
An elementary introduction to celestial mechanics

1. Lagrangian and Hamiltonian equations.

In this note we review, starting from elementary notions in classical mechanics, several
problems in celestial mechanics, showing how they may be solved at first order in pertur-
bation theory, obtaining quantitative results already in reasonably good agreement with
the observed data. In this and in the following sections 2-7 we summarize very briefly a
few prerequisites.
We suppose the reader familiar with the notion of ideal constraint, and with the descrip-
tion of the mechanical problems by means of generalized coordinates, using the classical
Lagrange equations

∂L
∂q

=
d

dt

∂L
∂q̇

(1.1)1.1

where
L(q, q̇, t) = T (q, q̇)− V (q, t) (1.2)1.2

It is useful to allow the t–dependence because in several problems such dependence
appears explicitly (and periodic in time). The equivalent Hamilton equations are

q̇ =
∂H

∂p
ṗ = −∂H

∂q
(1.3)1.3

where, by definition

p =
∂L
∂q̇

(1.4)1.4

and
H(p,q) = T (p,q) + V (q, t) (1.5)1.5

The notion of canonical transformation q,p←→Q,P is also needed. A canonical trans-
formation can be characterized by the property

p · dq+Q · dP = dF (1.6)1.6

which is implied by the existence of a “generating function” F (q,P, t) such that

p =
∂F (q,P, t)

∂q
, Q =

∂F (q,P, t)

∂P
, H ′(Q,P, t) = H(q,p) +

∂F (q,P, t)

∂t
(1.7)1.7

which is a sufficient condition for the canonicity of the map.

2. Central motion.

One of the most well known integrable systems is the two body problem. The system
consists of two point masses with masses m1 and m2, respectively, interacting through a
conservative force with potential energy depending only on their distance

V (x1,x2) = V (|x1 − x2|) (2.1)2.1

and we shall assume that V (ρ) is defined for ρ > 0 and that it is such that

lim
ρ→0

ρ2V (ρ) = 0 (2.2)2.2
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inf
ρ≥ε

V (ρ) = −Vε > −∞ ∀ε > 0 (2.3)2.3

The forces associated with the potential (2.1) satisfy the third law of dynamics: hence
the center of mass undergoes a uniform rectilinear motion, and it may be supposed at
rest in the origin of a suitable inertial frame (O; i1, i2, i3). To determine the position of
the two points it will be enough to give the vector ρ (t) = x1(t) − x2(t) because it will
be

x1(t) =
m2

m1 +m2
ρ (t), x2(t) =

−m1

m1 +m2
ρ (t) (2.4)2.4

Moreover, as a consequence of the third law of dynamics, the angular momentum K will
be conserved, and it may be assumed to be parallel to the unit vector i3

K = Ai3 (2.5)2.5

Using (2.4), (2.5) and the definition of ρ (t) we obtain

K = Ai3 = m1x1 ∧ ẋ1 +m2x2 ∧ ẋ2 =
m1m2

m1 +m2
ρ ∧ ρ̇ (2.6)2.6

Hence ρ and ρ̇ have to lie in the plane (i1, i2), and the motion may be parameterized
by the polar coordinates (ρ,ϑ) in such plane. The resulting Lagrangian is

L(ρ̇, ϑ̇, ρ,ϑ) = 1

2

m1m2

m1 +m2
(ρ̇2 + ρ2ϑ̇2)− V (ρ) (2.7)2.7

which is the Lagrangian for a single point mass P of mass m = m1m2
m1+m2

moving on
the plane and attracted by a force directed to the origin O and with potential energy
depending only on |P −O|. The motion of such a system is called central motion.
The Lagrangian (2.7) does not depend explicitly on time nor on the coordinate ϑ. The
conserved quantities so obtained are obviously the energy

E =
1

2
m(ρ̇2 + ρ2ϑ̇2) + V (ρ) (2.8)2.8

and the angular momentum along the i3 axis

A = ρ2ϑ̇ (2.9)2.9

We shall suppose A '= 0, and this implies that

ρ(t) ≥ ρ0 ∀t ∈ R (2.10)2.10

To check (2.10) we put (2.9) in (2.8) obtaining

E =
1

2
m(ρ̇2 +

A2

ρ2
) + V (ρ) (2.11)2.11

Given E the assumption (2.2) implies the existence of ρ0 such that for ρ ≤ ρ0

E − 1

2
m(ρ̇2 +

A2

ρ2
)− V (ρ) < 0 (2.12)2.12

from which (2.10) follows.
The energy conservation relation (2.11) shows that the motion of ρ is a one dimensional
motion with potential energy

VA(ρ) =
mA2

2ρ2
+ V (ρ) (2.13)2.13
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which, therefore, can be integrated by the quadrature

t− t0 =

∫ ρ

ρ0

dρ′√
2
m (E − V (ρ′))− A2

ρ′2

(2.14)2.14

Combining (2.14) with (2.9) we find

dϑ =
A

ρ2
dt =

Aρ−2dρ√
2
m (E − V (ρ))− A2

ρ2

→ ϑ− ϑ0 =

∫ ρ

ρ0

Aρ′−2dρ′√
2
m(E − V (ρ′))− A2

ρ′2

(2.15)2.15

The integrals (2.14) and (2.15) give the equations of motions. In particular one can show
that the motion can be represented, with a suitable transformation of variables, by two
point masses rotating on two unit circles at constant speeds, depending on E and A: this
type of motions is called quasiperiodic with two periods. See Section 9 below.

3. Kepler’s laws

For the purpose of our applications to celestial mechanics we are particularly interested
in the motion described by the integrals (2.14), (2.15) when the potential energy is
gravitational, i.e.

V (ρ) = −mg

ρ
(3.1)3.1

where g is a constant essentially equal to the product of the gravitational constant k
times the mass of a celestial body (e.g. the Sun or the Earth or the Moon).
This choice gives for the effective potential VA(ρ) a shape shown in Fig 3.1

VA(ρ)

ρ

Fig. 3.1: The effective gravitational potential. The minimum of VA is −mg/2A2.

and we shall study in particular the case E < 0 so that it is possible to find ρ− and ρ+
such that ρ− ≤ ρ(t) ≤ ρ+. This means that we are imposing 0 > E > −mg/2A2.

Under the above conditions the problem is known as Kepler’s problem, and it is governed
by Kepler’s laws of motions

(a) The trajectories of the motion are ellipses with focus in O.
(b) The motion on the ellipses has constant areal velocity around the focus O.
(c) The ratio between the square of the revolution period T and the cube of the length of
the ellipse’s major axis is a constant depending solely on g.

Moreover the focal distances ρ− and ρ+ are such that

ρ+ + ρ− = mg/(−E) (3.2)3.2

17/ottobre/2014; 12:39 3



ρ+ρ− =
mA2

−2E (3.3)3.3

and the period of revolution T is

T =
π√
2g

(ρ+ + ρ−)
3/2 (3.4)3.4

To check Kepler’s laws we write (2.11) as

1

2
(ρ̇2 +

A2

ρ2
)− g

ρ
=

E

m
(3.5)3.5

The value of 1
ρ−

and 1
ρ+

are therefore the solutions of the following polynomial equation

in 1
ρ

E

m
− A2

2ρ2
+

g

ρ
=

A2

2

( 1

ρ−
− 1

ρ

)(1
ρ
− 1

ρ+

)
= 0 (3.6)3.6

This gives immediately (3.2) and (3.3), since

1

ρ+
+

1

ρ−
=

2g

A2

1

ρ+

1

ρ−
=
−2E
mA2

(3.7)3.7

Starting from (3.6) and setting ϑ(ρ−) = π we can study the motion between ρ− and ρ+
by writing (2.15) as

ϑ− π =

∫ ρ

ρ−

dρ′

ρ′2
√(

1
ρ−
− 1

ρ′

)(
1
ρ′ −

1
ρ+

) (3.8)3.8

This is an elementary integral: performing the change of variable y = 1/ρ one finds

1

ρ
=

1

2

[( 1

ρ+
+

1

ρ−

)
+
( 1

ρ−
− 1

ρ+

)
cos(ϑ− π)

]
(3.9)3.9

where the origin of the angle ϑ is chosen so that ϑ = 0 corresponds to the point furthest
away from the origin, ρ = ρ+.
The motion between ρ+ and ρ− can be studied likewise, and it still verifies (3.9). From
elementary geometry it is well known that (3.9) is the polar equation of an ellipse with
focus at the origin, focal distances ρ+ and ρ−, major axis along the x axis, semiaxes a, b
given by a = ρ++ρ−

2 and b =
√
ρ+ρ−, and eccentricity e = ρ+−ρ−

ρ++ρ−
.

