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1. — Imtroduction.

The Ising model plays a very special role in statistical mechanics and
provides the simplest nontrivial example of a system undergoing phase transi-
tions [1].

The analysis of this model has provided deep insight into the general
nature of the phase transitions which are certainly better understood nowadays

(*) Lavoro finanziato dall’Istituto di Fisica dell’Universita, Roma, ed eseguito nel-
Pambito del CNR-GNAFA.

9 — Rivista del Nuovo Cimento. 133



134 G. GALLAVOTTI

after the publication of the hundreds of papers which followed the pioneering
work of IsiNG, PEIERLS, ONSAGER, and LEE and YANG [1-4].

The main reason why so much attention has been given to this very spe-
cial model lies in its simplicity and in the fact that, in spite of it, it first pro-
vided firm and quantitative indications that a microscopic short-ranged inter-
action ean produce phase transitions whieh, furthermore, deeply differ in
character from the clagsical Van der Waals (or Curie-Weiss or mean field)
type of transitions [5].

It should also be mentioned that the two-dimensional Ising model in zero
external field is exactly solvable [6], this fact has very often been used as a
check of the validity of numerical approximations devised to be applied to more
complicated models [7].

In some cases the Ising model is a good phenomenological model for anti-
ferromagnetic materials [8].

Finally, last but not least, we mention that the Ising model has given
rise to a number of interesting developments and reinterpretations of old re-
sults in the theory of Markov chains [9], information theory and ergodic
theory [10], random walks [11], and therefore constitutes a remarkable example
of a subject which has simultaneously been the object of advanced research
in physics, mathematics and mathematical physics.

In this review article we hope to give a self-contained, though certainly
not exhaustive, description of the model and of some selected rigorous results
illustrating properties which throw some light on the general nature of the
phenomenon of the phase transitiong far from the eritical point and which,
hopefully, should not be a peculiarity of the simplicity of the model.

There exist some very good accounts on the theoretical arguments leading
to the consideration of the Ising model in the context of physical prob-
lems [7,12]. Therefore we shall completely skip this aspect of the matter
and refer the interested reader to the literature.

2. — The model. Grand canonical and canonical ensembles. Their inequivalence.

We consider a §-dimensional (8 =1, 2, 3) square lattice Z° and a finite
square /A c Z° centred around the origin, containing |A|= I’ lattice sites.

On each site ze is loeated a eclassical spin ¢,=41. The « configura-
tions » of our system will, therefore, consist in a set ¢ = (05, ..., 04 4) Of |4]
numbers ¢, = --1; the number of these configurations is 24!, The ensemble
of these configurations will be denoted as %(A).

To each spin configuration is assigned a certain «energy »

(2.1) Hyo)=—dJ > 0,0 —hz%——ﬂ/‘(g),

[ 7]
<indd
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where > means that the sum is over pairs (,, ;) of neighbouring points,
h is al(lmzexternal magnetic field and % (o) describes the interaction of the
spins in the box /A with the «rest of the world » [13].

For simplicity we shall treat, in this paper, only the case J > 0.

Of course % ,(0) in (2.1) can be rather arbitrary and, actually, depends
on the particular physical problem under investigation. It is subject, however,
to one constraint of physical nature: in case we were interested in letting
A~ co, we ghould impose the condition

max |% 4(o)|

i.e. we want the energy due to % ,(c) shouid not to be of the same order as
the volume of the box. In other words it should be a «surface term ».

The laws of statistical mechanics provide a relationship between the micro-
scopic Hamiltonian (2.1) and the macroscopic quantities appearing in the
thermodynamieal theory of the system.

The free energy per unit volume is given by

(2-3) fA(ﬁa h)z%logz(ﬁr h,A,ﬂ) 9

where = T is the inverse temperature and

(2.4) Z(B, b, A, B) = 3 exp [ fH 4(0)]
oe(A)

is the grand canonical partition function. Furthermore the probability of
finding the system in a configuration ¢ of the grand canonical ensemble %(A)
is given by the Boltzmann factor

exp [— fH(0)]

(2:2) B 4, 9)

ce¥A).

For a theoretical foundation of (2.3), (2.5) see [14]. The grand-canonical-
ensempble formalism based on (2.3), (2.5) corresponds to the physical situation
in which there are no constraints on the system. If one could, by some experi-
mental arrangement, regard, for example, the total magnetization M(g) =
= > 0, as fixed: M(g) = M =m/|A|, then the expression (2.3) for the free

e

energy would no longer be appropriate nor would the predictions based

on (2.5) be appropriate. One should rather consider the canonical ensemble,

.. the set of the allowed configurations would be the set (A, m)c %(A)

consisting of all the g e %(A) such that 3 o, = m|4] (Jm|<1), and the thermo-
el
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dynamics would be described by the function

(2.6) ga(p, my ) = % log Z(8, 1y A, B, m),

where

(2°7) Z(ﬂy h; A7 ‘@7 m’) - E €xp [_ﬁHA(g)]y
geU (A, m}

and the free energy would be f(8, h):
(2.8) f(B, b) = m(h) 4 g 4(B, 0, m(h)) ,
where m(h) is the solution of the equation [15]

9ga(p, 0, m)
(2.9) h= T .

There is no reason for having f, = f, since they correspond to different
physical problems; it is only when, in some semse, the fluctuations become
negligible (i.e. in the limit /A — oo) that one can expect the identity between
f and f.

Of course in general the difference between f4 and f, should vanish as
0(|A7®-"?) (and logarithmically for ¢ =1); but, as we shall see on many
occasions, the situation is not so simple for other quantities such as the
correlation functions or the average magnetization.

The inequivalence, for finite volume, of the predictions of the canonical
and grand canonical ensembles should not be interpreted as meaning that
statistical mechanics is only approximate when applied to finite systems; it
simply means that in dealing with finite systems care must be paid not only
to the boundary conditions but also to the actual physical situation from which
the problem under consideration arises.

We conclude by observing that in the canonical ensemble the probability
of a spin configuration will be given by an expression similar to (2.5):

exp [— BH 4(0)]

(2.10) 7B, b, A, B, m)’

ceUA,m).

3. — Boundary conditions. Egquilibrium states.

Formula (2.5) or (2.10) provides a complete statistical description of the
properties of the system. An alternative and often more convenient, though



INSTABILITIES AND PHASE TRANSITIONS IN THE ISING MODEL. A REVIEW 137

equally complete, description is provided by the so-called correlation functions

; Oz - Oa, €XD [— BH 4(0)]
(3.1) 02,00, + Oa) 0,54 =~ > exp [— fH 4(0)] ’

where the > is extended to the appropriate statistical ensemble.

For instance the average magnetization in the grand canonical ensemble
%(A) is

PXCAIY
a 7h 2€.
(3.2) ma(py by = LA0 1) _ i

We shall refer to the family of correlation functions (3.1) (regarded as a
whole) as the «equilibrium state of the system in the box A ».

We shall eall equilibrium state of the infinite system any family {<0s, .. 020}
of functions such that, for a suitable choice of the % (g),

(3.3) <aw1 0, > = }1‘1;% <oa¢1 Umn>A.ﬂA

for all n>1 and all @, x,, ..., x, € Z°, simultancously [16].

An equilibrium state for the infinite system will simply be called an equi-
librium state and is specified by a suitable choice of a sequence {# (o)} of
boundary conditions satisfying the requirement (2.2).

Let us list & number of remarkable boundary conditions:

1) Open boundary condition (also called perfect-wall boundary condi-
tions): this name will be given to the case

(3.4) B 4(0) =0 for all ge#(A).

2) Periodic boundary conditions: this corresponds to allowing spins on
opposite faces of the box A to interact through a coupling — J (i.e. as the
bulk spins). Clearly this can be obtained by a suitable choice of & 1(0); to this
choice we shall refer as « periodic boundary conditions ».

