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1 .  - I n t r o d u c t i o n .  

T h e  I s i n g  m o d e l  p l a y s  a v e r y  spec i a l  ro le  in  s t a t i s t i c a l  m e c h a n i c s  a n d  

p r o v i d e s  t h e  s i m p l e s t  n o n t r i v i a ]  e x a m p l e  of a s y s t e m  u n d e r g o i n g  p h a s e  t r a n s i -  

t i o n s  []] .  

T h e  a n a l y s i s  of t h i s  m o d e l  has  p r o v i d e d  d e e p  i n s i g h t  i n to  t h e  g e n e r a l  

n ~ t u r e  of t h e  p h a s e  t r a n s i t i o n s  wh ich  a r e  c e r t a i n l y  b e t t e r  u n d e r s t o o d  n o w a d a y s  

(*) Lavoro finanziato dal l ' I s t i tu to  di Fisica dell'UniversitY, Roma, ed cseguito ncl- 
l 'ambito del CNR-GNAFA. 
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af te r  the  publicat ion of the hundreds  of papers  which followed the  pioneering 
work of IsI~G, PEIEI~LS, OI~SAGEI~, and L~E and YA~G [1-4]. 

The main reason why so much a t t en t ion  has been given to this v e ry  spe- 
cial model  lies in its simplicity and in the  fact  tha t ,  in spite of it ,  i t  first pro- 

v ided firm and quant i ta t ive  indications tha t  ~ microscopic short-ranged inter-  
act ion can produce phase t ransi t ions which, fu r thermore ,  deeply  differ in 

charac ter  f rom the  classical Van der Waals (or Curie-Weiss or mean  field) 

type  of t ransi t ions [5]. 

I t  should also be ment ioned  tha t  the  two-dimensionM Ising model  in zero 
externa l  field is exact ly  solvable [6], this fact  has v e r y  of ten  been used as a 

check of the val id i ty  of numerical  approximat ions  devised to be applied to more 
complicated models [7]. 

In  some cases the  Ising model  is a good phenomenological  model  for anti-  
fer romagnet ic  materials  [8]. 

Finally,  last  bu t  not  least,  we ment ion  tha t  the Ising model  has given 
rise to a number  of in teres t ing developments  and re in te rpre ta t ions  of old re- 

sults in the  theory  of Markov chains [9], informat ion theory  and ergodic 
theory  [10], random walks [11], and therefore  const i tutes  a remarkable  example 

of a subject  which has s imultaneously been the object  of advanced research 

in physics,  mathemat ics  and mathemat ica l  physics. 
In  this review article we hope to give a self-contained, though cer ta inly  

not  exhaust ive,  descript ion of the model  and of some selected rigorous results 
i l lustrat ing proper t ies  which throw some light on the general  na ture  of the  
phenomenon  of the  phase t ransi t ions far  from the  critical point  and which, 
hopefully,  should not  be a pecul ia r i ty  of the simplici ty of the model. 

There  exist  some ve ry  good accounts on the theoret ical  arguments  leading 
to the  considerat ion of the Ising model  in the  context  of physical  prob- 
lems [7, 12]. Therefore  we shall complete ly  skip this aspect  of the  ma t t e r  
and refer  the in te res ted  reader  to the l i tera ture .  

2. - The model. Grand canonical and canonical ensembles. Their inequivalence. 

We consider a 0-dimensional (~ = :t, 2, 3) square lat t ice Z t and a finite 
square A c Z ~ cent red  around the origin, containing IA] = L t lat t ice sites. 

On each site x e A  is located a classical spin a~ = ± 1 .  The (~ configura- 

tions ,> of our sys tem will, therefore ,  consist in a set _a ---- {ax,, ..., a~.Aj) of IAI 
numbers  a~----q-l;  the  number  of these configurations is 2 'a'. The ensemble 
of these configurations will be denoted  as q/(A). 

To each spin configuration is assigned a cer ta in  (~ energy ,> 

(2.1) HA(a) = - - J  ~ a~ (~x - - h  ~,(r, --~a(a_) , 
(i,D 
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where ~ means that  the sum is over pairs (x~, xj) of neighbouring points, 
(i,D 

h is an external magnetic field and ~A(a) describes the interaction of the 
spins in the box A with the (( rest of the world ~) [13]. 

For simplicity we shall treat, in this paper, only the case J ~ 0. 
Of course 2.1(a) in (2.1) can be rather arbitrary and, actually, depends 

on the particular physical problem under investigation. I t  is subject, however, 
to one constraint of physical nature: in case we were interested in letting 
A--> 0% we should impose the condition 

m a x  12A(~_)I 
l i r a  ~- - -  0 ,  (2.2) A ~  IAI 

i.e. we want the energy due to 2A(a) should not to be of the same order as 
the volume of the box. In other words it should be a (~ surface term ~. 

