UNIVERSITÀ DI ROMA "TOR VERGATA"

Analisi Matematica II per Ingegneria — Prof. C. Sinestrari

Esercizi – 11.I.2019

1. Di ciascuna delle seguenti funzioni, calcolare l'integrale lungo la curva di equazione $\phi(t)=(t^4+\cos\frac{\pi}{2}t)+i\sin\frac{\pi}{2}t$, per $t\in[0,1]$:

(a)
$$f(z) = 4z^2$$
, (b) $f(z) = \frac{1}{z^2}$, (c) $f(z) = e^{\pi z}$.

2. In ciascuno dei seguenti casi, trovare le singolarità isolate di f e calcolarne il residuo. Inoltre calcolare l'integrale di f sulla curva γ data dal bordo del rettangolo di vertici -10, 10, 10+2i e -10+2i (qui e nel seguito si sottintende che le curve chiuse semplici sono orientate positivamente).

(a)
$$f(z) = \frac{1}{1+z^6}$$
, (b) $f(z) = \frac{z^2}{1+z^4}$, (c) $f(z) = \frac{e^{\pi z}}{z^2+1}$.

3. In ciascuno dei seguenti casi, trovare le singolarità isolate di f e calcolarne il residuo. Inoltre calcolare l'integrale di f sulle curve γ_1 e γ_2 , dove γ_1 è la circonferenza di centro 0 e raggio 2 mentre γ_2 è la circonferenza di centro 0 e raggio 10

(a)
$$f(z) = \frac{z^2 + 1}{e^z - 1}$$
, (b) $f(z) = \frac{z}{e^z + 1}$, (c) $f(z) = \frac{2z}{e^z + i}$.

4. In ciascuno dei seguenti casi, trovare le singolarità isolate di f e calcolarne il residuo. Inoltre calcolare l'integrale di f sulla circonferenza di centro 0 e raggio 5.

(a)
$$f(z) = \frac{\sin z}{z^2 + 1}$$
, (b) $f(z) = \frac{\cos 2z}{z^2 - \pi^2}$.

- 5. Si consideri la funzione di variabile complessa $f(z) = \frac{1}{z^3 8}$, e si indichi con γ_R la circonferenza con centro il punto z = -1 e raggio R, percorsa in senso antiorario. Dire, al variare di R, quanto vale l'integrale di f(z) su γ_R .
- 6. Si consideri la funzione di variabile complessa $f(z) = \frac{z^2}{e^{\pi z} i}$, e si indichi con γ_R la circonferenza di centro l'origine e raggio R, percorsa in senso antiorario. Calcolare l'integrale di f su γ_R quando R=2. Dire se esiste finito il limite dell'integrale per $R \to +\infty$.

7. Calcolare i seguenti integrali impropri reali, riconducendoli a opportuni integrali complessi e utilizzando il teorema dei residui.

(a)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^4 + 1}$$

(a)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^4 + 1}$$
, (b) $\int_{-\infty}^{+\infty} \frac{x^4}{x^6 + 1} dx$, (c) $\int_{-\infty}^{+\infty} \frac{\cos \pi x}{x^2 + 1} dx$.

(c)
$$\int_{-\infty}^{+\infty} \frac{\cos \pi x}{x^2 + 1} \, dx.$$

- 8. Si consideri la funzione di variabile complessa $f(z) = \frac{e^{\pi z}}{z^4 + 4}$.
 - (a) Calcolare l'integrale di f sulla circonferenza di centro z=-2 e raggio 2 percorsa in senso antiorario.
 - (b) Calcolare l'integrale improprio reale $\int_{-\infty}^{\infty} \frac{\cos \pi x}{x^4 + 4} dx$ (sugg. metterlo in relazione con l'integrale di f(z) lungo l'asse immaginario).

Vedere anche, ad esempio, gli esercizi del capitolo 18 del libro di Bertsch-Dal Passo-Giacomelli.