3) (g)-boundary conditions: let (&, &, ...) be the 26[A4|“~" lattice points
adjacent to the boundary of A. Let &= (€e,s €g,5 -+)y &g, = =1, be fixed. We
shall call (g)-boundary condition the choice

(3.5) Bao)=—d Y Oy e

;€04

where (z,, £,) are nearest neighbours.
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The physical meaning of this boundary condition is clear: we imagine
that the sites neighbouring the boundary o/ of A are occupied by a spin con-
figuration & and these spins interact with the spins g through the same coupling
constant of the bulk spins.

The cases £¢=(+1, -+1,...) or g=(—1,—1,...) will be, respectively, re-
ferred to as the (4 )-boundary condition or the (—)-boundary condition.

4) In the two-dimensional case we shall be interested in another boundary
condition. Suppose the spins on the opposite vertical sides of A are allowed to
interact through a coupling —J (4.¢. we impose periodic boundary conditions
along the rows of A only); and suppose that a set g, of fixed spins is located
on the lattice sites adjacent to the upper base of A and, similarly, a set &, of
fixed spins is adjacent to the lower base of /. The spins g,, &; are allowed to
interact with the nearest spins in A with a coupling —J. We shall naturally
refer to this choice of # ,(c) as the (&,, &)-cylindrical boundary condition.

The particular cases

&= (+1, +1,...), &= (+1, +17'--)
or
fu"_‘(+1; +17-'~)’ §L:(_1a_17"')

will be referred to respectively as (+, +)-cylindrical boundary condition or
(+, —)-cylindrical boundary condition.

4. ~ The Ising model in 1 and 2 dimensions and zero field.

To acquire some familiarity with the model let us examine some of the
simplest cases.

Consider the one-dimensional Ising chain with periodic boundary conditions.
If we label the points of A as 1,2, ..., L, the Hamiltonian in zero field is

L
(4'1) HA(Q) =—d z 0i0i+1 y GL+1 =0,,

i=1
(clearly 4 4(¢0) =—Jo,0,). The grand canonical partition function can be
written

L L
(4.2) Z4f) = Y exp [ﬁJ > Gioi+1] = > TTexp [Jfo.o,].
22 i=1 g i=1

Remarking that (¢,0.4,)* =1 and, therefore,

exp [fJo,;0,.] = cosh fJ 4 6,04, sinh fJ ,
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eq. (4.2) can be rewritten as

L

(4.3) Z 4(B) = (cosh BT S TT (1 + (tgh fJ)os0:4) -

g i=1

If one develops the product in (4.3) one gets a sum of terms of the form
(4.4) (tgh ﬂJ)kGilai‘+1Gi,6i,+l <00 03,0441+

It is clear that, unless k=0 or k= L, each of the terms (4.4) contains
at least one index 4; which appears only once. Therefore, after performing
the sum over the ¢’s, all the terms (4.4) give a vanishing contribution to Z ,(8)
except the two with k¥ =0, k=1 which are, respectively, 1 and (tgh fJ)*-
“0,6,0,04 ... 0,_40,0,0, = (tgh fJ)%

This implies

(4.5) Z,(B) = (cosh fJ)*24(1 + (tgh J)") .

Hence [17],

1

Llog (14 (bgh BJ)%) .

(4.6) Bfa(B)=log (2 cosh fJ) +

It has to be remarked that ff ,(8) as well as ff(f) = lim ff ,(8) = log 2 cosh gJ

L—>®

is analytic in §; this fact is usually referred to as the absence of phase transi-
tions in the one-dimensional Ising model.

The reader can check, using the above scheme, that the partition function
in the grand canonical ensemble and zero field but open boundary conditions
(see p. 137) is slightly different from (4.5) and, precisely, is equal to (cosh §J)*2%,

Consider now the two-dimensional Ising model in 2 zero field and with
open boundary conditions:

L I-1 -1 L
(4.1) H,(g) :"Jz zo'ia'O‘n'ﬂ—Jz EO‘HU;HM
i=1 j=1 i=1 j=1
A better form for H ,(¢) is the following:
(4.8) H (oc)=—JY§5,,
b

where Y denotes sum over the bonds, 7.e. over the segments b =[(4,4), (4,7 +1)]

b
or b=[(1, j), (¢ +1,9)], and &, is the product of the two spins at the extremes
of b (e.g., it b=1[(4, ), (¢ -+1, )] then &, = Gij6i+li)-
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The partition function can be written, as in the one-dimensional case, as
(4.9) Z,() = (cosh BT 3 TT (1 + (tgh $J)5,) .
[
Developing the product we are led to a sum of terms of the type
(4.10) (tgh BJ)* 6, 6y ... G,
and we can conveniently describe this term through the geometric set of lines

by, byy ..., by. After the > is taken, many terms of the form (4.10) give a
g

vanighing contribution. The ones that give a nonvanishing contribution are
the ones in which the vertices of the geometric figure b, Ub,U...U b, belong
to an even number of b’s (two or four). These terms are the ones such that
Gy, *Gy, ... G, =1. In Fig. 1 we give a typical nonvanishing term and in Fig. 2
an example of a vanishing term (& = 30).

T T T T 1 it e s e e e T e
L ~H } ]
! | 1 :
B 1
! | ! }
i ! r I
1 K N !
L ] L
| f | |
[ L}
1 | ? !
] | i !
i | | |
! ! ! }
I 1 ; |
L L i L1 1_1 g Al L
Fig. 1. Fig. 2.

Fig. 1. - The dashed line is the boundary of A.
Fig. 2. - The dashed line is the boundary of A.

We shall, in the following, call a geometric figure built with k¥ segments
biy ..., by such that 6, -G ...60, =1 a k-sided multipolygon on the box A
(needless to say that all the by, ..., b, are different from each other). Let
P,(A) be the number of these polygons.

The partition function is now easily written as [18]

(4.11) Z,4(B) = (cosh BJy=-02% 3 Py (A)(tgh BT )F .

k=0

This formula is not so simple as in the one-dimensional case. However it
is surprisingly useful, as we shall see later.
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5. — Phase transitions. Definitions.

We have already seen, in the preceding Section, that the one-dimensional
Ising model has no phase transitions in zero field since both f,(f) and f(f) are
analytic in .

We wish to discuss in more detail what is meant by a « phase transition ».
It should be said at the outset that there is no universally agreed upon definition
of such a concept. Intuitively, from everyday experience, one would say that
2 phase transition is a phenomenon of macroscopic instability: slight changes
of external conditions should imply dramatic changes of some macroscopic
variables; it is hard to imagine how in such a sitnation thermodynamic functions
like the free energy, ete., could be analytic funections of the parameters in terms
of which they are expressed (say, temperature, chemical potential or mag-
netic field, ete.).

For the above reason an analytic singularity in the thermodynamic func-
tions is usually thought of as a « symptom » of a phase transition and on this
idea it would be possible to base a definition and a theory of the phenomenon
of phage transitions.

In this paper, however, we will not base the investigation of the nature
of the phase transitions in the Ising model on the search for the singularities
of the thermodynamic functions; we shall rather adopt and make more precise
the other, perhaps more immediate and intuitive, approach based on the
detection of « macroscopic instabilities ».

This way of proceeding is more convenient for the simple reason that a
number of very clear and rather deep results have been obtained along these
lines. But it should be understood that this second approach does not « bril-
liantly » avoid the problems of the first. It is simply an approach to the
theory of phase transitions which, so far, has asked and provided a less refined
description of the phenomena of interest as compared to the deseription which
would be expected from the analysis of the singularities of appropriate analytic
functions (an analysis which is still in a very primitive stage and whose prob-
lems are not well formulated even in the simplest cases) [19].

Let us now discuss in a more precise way the concept of macroscopic
instability.