The laws of statistical mechanics provide a relationship between the micro- 
scopic ttamiltonian (2.1) and the macroscopic quantities appearing in the 
thermodynamieal theory of the system. 

The free energy per unit volume is given by 

(2.3) /a(fl, h) = [~[ logZ(fl, h, A, ~ ) ,  

where fl = T -1 is the inverse temperature and 

(2.4) Z(fl, h, A, ~)  = ~, exp [ - - f l H a ( _ a ) ]  

is the grand canonical partition function. Furthermore the probability of 
finding the system in a configuration a of the grand canonical ensemble ql(A) 
is given by the Boltzmann factor 

(2.5) exp [-- 3~A(_~)] 
Z(fi, h, A ,  2 )  ' a-eCg(A) " 

For a theoretical foundation of (2.3), (2.5) see [14]. The grand-canonicM- 
ensemble formalism based on (2.3), (2.5) corresponds to the physical situation 
in which there are no constraints oll the system. If one could, by some experi- 
mental arrangement, regard, for example, the total magnetization M(_a)= 
= ~  as fixed: M ( g ) =  M=mIA],  then the expression (2.3) for the free 

~ A  

energy would no longer be appropriate nor would the predictions based 
on {2.5) be appropriate. One should rather consider the canonical ensemble, 
i.e. the set of the allowed configurations would be the set q/(A, m)c  ql(A) 
consisting of all the ~ e ql(A) such that  ~ a~ = m]A] (Im] <1), and the thermo- 
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dynamics would be described by the function 

(2.6) 

where 

(2.7) 

gA(fi, m, h) -~ 7-~ logZ(fl, h, A, ~ ,  m),  

Z(fl, h ,A,  2 ,  m) = ~ exp [--flHA(a_)] , 
a_~.~(d.m) 

and the free energy would be ](fl, h): 

(2.s) ](fl, h) = m(h) + gA(fl, 0, re(h)), 

where m(h) is the solution of the equation [15] 

(2.9) h =  ~gA(~, 0, m) 
~m 

There is no reason for having ]a = ].1 since they correspond to different 
physical problems; it is only when, in some sense, the fluctuations become 
negligible (i.e. in the limit A --> ~ )  that  one can expect the identity between 

] and /. 
Of course in general the difference between iA and ]A should vanish as 

O(IAI -(e-1)le) (and logarithmically for ~----1); but, as we shall see on many 
occasions, the situation is not so simple for other quantities such us the 
correlation functions or the average magnetization. 

The inequivalence, for finite volume, of the predictions of the canonical 
and grand canonical ensembles should not be interpreted as meaning that  
statistical mechanics is only approximate when applied to finite systems; it 
simply means that  in dealing with finite systems care must be paid not only 
to the boundary conditions but  also to the actual physical situation from which 
the problem under consideration arises. 

We conclude by  observing that in the canonical ensemble the probabihty 
of a spin configuration will be given by  an expression similar to (2.5): 

exp [--/~HA(a)] ~_ e ~(A, m) . (2.10) g(fi, h, A, ~ ,  m) '  

3. - Boundary conditions. Equilibrium states. 

Formula (2.5) or (2.10) provides a complete statistical description of the 
properties of the system. An alternative and often more convenient, though 
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equally complete,  descript ion is provided by  the so-called correlation functions 

a~, ... a~. exp  [--/~//~(_~)] 
(3.1) <a~a~ ... a~)A.~ a = - 

]~ exp  [ -  #HA(_~)] ' 
cr 

where the ~ is ex tended  to the appropr ia te  stat ist ical  ensemble. 
cr 

For  instance the average magnet izat ion in the  grand canonical ensemble 
~/(A) is 

( 3 . 2 )  Tt~A(/~ , h ) -  ~ ] a ( / ~ '  h )  __ ~EA 

~h lAI 

We shall re fer  to the family  of correlat ion functions (3.1) (regarded as a 
whole) as the (( equi l ibr ium state  of the system in the box A )~. 

We shall call equil ibrium state of the infinite system any  family {<a~ ... ~ > }  
of funct ions such tha t ,  for a suitable choice of the ~z(a) ,  

(3.3) <%. . .  %~} ---- l i l n  <%, ... %=}A.~A 

for all n > 1 and all x~, x2, ..., x~ E Z ~, simultaneously [16]. 