This proves the Kepler’s law (a). To prove (b) one simply remarks that the areal velocity,
i.e. the area swept by the radius ρ per unit time, is 1

2ρ
2ϑ̇ = A

2 , and it is therefore constant
for any central motion.
The Kepler’s law c) is a consequence of (3.4), and to prove the latter one can compute
explicitly the period using (2.14) or, more simply, dividing the area of the ellipse by the
areal velocity. In this way one obtains

T = π
ρ+ + ρ−

2
√
ρ+ρ−

2

A
=

π√
2g

(ρ+ + ρ−)
3/2 =

2πa3/2
√
g

(3.10)3.10

where we have used (3.2) and (3.3). By using the same equalities and the above expression
of the eccentricity e we obtain also

A =
√

ga(1− e2) (3.11)3.11
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4. Action-angle variables for the two body problem

The action–angle variables are canonical coordinates which are particularly adapted to
study problems which are close to integrable ones: in our case we shall employ them
to study various precession problems in systems that are close to either the two body
problem or to the rigid body with a fixed point.
We introduce here the action-angle variables for the two body problem. The Hamiltonian
of the system (see (1.4), (2.8)) is

H(pρ, pϑ, ρ,ϑ) =
p2ρ
2

+
p2ϑ
2ρ2
− g

ρ
(4.1)4.1

where the overall factor 1/m in the original Lagrangian has been set equal to 1.
To introduce the action-angle variables, we write first the following expressions for the
action variables

L =
1

2π

∮
pρdρ G =

1

2π

∮
pϑdϑ (4.2)4.2

where the integrals are computed on the solutions, in the sense that

pρ =
√
2E − p2

ϑ
ρ2 + 2g

ρ pϑ = const (4.3)4.3

Performing explicitly the integrals we find

L =
1

2π

∮ √
2E − p2

ϑ
ρ2 + 2g

ρ dρ =
g√
−2E

G = pϑ (4.4)4.4

The corresponding conjugate “angle variables” can be found by using the generating
function S

S(ρ,ϑ, L,G) = Sρ(ρ, L) + Sϑ(ϑ, G) (4.5)4.5

where

Sρ =

∫
pρ(L,G)dρ Sϑ =

∫
pϑ(L,G)dϑ (4.6)4.6

and

pρ =
√

−g2

L2 − G2

ρ2 + 2g
ρ pϑ = G (4.7)4.7

The angle variable are obtained by differentiation of S. It is convenient to define the
integrals in (4.6) in such a way that the integration constant does not depend on L,G.
Integrating locally (4.6) (e.g. for motions with increasing ρ) we get

λ =
∂S

∂L
=
∂Sρ
∂L

=
∂

∂L

∫ ρ

ρ−

√
−g2

L2 − G2

r2 + 2g
r dr =

=
g2

L3

∫ ρ

ρ−

1√
−g2

L2 − G2

r2 + 2g
r

dr =
g2

L3
(t− t−);

(4.8)4.8

γ =
∂S

∂G
=

∂

∂G

[ ∫ ρ

ρ−

√
−g2

L2 − G2

r2 + 2g
r dr +

∫ ϑ

0
Gdϑ′

]
=

=

∫ ρ

ρ−

G

r2
√

−g2

L2 + 2 g
r −

G2

r2

dr + ϑ = ϑ−
(4.9)4.9
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where we have used (2.14)-(2.15) and t− is the instant in which the system has ρ = ρ−
and ϑ− is the angle between the major semiaxis of the Keplerian ellipse and a fixed
“nodal” axis from which the angle ϑ is computed on the plane of the motion.
The set of canonical variables (L,G,λ, γ) have the following properties:

L =
g√
−2E

=
√
ga (4.10)4.10

where a is the major semiaxis of the orbit and, in the last equality, we have used (3.2).
From (4.10) and (4.8) we obtain

λ− λ− = t

√
g

a3/2
= 2π

t

T
(4.11)4.11

as it has to be since (L,λ) are conjugates action-angle variables. The angle λ is usually
called average anomaly. Moreover the conjugates action-angle variables (G, γ) are such
that

G = A = L(1− e2)1/2 (4.12)4.12

where we have used (3.11), and γ, which is constant over the solution of motion, is the
angle between the major axis of the ellipse and a nodal axis.
The canonical variables (L,G,λ, γ) are called Delaunay variables. In terms of such vari-
ables the Hamiltonian of the two bodies problem becomes simply

H = − g2

2L2
(4.13)4.13

5. Spherical trigonometry

We collect here a few classical spherical trigonometry results needed in the following
sections. Calling A,B,C the three sides and α,β, γ the three angles of the spherical
triangle in Fig. 5.1:

αγ

β

A

B

C

Fig. 5.1: Spherical triangle with the sides formed by the arcs A,B,C opposite to the angles α, β, γ.

the following are the key relations of spherical trigonometry:

cosC = cosA cosB + sinA sinB cos γ (5.1)5.1

cos γ = − cosα cosβ + sinα sinβ cosC (5.2)5.2

sinα

sinA
=

sinβ

sinB
=

sin γ

sinC
(5.3)5.3

sinC cosβ = cosB sinA− sinB cosA cos γ (5.4)5.4
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cosA cos γ = sinA cotB − sin γ cotβ (5.5)5.5

dA = cosβdC + cos γdB + sinB sin γdα (5.6)5.6

To check the spherical identities (5.1)-(5.6) simply draw the spherical triangle in Fig. 5.1
by locating the vertex 2 with the angle γ on the z axis, the vertex 1 with the β angle
on the xz plane: so that the three vertices are expressed in Cartesian coordinates as
r1 = (sinA, 0, cosA), r2 = (0, 0, 1) and r3 = (sinB cos γ, sinB sin γ, cosB). Then

(i) to check (5.1) observe that r1 · r3 = cosC;

(ii) to check (5.2) apply (5.1) to the spherical triangle formed on the sphere by the
perpendicular to the planes containing the arcs A,B,C;

(iii) to check (5.3) note that r1 · r2 ∧ r3 = sinA sinB sin γ has to be symmetric in the
interchange of the role of (A,α), (B,β), (C, γ);

(iv) to check (5.4) remark that r1 ∧ r3 · j = − sinC cosβ;

(v) the identity (5.5) is a consequence of (5.1) and (5.4);

(vi) finally (5.6) is obtained by differentiating the expression of cosA obtained from (5.1)
with the substitution (A,α)→ (C, γ) and then using (5.3) and (5.5)

6. Kinematic description of the rigid body and action angle coordinates.

A rigid body is a system of n material points P1, ..., Pn with masses m1, ...,mn such that
there exists a reference frame (O; i1, i2, i3) with origin O and coordinate unit vectors
i1, i2, i3 in which the coordinates of P1, ..., Pn are constant. This implies that internal
constraints are present in the system and we assume that the constraints are ideal.
The motion of a rigid system is therefore identified with that of the frame (O; i1, i2, i3),
called comoving frame, with respect to a frame (Ω; ī, j̄, k̄), called fixed frame.
The comoving frame can be chosen conveniently. In what follows we shall choose (O; i1,
i2, i3) in such a way that the coordinates (xi, yi, zi), i = 1, ..., n of the vectors OP i

representing the points verify the relations

∑

i

mixiyi =
∑

i

mixizi =
∑

i

miyizi = 0 (6.1)6.1

This is always possible, since the matrix Iαβ =
∑

i mi[(OP i)2δαβ − (OP i)α(OP i)β ],
whose non diagonal elements are exactly the sums in (6.1), is a symmetric positive
definite matrix, and therefore can be diagonalized by a suitable rotation of the axes of
the comoving frame.
In order to describe the rigid motion we start from the fundamental relation

vP = vO + ω ∧OP (6.2)6.2

where ω is the angular velocity of the frame (O; i1, i2, i3) with respect to (Ω; ī, j̄, k̄).
By means of (6.2) we can derive the following results:
(i) Calling KO the angular momentum of the rigid body with respect to O, and setting
I1 =

