UNIVERSITÀ DI ROMA "TOR VERGATA"

Analisi Matematica II per Ingegneria — Prof. C. Sinestrari

Risposte (sintetiche) ai quesiti degli esercizi dell'8.XI.2022

- 1. (a) Ω è aperto, $\partial\Omega = \{0,1,2\}, \stackrel{\circ}{\Omega} = \Omega, \overline{\Omega} = [0,1] \cup [2,+\infty).$
 - (b) Ω né aperto né chiuso, $\partial\Omega = \{0,1\}, \stackrel{\circ}{\Omega} = (0,1), \overline{\Omega} = [0,1].$
 - (c) Ω è chiuso, $\partial\Omega = \{0, 1, 2, 3\}, \stackrel{\circ}{\Omega} = (0, 1) \cup (3, \infty), \overline{\Omega} = \Omega.$
 - (d) Ω né aperto né chiuso, $\partial \Omega = \overline{\Omega} = \Omega \cup \{0\}, \stackrel{\circ}{\Omega} = \emptyset$.
 - (e) Ω è aperto, $\overset{\circ}{\Omega} = \Omega$, $\partial\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$, $\overline{\Omega} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.
 - (f) Ω è chiuso, $\overset{\circ}{\Omega} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}, \ \partial\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}, \ \overline{\Omega} = \Omega.$
 - (g) Ω né aperto né chiuso, $\overset{\circ}{\Omega} = \emptyset$, $\partial \Omega = \overline{\Omega} = \Omega \cup \{\text{punto}\,(1,0)\}.$
 - (h) Ω né aperto né chiuso, $\partial \Omega = \overline{\Omega} = [0,1] \times [0,1]$, $\overset{\circ}{\Omega} = \emptyset$.
 - (i) Ω né aperto né chiuso, $\partial\Omega=\overline{\Omega}=\Omega\cup\{(x,y):x=0,y\in[-1,1]\},$ $\overset{\circ}{\Omega}=\emptyset.$
- 2. Se $\mathbf{x}_0 \notin \Omega$ è di frontiera per Ω , per definizione ogni suo intorno sferico contiene punti di Ω ; tali punti che sono necessariamente diversi da \mathbf{x}_0 stesso perché \mathbf{x}_0 non appartiene a Ω . Quindi è soddisfatta la proprietà che definisce i punti di accumulazione.

Viceversa, se $\mathbf{x}_0 \notin \Omega$ è di accumulazione per Ω , ogni suo intorno sferico contiene punti di Ω (per definizione di punti di accumulazione) e non di Ω (\mathbf{x}_0 stesso) quindi è soddisfatta la proprietà di punto di frontiera.

Questo dimostra l'equivalenza richiesta. L'uguaglianza tra insiemi enunciata alla fine è una conseguenza diretta di questa.

3. Consideriamo l'intersezione di due insiemi aperti E_1 ed E_2 , e prendiamo un qualunque $\mathbf{x} \in E_1 \cap E_2$. Poiché $\mathbf{x} \in E_1$ ed E_1 è aperto, esiste un raggio $r_1 > 0$ tale che l'intorno $I_{r_1}(\mathbf{x})$ è contenuto in E_1 . Analogamente, esiste $r_2 > 0$ tale che $I_{r_2}(\mathbf{x}) \subset E_2$. Se chiamiamo r il minimo tra r_1 e r_2 , abbiamo allora che $I_r(\mathbf{x}) \subset E_1 \cap E_2$. Poiché ciò vale per un qualunque $\mathbf{x} \in E_1 \cap E_2$, concludiamo che $E_1 \cap E_2$ è aperto.

Consideriamo adesso l'unione di due insiemi aperti E_1 ed E_2 . Prendiamo un qualunque $\mathbf{x} \in E_1 \cup E_2$, ad esempio $\mathbf{x} \in E_1$ (se $\mathbf{x} \in E_2$ si procede in modo analogo). Essendo E_1 aperto, esiste r > 0 tale che $I_r(\mathbf{x}) \subset E_1$. A maggior ragione abbiamo quindi che $I_r(\mathbf{x})$ è contenuto nell'unione $E_1 \cup E_2$. Essendo \mathbf{x} arbitrario, deduciamo che $E_1 \cup E_2$ è aperto.

Le corrispondenti proprietà per gli insiemi chiusi si deducono da queste passando ai complementari. Prendiamo infatti E_1, E_2 insiemi chiusi, e indichiamo con F_1, F_2 i loro complementari, che sono insiemi aperti. E' facile vedere che il complementare di $E_1 \cup E_2$ è dato da $F_1 \cap F_2$ e che il complementare di $E_1 \cap E_2$ è dato da $F_1 \cup F_2$ (proprietà note come leggi di De Morgan). Poichè $F_1 \cap F_2$ e $F_1 \cup F_2$ sono aperti per la prima parte dell'esercizio, concludiamo che $E_1 \cup E_2$ e $E_1 \cap E_2$ sono chiusi.