An equil ibrium state  for the infinite system will simply be called an equi- 

l ibr ium state  and is specified by  a suitable choice of a sequence {~A(_a)) of 
boundary  conditions satisfying the requi rement  (2.2). 

Le t  us list a number  of remarkable  boundary  conditions: 

1) Open boundary condition (also called perfect-wall  boundary  condi- 
tions): this name will be given to the case 

(3.4) ~A(_a) ~ 0 for all _a e ~ (A) .  

2) Periodic boundary conditions: this corresponds to allowing spins on 
opposite  faces of the box A to in te rac t  through a coupling - - J  (i.e. as the 

bulk spins). Clearly this can be obtained by  a suitable choice of ~A(_a); to this 
choice we shall refer  as (( periodic boundary  conditions ~. 

3) (e_)-boundary conditions: let  ($1, ~2, ...) be the  2~IA[ (e-1)/e lat t ice points 

adjacent  to the boundary  of A. Le t  _e = (Q,, Q2, ' " ) ,  st, = -V1, be fixed. We 
shall call (_e)-boundary condit ion the choice 

(3.5) 2A(a) = - -  d ~ %E~,, 
xt~OA 

where (x~, ~) are neares t  neighbours.  
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The physical  meaning of this boundary  condit ion is clear: we imagine 

tha t  the sites neighbouring the  boundary  ~A of A are occupied b y  a spin con- 
figuration e and these spins in te rac t  with the spins _a through the same coupling 
constant  of the bulk spins. 

The cases _8= ( + 1 ,  + 1 ,  ...) or ~ ~ (--1,  - -1 ,  ...) will be, respectively,  re- 

fe r red  to as the {+)-boundary condition or the  (--)-boundary condition. 

4) In  the two-dimensional  case we shall be in te res ted  in another  boundary  

condition.  Suppose the spins on the opposite vertical sides of A are allowed to 

in te rac t  through a coupling - - J  (i.e. we impose periodic boundary  conditions 

along the  rows of A only); and suppose tha t  a set  £~ of fixed spins is located 

on the lat t ice sites adjacent  to the  upper  base of A and, similarly, a set _ez of 
fixed spins is adjacent  to the  lower base of A. The spins _~, _~ are allowed to 
in te rac t  wi th  the  neares t  spins in A with a coupling - - J .  We shall na tura l ly  
refer  to this choice of ~A(a_) as the  (~_~, &)-cylindrical boundary condition. 

The par t icular  cases 

o r  

~.  = ( + 1 ,  + 1 ,  . . . ) ,  

_~. = ( + 1 ,  + 1 ,  . . . ) ,  

~ =  (+1,  +1,...) 

e~ = ( - -1 ,  - - 1 ,  ...) 

will be refer red  to respect ive ly  as ( + ,  +)-cylindrical boundary condition or 

( +, --)-cylindrical boundary condition. 

4. - The Ising model  in 1 and 2 dimensions  and zero field. 

To acquire some famil iar i ty  wi th  the model  let  us examine some of the 

simplest cases. 
Consider the  one-dimensional Ising chain with periodic boundary  conditions. 

I f  we label the  points  of A as 1, 2, ..., ~,  the  Hami l ton ian  in zero field is 

L 

(4 .1)  RA(~)=--J~iff,+l, f f ~ + l ~ f f l ,  
i=l 

(clearly ~ A ( g ) = - - J a z a l )  • The grand canonical par t i t ion  funct ion can be 

wr i t t en  

L 

( 4 . 2 )  ZA(fl) = X; exp [ f ig  - -  I I  exp • 

Remark ing  tha t  (a~(r~+~)~-~ 1 and, therefore ,  

exp [flJs~si+l] -- eosh flJ + s~Oi+l sinh flJ, 



I N S T A B I L I T I E S  A N D  I ~ H A S E  T R A N S I T I O N S  I N  T H E  I S I N G  M O D E L .  A R E V I E W  139 

eq. (4.2) can be rewri t ten us 

(4.3) 
L 

ZA(fl) = (cosh flj)L ~ I-~ (1 + (tgh flJ)a,a~+~) . 
g i = 1  

If  one develops the product  in (4.3) one gets a sum of terms of the form 

(4.4) (tgh flJ)~a~ a~,+~a, ai.+~.., a~ a~,+~ . 

I t  is clear tha t ,  unless k - - 0  or k = L, each of the terms (4.4) contains 
a t  least one index i~. which appears only once. Therefore, after  l~erforming 
the sum over the a's, all the terms (4.4) give a vanishing contribution to ZA(fl) 
except the two with  k -  0, k -  1 which are, respectively, 1 and (tgh flj)L. 
"O~1(~20~20~3 . . .  O~L_IO~LO'L(~ 1 ~ (tgh flj)z. 