∑
i mi(y2i + z2i ), I2 =

∑
i mi(x2

i + z2i ), I3 =
∑

imi(x2
i + y2i ), we have the following

equality

KO = I1ω1i1 + I2ω2i2 + I3ω3i3 (6.3)6.3
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(6.3) can be proved simply inserting (6.2) in the definition of KO

KO =
n∑

i=1

OP i ∧mivPi =
n∑

i=1

miOP i ∧ (ω ∧OP i) (6.4)6.4

then, by the well known relation a ∧ (b ∧ c) = (a · c)b− (a · b)c we obtain

KO =
n∑

i=1

mi[(OP i)
2ω − (OP i · ω)OP i] (6.5)6.5

and writing (6.5) in components and exploiting (6.1) we obtain (6.3). The quantities
I1, I2, I3 are called principal inertia moments of the rigid body.
(ii) Calling T the kinetic energy, G thecenter of mass and m =

∑
imi the total mass of

the rigid body it is

T =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) +

1

2
mv2O +mvO · (ω ∧OG) (6.6)6.6

(6.6) can be proved again by (6.2)

T =
1

2

n∑

i=1

mi(vO + ω ∧OP i) · (vO + ω ∧OP i) =

=
1

2
mv2

O +mvO · (ω ∧OG) +
1

2

n∑

i=1

mi(ω · (OP i ∧ (ω ∧OP i)))

(6.7)6.7

where in the last term we used a ·(b∧c) = c ·(a∧b). Such term can be therefore rewritten
as

1

2

n∑

i=1

mi(ω · (OP i ∧ (ω ∧OP i))) =
1

2
ω ·KO ≡ TO (6.8)6.8

and (6.6) follows from (6.3).
Remark: (6.6) shows that if O = G the kinetic energy can be decomposed in the kinetic
energy of G plus the kinetic energy of the motion around G (Koenig’s theorem).

We want to define suitable coordinates in order to describe the position of (O; i1, i2, i3)
with respect to (O; ī, j̄, k̄). A natural choice (Euler’s angles) is represented in Fig. 6.1:

ī

n̄ i1

j̄

i2

k̄

i3

ϑ

ϕ

ψ

Fig. 6.1: The Euler angles.
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Let n̄ be the unit vector in the direction of the intersection between the planes i1, i2
and ī, j̄. The Euler’s angles are the angle ϕ̄ between ī and n̄, the angle ψ̄ between i1 and
n̄ and the angle ϑ̄ between k̄ and i3. The angular velocity ω can be written in terms of
Euler’s angles (ϑ̄, ϕ̄, ψ̄) by decomposing it in the directions k̄, i3, n̄:

ω = ˙̄ϑn̄+ ˙̄ϕk̄+ ˙̄ψi3 (6.9)6.9

The vectors k̄, i3, n̄ can be expressed in the frame (O; i1, i2, i3) in the following way

i3 =




0
0
1



 n̄ =




cos ψ̄
− sin ψ̄

0



 k̄ =




sin ϑ̄ sin ψ̄
sin ϑ̄ cos ψ̄

cos ϑ̄



 (6.10)6.10

and therefore we can obtain the following expression for ω in terms of (ϑ̄, ϕ̄, ψ̄)

ω =




sin ϑ̄ sin ψ̄ ˙̄ϕ+ cos ψ̄ ˙̄ϑ

sin ϑ̄ cos ψ̄ ˙̄ϕ+ sin ψ̄ ˙̄ϑ
˙̄ψ + cos ϑ̄ ˙̄ϕ



 (6.11)6.11

From (6.8), we obtain the expression of kinetic energy TO in terms of Euler’s angles

TO =
1

2
[I1(sin ϑ̄ sin ψ̄ ˙̄ϕ+cos ψ̄ ˙̄ϑ)2+I2(sin ϑ̄ cos ψ̄ ˙̄ϕ+sin ψ̄ ˙̄ϑ)2+I3(

˙̄ψ+cos ϑ̄ ˙̄ϕ)2] (6.12)6.12

By using (ϑ̄, ϕ̄, ψ̄) as Lagrangian coordinates we obtain for the conjugate variables (1.4),
by (6.8) and (6.9)

pϑ̄ = KO · n̄ pϕ̄ = KO · k̄ pψ̄ = KO · i3 (6.13)6.13

ī

ϕ̄

γ̄

m
n̄

ϕ

ψ

n

i1ψ̄

ī2

k̄
KO

i3

δ

ϑ ϑ̄

O
j̄

Fig. 6.2: The Deprit angles.
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Another set of natural coordinates (Deprit’s angles) is obtained as follows, see Fig. 6.2.
Consider a frame (O; i, j,k) such that k is parallel to KO and i is on the intersection
between the plane orthogonal to k and the plane ī, j̄; j is then uniquely determined. Let
(ϑ,ϕ,ψ) be the Euler’s angles of (O; i1, i2, i3) with respect to (O; i, j,k), and (δ, γ, 0) the
Euler’s angles of (O; i, j,k) with respect to (O; ī, j̄, k̄)
Note that the angles (ϑ̄, ϕ̄, ψ̄), (ϑ,ϕ,ψ) and (δ, γ, 0) are related by a spherical trian-
gle (Deprit’s spherical triangle). Denoting as (A,α), (B,β), (C, γ) the pairs of opposite
angles, the Deprit’s triangle is (ϕ,π − ϑ̄), (ψ̄ − ψ, δ), (ϕ̄− γ,ϑ) (see Fig. 6.2).
Moreover let us define the quantities A = |KO|, K = KO · k̄ = pϕ̄, L = KO · i3 = pψ̄.
Consider now the transformation

(pϑ̄, pϕ̄, pψ̄, ϑ̄, ϕ̄, ψ̄)→ (A,K,L,ϕ, γ,ψ) (6.14)6.14

Such transformation is well defined: the knowledge of (pϑ̄, pϕ̄, pψ̄, ϑ̄, ϕ̄, ψ̄) gives imme-
diately, by (6.13), the components of KO and therefore the Deprit’s variables; on the
other side, from the knowledge of (A,K,L,ϕ, γ,ψ) it is immediate to find ϑ, given by
cosϑ = L

A , and δ, given by cos δ = K
A ; by definition

pψ̄ = L pϕ̄ = K (6.15)6.15

and it is easy to check that
pϑ̄ = A sinϑ sin(ψ − ψ̄) (6.16)6.16

finally the Euler’s angles (ϑ̄, ϕ̄, ψ̄), and therefore pϑ̄, are obtained by solving the Deprit’s
spherical triangle by means of (5.1)-(5.5).
A remarkable result is the fact that the transformation (6.14) is canonical. This can be
proved by applying (5.6) to the Deprit’s triangle, obtaining

dϕ = cos δd(ϕ̄− γ) + cosϑd(ψ̄ − ψ)− sinϑ sin(ψ̄ − ψ)dϑ̄ (6.17)6.17

which can be studied by considering the quantity Kdγ+Adϕ+Ldψ. By (6.17) we have

Kdγ+Adϕ+Ldψ = pϕ̄dγ+pψ̄dψ+A cos δd(ϕ̄−γ)+A cosϑd(ψ̄−ψ)−Asinϑ sin(ψ̄−ψ)dϑ̄
(6.18)6.18

Substituting (6.15) and (6.16) in (6.18) we obtain

Kdγ +Adϕ+ Ldψ = pϕ̄dϕ̄+ pψ̄dψ̄ + pϑ̄dϑ̄ (6.19)6.19

which shows the canonicity of (6.14) by (1.6) with F = .pϕ̄ϕ̄+ pψ̄ψ̄ + pϑ̄ϑ̄.
It is easy to write now the expression of the kinetic energy TO in terms of Deprit’s
variables: by (6.3) and (6.8) we have

TO =
1

2
KO · I−1KO (6.20)6.20

By definition of Deprit’s variables the components of KO in the frame (O; i1, i2, i3) are

KO = (
√
A2 − L2 sinψ,

√
A2 − L2 cosψ, L) (6.21)6.21

and this gives

TO =
1

2

[L2

I3
+ (A2 − L2)

( sin2 ψ
I1

+
cos2 ψ

I2

)]
(6.22)6.22
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7. First order perturbation theory. The averaging method.

