UNIVERSITÀ DI ROMA "TOR VERGATA"

Analisi Matematica II per Ingegneria — Prof. C. Sinestrari

Risposte (sintetiche) ai quesiti degli esercizi del 16.X.2021

- 1. (a) Ω è aperto, $\partial\Omega = \{0,1,2\}, \stackrel{\circ}{\Omega} = \Omega, \overline{\Omega} = [0,1] \cup [2,+\infty).$
 - (b) Ω né aperto né chiuso, $\partial\Omega=\{0,1\}, \stackrel{\circ}{\Omega}=(0,1), \overline{\Omega}=[0,1].$
 - (c) Ω è chiuso, $\partial\Omega = \{0, 1, 2, 3\}$, $\overset{\circ}{\Omega} = (0, 1) \cup (3, \infty)$, $\overline{\Omega} = \Omega$.
 - (d) Ω né aperto né chiuso, $\partial \Omega = \overline{\Omega} = \Omega \cup \{0\}, \stackrel{\circ}{\Omega} = \emptyset$.
 - (e) Ω né aperto né chiuso, $\overset{\circ}{\Omega} = (0,1) \times (0,1), \ \overline{\Omega} = [0,1] \times [0,1], \ \partial \Omega$ è l'unione dei quattro lati del quadrato.
 - (f) Ω è chiuso, $\partial \Omega = \overline{\Omega} = \Omega$, $\overset{\circ}{\Omega} = \emptyset$.
 - (g) Ω né aperto né chiuso, $\partial\Omega=\overline{\Omega}=[0,1]\times[0,1],$ $\overset{\circ}{\Omega}=\emptyset.$
 - (h) Ω né aperto né chiuso, $\partial\Omega = \overline{\Omega} = \Omega \cup \{(x,y) : x = 0, y \in [-1,1]\}, \stackrel{\circ}{\Omega} = \emptyset$.
- 2. Se $\mathbf{x}_0 \notin \Omega$ è di frontiera per Ω , per definizione ogni suo intorno sferico contiene punti di Ω ; tali punti che sono necessariamente diversi da \mathbf{x}_0 stesso perché \mathbf{x}_0 non appartiene a Ω . Quindi è soddisfatta la proprietà che definisce i punti di accumulazione.

Viceversa, se $\mathbf{x}_0 \notin \Omega$ è di accumulazione per Ω , ogni suo intorno sferico contiene punti di Ω (per definizione di punti di accumulazione) e non di Ω (\mathbf{x}_0 stesso) quindi è soddisfatta la proprietà di punto di frontiera.

3. Consideriamo l'intersezione di due insiemi aperti E_1 ed E_2 , e prendiamo un qualunque $\mathbf{x} \in E_1 \cap E_2$. Poiché $\mathbf{x} \in E_1$ ed E_1 è aperto, esiste un raggio $r_1 > 0$ tale che l'intorno $I_{r_1}(\mathbf{x})$ è contenuto in E_1 . Analogamente, esiste $r_2 > 0$ tale che $I_{r_2}(\mathbf{x}) \subset E_2$. Se chiamiamo r il minimo tra r_1 e r_2 , abbiamo allora che $I_r(\mathbf{x}) \subset E_1 \cap E_2$. Poiché ciò vale per un qualunque $\mathbf{x} \in E_1 \cap E_2$, concludiamo che $E_1 \cap E_2$ è aperto.

Consideriamo adesso l'unione di due insiemi aperti E_1 ed E_2 . Prendiamo un qualunque $\mathbf{x} \in E_1 \cup E_2$, ad esempio $\mathbf{x} \in E_1$ (se $\mathbf{x} \in E_2$ si procede in modo analogo). Essendo E_1 aperto, esiste r > 0 tale che $I_r(\mathbf{x}) \subset E_1$. A maggior ragione abbiamo quindi che $I_r(\mathbf{x})$ è contenuto nell'unione $E_1 \cup E_2$. Essendo \mathbf{x} arbitrario, deduciamo che $E_1 \cup E_2$ è aperto.