This implies 

(4.5) ZA(fl) : (cosh flJ)L2~(1 -~ (tgh flj)L). 

Hence [17], 

(4.6) 
1 

fi/A(fl)---- log (2 cosh~J) -~ ~ log (1 ~- (tgh BJ)L). 

I t  has to be remarked tha t  fl]A(fl) aS well as fl](fl) ---- l im fl]A(fl) = log 2 cosh f lJ 
L ---)-cO 

is analytic  in fl; this fact is ususdly referred to as the absence of phase transi- 
tions in the one-dimensional Ising model. 

The reader can check, using the above scheme, tha t  the part i t ion function 
in the grand canonical ensemble and zero field but  open boundnry conditions 
(see p. 137) is slightly different from (4.5) and, precisely, is equal to (cosh flJ)L2L. 

Consider now the two-dimension~l Ising model in ~ zero field and with 
open boundary  conditions: 

(4.7) 
L L--1 L--1 L 

HA(~_) : - - J  ~_ , ~,a~,a~,+l--J 2 2 a,Ja,+lJ , 
i = 1  i=1 t - 1  j - 1  

A bet te r  form for HA(g ) is the following: 

(4.s) HA(-~) = - - J  ~:~b,  
b 

where ~ denotes sum over the bonds, i.e. over the segments b = [(i, j), (i, j ÷ 1)] 
b 

or b----[(i, j), ( i ÷ 1 ,  j)], and (~b is the product  of the two spins at  the extremes 
of b (e.g., if b = [(i, j), (i~-1, j)] then ab--a~jai+ls). 
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The pa r t i t i on  funct ion can be wr i t ten ,  as in the  one-dimensional  case, as 

(4.9) ZA(fl) = (cosh flj)2L,~-~, ~ I I  (1 q- (tgh flJ) ~b) " 
£ b 

Developing the  p roduc t  we are led to a sum of t e rms  of the  t ype  

(4.10) ( tgh flj)k G~ G,... G~ , 

and we can convenient ly  describe this t e r m  through  the  geometr ic  set of lines 

b~, b2, ..., b~. Afte r  the  ~ is t aken ,  m a n y  t e rms  of the  fo rm (4.10) give a 
o 

vanish ing  contr ibut ion.  The ones t ha t  give a nonvanishing contr ibut ion are 

the  ones in which the  ver t ices  of the  geometr ic  figure bl u b~ u ... u b~ belong 

to  an  even  n u m b e r  of b / s  ( two or four).  These  t e rms  are the  ones such t ha t  

G, "G,. . .  G~ --  1. I n  Fig. 1 we give a typ ica l  nonvanish ing  t e r m  and in Fig. 2 

an example  of a van i sh ing  t e r m  (k = 30). 

r -  - I  f -"  
! I I 
I 

I 

r2  

I I i 
1__ _ J  L- .  

Fig. 1. Fig. 2. 

Fig. i. - The dashed line is the boundary of A. 

Fig. 2. - The dashed line is the boundary of A. 

- 7  

I 
I i 

I 

I 

We shall, in the  following, call a geomet r ic  figure bui l t  wi th  k segments  

bl, . . . ,  bk such t h a t  G , ' G , . - .  G ~ - - 1  a k-sided multipolygon on the box  A 

(needless to say t h a t  all the  bl, ..., b~ are  different f rom each other).  Le t  

/)k(A) be  the  n u m b e r  of these  polygons.  

The pa r t i t i on  funct ion  is now easi ly wr i t t en  as [18] 

(4.1~) ZA(fl) = (cosh flJ)2~'-l)2 ~" ~, Pk(A)(tgh flJ)~:. 
k~o  

This formula  is not  so s imple as in the  one-dimensional  case. However  i t  

is surpr is ingly  useful,  us we shall see later.  
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5. - Phase  transitions.  Definitions.  

We have a l ready seen, in the preceding Section, t ha t  the one-dimensional 

Ising model has no phase t ransi t ions in zero field since bo th  fA(fl) and ](fl) are 

analyt ic  in ft. 
We wish to discuss in more detai l  what  is meant  by  a (~ phase t ransi t ion ,~. 