In general solving dynamical problems is very difficult and one has to develop approx-
imation methods. The simplest method is the averaging method: our purpose here is
precisely to show how it can be used in order to obtain a first description of the main
phenomena of the Solar system that cannot be reduced to the Kepler’s laws.
It is convenient to study general Hamiltonians of the form

H(A,α) = H0(A) + ηHI(A,α) (7.1)7.1

where A ∈ V ⊂ Rl, α ∈ Tl, are canonically conjugated action (A = (A1, . . . , A))) and
angle ((α1, . . . ,αn/)) coordinates, H0 is analytic in V and HI is analytic in V × T l and
such that for some N > 0

HI(A,α) =
∑

ν∈Zl

|ν|≤N

HI(A)νe
iν·α (7.2)7.2

Our main goal is to determine a canonical transformation (A,α)←→ (A′,α′) in a suitable
neighborhood of the initial condition A0 such that the Hamiltonian (7.1) takes the form

H(1)(A′,α′) = H(1)(A′) + η2H(1)
I (A′,α′) (7.3)7.3

Such a canonical transformation can be constructed if suitable conditions are met: a
typical condition on A0 is

(ω(A0) · ν) '= 0 ∀ν ∈ Zl, 0 < |ν| ≤ N (7.4)7.4

where

ω(A) ≡ ∂H0

∂A
(A) (7.5)7.5

For a generic choice of A0 the condition (7.4) is verified. Since η / 1, we look for a
generating function “near the identity”, i.e. of the form

F (A′,α) = A′ · α+ ηΦ(A′,α) (7.6)7.6

and we want to impose that the Hamiltonian in the new variables defined by the relations

A = A′ + η
∂Φ

∂α
(A′,α) α′ = α+ η

∂Φ

∂A′ (A
′,α) (7.7)7.7

is α–independent up to first order in η. Hence we have to impose that

H0(A
′ + η

∂Φ

∂α
(A′,α)) + ηHI(A

′ + η
∂Φ

∂α
(A′,α),α) (7.8)7.8

is α–independent up to first order in η. By expanding in powers of η and by collecting
the terms up to first order we find the following equation for Φ, G

∂H0

∂A′ (A
′) · ∂Φ

∂α
(A′,α) +HI(A

′,α) = G(A′) (7.9)7.9

This can be written in terms of Fourier components of Φ as

i(ω(A′) · ν)Φ(A′)ν = HI(A
′)ν (7.10)7.10
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This is a first order algebraic equation which can be solved ifA′ is chosen in a sufficiently
small neighborhood of A0 in such a way that

(ω(A′) · ν) '= 0 ∀ν ∈ Zl, 0 < |ν| ≤ N (7.11)7.11

In such domain the equation for Φ(A′,α), G(A′) can be solved:

Φ(A′,α) =
∑

ν∈Zl

0<|ν|≤N

HI(A′)νeiν·α

i(ω(A′), ·ν) , G(A′) = HI(A
′)0 (7.12)7.12

The required canonical transformation will be defined on the set of the A′ such that the
second of the (7.7) may be inverted and it yields

α = α′ +∆(A′,α′) (7.13)7.13

It is worth to remark that by substituting (7.12) in(7.8) and by expanding up to first
order in η, the resulting Hamiltonian has the following simple form:

H ′(A′) = H0(A
′) +HI(A

′)0 (7.14)7.14

This result, known also as averaging theorem, shows that the first order of the formal
perturbation theory, for a perturbation HI(A,α) which is a trigonometric polynomial in
the angle variables, corresponds to computing the average of HI(A,α) over the angles α
and the change of coordinates generated by Φ.
Neglecting the higher order corrections allows us to find approximate solutions of the
equations of motion and this is a method that will be used in the following sections.
One should however keep in mind that a rigorous justification of the averaging approxi-
mation is usually very difficult if at all possible. It is nevertheless quite easy to establish
bounds on the time within which the averaging approximation can be regarded as valid up
to prefixed errors: such times can be pushed, possibly after improving the approximation
to higher order (second order averaging, or higher, method), to an extent of becoming of
interest even for accurate astronomical predictions (from thousands to millions of years
depending on the problem considered).

8. Earth precession Hamiltonian

Imagine that the Earth E is an ideally rigid homogeneous solid of rotation with equatorial
radius R. Assume that the center T revolves on a purely Keplerian orbit t→ r T (t) and
fix the frame (O; ī, j̄, k̄) to be with center O ≡ T and with k̄ axis orthogonal to the plane
of the Earth orbit, while the ī axis is at the equinox line at a prefixed time (epoch). The
motion of the Earth is described in the coordinates (ϑ̄, ϕ̄, ψ̄) by the Lagrangian:

L =
1

2
J( ˙̄ϕ cos ϑ̄+ ˙̄ψ)2 +

1

2
I( ˙̄ϑ

2
+ ˙̄ϕ

2
sin2 ϑ̄) +

∫

E

kMSMT

| r T + x |
d x

|E| (8.1)8.1

with

J = I3 =

∫

E
(x2

1 + x2
2)
d x

|E| , I = I1 = I2 =

∫

E
(x2

2 + x2
3)
d x

|E| (8.2)8.2

being the Earth inertia moments, MT ,MS being the masses of the Earth and of the Sun,
k being the gravitational constant and |E| being the Earth volume: in the case of an
ellipsoid with polar radius (1− η)R it is J = (2/5)R2MT , I = J(1− η + η2/2).
The Lagrangian (8.1) is obtained by writing the kinetic energy of a rigid body given in
(6.12), exploiting the fact that I1 = I2, and then adding the integral representing, in the
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chosen comoving frame, the potential of the gravitational attraction for an ideal solid
body.
In order to obtain an explicitly computable integral we write the integrand in (8.1) in
terms of Taylor expansion in the quantity |x |/| r T | and we obtain

∫

E

d x

| r T + x | =
1

| r T |

∫

E

d x√
1 + 2

x · r T
| r T |2 + |x|2

| r T |2

=

=
1

| r T |

∫

E
d x

(
1− x · r T

| r T |2
− 1

2

|x|2

| r T |2
+

3

2

(x · r T )
2

| r T |4
+O

( |x |
| r T |

)3)
(8.3)8.3

By symmetry considerations it is possible to show that the error is actually of order

O
(
|x |/| r T |

)4
.

The gravitational potential may be rewritten, in this approximation, as

−V =
kMSMT

| r T |
+

kMSMT

2| r T |3

∫

E
(3(u r T

· x )2 − |x |2)d x|E| (8.4)8.4

where u r T
is the unit vector parallel to r T . Using the symmetry between the coordinates

x1 and x2 and denoting by α the angle between r T and the axis i3 we obtain

−V =
kMSMT

| r T |
+

kMSMT

2| r T |3

∫

E
(3(x2

3 cos
2 α+ x2

1(1− cos2 α))− 2x2
1 − x2

3)
d x

|E| =

=
kMSMT

| r T |
+

kMS

2| r T |3
(I − J)(3 cos2 α− 1) =

=
kMSMT

| r T |
− kMS

2a3
(

a

| r T |
)3η1J(3 cos

2 α− 1)

(8.5)8.5

where a is the major semiaxis of the Earth orbit, and the mechanical ellipticity η1 is
defined by

η1 = (J − I)/J (8.6)8.6

Supposing the Earth be an ellipsoid with polar radius (1− η)R it is η1 = η − η2/2.
It is now easy to see that cosα can be written in terms of Euler’s angles as

cosα = sin ϑ̄ sin(ϕ̄− λT ) (8.7)8.7

where λT is the angle between r T and the axis ī. This allows us to write the Lagrangian
of our problem as

L =
1

2
J( ˙̄ϕ cos ϑ̄+ ˙̄ψ)2 +

1

2
I( ˙̄ϑ

2
+ ˙̄ϕ

2
sin2 ϑ̄) +

kMSMT

| r T |
−

− kMS

2a3
(

a

| r T |
)3η1J(3(sin ϑ̄ sin(ϕ̄− λT ))2 − 1)