Le corrispondenti proprietà per gli insiemi chiusi si deducono da queste passando ai complementari. Prendiamo infatti E_1, E_2 insiemi chiusi, e indichiamo con F_1, F_2 i loro complementari, che sono insiemi aperti. E' facile vedere che il complementare di $E_1 \cup E_2$ è dato da $F_1 \cap F_2$ e che il complementare di $E_1 \cap E_2$ è dato da $F_1 \cup F_2$. Poichè $F_1 \cap F_2$ e $F_1 \cup F_2$ sono aperti per la prima parte dell'esercizio, concludiamo che $E_1 \cup E_2$ e $E_1 \cap E_2$ sono chiusi.

4. Per il teorema di permanenza del segno per le funzioni continue, se \mathbf{x} è tale che $f(\mathbf{x})-c<0$, allora lo stesso vale per i punti in un intorno di \mathbf{x} . Questo significa che l'insieme A_1 è aperto. Un ragionamento simile sulla disuguaglianza opposta mostra che A_2 aperto. Osserviamo poi che C_1 e C_2 sono il complementare di A_2 e A_1 rispettivamente, e quindi sono insiemi chiusi. Infine, C_3 è l'intersezione degli insiemi chiusi C_1 e C_2 quindi come visto nell'esercizio precedente è anch'esso chiuso.

5. Per $(x,y) \neq (0,0)$ la funzione è di classe C^{∞} e le sue derivate parziali prime si calcolano nel modo usuale, trovando:

$$f_x = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$
 $f_y = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$.

Nel punto (0,0) invece, studiando il limite del rapporto incrementale, si trova

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{\frac{x \cdot 0}{x^2 + 0} - 0}{x} = \lim_{x \to 0} \frac{0}{x} = \lim_{x \to 0} 0 = 0.$$

Un calcolo analogo mostra che anche $f_{\nu}(0,0)$ esiste e vale zero.

Studiando il limite di f(x,y) su una retta per l'origine y=ax, si trova

$$\lim_{x \to 0} f(x, ax) = \frac{a}{1 + a^2}.$$

Poiché il limite è diverso da zero per tutte le rette con $a \neq 0$, concludiamo che la funzione non è continua.

La non continuità implica la non differenziabilità. Pertanto f_x e f_y non possono essere continue in (0,0), altrimenti ci sarebbe una contraddizione col teorema del differenziale totale. Ciò si verifica anche direttamente, studiando il limite sulle rette, ad es.

$$\lim_{x \to 0} f_x(x, ax) = \lim_{x \to 0} \frac{a(a^2 - 1)}{x(1 + a^2)^2} = \pm \infty.$$

6. Presa una qualunque direzione $v = (a, b) \in \mathbb{R}^2$, si trova

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \frac{f(at, bt) - f(0, 0)}{t} = \lim_{t \to 0} \frac{a^3 bt}{a^6 t^4 + b^2} = 0.$$

D'altra parte, studiando il limite lungo la curva $y = ax^3$, troviamo

$$\lim_{x \to 0} f(x, x^3) = \frac{1}{2} \neq f(0, 0),$$

quindi f non è continua.

- 7. La dimostrazione è analoga al caso unidimensionale. La funzione f è continua sull'insieme chiuso e limitato D, quindi assume massimo e minimo su D. Se la funzione è costante su D, allora banalmente ogni punto $\mathbf{x}_0 \in \overset{\circ}{D}$ soddisfa la tesi. Se la funzione non è costante su D, allora almeno uno tra il massimo e il minimo sarà diverso dal valore costante assunto su ∂D , e quindi sarà raggiunto in un punto $\mathbf{x}_0 \in \overset{\circ}{D}$. In tale punto la f ha gradiente nullo, essendo un punto di massimo/minimo assunto nell'interno di D.
- 8. Posto $\mathbf{v} = \mathbf{y} \mathbf{x}$, consideriamo la funzione $\phi(t) = f(\mathbf{x} + t\mathbf{v})$. Al variare $t \in [0, 1]$, il punto $\mathbf{x} + t\mathbf{v}$ descrive il segmento di estremi \mathbf{x}, \mathbf{y} , che appartiene al dominio di f per ipotesi. Quindi $\phi(t)$ è ben definita per $t \in [0, 1]$. Sappiamo che ϕ è di classe C^1 con derivata

$$\phi'(t) = \langle \nabla f(\mathbf{x} + t\mathbf{v}), \mathbf{v} \rangle = \langle \nabla f(\mathbf{x} + t\mathbf{v}), \mathbf{y} - \mathbf{x} \rangle.$$