4. Per il teorema di permanenza del segno per le funzioni continue, se \mathbf{x} è tale che $f(\mathbf{x})-c<0$, allora lo stesso vale per i punti in un intorno di \mathbf{x} . Questo significa che l'insieme A_1 è aperto. Un ragionamento simile sulla disuguaglianza opposta mostra che A_2 aperto. Osserviamo poi che C_1 e C_2 sono il complementare di A_2 e A_1 rispettivamente, e quindi sono insiemi chiusi. Ioltre, C_3 è l'intersezione degli insiemi chiusi C_1 e C_2 ; quindi, per quanto visto nell'esercizio precedente, è anch'esso chiuso.

Consideriamo ora un punto $x \in \partial A_1$. Per quanto visto sopra, in tale punto non può aversi f(x) < c (altrimenti sarebbe interno ad A_1) e neanche f(x) > c altrimenti sarebbe interno ad A_2 e avrebbe quindi un intorno che non interseca A_1 . Per esclusione, deve valere f(x) = c, da cui segue l'inclusione $\partial A_1 \subset C_3$.

Tale inclusione non è necessariamente un'uguaglianza. Ad esempio, si può considerare la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} x & x < 0 \\ 0 & x \ge 0, \end{cases}$$

che è continua (f è detta parte negativa di x). Nel caso di c=0 si ha:

$$A_1 = (-\infty, 0), \quad \partial A_1 = \{0\}, \quad C_3 = [0, +\infty),$$

quindi A_1 è contenuto in C_3 , ma non coincide con esso.

5. (a) Stimiamo i due addendi separatamente in termini della distanza dall'origine $\sqrt{x^2 + y^2}$. Per y sufficientemente vicino a zero vale $e^y < 2$. Inoltre vale $x^2 + y^4 \ge x^2$, quindi

$$\frac{x^2 e^y}{\sqrt{x^2 + y^4}} \le \frac{2x^2}{\sqrt{x^2}} = 2|x| \le 2\sqrt{x^2 + y^2}.$$

Per il secondo termine, usando $x^2 + y^4 \ge y^4$, troviamo

$$\frac{x^2y^2}{\sqrt{x^2+y^4}} \le \frac{x^2y^2}{\sqrt{y^4}} = x^2 \le x^2+y^2.$$

Quindi se $\sqrt{x^2 + y^2} \le \delta$, abbiamo

$$|f(x,y)| = \frac{x^2 e^y}{\sqrt{x^2 + y^4}} + \frac{x^2 y^2}{\sqrt{x^2 + y^4}} \le 2\delta + \delta^2$$

che è a sua volta minore di 3δ se $\delta < 1$. Ne segue che, per ogni $\varepsilon > 0$ piccolo, se poniamo $\delta = \varepsilon/3$ vale

$$\sqrt{x^2 + y^2} \le \delta \Longrightarrow |f(x, y)| \le \varepsilon.$$

(b) Ricordiamo che valgono le disuguaglianze $|\sin\theta| \le |\theta|$ per ogni θ e $|ab| \le \frac{1}{2}(a^2 + b^2)$ per ogni a,b. Pertanto vale

$$|\sin xy| \le |xy| \le \frac{x^2 + y^2}{2}$$

e possiamo stimare

$$|f(x,y)| \le \left| \frac{x^3}{x^2 + y^2} \right| + \left| \frac{\sqrt[3]{y} \sin xy}{x^2 + y^2} \right| = |x| \frac{x^2}{x^2 + y^2} + |y|^{1/3} \frac{|\sin xy|}{x^2 + y^2}$$

$$\le |x| + \frac{1}{2} |y|^{1/3} \le \sqrt{x^2 + y^2} + \frac{1}{2} (\sqrt{x^2 + y^2})^{1/3}.$$

Quindi se $\sqrt{x^2 + y^2} \le \delta$, abbiamo

$$|f(x,y)| = \le \delta + \frac{1}{2}\sqrt[3]{\delta}$$

che è a sua volta minore di $\frac{3}{2}\sqrt[3]{\delta}$ se $\delta < 1$. Ne segue che, per ogni $\varepsilon > 0$ piccolo, se poniamo $\delta = \left(\frac{2}{3}\varepsilon\right)^3$, vale

$$\sqrt{x^2 + y^2} \le \delta \Longrightarrow |f(x, y)| \le \varepsilon.$$

6. (a) Studiando il limite di f(x,y) lungo una retta di equazione y=ax, si trova

$$\lim_{x \to 0} f(x, ax) = \lim_{x \to 0} \frac{x^3 + x(ax)}{x^2 + a^2 x^2} = \frac{a}{1 + a^2}.$$

Poiché il limite varia al variare di a, troviamo limiti diversi lungo rette diverse, e concludiamo che il limite in due variabili di f non esiste.