I t  should be said at  the outset  t ha t  there  is no universal ly agreed upon definition 

of such a concept.  In tu i t ive ly ,  f rom everyday  experience,  one would say tha t  
a phase t rans i t ion is a phenomenon of macroscopic instabi l i ty:  slight changes 
of external  conditions should imply dramatic  changes of some macroscopic 
variables;  i t  is hard  to imagine how in such a s i tuat ion thermodynamic  functions 
like the free  energy, etc.,  could be analyt ic  functions of the parameters  in terms 
of which they  are expressed (say, tempera ture ,  chemical potent ia l  or mag- 
net ic  field, etc.). 

For  the above reason an analyt ic  s ingular i ty  in the thermodynamic  func- 
t ions is usually thought  of as a (~ symptom ~ of a phase t ransi t ion and on this 

idea i t  would be possible to base a definition and a theory  of the phenomenon 

of phase t ransi t ions.  

In  this paper ,  however,  we will not  base the invest igat ion of the nature  

of the phase t ransi t ions in the Ising model on the search for the singularities 
of the the rmodynamic  funct ions;  we shall ra ther  adopt  and m~ke more precise 
the other,  perhaps more immedia te  and intui t ive,  approach based on the 
de tec t ion  of (~ macroscopic instabil i t ies ~>. 

This way of proceeding is more convenient  for the simple reason tha t  a 
number  of ve ry  clear and ra ther  deep results have been obtained along these 
lines. Bu t  i t  should be unders tood tha t  this second approach does not  (~ bril- 
l iant ly ~ avoid the problems of the first. I t  is s imply an approach to the 
theory  of phase t ransi t ions which, so far, has asked and provided a less refined 
descript ion of the phenomena  of in teres t  as compared to the description which 
would be expected f rom the analysis of the singul,~rities of appropriate  analyt ic  
functions (an analysis which is still in a ve ry  pr imi t ive  stage and whose prob- 
lems are not  well formula ted  even in the simplest eases) [19]. 

Le t  us now discuss in a more precise way the concept  of macroscopic 
instabi l i ty .  

Consider the  / s ing  model and define tha t  a phase t ransi t ion takes place 
at  the  values (fl, h) of the  the rmodynamic  parameters  if the  system is unstable 

wi th  respect  to boundary  per turba t ions ;  i.e. if there  are at  least two sequences 

~a(~) and 2A(_a ) of boundary  te rms (see (2.1)) such tha t  (say, in the grand 
canonical ensemble) 

(5.1) lin/~ (%, ... a~}A.~  A ¢ l i m  (a~, ... a~}A.~:~ 

for a suitable choice of xl, x~, . . . ,x~.  
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We first clarify why  we say tha t ,  if (5.]) holds, we have a macroscopic 

instabi l i ty .  
We remark  t ha t  a change in the  boundary  conditions does not  change 

extensive proper t ies  of the system such as the free energy. In  fact ,  f rom the 

definit ion {2.4), 

(5.2) z(fl, h, A, Y~.~) 

and therefore  (2.2) implies 

(5.3) 

On the  other  hand,  if (5.1) is t rue ,  in tensive quant i t ies  like the correlation 

funct ions are  sensible to the  boundary  conditions: for instance if 

A--,colim (%, )a . ea  ¢ l i r a  (%,)a .e)  t 

we realize tha t  the  local magnet iza t ion changes as a consequence of a change 
in the boundary  condit ion e v e n  if the  boundary  is ve ry  remote.  

Of course, once provided  wi th  a (~ definit ion ~) of what  a phase t ransi t ion is, 
one has not  gone ve ry  far.  The real  quest ion is whether  the  definition reflects 
what  is physical ly expected;  this implies, in part icular ,  tha t  one should at  
least be able to prove  the existence of a phase t rans i t ion in the  above sense 
in cases in which one expects  a t ransi t ion.  Hopeful ly  the definition and its 
physical  in te rp re ta t ion  should allow one to do more;  for instance to provide the 
tools for a closer descript ion of typical  phenomena (like the phase separation).  

We end here  the  above,  somewhat  philosophical and necessary, discussion 
and, in the  nex t  Sections, we s ta r t  describing in some concrete examples the  
results  t ha t  have been  obta ined  in the  last  decade when the  above point  of 
view was s tar t ing  to be developed,  ra ther  independent ly ,  b y  several people. 

6. - Geometric description of  the spin configurations. 