Consider the Ising model and define that a phase transition takes place
at the values (f, h) of the thermodynamic parameters if the system is unstable
with respect to boundary perturbations; i.e. if there are at least two sequences
#4(0) and (%7’:1(0') of boundary terms (see (2.1)) such that (say, in the grand

canonical engsemble)

(6.1) Jim <o ... %.>A.gaA # lim (g, ... Umﬂ>A’g’A

A—>e

for a suitable choice of z, ,, ..., z,.
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We first clarify why we say that, if (5.1) holds, we have a macroscopic
instability.

We remark that a change in the boundary conditions does not change
extensive properties of the system such as the free energy. In fact, from the
definition (2.4),

Z(ﬁ’ h’ Aa gA)

o2 20,1, 4, %)

<exp [max [Ba(a)| + |Balo)l]
and therefore (2.2) implies

1 /
log Z(By by A, B 4) .

.1 .
(5.3) lim —-log Z(B, by 4, B4) = Hm ]

]

On the other hand, if (5.1) is true, intensive quantities like the correlation
funections are sensible to the boundary conditions: for instanece if

/}1_],:?0 <Gz1>A..@A #I}I_)H.% <0xx>/1.93:47
we realize that the local magnetization changes as a consequence of a change
in the boundary condition even if the boundary is very remote.

Of course, once provided with a « definition » of what a phase transition is,
one has not gone very far. The real question is whether the definition reflects
what is physically expected; this implies, in particular, that one should at
least be able to prove the existence of a phase transition in the above sense
in cases in which one expects a transition. Hopefully the definition and its
physical interpretation should allow one to do more; for instance to provide the
tools for a closer description of typical phenomena (like the phase separation}.

We end here the above, somewhat philosophical and necessary, discussion
and, in the next Sections, we start describing in some concrete examples the
results that have been obtained in the last decade when the above point of
view was starting to be developed, rather independently, by several people.

6. — Geometric description of the spin configurations.

In this Section we introduce a new description of the spin configurations
which we shall use to derive in a very elegant way the exact value of the
critical temperature of the two-dimensional Ising model. In the next Sections
the geometric representation, introduced below, will be widely used for other
purposes [20].

Consider an Ising model with boundary conditions of the type (3.5) ((&)-
boundary conditions) or with periodic boundary conditions (see p. 137).
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Given a configuration ce%(A) we draw a unit segment perpendicular to
the centre of each bond & having opposite spins at its extremes (in three
dimensions we draw a unit square surface element perpendicular to b). A two-
dimensional example of this construction is provided by Fig. 3 ((&)-boundary
condition).

Im+ + + 4+ + o+

Fig. 3. — The dashed line is the boundary of A; the outer spins are the ones fixed
by the boundary condition. The points 4, B are points where an open line ends.

The set of segments group into lines (or surfaces) which separate regions
where the spins are positive from regions where they are negative.

It is clear that some of the lines (or surfaces, if § =3) are «closed
polygons » (« closed polyhedra »), while others are not closed. It is perhaps
worth stressing that our polygons are not really such in a geometrical sense
since they are not necessarily self-avoiding (see Fig. 3); however they are such
that they can intersect themselves only on vertices (and not on sides). From
a geometrical point of view a family of disjoint polygons (in the above sense
and in two dimensions) is the same thing as 2 multipolygon in the sense discussed
in Sect. 4 (see Fig. 1).

In two dimensions instead of saying that a polygon is closed we could
equivalently say that its vertices belong to either two or four sides.

We notice that the (+)-boundary conditions, the (—)-boundary conditions
and the periodic boundary conditions are such that lines (surfaces) associated
to the spin configurations are all closed polygons (polyhedra). In the periodic
case some polygons might wind around the two holes of the torus.

In the two-dimensional case and if the boundary conditions are the
(+, +)-cylindrical or the (+,—)-cylindrical ones (see p. 138) a geometric
construction of the above type can still be performed and, also in this case,
the lines are closed polygons (some of which may « wind around » the cylinder A4).
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For a fixed boundary condition let (v, ¥a, ..., Y&y A1y «oey 42) be the disjoint
components of the set of lines (surfaces) associated by the above construction
to a spin configuration g e #%(A). yi,...,7: are closed lines and 4,,..., 4, are
not closed.

Clearly the correspondence between (yy, ..., Y&, 41y ..., &) and ¢ is, for a fized
boundary condition, one-to-one except for the case of the periodic boundary
conditions, when it is one-to-two. Changing the boundary condition implies
changing the set of lines (surfaces) which describe the same spin configura-
tion ¢.

A very important property of the above geometric description is that, if
ly| (JA]) denote the length (area) of the lines (surfaces) y and 1, then the energy
of a spin configuration is, in a zero field, given by

(6.1)  H,(g)— —J-(number of bonds in A) 1 2J[2 byl +3 W] .

This remark easily follows from the fact that each bond & contributing —J
to the energy has equal spins at its extremes, while the bonds contributing +J
have opposite spins at their extremes and, therefore, are cut by a segment of
unit length belonging to some y, or 4,.

If A, =number of bonds in /, the partition function becomes (in a
zero field and with nonperiodic boundary conditions)

62) Zp= 3 3 (exp [-9,3J§|yi}] exp 267 3 [4]) exp (874,41,
Y1V ALoAn i )

where the sums run over the set of lines associated with a spin configuration

ge(A) and the boundary condition under consideration.

In the case of periodic boundary conditions there are no A’s and there is
an extra factor of two (due to the two-to-one correspondence between g and
(Vi -y ¥n)):

(6.3) Z,(p) =2 X exp [~ 267 3 |yi] exp 18141,
Y1...¥n i
where A4, =212
From the above considerations we draw two important consequences:

I) If the boundary condition is fixed, the probability of a spin configura-
tion ¢ described by 1, ..., Yny A1, ...y 4y i8 proportional to

(6.4) exp [—2[3J(ZZ ly.| + ; M,\)] .

II) In the case of (+) or (—) boundary conditions and 2 dimensions

we notice that > in (6.2) is a sum over « multipolygons » lying on a shifted
Yiseeus ¥Yn
lattice and in a box A’ containing (L—1)* spins (see definition in Sect. 4,
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p. 140) and, therefore, if } |y,| =& we have
(6.5) Z 4(B) = exp [2L(L—1)pJ] > Py(A’) exp [—2pJk],
k>0

where P,(A') is the number of different multipolygons with perimeter %
(cf. (4.11)).
If we now define f* through

(6.6) tgh fJ — exp [—2p*J],

then comparison of (6.5) with (4.11) yields

Z4(P) Z 1 (p*)

(6.7) (cosh fJ)sa+D2, = exp [2p*JL(L —1)]°

Here Z,(f) is computed with open boundary conditions while Z,(f*) is
computed with (+)-boundary conditions.
If we assume that the bulk free energy f(8)= lim (1/|4|) log Z ,(f) has one

A—w®

and only one singularity as a function of 8, for § real, then (6.7) can be used
to locate this singularity. In fact it implies

(6.8) f(8)—log2(cosh §J)2 = —2p*J + f(f%),

hence a singularity in f can take place only when f = f*, i.e. for f =8,
such that

(6'9) tgh ﬂc.OJ - eXp {_— 2ﬂc.0J] ?

which, indeed, has been shown by ONSAGER [3] to be the exact value of the
critical temperature defined as the value of § where f(§) is singular [20].

In the next Section we outline the theory of the phase transitions in the
Ising model as a macroscopic instability and a spontaneous breakdown of
the up-down symmetry. We shall concentrate, for geometric reasons, on the
two-dimensional Ising model, but, unless explicitly stated, the results hold
in any dimension §>2.

7. — Phase transitions. Existence.

In this Section we shall show that the (4)-boundary conditions and the
{—)-boundary conditions (see Sect. 3) produce, if the temperature is low enoungh,
different equilibrium states (see Sect. 3), i.e. for large § the correlation func-
tions are different and the difference does not vanish in the limit A -0
(cf. (5.1)).
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More precisely we shall prove that, if #=0 and p is large enough,
(7.1) lim <0, 4. = &= m*(B) £ 0,

where the index 4 refers to the boundary conditions.