Applichiamo il teorema di Lagrange in una variabile a ϕ nell'intervallo $t \in [0, 1]$. Troviamo che esiste $\tau \in (0, 1)$ tale che

$$\frac{\phi(1) - \phi(0)}{1 - 0} = \phi'(\tau) = \langle \nabla f(\mathbf{x} + \tau \mathbf{v}), \mathbf{y} - \mathbf{x} \rangle.$$

Poiché $\phi(1) - \phi(0) = f(\mathbf{y}) - f(\mathbf{x})$ per definizione di ϕ , e $\mathbf{x} + \tau \mathbf{v}$ appartiene al segmento di estremi \mathbf{x}, \mathbf{y} , la tesi segue ponendo $\xi = \mathbf{x} + \tau \mathbf{v}$.

9. La funzione f è continua sull'insieme chiuso e limitato D, quindi assume massimo e minimo su D. Dalle ipotesi sul segno di f segue che il minimo è zero, ed è assunto su tutti i punti di frontiera, mentre il massimo è positivo ed è assunto in uno o più punti interni a D, che quindi devono essere critici per f. Poiché per ipotesi non ci sono punti critici interni di f interni a D oltre a \mathbf{x}_0 , l'unica possibilità è che il massimo di f su D cada in \mathbf{x}_0 . Essendo \mathbf{x}_0 interno a D, esiste un intorno $B_d(\mathbf{x}_0)$ contenuto in D, pertanto vale

$$f(\mathbf{x}) \le \max_{D} f = f(\mathbf{x}_0), \quad \forall \mathbf{x} \in B_d(\mathbf{x}_0),$$

cioè \mathbf{x}_0 è un punto di massimo relativo per f.

10. La funzione ha quattro punti critici $P_1 = (0,0)$, $P_2 = (0,2)$, $P_3 = (-\sqrt{3},3)$, $P_4 = (\sqrt{3},3)$. La matrice hessiana ha determinante negativo in P_3 , P_4 , che quindi non sono né di massimo né di minimo, mentre ha determinante nullo in P_1 , P_2 . Per quanto riguarda P_1 , osserviamo che $f(x,0) = -3x^4$ ha un massimo stretto per x = 0, mentre $f(0,y) = 3y^2 - y^3$ ha un minimo stretto per y = 0; il punto quindi non è né di massimo né di minimo. Per studiare P_2 , osserviamo che f cambia segno attraverso le parabole $y = -x^2$, $y = x^2$ e la retta y = 3; in ciascuna delle regioni delimitate da queste curve f ha segno costante. Tra questi insiemi, consideriamo quello che contiene P_2 , cioè poniamo

$$D = \{(x, y) : x^2 \le y \le 3\}.$$

Si tratta di un insieme chiuso, perché definito da disuguaglianze non strette, e limitato, perché ogni $(x,y) \in D$ soddisfa $|x| \leq \sqrt{3}$ e $|y| \leq 3$. Per come abbiamo definito D, troviamo che $f \geq 0$ su D e $f \equiv 0$ su ∂D . Osserviamo che P_2 è interno a D ed è l'unico punto critico di f appartenente a D. Per il risultato dell'esercizio precedente, concludiamo che P_2 è di massimo relativo per f.

11. La funzione di una variabile $\rho \to \sqrt{\rho}$ è continua per $\rho \in [0, +\infty)$ e derivabile per $\rho \in (0, +\infty)$. Poiché $x^2 + y^2 \ge 0$ per ogni (x, y) ed è nullo solo per (x, y) = (0, 0), deduciamo che $f(x, y) = \sqrt{x^2 + y^2}$ è continua in tutto \mathbb{R}^2 e derivabile in tutto \mathbb{R}^2 tranne eventualmente (0, 0).