(8.8)8.8

The corrresponding motions are difficult to study, even approximately, because the La-
grangian does not pertain to a one-dimensional case.
The problem is better studied by using Deprit’s variables. Due to the canonicity of the
transformation (6.14) the Hamiltonian of the system becomes

H =
1

2

[L2

J
+

(A2 − L2)

I

]
− kMSMT

| r T |
+

kMS

2a3
(

a

| r T |
)3η1J(3 cos

2 α− 1) (8.9)8.9

In (8.9) the quantity cos2 α has to be written in terms of Deprit’s variables. This can be
done as follows

cosα = sin ϑ̄ sin(ϕ̄−λT ) = sin ϑ̄ sin(ϕ̄−γ) cos(λT−γ)+sin ϑ̄ cos(ϕ̄−γ) sin(λT−γ) (8.10)8.10
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by (5.3) and (5.4) applied to the Deprit’s spherical triangle we obtain

cosα = sin(λT − γ)(cosϕ cos δ sinϑ+ sin δ cosϑ)− cos(λT − γ) sinϑ sinϕ =

= sin(λT − γ)
(
cosϕ

K

A

√
A2 − L2

A
+

L

A

√
A2 −K2

A

)
− cos(λT − γ) sinϕ

√
A2 − L2

A
(8.11)8.11

The simple solar precession Hamiltonian is now given by (8.9) posing | r T | = a and
λT = λ0 + ωT t, ω2

T = kMS
2a3 µ, µ = MS+MT

MS
, i.e. assuming a circular Keplerian orbit for

the Earth, and setting µ = 1, obtaining

H =
A2

2J
+ η2

A2 − L2

2J
+

3

2
ω2
TJη1 cos

2 α (8.12)8.12

with η2 = (J − I)/I ≈ η(1 + η/2) (η1 is defined in (8.6)) and cosα written in terms
of (8.11). Although the Hamiltonian (8.12) is not integrable it is suitable to be easily
studied ny the averaging method. In fact η / 1, and therefore (8.12), up to the first
order in η, has the form

H = H0(A) + ηHI(A,α) (8.13)8.13

where (A,α) is a set of action-angle variables, H0(A) is an integrable Hamiltonian, giving
rise trivially to quasi-periodic motions, and η is a small constant. In our case

H0(A) =
A2

2J
HI(A,α) =

η1
η

3

2
ω2
TJ cos2 α+

η2
η

A2 − L2

2J
(8.14)8.14

and in section 9 the above Hamiltonian systems will be studied in a first approximation
(via the averaging method of section 7).

9. Equinox precession.

To apply the averaging method described in section 7 we have to compute the aver-
age value 〈cos2 α〉. From (8.11), exploiting the fact that for a generic angle variable β
conjugated to an action variable we have 〈cos2 β〉 = 〈sin2 β〉 = 1/2, we obtain

〈cos2 α〉 = 1

4

K2

A2

A2 − L2

A2
+

1

2

L2

A2

A2 −K2

A2
+

1

4

A2 − L2

A2
(9.1)9.1

and therefore

H′(A,K,L) =
A2

2J
+ η2

A2 − L2

2J
+

3

8
ω2
TJη1

(
1 +

K2

A2

)A2 − L2

A2
+

3

4
ω2
TJη1

L2

A2

A2 −K2

A2

(9.2)9.2
The system described by the Hamiltonian (9.2) is now integrable, and the equation of
motions are

A = A0 K = K0 L = L0

ϕ̇ =
∂H′

∂A
ψ̇ =

∂H′

∂L
γ̇ =

∂H′

∂K

(9.3)9.3

The explicit expression of the frequencies ϕ̇, ψ̇, γ̇, however, are still quite involved. In
the application of (9.2) to the motion of the Earth axis one can simplify them by using
the fact that the angle ϑ is extremely small, namely ϑ / η. It is therefore easy to see

that by neglecting in (9.2) the term 3
8ω

2
TJη1

(
1 + K2

A2

)
A2−L2

A2 , and by setting L2

A2 = 1 one

introduces in the equations of motion an error negligible up to the first order in η.
With this assumption the Hamiltonian becomes
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H′(A,K,L) =
A2

2J
+ η2

A2 − L2

2J
+

3

4
ω2
TJη1

A2 −K2

A2
(9.4)9.4

and one obtains simply

ϕ̇ =
A

J
(1 + η2) ψ̇ = −L

J
η2 = −A cosϑ

J
η2 γ̇ = −3

2
ω2
T η1

JK

A2
(9.5)9.5

The motion of the Earth axis may be described, in this approximation, as follows. Defin-
ing as ωD the angular velocity along the i3 axis, we have ωD = ϕ̇ cosϑ + ψ̇. Neglecting
the terms in O(ϑ2) we have ωD = A/J . Within the same approximation

ϕ̇ = (1 + η2)ωD ψ̇ = −η2ωD γ̇ = −3

2

ω2
T

ωD
η1 cos δ

def
= − ωS

p (9.6)9.6

This is the contribution due to the Sun to the motion of Earth axis. The Moon gives a
contribution which can be computed along the same lines: supposing the Moon, as done
previously with the Sun, on a circular Keplerian orbit, the potential due to the Moon
can be written as

kML

2a3
η1J(3 cos

2 αL − 1) (9.7)9.7

where ML is the Moon mass, aL is the radius of its orbit and αL is the angle between the
axis i3 and the vector connecting the centers of the Earth and the Moon. Assuming the
Moon on the ecliptic and writing cos2 αL in terms of de Prit’s variables and averaging
the Moon potential on the fast angles as before one obtains

γ̇ = −ωL
p = −η1

3kML

2a3L

JK

A2
+O(η1e

2) = −ωS
p (

a

aL
)3
ML

MS
(9.8)9.8

so that the total luni-solar (simple) precession is:

ωp = ωS
p + ωL

p = λSp
(
1 + (

a

aL
)3
ML

MS

)
(9.9)9.9

Since i3 and k are almost coinciding, we can study the motion of the Earth axis with
respect to the fixed frame up to the first order in ϑ. In this approximation we have

ϑ̄ = δ + sinϑ cosϕ (9.10)9.10

ϕ̄− γ = sinϑ
sinϕ

sin δ
(9.11)9.11

ψ̄ − ψ = ϕ+ sinϑ sinϕ cot δ (9.12)9.12

Therefore neglecting the terms in ϑ in (9.11) we have γ ≈ ϕ̄, and ωp represents ˙̄ϕ and
the total (average) precession of the equinox.
The total rate of lunisolar precession in the above approximation gives Tp ∼ 2.51 104

years, or a yearly precession of the equinoxes of ∼ 51.6′′ per year. Note that only 1/3 of
the lunisolar precession is due to the Sun.
The observed value of the lunisolar precession is 50.38′′ per year. It is easy to show that
the discrepancy does not come from other contributions: e.g. considering the attraction
of planet Jupiter, which can be estimated simply by assuming that it gravitates around
the Earth on a circular orbit, one sees that its contribution to the precession would give
a much smaller to the precession: with obvious notations it would be a fraction of the
order of (a/aJ)3MJ/MS , i.e. O(10−5) of the solar precession.
Therefore it less crude approximations are needed to obtain a better agreement with the
observed data. We can consider the corrections due to the fact that the orbits of the
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Earth around the Sun and of the Moon around the Earth are not circular, and to the
fact that the orbit plane of the Moon does not coincide with the ecliptic.
The resulting corrections, however, are still too small, and the discrepancy between the
observed and the computed precession remains of the order of some percent.
Note that by (9.10)-(9.11) one expects that ϕ̄ and ϑ̄ oscillate around their average value
with an amplitude of the order of ϑ and a frequency of the order of ωD and ωT . The
results obtained by (9.10)-(9.11), however, are not quantitatively reliable, because we
obtained them by averaging on angles with period of the same magnitude of the effects
we want to study. Therefore in next section we will study the Hamiltonian (8.9) averaging
it only on the faster angle ϕ, and taking in account the terms proportional to ϑ. This is
the so-called nutation theory.