(b) Studiando il limite lungo le rette si trova

$$\lim_{x \to 0} f(x, ax) = \lim_{x \to 0} \frac{x^3(a^3 + a)}{x^2(x^2 + a^2)} = 0, \quad \forall a \in \mathbb{R}.$$

Questo però non basta a concludere che il limite in due variabili sia zero, perché è una condizione necessaria ma non sufficiente.

Studiamo allora anche il limite lungo le parabole $y = ax^2$. Troviamo

$$\lim_{x \to 0} f(x, ax^2) = \lim_{x \to 0} \frac{a^3 x^6 + ax^4}{x^4 (1 + a^2)} = \frac{a}{1 + a^2}.$$

Poiché il limite varia al variare della parabola, concludiamo che il limite in due variabili non esiste.

7. Per $(x,y) \neq (0,0)$ la funzione è di classe C^{∞} e le sue derivate parziali prime si calcolano nel modo usuale, trovando:

$$f_x = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$
 $f_y = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$

Nel punto (0,0) invece, studiando il limite del rapporto incrementale, si trova

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{\frac{x^3 + x \cdot 0}{x^2 + 0} - 0}{x} = \lim_{x \to 0} \frac{x}{x} = 1.$$

$$f_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{\frac{0 + 0 \cdot y}{0 + y^2} - 0}{y} = \lim_{y \to 0} 0 = 0.$$

D'altra parte, nell'esercizio precedente abbiamo visto che non esiste il limite per $(x, y) \rightarrow (0, 0)$ di f(x, y), quindi f non è continua in tale punto.

La non continuità implica la non differenziabilità. Pertanto f_x e f_y non possono essere continue in (0,0), altrimenti ci sarebbe una contraddizione col teorema del differenziale totale. Per verificarlo direttamente, si può studiare il limite lungo le rette:

$$\lim_{x \to 0} f_x(x, ax) = \lim_{x \to 0} \frac{a(a^2 - 1)}{x(1 + a^2)^2} = \pm \infty.$$

8. Presa una qualunque direzione $v=(a,b)\in\mathbb{R}^2$, si trova

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \frac{f(at, bt) - f(0, 0)}{t} = \lim_{t \to 0} \frac{a^3bt^4 + b^4t^4}{(a^6t^6 + b^2t^2)t} = \lim_{t \to 0} \frac{a^3bt + b^4t^2}{a^6t^4 + b^2} = 0.$$

D'altra parte, studiando il limite lungo la curva $y = x^3$, troviamo

$$\lim_{x \to 0} f(x, x^3) = \frac{1}{2} \neq f(0, 0),$$

quindi f non è continua.

- 9. La dimostrazione è analoga al caso unidimensionale. La funzione f è continua sull'insieme chiuso e limitato D, quindi assume massimo e minimo su D. Se la funzione è costante su D, allora banalmente ogni punto $\mathbf{x}_0 \in \overset{\circ}{D}$ soddisfa la tesi. Se la funzione non è costante su D, allora almeno uno tra il massimo e il minimo sarà diverso dal valore costante assunto su ∂D , e quindi sarà raggiunto in un punto $\mathbf{x}_0 \in \overset{\circ}{D}$. In tale punto la f ha gradiente nullo, essendo un punto di massimo/minimo assunto nell'interno di D.
- 10. Posto $\mathbf{v} = \mathbf{y} \mathbf{x}$, consideriamo la funzione $\phi(t) = f(\mathbf{x} + t\mathbf{v})$. Al variare di $t \in [0, 1]$, il punto $\mathbf{x} + t\mathbf{v}$ descrive il segmento di estremi \mathbf{x}, \mathbf{y} , che appartiene al dominio di f per ipotesi. Quindi $\phi(t)$ è ben definita per $t \in [0, 1]$. Il teorema di derivazione di funzione composta dice che ϕ è derivabile con derivata data da

$$\phi'(t) = \langle \nabla f(\mathbf{x} + t\mathbf{v}), \mathbf{v} \rangle = \langle \nabla f(\mathbf{x} + t\mathbf{v}), \mathbf{y} - \mathbf{x} \rangle.$$

Applichiamo il teorema di Lagrange in una variabile a ϕ nell'intervallo $t \in [0, 1]$. Troviamo che esiste $\tau \in (0, 1)$ tale che

$$\frac{\phi(1) - \phi(0)}{1 - 0} = \phi'(\tau) = \langle \nabla f(\mathbf{x} + \tau \mathbf{v}), \mathbf{y} - \mathbf{x} \rangle.$$

Poiché $\phi(1) - \phi(0) = f(\mathbf{y}) - f(\mathbf{x})$ per definizione di ϕ , e $\mathbf{x} + \tau \mathbf{v}$ appartiene al segmento di estremi \mathbf{x}, \mathbf{y} , la tesi segue ponendo $\xi = \mathbf{x} + \tau \mathbf{v}$.