Clearly (7.1) shows that the magnetization is unstable (in zero field and
at low temperature) with respect to boundary perturbations. We also remark
that, using periodic boundary conditions, one would obtain still another result:

(72) /111_1,1(}0 <0x>/1,nerlodic = 0 ’ lf h’ = 0 ’

since <0,) 4 persoae =0, if =0, for symmetry reasons.
After a description of the very simple and instructive proof of (7.1) we
shall go further and discuss more deeply the character of the phase transition.
As already remarked, the spin configurations ¢ e %(A) are described in
terms of closed polygons (yy, Vs, -.., ¥») if the boundary condition is (+) or (—)
and the probability of a configuration ¢ described by y,, ..., . is proportional
to (see (6.4))

(7.3) exp [—2/3J 2 I%-I] :

Below we identify g with (yq, ..., 7,) (with fixed boundary conditions).

Let us estimate <c,>,,. Clearly <o,>,,=1—2P, (—), where P, (—) is
the probability that in the site # the spin is —1.

Notice that if the site » is occupied by a negative spin the x is inside some
contour y associated to the spin configuration ¢ under consideration. Hence
if g(y) is the probability that a given contour belongs to the set of contours
describing some configuration ¢ we deduce

(7.4) Py (<o),
Yo
where yox means that y surrounds z.
Let us now estimate p(y): if I'= (yy, ..., ) is 2 spin configuration and if
the symbol I'compy means that the contour p is disjoint from y, ..., y,
(t.e. {yul'} is a new spin configuration), then

Sexp[~267 3 '] > exp [~ 27 51yl

= ; o l__ 2‘8ngply'|] = exp[—2BJ|y|] ; exp l— ZﬂJygrl'y’IJ .

(1.8)  oy)

Before continuing the proof let us remark that if o= {(y, v1, ¥z, ..., ¥») then
@' = (P15 Vay --.; Vn) is Obtained from g by reversing the sign of the spins inside y;
this can be used for an intuitive picture of the second equation in (7.5).
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Clearly the last ratio in (7.5) does not exceed 1; hence

(7.6) o(y)<exp[—2BJ|y[] .

Calling p = |y| and observing that there are at most 3” different shapes
of y with perimeter p and at most p* congruent ¢’s containing (in their interior)
z, we deduce from (7.4), (7.6}

(1.7) Py (=)< 3 p*3 exp[—26Jp] .

=
1Me

Hence if §— co (i.e. the temperature 7 —0) this probability can be made
as small as we like and, therefore, {c,>,, i8 as close to 1 as we like provided
p is large enough. It is of fundamental importance that the closeness of
(6,4, to one is both & and A independent.

A similar argument for the (—)-boundary condition, or the remark that
0,04 =—X04,, allows us to conclude that, at large 8, <o), _ 7 {004,
and the difference between these two quantities is uniform in A.

Hence we have completed the proof of the fact that there is a strong
instability with respect to the boundary conditions of some correlation func-
tions [21].

We can look upon the above phenomenon as a spontaneous break-down of
the up-down symmetry: the Hamiltonian of the model is symmetric, in a zero
field, with respect to spin reversal if one neglects the boundary terms; the
phase transition manifests itself in the fact that there are equilibrium states
in which the symmetry is violated only on the boundary and which are not
symmetric even in the limit when the boundary recedes to infinity.

8. — Microscopic description of the pure phases.

The description of the phase transition presented in Sect. 7 can be made
mueh more precise from the physical point of view as well as from the mathe-
matical point of view. A deep and physically clear description of the phenom-
enon is provided by the theorem below, which, also, makes precise some
ideas familiar from the droplet model [22].

Assume that the boundary condition is the (--)-boundary condition and
describe a spin configuration o€ #(A) by means of the associated closed
disjoint polygons (yy, ..., Va)-

We regard the ensemble #(A) as equipped with the probability distribution
attributing to g= (yy, ..., y.) @ probability proportional to (7.3).

Then the following theorem holds [23].
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Theorem. If f is large enough there exist positive numbers

o(y) < exp [—2BJy|]

such that a spin confignration g randomly chosen out of the ensemble #(A)
will contain, with a probability approaching 1 as A co, a number K, (g)
of contours congruent to y such that

(8.1) [ o(0) — o(y)|4]|< OV]A] exp [— BT Iyl], 0>0,

and this relation is to be interpreted as holding simultaneously for all y’s.
(In three dimensions one has |} instead of V|4].)

It is clear that the above Theorem means that there are very few contours
(and that the larger they are the smaller is, in absolute and relative value,
their number). The inequality (8.1) also implies that for some C(f) there
are mo contours with perimeter |y|> C(f)log|4|. Hence a typical spin
configuration in the grand canonical ensemble with (+)-boundary conditions
is such that the large majority of the spins is « positive » and, in this «sea »
of positive spins, there are a few negative spins distributed in small and rare
regions (in a number, however, still of the order of |A]).

Another nice result which follows from the results of Sect. 7 and from
some improvement [24] of them concerns the behaviour of the equation of state
near the phase transition region at low (enough) temperatures.

m*(B) /’,_—

—o(1/ViA)

—m‘(ﬂ)"

Fig. 4.

If A is finite the graph of m (8, k) as a function of & will have a rather dif-
ferent behaviour depending on the possible boundary conditions; e.g., if the
boundary condition is (+) or (—), one gets respectively the results depicted
in Fig. 4 and 5.
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m*(B)

—o0)(i

>y

&1/@17)

Fig. 5.

With the periodic boundary conditions the state diagram changes as
in Fig. 6.

The thermodynamic limit m(g, k) = }1_1)% m,(f, h) exists for all A= 0 and
the resulting graph is as shown in Fig. 7.

A m, (B, h)

m*([) ¢

—o(1/Viah

o(1/viar) h

Fig. 6.

m*(f) //—

Fig. 7.
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At h =0 the limit is not well defined and depends on the boundary condi-
tion (as it must). It can be proven that }% (om(B, h)[Oh) = x(B) is a finite
number (4.¢. the angle between the vertical part of the graph and the rest is
sharp [24]).

The above considerations and results also furnish a clear idea of what a
phase transition for a finite system means.

It is often stated that a finite system «does not» show «sharp» phase
transitions; however this statement is always made when considering one
fixed boundary condition, nsually of periodic or perfect-wall type. By taking
into aeccount the importance of the boundary terms we see what are the phe-
nomena that occur in a finite system if the corresponding infinite system has
a sharp phase transition.

The next Section is devoted to the discussion of a number of problems
concerning the generality of the definition of a phase transition as an instability
with respect to the boundary perturbations and other related problems. Notice
that an unpleasant limitation on the results discussed in this Section is the
condition of low temperature (« § large enough »).

9. — Results on phase transitions in a wider range of temperature.

The results of the preceding Sections show that, at a low enough temperature,
the Ising model is unstable with respect to changes in the boundary conditions.
A natural question is whether one can go beyond the low-temperature region
and fully describe the phenomena in the region where the instability takes
place. In the particular case of 2 dimensions it would also be natural to ask
whether the maximum value of §to which an instability is associated is the one
given by eq. (6.9) which corresponds to the value of § where the infinite-
volume free energy f(f) has a singularity.

The above types of questions are very difficult and are essentially related
to the, already mentioned, theory of the phase transitions based on the search
and study of analytic singularities of the thermodynamic functions (which is
a theory, however, that has still to be really developed).

Nevertheless a number of interesting partial results are known which con-
siderably improve the picture of the phenomenon of the phase transitions as
we can see from the preceding Sections. A list of these results follows:

1) It can be shown that the zeros of the polynomial in 2z = exp[fh]
given by the product of 24! times the partition function (2.4) with periodic
or perfect-wall boundary conditions lie on the unit circle: [¢| =1. It is easy
to deduce, with the aid of Vitali’s convergence theorem for equibounded
analytic functions, that this implies that the only singularities of f(8, k) in
the region 0 <8< oo, —oo<<h< 4 oo can be found at »=0.
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A singularity appears if and only if the point #=1 § an accumulation
point of the limiting (as A — co) distribution of the zeros on the unit circle.