10. Nutation.

The Hamiltonian of the classical theory of nutation averages the Hamiltonian (8.12) over
the fast angles ϕ, but neither over the relatively slower angles λ nor over the very slow
γ. The Hamiltonian thus obtained should reliably describe motions over a time scale
4 2π/ωD = 1day and it is:

H =
A2

2J
+ η2

A2 − L2

2J
+

3

2
η1ω

2
TJ

(
1− K2

A2

)
sin2(λT − γ) (10.1)10.1

Note that, since the quantities A and L are constant, we can simply study the one
dimensional Hamiltonian

HD =
3

2
η1ω

2
TJ

(
1− K2

A2

)
sin2(λT − γ) (10.2)10.2

in which the quantity A plays the role of a constant parameter.
The new Hamiltonian HD depends on time through the angle λT = λ0 + ωT t. Never-
theless HD is integrable by quadratures, because there is a conserved quantity: since

K̇ = −∂HD

∂γ
= −3

2
η1ω

2
TJ

(
1− K2

A2

)
2 sin(λT − γ) cos(λT − γ) (10.3)10.3

and
dHD

dt
=
∂HD

∂t
= −3

2
η1ω

2
TJ

(
1− K2

A2

)
2 sin(λT − γ) cos(λT − γ)ωT (10.4)10.4

one has
d

dt
(HD − ωTK) = 0 (10.5)10.5

Setting γ−ωT t = γ̃ and calling K0, γ̃0, t0 the values of K, γ̃, t when γ−ωT t = 0 one has,
from the conservation of HD − ωTK, that

K −K0 =
HD

ωT
(10.6)10.6

Moreover one obtains from the Hamilton equation for γ

γ̇ =
∂HD

∂K
= −3

2
Jη1ω

2
T (2K/A2) sin2(λT − γ) (10.7)10.7

and therefore one can write the following quadrature:

∫ γ̃

γ̃0

dγ′

−ωT − 3
2Jη1ω

2
T (2K/A2) sin2 γ̃′

= t− t0

3

2
η2Jω

2
T (1 −

K2

A2
) sin2 γ̃ − ωTK = −ωTK0

(10.8)10.8

17/ottobre/2014; 12:39 16



To solve (10.3) and (10.7) to first order in η one remarks that from (10.6) the fluctuation
of K around its mean value are of order η, and from the first of (10.8) it is clear that
γ = ωT t + o(ε). Then, neglecting the variations of K and γ of higher order in η, one
finds that the motion is:

γ̇ =− ωpt−
3

2
ω2
TJη1

2K0

A2
(sin2(ωT t+ λ0 − γ0)−

1

2
)

K̇ =− 3

2
ω2
TJη1(1−

K2
0

A2
)(sin 2(ωT t+ λ0 − γ0)

(10.9)10.9

Recalling that cos δ = K/A, A/J = ωD and setting β0 = 2(λ0 − γ0), δ = δ0 + δ′ and
γ + ωpt = γ′ we rewrite (10.9) as

δ′ =
3

4
η
(ωT

ωD

)
sin δ0 sin(2ωT t+ β0)

γ′ =
3

4
η
(ωT

ωD

)
cos δ0 cos(2ωT t+ β0)

(10.10)10.10

where to obtain the first line of (10.10) we used the fact that, up to the first order in
δ − δ0,

K̇ =
d

dt
(K −K0) = A

d

dt
(cos δ − cos δ0) = −A sin δ0

d

dt
(δ − δ0)

The motion in (10.10) express the deviations from the mean precession motion and it
shows that the Earth axis moves on a small ellipse with a period equal, in this approxi-
mation, to 2π/ωT . This is the solar nutation motion.
To compute the nutation motion due to the Moon it is easy to see that the main con-
tribution does not come from the revolution of the Moon around the Earth, but to the
precession motion of the plane of the revolution of the Moon with respect to the ecliptic on
a cone of angle equal to the Moon inclination iL ∼ 5o and with period TpL = 2π/ωpL ∼ 19
years. The nutation motion due to the Moon turns out to describe an ellipse about 10
times larger than the one found above for the Sun contribution and with a period of the
order of 2π/2ωpL.
One can check that the precession of the Moon plane is (mainly) due to the gravitational
force of the Sun, as the following argument shows. One can imagine, for the purpose of
studying phenomena that take place over a time scale large with respect to the Moon
period of revolution (TL =∼ 27 days) that the Moon is uniformly spread on its orbit on
an ring of radius aL whose plane is inclined by iL over the ecliptic and which is rotating
around its center T at velocity ωL equal to the mean angular velocity of the Moon
ωL = 2π/TL with TL ∼ 27 days. The ring is at a distance a from the Sun and gravitates
around it with angular velocity ωT , (neglecting the eccentricities of Earth and Moon),
hence it has a precession that can be calculated from that of the Earth simply by using
(see (8.6)) the value η1 appropriate for an ring, i.e. 1/2 because the inertia moments of
a ring are J = MLa2L and I = J/2. Hence the precession velocity, from the last of (9.6),
is ωpL = −(3/4)ω2

Tω
−1
L cos iL, which gives the approximate period TpL = 2π/ωpL ∼ 19

years mentioned above.
This computation is remarkable because it simply uses the geometry of the ring, without
any free parameter η: hence it can be regarded as a test of the gravitation law.

11. Planar restricted three body problem

The motion of the planets around the Sun is approximatively described by Kepler’s laws.
If one wants to study the orbits of the planets with more accuracy, one has to take into
account the influence of the other planets on the motion, and the fact that, most of
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all for the inner planets, the potential has not exactly the form (3.1) due to relativistic
corrections.
We split an example problem in two parts: we first shall study the effect of Jupiter on
the orbit of an inner planet, say of Mercury and later we take into account the further
corrections due to general relativity effects.
We shall adopt the following simplifying assumptions

(i) The Sun is at rest in the center of the frame of reference.
(ii) Mercury does not influence the motion of Jupiter.
(iii) The system is supposed to be on a fixed plane.
(iv) Jupiter is supposed to be on a circular Keplerian orbit.

Then the Hamiltonian of the system will be

Hε(L,G, TG,λ, γ,λG) = −
g2

2L2
+ ωGTG −

gε

|1ρG − 1ρ|
(11.1)11.1

where the term ωGTG gives the equation of motion λ̇G = ωG for the Jupiter anomaly,
according to assumption (iv), TG represents the excess of energy due to assumption
(ii), and 1ρG and 1ρ represent respectively the (vectorial) position of Jupiter and Mercury
respectively; |1ρG| = ρG is supposed to be constant. The small parameter ε is given by
ε = MG

MS
.

Denoting by ϑ the angle between 1ρ and the major semiaxis of the orbit of Mercury (ϑ
is also called true anomaly), the angle between 1ρG and 1ρ is given by ϑ+ γ − λG. Hence
(11.1) can be rewritten as

Hε(L,G, TG,λ, γ,λG) = −
g2

2L2
+ ωGTG −

gε
(
ρ2G + ρ2 − 2ρρG cos(ϑ+ γ − λG)

)1/2
=

= − g2

2L2
+ ωGTG −

gε

ρG
(
1 +

(
ρ
ρG

)2
− 2

(
ρ
ρG

)
cos(ϑ+ γ − λG)

)1/2

(11.2)11.2
We expand (11.2) in powers of ρ/ρG: neglecting the constant terms and the terms in(
ρ/ρG

)3
we obtain

Hε(L,G, TG,λ, γ,λG) =−
g2

2L2
+ ωGTG −

gε

ρG

( ρ

ρG

)2 3 cos2(ϑ+ γ − λG)− 1

2
−

− gε

ρG

ρ

ρG
cos2(ϑ+ γ − λG)

(11.3)11.3

where Hε is implicitly function of λ through ρ and ϑ.
The above analysis allows us to compute the precession of the perihelion of Mercury via
the results of section 7.

12. The precession of the perihelion of Mercury due to Jupiter

The Hamiltonian (11.3), following the results of section 7, has to be averaged on λ, γ and
λg. However the dependence on λ is quite implicit. To average (11.3) it is convenient to
introduce an auxiliary coordinate, the so called eccentric anomaly. The construction of
eccentric anomaly is presented in Fig. 12.1.
The following relations hold

ρ = a(1− e cos ξ), λ = ξ − e sin ξ (12.1)12.1
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Fig. 12.1: The eccentric anomaly ξ and the true anomaly ϑ of P .

