) né massimo né minimo
 - (e) massimo assoluto, non stretto
 - (g) né massimo né minimo
 - (i) minimo assoluto, stretto
 - (m) né massimo né minimo
 - (o) né massimo né minimo
 - (q) massimo relativo, non stretto

- (b) né massimo né minimo
- (d) minimo relativo (non assoluto), non stretto
- (f) né massimo né minimo
- (h) massimo relativo, non stretto
- (1) massimo assoluto, stretto in un intorno
- (n) minimo assoluto, non stretto
- (p) né massimo né minimo
- (r) né massimo né minimo.
- 16. (a) (0,0) min, $(4,\sqrt{2})$ né max né min, $(4,-\sqrt{2})$ né max né min.
 - (b) (0,0) né max né min, $(\frac{3}{4},0)$ min, $(\frac{1}{4},\frac{1}{\sqrt{8}})$ max , $(\frac{1}{4},-\frac{1}{\sqrt{8}})$ max , $(\frac{1}{2},\frac{1}{2})$ né max né min, $(\frac{1}{2},-\frac{1}{2})$ né max né min.
 - (c) (0,0) né max né min, (0,2) max, $(\sqrt{3},3)$ né max né min, $(-\sqrt{3},3)$ né max né min.
 - (d) (0,0) min, $(1,\frac{1}{2})$ né max né min, $(-1,\frac{1}{2})$ né max né min.
- 17. (a) Se $a \neq 0$, l'unico punto critico è (0,1), ed è un minimo quando a > 0 mentre non è né massimo né minimo quando a < 0. Se a = 0, tutti i punti della retta x + y = 1 sono critici, e sono tutti di minimo (assoluto) per f.
 - (b) Se a > 0 ci sono tre punti critici: $(0, \frac{a}{2})$ di minimo, $(-\sqrt{a}, a)$ e $(-\sqrt{a}, a)$ né di massimo né di minimo. Se $a \le 0$ c'è un unico punto, $(0, \frac{a}{2})$, che non è né di massimo né di minimo.
 - (c) Se -1 < a < 1 ci sono quattro punti critici: $(a, \sqrt{1-a^2})$ e $(a, -\sqrt{1-a^2})$ entrambi né di massimo né di minimo, $\left(\frac{a-\sqrt{a^2+3}}{3},0\right)$ di massimo, $\left(\frac{a+\sqrt{a^2+3}}{3},0\right)$ di minimo. Se $a \ge 1$,

ci sono due punti: $\left(\frac{a-\sqrt{a^2+3}}{3},0\right)$ di massimo e $\left(\frac{a+\sqrt{a^2+3}}{3},0\right)$ né di massimo né di minimo. Se $a\leq -1$, ci sono ancora due punti, stavolta $\left(\frac{a-\sqrt{a^2+3}}{3},0\right)$ non è né di massimo né di minimo mentre $\left(\frac{a+\sqrt{a^2+3}}{3},0\right)$ è di minimo.

- (d) Se a > 0, ci sono tre punti critici: (0,0) di massimo e $(\pm 2\sqrt{a}, a)$ di sella. Se a < 0 o se a = 0 l'unico punto critico è (0,0) e non è né di massimo né di minimo.
- (e) Se $a \neq 0$ ci sono quattro punti critici: (0,0), (3a,0), (0,3a), (a,a). I primi tre sono di sella, il quarto è di minimo se a > 0, di massimo se a < 0. Se a = 0 l'unico punto critico è l'origine, che non è né massimo né minimo.
- 18. (a) Per $\lambda = 2$ il punto è di minimo, per gli altri λ non è critico.
 - (b) P_1 è di minimo, P_2 non è critico, P_3 non è né di massimo né di minimo.
 - (c) L'origine è di sella per f, non è critico per g, è di massimo per h.
 - (d) Il punto (0,1) è di massimo per f, non è critico per g, è di minimo per h.