In fact if the zeros in question are z,, ..., 2, 4

24|
9.1) mlong Z(B, hy A, periodic) = 28J + — IAI Z log (2

and if [A[—l (number of zeros of the form 2z, = exp [i6,] with § <0, <0+ d0) ——
)(d6/27) in a suitable sense, we get, from (9.1),

A—>

A—>© Qﬁ

n

92) Bi(B, 1) = ;- [log (s— exp i07) 04(0) 8 + 267 — i,

-7

where the last term comes from the |2/'Y inserted in (9.1).
The existence of the measure g4(60)(d6/2n) such that (9.2) is true follows,
after some thought, from the existence of the thermodynamic limit 111_13010 falBy h)=

= f(B, k) [25].

2) It can be shown that the zeros of the partition function do not move
too much under small perturbations of the spin-spin potential even if one
allows « many spin » interactions, i.e. even if one perturbs the Hamiltonian (2.1)
with perfect-wall boundary conditions into

Hile) = Halo)+ (SHA)(o),
CHh(@)=2 2

!
k=21 xy,..., axed k!

9.3
(9:3) = (Byy sy Bp) Opy oov Ouy

where J'(X) is a function of the set X = («,, ..., #;) such that

(9.4) 177 = sup 3 |J'(X)]
X3y
is small enough.

More precisely, if one knows that, when J'=0, the zeros in 2= exp [Bh]
of the partition function lie in a certain closed set N of the z-plane then, if
J'#0, they lie in a set N! contained in a neighbourhood of ¥ which can bhe
made as small as we please when |J']—0.

This result allows us to make a connection between the analyticity prop-
erties and the boundary condition instability as described below in point 3) [26].

3) There can be a boundary condition instability only in zero field and,
in this case, if and only if the spectrum g,(6) has no gap around § =0.
The proof of this result relies upon 2) and the remark that the correlation
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functions are the functional derivatives with: respect to J'(zy, ..., %;) of the
free energy defined by the Hamiltonian (9.3) [26].

4) Another guestion is whether the boundary condition instability is always
revealed by the one-spin correlation function (as in Sect. 7) or whether it might
be shown only by some correlation functions of higher order. This question
is answered by the following result.

There can be a boundary condition instability (at k=0 and f fixed) if
and only if

(9.5) Lim m(f, ) Jim m(p, B)

Notice that, in view of what was said above (point 3)), m(f, h) = lim m,(f, h)
is boundary condition independent as long as k= 0.

In other words there is a boundary condition instability if and only if there
is spontaneous magnetization. This rules ont the possibility that the phase
transition could manifest itself through an instability of some high-order cor-
relation function which, practically, might be unobservable from an experi-
mental point of view [27].

5) Point 4) implies that a natural definition of the critical temperature T,
is the least upper bound of the 7”s such that (9.5)is true (I =p?). It is
clear that, at this temperature, the gap around 6 =0 closes and the func-
tion f(f, ) has a singularity at h=0 for > g = T.%; it can in fact be

proven that if (9.5) is true for a given g, then it is true for all > g, [28].

6) The location of the singunlarities of f(B, 0) as a function of § remains
on open question, see however FISHER [28]). In particular the question of
whether there is a singularity of #(8, 0) at §, is open. This implies that, at
least in principle, it is still unproven that the singularity of the Onsager
solution of the two-dimensional Ising model takes place at the critical point
as defined in 3). Itis, however, clear from the above considerations and from
the fact, proven by YANG (cited in ref.[6]), that for f>f,, (9.5) certainly
holds, that §, ;> 8, (see (6.9)).

7) Finally another interesting question can be raised. For g< f, we
have instability with respect to the boundary conditions (see 6) above): How
strong is this instability? In other words, how many « pure » phases can exist?

Our intuition, in the case of the Ising model suggests that there should be
only two different phases: the positively and the negatively magnetized ones.

To angwer the above question in a rigorous way it is necessary to agree
on what a pure phase is[29]. We shall call an equilibrium state a «pure
phase » if it is translationally invariant and if its correlation functions have
a cluster property of the form

>

(9.6) NPT aymﬂ) 55> €0,, - 0,0 <Gu, .. 0,

m
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where the convergence is understood in a very weak sense, i.e. the weakest
sense which still permits one to deduce that the fluctuations of extensive
quantities are o(|A]) [28], i.e.

1

9.7 A1 E<Gw1 oo Oy Oyytg es- Oyuta) —> <O'm, oo 6a:,.)> <0u1 ee va> ’

IA| acd A—o

i.e. the convergence in (9.6) takes place in the Cesaro-limit sense.

It can be proved that, in the case of the Ising model, the two states obtained
as limits for 4 — co of finite-volume states (cf. Sect. 3) corresponding to (-+)-
or (—)-boundary conditions are different for §>> §, and are pure phases in the
sense of (9.7) above [30].

Actually it can be proved that, in this case, the limits (9.6) exist in the
ordinary sense [30] rather than in the Cesaro sense, and that, at low tempera-
ture, they are approached exponentially fast [31].

Furthermore, if f§ is large enough (in 2 dimensions 10 %, larger than £ ),
these two pure phases exhaust the set of pure phases. For § close to §,, however,
the question is still open [32].

Having discussed the rigorous results about the structure of the phase
transition and the nature of the pure phases, we shall turn, in the next Section,
to the phenomenon of coexistence of two pure phases.

10. ~ Separation and coexistence of pure phases. Phenomenological consid-
erations.

Our intuition about the phenomena connected with the classical phase transi-
tions is nsually based on the properties of the liquid-gas phase transition; this
trangition is experimentally investigated in situations in which the total number
of particles is fixed (canonical ensemble) and in the presence of an external
field (gravity).

The importance of these experimental conditions is obvious; the external
field produces a nontranslationally invariant situation and the separation of
the two phages. The fact that the total number of particles is fixed deter-
mines, on the other hand, the fraction of volume occupied by the two phases.
For a discussion of the phenomenon of phase separation in the absence of an
external field see the brief dizcussion in Sect. 14.

In the frame of the Ising model it will be convenient to discuss the phe-
nomenon of the phase coexistence in the analogue of the canonical ensemble
U(A, m) introduced and discussed in Sect. 2 where the total magnetization
M =m|A| is held fixed.

To put ourselves in the phase transition region we shall take § large enough
and

(10.1) m = am*(B) + (1 — a)(— m*(B)) = (1 — 2a)m*(B) ,
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i.e. we put ourselves in the vertical « plateau» of the diagram (m, h)s (see
Fig. 7).

Having fixed m as in (10.1) does not yet determine the phenomenon of the
separation of the phases in two different regions; to obtain this effect it will
be necessary to introduce some external cause favouring the occupation of a
part of the volume by a single phase. Such an asymmetry can be obtained
in at least two ways: through a weak uniform external field (in complete analogy
with the gravitational field of the liquid-vapour transition) or through an asym-
metrie field acting only on the boundary spins. This second way should have
the same qualitative effect as the first, since, in a phase transition region, a
boundary perturbation produces volume effects (this last phenomenon, which
has been investigated in the previous Sections, is often referred to as the
«long-range order» of the correlations).

From the mathematical point of view it is simpler to use a boundary asym-
metry to produce the phase separation since it corresponds to a break-down
of the up-down symmetry due only to the boundary spins (whose number
is relatively small).

To obtain a further, but not really essential, simplification of the problem
consider the two-dimensional Ising model with (+, —)-cylindrical or (4, --)-
cylindrical boundary conditions.

The spins adjacent to the bases of A4 act as symmetry-breaking external
fields.

The (-, +)-cylindrical boundary condition should, clearly, favour the for-
mation inside A of the positively magnetized phase; therefore it will be natural
to consider, in the canonical ensemble, this boundary condition only in the
case that the total magnetization is fixed to be +m*(f) (see Fig. 7).