The first has a simple geometrical proof: from Fig. 12.1 if we call, respectively, x and y
the components of ρ along the major semiaxis a and the minor semiaxis b of the orbit,
it is x2 = (a cos ξ − ae)2 and y2 = b2 sin2 ξ = a2(1 − e2) sin2 ξ; so that ρ2 = x2 + y2 =
a2(1− e cos ξ)2. The second follows from (2.14), which in our case takes the form

t =

∫
dρ′

A

√(
1
ρ−
− 1

ρ′

)(
1
ρ′ −

1
ρ+

) (12.2)12.2

From a = (ρ+ + ρ−)/2 and b2 = ρ+ρ− = a2(1 − e2) one obtains

t =
T

2π

∫
dρ′

ρ′

a

1√
a2e2 − (ρ′ − a)2

(12.3)12.3

which implies

λ =

∫
dρ′

ρ′

a

1√
a2e2 − (ρ′ − a)2

=

∫
(1− e cos ξ)dξ = ξ − e sin ξ (12.4)12.4

where in the second equality we have used (12.1)
In order to compute the average of (11.3) with respect to λ, γ and λG we write

cos(ϑ+ γ − λG) = cos(ϑ+ γ) cos(λG) + sin(ϑ+ γ) sin(λG)

(cos(ϑ+ γ − λG))2 = cos2(ϑ+ γ) cos2(λG) + sin2(ϑ+ γ) sin2(λG)+

+ 2 cos(ϑ+ γ) cos(λG) sin(ϑ+ γ) sin(λG)

(12.5)12.5

and we compute the averages

1

(2π)3

∫ 2π

0
dλ

∫ 2π

0
dλG

∫ 2π

0
dγρ(λ)(cos(ϑ+ γ) cos(λG) + sin(ϑ+ γ) sin(λG)) = 0 (12.6)12.6

and

1

(2π)3

∫ 2π

0
dλ

∫ 2π

0
dλG

∫ 2π

0
dγρ2(λ)·

·
(
cos2(ϑ+ γ) cos2(λG) + sin2(ϑ+ γ) sin2(λG)+

+ 2 cos(ϑ+ γ) cos(λG) sin(ϑ+ γ) sin(λG)
)
=

=
1

2π

∫ 2π

0
dλρ2(λ)(cos2(ϑ+ γ)

1

2
+ sin2(ϑ+ γ)

1

2
) =

1

2π

1

2

∫ 2π

0
dλρ2(λ)

(12.7)12.7
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Since the average of 1
2 (3 cos

2(ϑ+ γ − λG)− 1) over λG is 1
4 we obtain, if 〈Hε〉 is the

average of He,

〈Hε〉 = −
g2

2L2
+ ωGTG −

gε

ρG

1

2π

1

4

∫ 2π

0
dλ

( a

ρG

)2
(1− e cos ξ)2 (12.8)12.8

Hence we have to compute the integral

1

2π

∫ 2π

0
dλ(1 − e cos ξ)2 =

1

2π

∫ 2π

0
dξ(1 − e cos ξ)3 = 1− 3

2
e2 (12.9)12.9

Note that, by (4.12), one has that 1− 3
2e

2 = 3
2

(
G
L

)2
− 1

2 . Neglecting constant terms it is

〈Hε〉 = −
g2

2L2
+ ωGTG −

gε

ρG

1

4

( a

ρG

)2 3

2

(G
L

)2
(12.10)12.10

And the precession of the Mercury’s orbit is

γ̇ =
∂〈Hε〉
∂G

=
gε

LρG

3

4

( a

ρG

)2√
1− e2 (12.11)12.11

The relations L =
√
ga (see (4.10)) and (3.10) imply, finally,

γ̇ =
3ε

4

TM

T 2
G

2π
√
1− e2 (12.12)12.12

The latter gives the perihelion precession of Mercury due to Jupiter. Similar formulae
can be obtained for the contributions to the precession dues to the other planets. The
result does not match the observed data by an amount of 43′′ per century. The latter
can be explained by general relativity as discussed in sections 13,14.

13. The relativistic effects on the Sun attraction.

While the forces due to the other planets make the motion of any of the planets no longer
integrable the relativistic corrections change only the form of the central potential.
More precisely, the solution of the Einstein’s equation with central symmetry (Schwartz-
child, 1916) implies, for a planet moving around the Sun, an equation of motion equivalent
to a central motion with a classical potential, depending on initial condition through the
quantity A, given by

VR(ρ) = −
kmM

ρ
− kmMA2

c2ρ3
(13.1)13.1

with m= planet’s mass, M= Sun’s mass, c= speed of light. See appendix 1 for a sketchy
derivation of (13.1) from the Schwartzchild solution of Einstein equation.
The quantity kM/c2 = rS has the dimension of a length, and it is usually called gravi-
tational radius of the Sun. The value of such constant is rS ≈ 1480m Due to the small
perturbations in (13.1) the trajectories of the planet are no longer closed, and after each
revolution the perihelion moves slightly. This movement, called relativistic precession
of the perihelion, can be described in terms of the small angle δϑ spanned by the per-
ihelion in a revolution. To compute it we can use the Lagrangian formalism, recalling
that the potential is still central and therefore the system is integrable, or we can use
the averaging method of section 7. To show the simplicity of the Hamiltonian formalism
we will present both approaches, starting from the averaging method. The Lagrangian
computations for the same relativistic precession are presented in the appendix A1 to
section 14.
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The basic axiom of general relativity is that motion is simply a constant speed flow on
the geodesics of a pseudo-euclidean metric of a four-dimensional space. This means that
the trajectory in general relativity is determined by the variational principle

δ

∫
ds = 0 (13.2)13.2

where the line element ds is defined by the space metric gµν as

ds =
√
gµν dxµ

dλ
dxν
dλ dλ (13.3)13.3

and λ is a generic parametrization of the trajectory.
We are concerned with the particular case of a point mass, moving with a speed smal light,
and therefore moving along geodesics with positive length element. Hence the quantity√
gµν dxµ

dλ
dxν
dλ is strictly positive, for any regular parametrization of the trajectory.

Note that, if we choose as parametrization of the motion exactly the arc length of the

searched trajectory (geodesic), we have from (13.3), ds =
√
gµν dxµ

ds
dxν
ds ds and therefore

on the geodesics √
gµν dxµ

ds
dxν
ds = 1 (13.4)13.4

It is also useful to define the proper time τ simply writing ds = cdτ . The name comes
from the fact that τ is the time measured by an observer posed in the reference frame of
the moving object. Denoting by uµ the quadrivelocity uµ = dxµ

dτ , the variational principle
(13.2) can be rewritten as

δ

∫
L dτ = 0 (13.5)13.5

where

L =
√
gµν dxµ

dτ
dxν
dτ =

√
gµνuµuν (13.6)13.6

and, on the geodesics,
gµνuµuν = c2 (13.7)13.7

The gravitational field of the Sun corresponds to the Schwartzchild metric which, in
spherical space coordinates, is

(ds)2 =
(
1− 2rs

r

)
(dt)2 − (dr)2

1− 2rs
r

− r2
(
(dϑ)2 + sin2 ϑ(dφ)2

)
(13.8)13.8

where rs = kMs/c2 is the gravitational radius of the Sun, and has the value rs ≈ 1480m.
The metric (13.8) has the following features:

(a) gµν is stationary, i.e. it is time independent.
(b) gµν is rotation invariant.
(c) gµν is invariant under the symmetry ϑ → π − ϑ. This implies that a point initially
in the plane ϑ = π/2 remains indefinitely on such plane. From b), we can always choose,
without loss of generality, the initial value ϑ = π/2.
(d) gµν is independent on φ.