La derivabilità in (0,0) va verificata studiando il rapporto incrementale. Facendo variare la x troviamo

$$\frac{f(x,0) - f(0,0)}{x} = \frac{\sqrt{x^2 - 0}}{x} = \begin{cases} 1 & \text{se } x > 0\\ -1 & \text{se } x < 0 \end{cases}$$

che non possiede limite per $x \to 0$, in quanto troviamo due diversi limiti per $x \to 0^+$ e per $x \to 0^-$. Quindi f non è derivabile rispetto a x in (0,0). Un calcolo analogo mostra che non è derivabile neanche rispetto a y.

Per studiare la convessità, osserviamo che f(x,y) coincide con ||(x,y)||, la norma del vettore (x,y). Allora, presi due punti qualunque $v_1 = (x_1,y_1)$ e $v_2 = (x_2,y_2)$ troviamo, usando la disuguaglianza triangolare soddisfatta dalla norma dei vettori:

$$f(tv_1 + (1-t)v_2) = ||tv_1 + (1-t)v_2|| \le ||tv_1|| + ||(1-t)v_2||$$

= $t||v_1|| + (1-t)||v_2|| = tf(v_1) + (1-t)f(v_2),$

che è la disuguaglianza richiesta per la convessità.

12. Una funzione convessa di classe C^1 su C soddisfa, per ogni $x, y \in C$, la disuguaglianza

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Pertanto, se x è un punto critico, vale $f(y) \ge f(x)$ per ogni $y \in C$, cioè x è un punto di minimo assoluto.

- 13. Sia C un intorno sferico di \mathbf{x}_0 tale che $\nabla^2 f(\mathbf{x})$ sia semidefinito positivo per tutti gli $\mathbf{x} \in C$. Allora f è convessa su C. Per il risultato dell'esercizio precedente, un punto critico è anche di minimo (assoluto su C, quindi locale su \mathbb{R}^n).
 - La f proposta è tale che (0,0) è un punto critico. L'hessiano è la matrice diagonale con autovalori $12x^2$ e $2-12y^2$. Poiché $12x^2 \geq 0$ per ogni $x \in \mathbb{R}$, e $2-12y^2 \geq 0$ per ogni y con $|y| \leq 1/\sqrt{6}$, abbiamo che $\nabla^2 f$ è semidefinito positivo in un intorno di (0,0). Il criterio appena dimostrato ci dice che (0,0) è un punto di minimo locale.
- 14. Ricordiamo che il determinante e la traccia sono rispettivamente il prodotto e la somma degli autovalori dell'hessiano. Se n > 2, è possibile trovare n numeri che abbiano somma e prodotto positivo, ma che non siano tutti positivi. Un semplice esempio, con n = 3, sono i numeri -1, -1, 3. Basta quindi costruire una funzione $f : \mathbb{R}^3 \to \mathbb{R}$ che abbia un punto critico con hessiano avente questi numeri come autovalori: ad esempio la funzione $f(x, y, z) = \frac{1}{2}(-x^2 y^2 + 3z^2)$ nel punto (0, 0, 0).
- 15. (a) FALSO: serve anche che $\nabla f(\mathbf{x}) = 0$; se non è così, il punto non è né di massimo né di minimo.
 - (b) VERO: qualunque sia il valore di $\nabla f(\mathbf{x})$, non sono soddisfatte le condizioni necessarie per un massimo o per un minimo.
 - (c) FALSO: vale solo per n=2, mentre per $n\geq 3$ non vale, come mostrato nell'esercizio precedente.
 - (d) VERO: determinante e traccia sono rispettivamente prodotto e somma degli autovalori, e una matrice definita positiva ha autovalori positivi.
 - (e) FALSO: ad esempio, la funzione $f(x,y) = x^2 y^4$ ha un punto critico nell'origine, con matrice hessiana semidefinita positiva, ma lungo l'asse y si trova $f(0,y) = -y^4$ che ha un massimo.
 - (f) VERO: in un punto di massimo, il gradiente è nullo e il piano tangente è orizzontale. Se la funzione è convessa, il grafico giace al di sopra del piano tangente. D'altra parte, se il punto è di massimo, il grafico giace al di sotto del piano orizzontale passante per il punto, quindi abbiamo una contraddizione (a meno che il grafico non coincida col piano orizzontale, cioè f è costante).