On the other hand the boundary condition (+,—) favours the separation
of phases (positively magnetized phase near the top of A and negatively mag-
netized phase near the bottom).

Therefore it will be natural to consider this boundary condition in the case
of a canonical ensemble with magnetization m = (1 —2«)m*(8) (cf. (10.1)).

In this last case one expects, as already mentioned, the positive phase
to adhere to the top of A, to extend, in some sense to be discovered, up to a
distance oc L from it, and then to change into the negatively magnetized pure
phase.

To make precise the above phenomenological description we shall deseribe
the spin configurations g e #(A, m) through the associated sets of disjoint
polygons (cf. Sect. 6).

Fix the boundary conditions to be the (-, +)- or (+,—)-eylindrical
boundary condition and observe that the polygons associated to a spin con-
figuration g€ %(A, m) are all closed and of two types: the ones of the first type,
denoted by y, ..., ¥a, are polygons which do not encircle A, the second type
of polygons, denoted by the symbol 7, are the ones which wind up around 4.
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So a spin configuration ¢ will be described by a set of polygons (yy, ..., ¥s,
Ay oevy A). It is, perhaps, useful to remark once more that the same configura-
tion ¢ will be described by different sets of polygons according to which
boundary condition is used. However, for a fixed boundary condition, the cor-
respondence between spin configuration and sets of disjoint closed contours
is one-to-one and the statistical weight of a configuration g = (yy, ...; Vs,
My eeey ) is (cf. (6.4))

exp[~27(S 17l + S 14))

It should also be remarked that the above notation is not coherent with
the notation of Sect. 6, where the symbol A is used for open polygons (absent
here); we hope that this will not cause any confusion. The reason we call A
the contours that go around the cylinder A is that they look like open contours
if one forgets that the opposite vertical sides of A have to be identified.

It is very important to remark that if we congider the (+, —)-boundary
conditions then the number of polygons of A-type must be odd, while, if we
consider the (4, +)-boundary condition, then the number of A-type poly-
gons must be even.

11. — Separation and coexistence of phases. Results.

Bearing in mind the geometric description of the spin configuration in
the canonical ensembles considered with the (4, -+)-cylindrical or the (+, —)-
cylindrical boundary conditions (which we shall denote briefly as #*(A, m),
U (A, m)) we can formulate the following Theorem [33]:

Theorem. For 0 < o<1 fixed, then, if § is large enough, a spin config-
uration ¢ = (y1,...,¥x, 41 ..., Aann) randomly chosen out of #+~(A, m) (where
m=(1—2x)m*(B)) enjoys the properties 1)-4) below with a probability
(in #*~(A, m)) approaching 1 as A->oo:

1) o contains only one contour of A-type and
(11.1) 4] — (1 + &(8)) L <o(L)

where &(f)> 0 is a suitable («-independent) function of f tending to zero
exponentially fast as f— oo,

2) If 4,, A; denote the regions above and below A we have
(11.2) |43 — o] A]| < =(B)]| 4
(11.3) 143 — (1 — )| A]| < m(pIAL,

kS
%
7

where ()0 exponentially fast as f— co.
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3) If M,=70,, we have
aEA)

(11.4) | My — oem*(B)| ]| < (B)| 4]
and a similar inequality holds for M, =Y ¢, =m|A|— M,.
wed’y
4) If K

(@) denotes the number of contours congruent to a given y and
lying in A,, then, simultaneously for all the shapes of y,

(11.5) |E%(0) — o(y)alA]| < € exp [— I y1V]A] >0,

where g(y) <exp[—2fJ|y|] is the same as the one in the text of the theorem
of Sect. 8. A similar result holds for the contours below A (cf. the com-
ments on (8.1)).

It is clear that the above theorem not only provides a detailed and rather
satisfactory description of the phenomenon of phase separation, but also fur-
nishes a precise mieroscopic definition of the line of separation between the
two phases which should be identified with A.

A very similar result holds in the ensemble (A, m*(8)); in this case 1)
is replaced by

1’) no A-type polygon is present,

2) and 3) become superflous and 4) is modified in the obvious way. In other
words a typical configuration in the canonical ensemble %+ (A, m*(f)) has the
same appearance as a typical configuration of the grand canonical ensemble
%(A) with (+)-boundary econdition (which is described by the Theorem of
Sect. 8).

We conclude this Section with a remark about the condition that 0 < a <1
has to be fixed beforehand in the above Theorem. Actually the results of the
Theorem hold at fixed § for all the «’s such that &(f) < min («, (1 —a)), 4.c.
for all the «’s such that the line A cannot touch the bases of A (in which case
there would be additional physical phenomena).

12. — Surface tension in two dimensions. Alternative descriptions of the sep-
aration phenomena.

A remarkable application of the above theorem is the possibility of giving
a microscopic definition of surface tension between the two pure phases [34].
We have seen that the partition functions

(12.1) 74, f) = 3 exp[2pI(Sly - S 1)

oeU*+(A,m*B))
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and (if m = (1—2a)m*(B), 0 <<a<<1)

12.2) 74, f) = 3 exp[—269(Slpd + 3 |A4])]
oe¥{A,m) i 5
will essentially differ, at low enough temperature, only because of the line A
(present in %*(A, m) and absent in (A, m*(f)), see the preceding Section).
A natural definition (in two dimensions) of surface tension between the
phases, based on obvious physical considerations, can therefore be given in
terms of the different asymptotic behaviours of Z**(A4, f) and Z1t~(A4, m):

.1 Z(m, A)
(12.3) T(‘B) = lim *‘100 "ZW .
The above limit (Which should be a-independent for &(f) < min («, (1 —o))
(cf. the concluding remarks of the preceding Section)) can be exactly com-
puted at low enough temperature and furnishes

(12.4) () — —28J —log tgh BJ ,

which is the value computed by ONSAGER [3] using a different definition not
based on the above detailed microscopic description of the separation of the
phases and of the line of separation [35].

We conclude this Section with a brief discussion on one particular but very
convenient alternative way of investigating the phenomenon of the coexistence
of two phases. Another, still different, way of investigating the phenomenon
will be discussed in Sect. 14.

Consider the grand ecanonical ensemble, but impose as boundary conditions
the following: the spins adjacent to the upper half of the boundary of A are
fixed to be -F1, while the ones adjacent to the lower half are —1. This is
a e-type boundary condition (see Sect. 3).

It is clear that a configuration g¢e %(A) is described, under the above
boundary condition, by one open polygon (surface in 3 dimensions) going from
one side of A to the opposite side and by a set of disjoint closed polygons
(polyhedra) v, ..., ..

Clearly 4 plays now the role of the polygons encircling A in the case of
cylindrical boundary conditions (and 2 dimensions) and it is also clear that
a theorem very similar to the ones already discussed holds in this case. The
above point of view is more relevant in the three-dimensional case where a
« cylindrical » boundary condition would have a less clear physical meaning.

In the three-dimensional case A is a «surface» with a boundary formed
by the square on &4, where the «break» between the spins fixed to be +1
and the ones fixed to be —1 is located.

In the next Section we investigate in more detail the structure of the line
or surface of separation between the phases.
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13. — The structure of the line of separation. What a straight line really is.

The Theorem of Sect. 11 tells us that, if § is large enough, then the line 4
is almost straight (since g(f) is small). It is a natural question to ask whether
the line A is straight in the following more precise sense: suppose that 2,
thought of as being a polygon belonging to a g€ %+ (A, m) (cf. Sect. 11), passes
through a point ge/; then we shall say that 4 is straight or rigid if the prob-
ability 2, that A passes also through the site ¢', opposite to ¢ on the cylinder 4,
does not tend to zero as 4 — co, otherwise we shall say that 1 is not rigéd or
fluctuates. Of course the above probabilities are to be computed in the en-
semble (A, m).