Properties (a) and (d) imply that t and ϑ are cyclic coordinates for the Lagrangian (13.6).
The corresponding conserved quantities are

∂L

∂ dt
dτ

=

(
1− 2rs

r

)
dt
dτ√

gµν dxµ

dτ
dxν
dτ

,
∂L

∂ dϑ
dτ

=
r2 dϑ

dτ√
gµν dxµ

dτ
dxν
dτ

(13.9)13.9
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From (13.7) we deduce

(
1− 2rs

r

) dt

dτ
= const, r2

dϑ

dτ
= const ≡ A (13.10)13.10

On the other hand (13.7) can be explicitly written as

gµνuµuν = c2 =
(
1− 2rs

r

)( dt

dτ

)2
−

(
dr
dτ

)2

1− 2rs
r

− r2
((dϑ

dτ

)2
+ sin2 ϑ

(dφ
dτ

)2)
(13.11)13.11

From (c) we deduce

c2 =
(
1− 2rs

r

)( dt

dτ

)2
−

(
dr
dτ

)2

1− 2rs
r

− r2
(dφ
dτ

)2
(13.12)13.12

Substituting (13.10) in (13.12) we finally obtain

const = 2E =
(dr
dτ

)2
+
(
1− 2rs

r

)
r2
(dφ
dτ

)2
− 2rs

r
c2 (13.13)13.13

and therefore

E =
1

2

(
ṙ2 + r2φ̇2

(
1− 2rs

r

))
− g

r
(13.14)13.14

The relativistic one-dimensional potential (13.1) is obtained by substituting (13.10) in
(13.14). We also remark that defining the Hamiltonian

H =
1

2

(
p2r +

p2φ
r2

)
− g

r
−A2 rs

r3
(13.15)13.15

parameterized by the constant A, we have that for A = pϑ (but only for this value of A)
the solutions of the equations of motion have (13.10) and (13.14) as conserved quantities.

14. Relativistic precession of the perihelion of Mercury. Averaging method.

The precession of the perihelion of Mercury due to the relativistic corrections can be
found by applying the general method of section 7 to the Hamiltonian

H(pρ, pϑ, ρ,ϑ) =
p2ρ
2

+
p2ϑ
2ρ2
− g

ρ
− rsA2

ρ3
g = kMs, rs =

kMs

c2
(14.1)14.1

where rs is the gravitational radius of the sum (rs ≈ 1480m) and A is a fixed parameter.
As discussed in section 13, the Hamiltonian system in (14.1) has two conserved quanti-
ties (i.e. H and pϑ), and if the parameter A is fixed to be numerically equal to pϑ,the
Hamiltonian flow generated by (14.1) on initial data with pϑ = A coincides with the
geodesic flow under the Schwartzchild metric and the same initial data.
Note that A has to be considered as an independent parameter: i.e. the solutions of the
Hamilton equations for (14.1) are interesting form our purposes only if the initial data
are such that pϑ = A. Replacing pϑ with A in (14.1) would be wrong.
The Hamiltonian (14.1) is actually integrable, due to the presence of two constants of
motion. However, since the quantity rs/ρ ≈ 10−7 is extremely small, it can be considered
a small perturbation of the Keplerian Hamiltonian (4.1) and therefore it willbe conve-
niently written in terms of Delaunay variables. This approach has the advantage, with
respect to the direct computation presented in section 4, to give a precession computable
in terms of the average method.
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Following the previous analysis, we write

H(L,G,λ, γ) = − g2

2L2
− rsA2

ρ3
(14.2)14.2

where ρ has to be expressed in terms of the canonical variables. To do this we use the
relations (12.1), i.e.

ρ = a(1− e cos ξ) λ = ξ − e sin ξ

We have

H(L,G,λ, γ) = − g2

2L2
− rsA2

a3(1− e cos ξ)3
(14.3)14.3

and averaging on λ we have

〈H〉 = − g2

2L2
− rsA2

a3
1

2π

∫ 2π

0

dλ

(1− e cos ξ)3
= − g2

2L2
− rsA2

a3
1

2π

∫ 2π

0

dξ

(1− e cos ξ)2
(14.4)14.4

The integral can be explicitly computed

〈H〉 = − g2

2L2
− rsA2

a3(1 − e2)3/2
(14.5)14.5

and, using 1− e2 = G2/L2, we obtain

〈H〉 = − g2

2L2
− rsA2

a3
L3

G3
(14.6)14.6

Hence the Hamilton’s equation for γ is

γ̇ = 3
rsA2

a3
L3

G4
(14.7)14.7

Now we can use the fact that numerically the constant A is fixed in such a way that
A = G, and again 1− e2 = G2/L2, obtaining

γ̇ = 3
rs

a(1− e2)

L

a2
(14.8)14.8

The δϑ, which is the movement of the perihelion in a single revolution, is given by

δϑ = γ̇T =
6πrS

a(1− e2)
(14.9)14.9

In appendix the same expression is found in (A1.7).
The result gives a Mercury perihelion precession of 43′′ per century, which is in excellent
agreement with observations. This has been one of the most striking confirmations of
the validity of the general relativity theory.

Appendix A1: Lagrangian calculation of the precession of Mercury.

Here we come back to (2.15), and we write the angle ∆ϑ done in a revolution as

∆ϑ = 2

∫ ρ+

ρ−

A
ρ2 dρ√

2
m (E − VR(ρ)) − A2

ρ2

= 2

∫ ρ+

ρ−

A
ρ2 dρ√

2(Em + kM
ρ )− A2

ρ2 (1−
2rS
ρ )

(A1.1)A1.1
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In order to avoid fictitious divergencies it is convenient to rewrite (A1.1) as

∆ϑ = 2

∫ ρ+

ρ−

A
ρ2 (1−

2rS
ρ )dρ

√
2(Em + kM

ρ )− A2

ρ2 (1 −
2rS
ρ )

+ 2

∫ ρ+

ρ−

A
ρ2

2rS
ρ dρ

√
2(Em + kM

ρ )− A2

ρ2 (1−
2rS
ρ )

=

= −2 ∂

∂A

∫ ρ+

ρ−

dρ
√
2(Em + kM

ρ )− A2

ρ2 (1−
2rS
ρ ) + 2

∫ ρ+

ρ−

A
ρ2

2rS
ρ dρ

√
2(Em + kM

ρ )− A2

ρ2 (1 −
2rS
ρ )

(A1.2)A1.2
Denote now with ρ0−, ρ

0
+ the solutions of the unperturbed equation

2
(E
m

+
kM

ρ

)
− A2

ρ2
= 0 (A1.3)A1.3

It is easy to see that |ρ− − ρ0−| = o( rSρ ) and |ρ+ − ρ0+| = o( rSρ ). Therefore up to the first
order in rS

ρ we can write

− 2
∂

∂A

∫ ρ+

ρ−

dρ
√
2(Em + kM

ρ )− A2

ρ2 (1−
2rS
ρ ) + 2

∫ ρ+

ρ−

A
ρ2

2rS
ρ dρ

√
2(Em + kM

ρ )− A2

ρ2 (1−
2rS
ρ )

=

= −2 ∂

∂A

∫ ρ0+

ρ0−

dρ
√

2(Em + kM
ρ )− A2

ρ2 (1−
2rS
ρ ) + 2

∫ ρ0+

ρ0−

A
ρ2

2rS
ρ dρ

√
2(Em + kM

ρ )− A2

ρ2 (1 −
2rS
ρ )
(A1.4)A1.4

Now we expand both integrals in (A1.4) up to first order in rS
ρ obtaining

∆ϑ =2

∫ ρ0+

ρ0−

A
ρ2 dρ√

2(Em + kM
ρ )− A2

ρ2

− 2
∂

∂A

∫ ρ0+

ρ0−

A2

ρ2
rS
ρ dρ

√
2(Em + kM

ρ )− A2

ρ2

+

+ 4

∫ ρ0+

ρ0−

A
ρ2

rS
ρ dρ

√
2(Em + kM

ρ )− A2

ρ2

(A1.5)A1.5

Since we are interested in the result of the integrals in (A1.4) up to the first order in
rS
ρ we compute them on the Keplerian trajectory. We obtain from zero-th order the

unperturbed result 2π, while for the first order, exploiting (2.15), we have

δϑ = −2 ∂

∂A

∫ π

0

ArS
ρ

dϑ+ 4

∫ π

0

rS
ρ
dϑ = −2 ∂

∂A

(πkMrS
A

)
+

4πkMrS
A2

(A1.6)A1.6

where in last equality we used (3.7) and (3.9) and the fact that the term proportional to
cosϑ vanishes. We obtain finally, exploiting again (3.7)

δϑ = 6πrS
1

2

( 1

ρ+
+

1

ρ−

)
=

6πrS
a(1− e2)

(A1.7)A1.7

where a and e are the major semiaxis and the eccentricity of the orbit.
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