In  this Section we introduce a new descript ion of the spin configurations 

which we shall use to derive in a ve ry  elegant way the  exact  value of the 
crit ical t empera tu re  of the two-dimensional  Ising model. In  the next  Sections 
the geometr ic  representa t ion,  in t roduced below~ will be widely used for other  

purposes [20]. 
Consider an Ising model wi th  boundary  conditions of the  type  (3.5) ((e)- 

boundary  conditions) or wi th  periodic boundary  conditions (see p. 137). 
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Given a configuration a c ~ ( A )  we draw a uni t  segment  perpendicular  to 

the  cent re  of each bond b hav ing  opposi te  spins a t  i ts  ex t remes  (in three  

dimensions we draw a uni t  square  surface e lement  perpendicular  to b). A two- 

dimensional  example  of this construct ion is p rovided  b y  Fig. 3 ((s)-boundary 

condit ion).  

+ ÷ 4 ÷ + + 4- ~- ÷ 4- 4- 4- 

+ - + + 4- 

+ ÷ ÷ ÷ + + 1 - 1 " I ~  
r / i 

÷ + 4- ÷ 4- + ~ 1 -  - - t 4 -  4- ÷~+ 

÷~ ÷ 4. + . . . .  I+ + 1 -  - - I  
. . . . .  o _ , _  _ , _  

- N - N  . . . .  NN,, 
- ,  . . . . .  M - 1 4 -  + + 1 -  - I  

- - ' - N -  

L . . . . . . .  + + 

Fig. 3. - The dashed line is the boundary of A; the outer spins are the ones fixed 
by the boundary condition. The points A, B arc points where an open line ends. 

The  set  of segments  group into lines (or surfaces) which separa te  regions 

where  the  spins are pos i t ive  f rom regions where  they  are negat ive.  

I t  is clear t h a t  some of the  lines (or surfaces,  if ~ - - 3 )  are <<closed 

polygons >> (<~ closed polyhedra  >>), while others are not  closed. I t  is perhaps  
wor th  s t ress ing t h a t  our polygons are not  real ly  such in a geometr ical  sense 
since t hey  are not  necessar i ly  self-avoiding (see Fig. 3); however  they  are such 
t h a t  t hey  e,'m in tersec t  themselves  only on ver t ices  (and not  on sides). F r o m  

geometr ica l  point  of v iew a fami ly  of disjoint  polygons (in the  above sense 

and  in two dimensions) is the same thing as a mul t ipolygon in the sense discussed 

in Sect. 4 (see Fig. 1). 

I n  two dimensions ins tead  of saying t h a t  a polygon is closed we could 

equ iva len t ly  say t ha t  i ts  ver t ices  belong to e i ther  two or four sides. 

We not ice t h a t  the  ( + ) - b o u n d a r y  condit ions,  the  ( - - ) -boundary  conditions 

and  the  periodic bounda ry  conditions are such t ha t  lines (surfaces) associated 

to the  spin eonfigm'ations are all closed polygons (polyhedra).  I n  the periodic 

ease some polygons migh t  wind around the  two holes of the  torus.  

I n  the  two-dimens ional  ease and  if the  bounda ry  conditions are the  

( + ,  +) -cy l indr ica l  or the  ( + , - - ) - c y l i n d r i c a l  ones (see p. 138) a geometr ic  

cons t ruc t ion  of the  ubove t ype  e~n still be pe r fo rmed  and,  also in this ease, 
the  lines are closed polygons (some of which m a y  <~ wind around >> the cylinder A). 
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For  a fixed boundary  condit ion let  (~1, ~2, ..., ~k, ~1, ..., ~h) be the  disjoint  
components  of the set of lines (surfaces) associated b y  the above construct ion 

to u spin configuration a e ~/(A). yl, ..., 7, are closed lines and 21, ..., 2h are 
not  closed. 

Clearly the  eor respondencebe tween  (~t, ..., ~k, 2~, ..., ~h) and a_ i s , /o r  a fixed 
boundary condition, one-to-one except  for the  case of the periodic boundary  
conditions,  when i t  is one-to-two. Changing the  boundary  condit ion implies 
changing the set of lines (surfaces) which describe the same spin configura- 

t ion  _a. 

A ve ry  impor tan t  p rope r ty  of the  above geometr ic  description is tha t ,  if 

[~[ ([4[) denote  the  length (urea) of the  lines (surfaces) ~ and 2, then  the  energy 

of a spin configuration is, in a zero field, given by  

L ~  

This remark  easily follows f rom the  fact  t ha t  each bond b contr ibut ing - - J  
to  the  energy has equal spins at  its extremes,  while the  bonds contr ibut ing ~-J  
have opposite  spins a t  the i r  extremes and, therefore,  are cut by  a segment of 
un i t  length belonging to some ~, or 2i. 

I f  W A -----number of bonds in A, the  par t i t ion  funct ion becomes (in a 
zero field and wi th  nonperiodic boundary  conditions) 

where the  sums run  over  the set of lines associated with a spin configuration 
q e ~ ( A )  and the  boundary  condit ion under  consideration. 