It is rather clear what the above notion of rigidity means: the «excess»
length &(8)L can be obtained in two ways: either the line A is esgentially
straight (in the geometric sense) with a few « bumps » distributed with a density
of order &(f) or, otherwise, the line 4 is bent and, therefore, it is only locally
straight and part of the excess length is gained through the bending.

In three dimensions a similar phenomenon is possible. As remarked at
the end of the last Section, in this case 4 becomes a surface with square boundary
fixed at a certain height (¢.e. zero), and we ask whether the centre of the square
belongs to A with a nonvanishing probability in the limit A — co.

The rigidity or not of A can, in principle, be investigated by optical means;
one can have interference of coherent light scattered by regions of A separated
by a macroscopic distance only if A is rigid in the above sense.

It has been rigorously proven that, at least at low temperature, the line of
separation A is not rigid in 2 dimensions (and the fluctuation of the height
of the middle point is of the order O(\/f)). On the contrary, in 3 dimensions
it has been shown that the surface 4 is rigid at low temperature.

An interesting question remains open in the three-dimensional case and is
the following: it is conceivable that the surface, although rigid at low tem-
perature, might become loose at a temperature 7', smaller than the eritical
temperature 7T, (defined as the largest temperature below which there are at
least two pure phases).

It would be interesting to examine the available experimental data on the
structure of the surface of separation to set limits on T,—T, in the case of
the liquid-gas phase transition where such a phenomenon can conceivably
occur even though a theory of it is far from being in sight, at least if one
requires a degree of rigour comparable to that displayed in the treatment of
the results so far given for the Ising model.

We conclude by remarking that the rigidity of A is connected with the
existence of translationally noninvariant equilibrium states (see Sect. 3).

It seems almost certain that, in 2 dimensions, because of the discussed
nonrigidity of A there are no translationally noninvariant states [36].
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Notice that the existence of translationally noninvariant equilibrium states
is not necessary for the description of the coexistence phenomena. The theory
of the 2-dimensional Ising model developed in the preceding Sections is a clear
proof of such a statement [36].

14. — Phase separation phenomena and houndary conditions. Further results.

The phenomenon of phase separation described in Sect. 10 and 11 is the ferro-
magnetic analogue to the phase separation between a liquid and its vapour in
the presence of the gravitational field.

It is relevant to ask to what extent an external field (or some equivalent
boundary condition) is really necessary; for instance one can imagine a situation
in which two phases coexist in the absence of any external field.

Let us discuss first some phenomenological aspects of the liquid-gas phase
separation in the absence of outer fields. One imagines that, if the density is
fixed and corresponds to some value on the « plateau » of the phase diagram, then
the space will be filled by vapour and drops of liquid in equilibrium. Observe
that the drops will move and, from time to time, collide; since the surface
tension is negative the drops will tend to cluster together and, eventually,
in an equilibrium situation there will be just one big drop. The location of
the drop in the box A will depend on how the walls are made and how they
interact with the particles within A.

Let us consider some extreme cases:

1) the walls «repel» the drops,
2) the walls «attract » the drops,

3) the wall is perfect and does not distinguish between the vapour and
the liquid.

In the first case the drops will stay away from the boundary 04 of A.
In the second case the drop will spread on the walls, which will be wet as much
as possible. In the third case it will not matter where the drop is; the drop
will be located in a position that minimizes the «free» part of its boundary
(¢.e. the part of the boundary of the drop not on 04). This means that the
the drop will prefer to stay near a corner rather than wetting all the wall.

Let us translate the above picture info Ising-model language. Assume f
is large and m = (1 —2a)m*(f) (see Fig. 7) (i.e. assume that the magnetization
is on the vertical plateau of the (m, h); diagram (see Fig. 7)).

Then conditions 1), 2), 3) can be realized as:

1) The spins adjacent to the boundary are all fixed to be +1. This
favours the adherence to the boundary of the positively magnetized phase.
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2) The spins adjacent to the boundary are all fixed to be —1. This
favours the adherence to the boundary of the negatively magnetized phase.

3) Then are no spins adjacent to the boundary, 4.6. we consider perfect-
wall boundary conditions.

The rigorous results available in the case of the Ising model confirm the
phenomenological analysis based on the liquid-vapour coexistence [23]:

Theorem. Fix 0<<a<<1 and consider (+4)-boundary conditions. Then a
spin configuration ¢ randomly extracted from the canonical ensemble with
magnetization m = (1 —2a)m*(f) has, if § is large enoungh, properties 1)-3)
below with a probability tending to 1 as A-—oco.

1) There is only one y such that |y|> (1/333)log|4| and it has the
property

(14.1) lly| —4V(1—a)|4][<d(B) V4]
with 9(f)—0 as f— oo (exponentially fast);
2) the area enclosed by y is 6(y):

(14.2) 6(y) — (1 — )| 4] | <x(B)]4

3
7 .
’

3) the magnetization M(0(y)) inside y is on the average equal to —m*(f)
and, more precisely,

a
e
b

(14.3) | M(6(y)) + m*(B)1 — )| A| <=(p)|A

and therefore the average magnetization outside y is 4 m*(f).

This Theorem holds also in 3 dimensions but the exponents of |4| on the
r.h.s. of (14.1)-(14.3) change.

The above Theorem shows that a typical configuration consists of a posi-
tively magnetized pure phase adhereni to the boundary and of a «drop» of
negatively magnetized phase not adhering to the boundary (since y is closed).
The size of the drop is ~V/(1—a)|A| (as it should be).

Notice that the drop is almost square in shape (as follows from (14.1),
(14.2)); this should not be astonishing since the space is discrete and the
isoperimetric problem on a square lattice has the square as 2 solution (rather
than a circle).

The opposite situation is realized if one fixes a (—)-boundary condition;
a square drop forms in the middle of the box with side ~\/&m and average
magnetization + m*(f).

Finally, if the boundary condition is of the perfect-wall type (%,(g)=0),
then the above Theorem does not hold and one can except to prove (say, in
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2 dimensions) that a typical spin configuration hag just one open contour A
(with ends on &) which separates the space in two parts which are occupied
by the opposite phases; the line A should be the shortest possible compatible
with the condition that the volume A is divided by it into two regions of volume
ald| and (1 —a)|A] (respectively occupied by the positively magnetized phase
and by the negatively magnetized phase). The results just described for the
case %,(¢) =0 have never been proven though there is evidence of their
truth [32].

If one interprets the spins equal to +1 as particles and the spins equal
to —1 as empty sites, then one has a lattice gas model which undergoes a
liquid-vapour phase transition which presents the phenomenological aspects
outlined at the beginning of this Section for these transitions.

To conclude we remark that, in the phase separation phenomenon, the
finiteness of the box only plays the role of fixing the density and keeping the
vapour tension. The detailed structure of the phenomenon depends on the
boundary conditions which, in experimental situations, turn out to be some-
thing intermediate between the three extreme cases discussed above.

Notice that (14.1) does not provide a satisfactor ymeasure of |/‘L\ since the
allowed error is still of the order of 4/ [71_|; it is an open problem to obtain a bet-
ter estimate of |A| of the type (11.1). It ix also an open problem to find an
expression for the surface tension of the square drop (which is expected to be
the same as (12.3) in two dimensions); see the Introduction to [34]. A third
problem is the investigation of the dependence of the correlation functions on
the distance from the surface of the drop.

The analogues of the first two questions just raised have been satisfactorily
answered rigorously in the 2-dimensional Ising model with cylindrical boundary
conditions (see Sect. 11 and 12), 7.e. in the case of an «infinite » drop with a
flat surface.

The third problem has been only approximately studied even in the case
of a flat drop [37].

15. - Conclusions and open problems.