- 11. Ricordiamo che il determinante e la traccia sono rispettivamente il prodotto e la somma degli autovalori dell'hessiano. Se n > 2, è possibile trovare n numeri che abbiano somma e prodotto positivo, ma che non siano tutti positivi. Un semplice esempio, con n = 3, sono i numeri -1, -1, 3: la matrice avente tali numeri lungo la diagonale principale e tutti zeri altrove è indefinita pur avendo determinante e traccia positivi. Basta quindi costruire una funzione $f: \mathbb{R}^3 \to \mathbb{R}$ che abbia un punto critico avente questa matrice come hessiano: ad esempio la funzione $f(x, y, z) = \frac{1}{2}(-x^2 y^2 + 3z^2)$ nel punto (0, 0, 0).
- 12. La restrizione di f su una retta generica per (0,0) ha la forma $f(at,bt)=2a^4t^4-3a^2bt^3+b^2t^2$. Per t=0 questa quantità ha derivata prima nulla e derivata seconda pari a b^2 ; quindi, se $b\neq 0$, ha un minimo. Per b=0, la funzione si riduce al solo termine a^4t^4 , quindi anche in questo caso ha un minimo per t=0. Concludiamo che la funzione ha un minimo in (0,0) lungo ogni retta.

Gli usuali criteri per il massimo e minimo non danno informazioni, perché in (0,0) si trova che l'hessiano di f ha determinante nullo. Come suggerito dal testo, studiamo allora la restrizione della funzione lungo la parabola $y = \frac{3}{2}x^2$. Troviamo

$$f\left(x, \frac{3}{2}x^2\right) = \left(\frac{3}{2} - 2\right)\left(\frac{3}{2} - 1\right)x^2 = -\frac{1}{4}x^4,$$

che per x=0 ha un massimo stretto anziché un minimo. Poiché troviamo comportamenti discordanti lungo diverse curve passanti per l'origine, concludiamo che il punto non è né di massimo né di minimo.

13. La funzione di una variabile $\rho \to \sqrt{\rho}$ è continua per $\rho \in [0, +\infty)$ e derivabile per $\rho \in (0, +\infty)$. Poiché $x^2 + y^2 \ge 0$ per ogni (x, y) ed è nullo solo per (x, y) = (0, 0), deduciamo che $f(x, y) = \sqrt{x^2 + y^2}$ è continua in tutto \mathbb{R}^2 e derivabile in tutto \mathbb{R}^2 tranne eventualmente (0, 0).

La derivabilità in (0,0) va verificata studiando il rapporto incrementale. Facendo variare la x troviamo

$$\frac{f(x,0) - f(0,0)}{x} = \frac{\sqrt{x^2} - 0}{x} = \begin{cases} 1 & \text{se } x > 0\\ -1 & \text{se } x < 0 \end{cases}$$

che non possiede limite per $x \to 0$, in quanto troviamo due diversi limiti per $x \to 0^+$ e per $x \to 0^-$. Quindi f non è derivabile rispetto a x in (0,0). Un calcolo analogo mostra che non è derivabile neanche rispetto a y.

Per studiare la convessità, osserviamo che f(x,y) coincide con ||(x,y)||, la norma del vettore (x,y). Allora, presi due punti qualunque $v_1 = (x_1,y_1), v_2 = (x_2,y_2)$ e un numero $t \in [0,1]$ troviamo, usando la disuguaglianza triangolare soddisfatta dalla norma dei vettori:

$$f(tv_1 + (1-t)v_2) = ||tv_1 + (1-t)v_2|| \le ||tv_1|| + ||(1-t)v_2||$$

= $t||v_1|| + (1-t)||v_2|| = tf(v_1) + (1-t)f(v_2),$

che è la disuguaglianza richiesta per la convessità.

14. Una funzione convessa di classe C^1 su C soddisfa, per ogni $x, y \in C$, la disuguaglianza

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Pertanto, se x è un punto critico, vale $f(y) \ge f(x)$ per ogni $y \in C$, cioè x è un punto di minimo assoluto.