In  the  case of periodic boundary  conditions there  are no 2's and there  is 
an ext ra  factor  of two (due to the  two-to-one correspondence be tween a_ and 
(rl ,  ..., r -))  : 

'Yt...~'n 

where ~ A  ----- 2L~. 
Fro m  the above considerations we draw two impor t an t  consequences: 

I) I f  the  boundary  condit ion is fixed, the probabi l i ty  of a spin configura- 

t ion a described by  7~, ..., ~, ,  ~ ,  ..., 2h is proport ional  to 

I I )  In  the  ease of ( ÷ )  or (--) boundary  conditions and 2 dimensions 

we notice t ha t  ~ in (6.2) is a sum over (~ multipolygons ~) lying on a shi f ted 
~x,....~n 

la t t ice and in a box A' containing ( L - - l )  ~ spins (see definit ion in Sect. 4, 
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p. 14o) and, therefore,  if ~ ]Y~I = k we have 
f 

(6.5) ZA(~)  : exp [ 2 L ( L -  1)flJ] ~ P k ( A ' )  exp [- -2f lJk] ,  
k~o 

where P , ( A ' )  is the number  of different multipolygons with perimeter k 
(cf. (4.n)). 

I f  we now define fl* through 

(6.6) t gh f l J  = exp [ - -2f l*J] ,  

then  comparison of (6.5) with (4.11) yields 

z A(~) z x(~*) 
(6.7) (cosh/~J)2~<~+~)2~2 : exp [2fl* J Z ( L  --  1)]" 

Here ZA(fl) is computed with  open boundary conditions while ZA,(fl* ) is 
computed wi th  (+) -boundary  conditions. 

I f  we assume tha t  the bulk free energy ] ( f l ) :  l i r a  (1/[A[) logZA( f l )  has one 

and only one singulari ty as a function of t ,  for fl real, then (6.7) can be used 
to locate this singularity. In  fact i t  implies 

(6.s) ](fl) - -  log 2(cosh flJ)~ = - -  2fl* J 4- ](fl*) , 

hence a s ingulari ty in fl can take place only when fl = fl*, i.e. for fl = fl¢,o 
such tha t  

(6.9) tgh fl~.oJ exp [- -2f l¢ .oJ] ,  

which, indeed, has been shown by O~SAGER [3] to be the exact value of the 
critical temperature  defined as the value of fl where/(fl)  is singular [20]. 

In  the next  Section we outline the theory of the phase transit ions in the 
Ising model as a macroscopic instabi l i ty  and a spontaneous breakdown of 
the up-down symmetry .  We shall concentrate,  for geometric reasons, on the 
two-dimensional Ising model, but,  unless explicitly stated, the results hold 
in any  dimension (~/>2. 

7 .  - P h a s e  t r a n s i t i o n s .  E x i s t e n c e .  

In  this Section we shall show tha t  the (+) -boundary  conditions and the 
{--)-boundary conditions (see Sect. 3) produce, if the temperature  is low enough, 
different equilibrium states (see Sect. 3), i.e. for large fl the correlation func- 
tions are different and the difference does not  vanish in the l imit  A-->0 
(cf. (5.1)). 
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More precisely we shall prove tha t ,  if h : 0 and fl is large enough, 

(7.1) l im (a~)A,* = :J: m*(fl) ~ 0 , A --->¢0 

where the  index ± refers  to  the boundary  conditions.  

Clearly (7.1) shows tha t  the magnet iza t ion  is unstable (in zero field and 
a t  low tempera ture)  wi th  respect  to boundary  per turbat ions .  We also remark  

tha t ,  using periodic boundary  conditions, one would obtain still another  result:  

(7.2) l i m  (a~)A,.~loalo--= 0 ,  i f  h : 0 , A-+co 

since (a~)A.~,~od~o ~--0, if h = 0, for s y m m e t r y  reasons. 
Af ter  a descript ion of the ve ry  simple and ins t ruct ive  proof of (7.1) we 

shall go fu r the r  and discuss more deeply  the character  of the  phase t ransi t ion.  
As a l ready remarked,  the spin configurations _a e ~//(A) arc described in 

terms of closed polygons (y~, ?~, ..., y~) if the boundary  condit ion is ( + )  or (--) 

and the probabi l i ty  of a configuration _a described by  ?~, ..., ?~ is propor t ional  

to (see (6.4)) 

]~elow we ident i fy  _a wi th  ( ~ 1 ,  ' ' ' ,  ~2n) (with fixed boundary  conditions). 