In the preceding Sections we have dealt with the case of a nearest-neighbour
Ising model. It has become customary, in the literature, to call with the name
Ising model more general models in which the « bulk » Hamiltonian has the
form

(15.1) b3 o, + > du(e, ;) 0,0, -+ 2@y By, 04) 04,00 00, + o

x i<j i<i<k

where the potentials J,(x,, ..., x,) are translationally invariant functions of
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(%1 ..., @,) and satisfy certain decrease conditions of the type

z ]Jz(O, x)] <+ o0,
(15.2) ?
z IJ3(07 Z, f’/)l <+ o0,

ete.
If only pair potentials are present, i.e. if the bulk Hamiltonian is of the
form

(15.3) by os + zJ(wi—w,-)o',,ium‘

i<j

and if J(r) <0, then most of the results described in this paper and appro-
priately reformulated have either already been proved, or are being proved
or are very reasonable conjectures [38].

Many results shall stay true for more general pair potentials and for other
models (like continuous gases) at least from the qualitative point of view;
in fact it is reasonable that the selected rigorous results should have, at least
qualitatively, an analogue in the « general » case of a classical (as opposed to
quantum) phase transition.

Results such as analyticity and absence of phase transitions at high tem-
perature are a peculiarity of the lattice models and have been, therefore, left
out [39]. We have made some exceptions to the above rule of selection of
results by quoting some of the exact results from Onsager’s solution of the
2-dimensional Ising model.

Below we list a number of rather randomly chosen interesting and open
problems suggested by the topies of this article:

1) It would be interesting to fill the gap between T, and the maximum
value of T (~109, of T, in 2 dimensions) for which one can prove that there
are only two pure phases. This is related to other problems such as the conjec-
tured identity, in 2 dimensions, of g, and f,, (see (6.9) and point 4) in
Sect. 9).

2) The solution of the 2-dimensional Ising model is based on the so-
called « transfer matrix ». The investigation of the transfer matrix has been
pursued in some detail in the case of periodic or open boundary conditions
in two or three dimensions [40], see also [3, 41].

It would be of interest to study the transfer matrix with nonsymmetric
boundary conditions. In particular it would be of interest to study the transfer
matrix between two rows (or planes) where the line (or surface) of separation
should pass (if straight). A qualitative difference should arise between two
and three dimensions (see, for more details, the Appendix).
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3) In Fig. 7 we see that the isotherm m(f, k) as a function of k>0
abruptly ends at #=0. It is still an open question whether # =0 is an analytic
singularity of m(g, k) or whether m(g, h) can be analytically continued to % <C0.
There is strong evidence for the existence of a singularity [42].

4) In the case the answer to 3) is in agreement with the conjecture, how
one can explain the metastability phenomena [43]%

5) It would be of interest to find generalizations of the phase coexistence
theory to other lattice models for which phase transitions are proven to take
place [44].

6) The existence of phage transitions has recently been proved, for
the first time, for a continuous system. It would be of interest to analyse the
phenomenon of the phase coexistence in this case [45].

7) If, for a system, a phase transition is known to take place, when can
one answer the question of how many pure phases exist?

8) A detailed description of the correlation functions near the line or sur-
face of separation between two phases has still to be presented (see [36, 37]).

9) Tt would be of interest to investigate the microscopic definition of
surface tension in the particular case of the 3-dimensional Ising model (which,
so far, has not been studied).

10) It would be of interest to prove that, in 3 dimensions, the surface
tension 7(f) is such that ©(f) + 28J is analytic in exp [—fJ].

11) It would be of interest to investigate the phase transitions in models
not showing the up-down symmetry like the ones obtained by choosing in (15.1)
Jy= 0 [46].

12) Three more open problems are listed at the end of Sect. 14.

APPENDIX

Transfer matrix in the Ising model.

Congider the one-dimensional Iging model with periodic boundary con-
ditions. The partition function can be written as (if o7, =0y)

AL 24,80 =3 TI(exp[pJo.ou,+ fhoil) =

0;...0f =1
A g B
= > TI (exp [5 hai] exp [fJo;0:,,] exp [i ho; +1]) =
0y...0 i=1 ~

= > Voo,Vow e Varoy=Tr V",

0,...01,
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where V is a two-by-two matrix such that

Voo = €xp [g ho+ pJoc’ -+ gha’], g, =41,

v =(6XP[ﬁk+ﬂJ] exp [— fJ] )
exp [— fJ] exp [—ph—pJ]) "

If 2, and A_ (A,> A_) are the two eigenvalues of V, we find
(A.3) Z(4, ‘37 h) = M‘- + Az H

(A4) Bi(B, W) = lim ZlogZ=log 2, .

It is easy to check that A,(8, k) is analytic in § and A for 0 <f <+ oo
and —)oo< h <+ oo, i.e. there are no phase transitions (as singularities of
1B, ).

A similar method can be applied to the two-dimensional Ising model (A is
now an M XN box). Suppose, for simplicity, h==0:

(A'5) Z(ﬁ’ A) = g ﬁ H (exp [ﬂJO’, 161+1 i + ﬁJGz 705 H—l])

l J
i z H {H eXp [ O', JUz J+1 + ﬂJO', ) !+1 i + ‘3 O-«:_}.1 161-{-1 J+1:|}

where in the second line we denote by ¢;= (0,1, ..., 0sy) all the spins on the
i-th row of A; the boundary conditions impose o3 = guy and 05 = Oy
Clearly, if we define the 2%x2" matrix

N

A6) Ver=TI (exp 010 exp B30 exp | am])

=1
N

= exp [Z {[32;7 (05011t 0;0141) + .BJO'N;‘H ’

=1
where ¢, = 0y,1, 61 = Ox41, We realize thab
(A7) Z(A, B)=Tr V™.

We have dealt, so far, only with periodic boundary conditions. We could
introduce transfer matrices also in the case of other boundary conditions.

For instance, assume, for simplicity, that there are periodic boundary con-
ditions along the columns; we shall consider the three cases below:

1) « perfect wall » boundary conditions along the rows;

2) boundary conditions on the rows corresponding to the existence
on the lattice sites adjacent to the end points of the rows, of fixed spins
=41 (or g;=—1) for all i's;
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3) boundary conditions which are of the same type as in 2) but half of
the rows end in a positive spin (say the upper half) and half in a negative spin.

We shall now write down a transfer matrix expression for Z(A, f) in the
above cases.

In case 1)
(AS) Z(/l, /.}) = Tr V(I)M ,
where
— N
(A.9) Va3 = exp [ > { (0561414 6,0/+1) } + z/fJa,-aJ'] .
=1 i=1
In case 2)
Z(A, B) = Tr V4,
where
(A.10) Vi = exp [+ pJ(o,+ ol + ox + o)1V .

In case 3), assuming here the height of 4 to be M+1 and M even, we have

(A.11) Z(A, B) = Tr (VHurye(v-)u
where
(A-12) Viy = exp [ (01 o — 0y — )] Vi .

The transfer matrix V in (A.7) is the one that has been diagonalized exactly
in the famous paper by ONSAGER [3]. The matrix V' has been diagonalized
exactly in ref. [47].

The matrices V® have, so far, never been studied, neither has been studied
the matrix V®,

A similar formulation of the problem of the computation of Z can be for-
mulated in three dimensions.

Some very interesting results on the spectral properties of the generaliza-
tion to three dimensions of the matrix V (periodic boundary conditions) have
been obtained in ref. [48].

In three dimensions one expects that the analogue of V® (in contrast to
Vw_ V*+ ¥V ) has spectral properties which radically differ from those of V.
In 2 dimensions this phenomenon should not occur and all the above matrices
should have the same spectrum (asymptotically as A-> o). As mentioned
in Sect. 15, problem 2), this should be related to the fact that V® ghould contain
some information about the rigidity of the line or surface of phase separation
which is «sitting » right near the two lines between which V® « transfers ».

A very interesting nonrigorous analysis of the spin correlation functions
in terms of the transfer matrix has been done in ref. [49]. The paper of ref, [48]
(written independently of [49]) has been devoted to trying to make this analy-
sis rigorous.

11 — Rivista del Nuovo Cimento.
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