Le t  us es t imate  (a~)A.+" Clearly (a~)A.+ = 1- -2PA.+(- - ) ,  where Pa.+(--) is 
the  probabi l i ty  tha t  in the site x the spin is - - 1 .  

2qotice tha t  if the  site x is occupied by  a negat ive spin the x is inside some 
contour  ~ associated to the  spin configuration _a under  considerution. Hence 
if ~(~) is the probabi l i ty  tha t  a given contour  belongs to the set of contours 

describing some configuration a we deduce 

(7.4) Pa.÷(-)<~e(~), 

where ~ox  means tha t  y surrounds x. 
Le t  us now est imate  ~(~): if F :  (~i, ..., ~ )  is u spin configuration and if 

the  symbol / ' c o m p  ~ means tha t  the contour  ~ is disjoint f rom ~ ,  ..., ~, 

(i.e. {~ o / ' }  is a new spin configuration), t hen  

(7 .5)  e (r )  = 

Before cont inuing the  proof  let  us remark  tha t  if a_a= (7, yl ,  y2, ..., ~,) then  
_a' = (~1, y2, ..., ~.) is obta ined from a_ by  reversing the sign of the spins inside ~; 

this can be used for an in tu i t ive  p ic ture  of the  second equat ion in (7.5). 
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Clearly the last ratio in (7.5) does not exceed 1; hence 

(7.6) e(7) < exp [ -  2#Jl~,l]. 

Calling p = [7[ and observing that  there are at most 3 ~ different shapes 
of ~ with perimeter p and at most p2 congruent y's containing (in their interior) 
x, we deduce from (7.4), (7.6) 

co 

(7.7) Pa.+(--) < ~ P  23~ exp [--2flJp].  

Hence if fl--->oo (i.e. the temperature T-+0) this probability can be made 
as small as we like and, therefore, <ax}A, + is as close to 1 as we like provided 
fl is large enough. I t  is of fundamental importance that  the closeness of 
<ax>a.+ to one is both x and A independent. 

A similar argument for the (--)-boundary condition, or the remark that  
< ~ > A , - = -  <%>a.+, allows us to conclude that,  at large fl, <a~>A. - # <%>a.+ 
and the difference between these two quantities is uniform in A. 

Hence we have completed the proof of the fact that  there is a strong 
instability with respect to the boundary conditions of some correlation func- 
tions [21]. 

We can look upon the above phenomenon as a spontaneous break-down of 
the up-down symmetry: the Hamiltonian of the model is symmetric, in a zero 
field, with respect to spin reversal if one neglects the boundary terms; the 
phase transition manifests itself in the fact that  there are equilibrium states 
in which the symmetry is violated only on the boundary and which are not 
symmetric even in the limit when the boundary recedes to infinity. 

8. - Microscopic description of  the pure phases. 

The description of the phase transition presented in Sect. 7 can be made 
much more precise from the physical point of view as well as from the mathe- 
matieal point of view. A deep and physically clear description of the phenom- 
enon is provided by the theorem below, which, also, makes precise some 
ideas familiar from the droplet model [22]. 

Assume that  the boundary condition is the (+)-boundary condition and 
describe a spin configuration a_~ ~(A) by means of the associated closed 
disjoint polygons (71, ..., y.). 

We regard the ensemble ~(A) as equipped with the probability distribution 
attributing to a =  (71, ..-,Y:) a probability proportional to (7.3). 

Then the following theorem holds [23]. 
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Theorem. I f  fl is large enough there exist positive numbers 

~(~,) • exp [-2/TJlr[] 

such tha t  a spin configuration ~ randomly chosen out of the ensemble q/(A) 
will contain,  with a probabil i ty approaching 1 as A - ~  0% a number  K(r)(_a) 
of contours congruent  to ~, such tha t  

( 8 . 1 )  ]Kw>(g)--q(r)lA[[ < C X/-~ exp [--flJlYl], O> o, 

and this relation is to be interpreted as holding simultaneously for all y's. 

(In three dimensions one has IA] ~ instead of V ~ . )  

I t  is clear tha t  the above Theorem means t ha t  there are very  few contours 
(and tha t  the larger they  are the smaller is, in absolute and relative value, 
their  number). The inequal i ty (8.1) also implies tha t  for some C(fl) there 
are no contours with per imeter  ly[> O(fl)loglA I. Hence a typical  spin 
configuration in the grand canonical ensemble with (+) -boundary  conditions 
is such tha t  the large major i ty  of the spins is (~ positive >> and, in this (( sea >> 
of positive spins, there are a few negative spins dis tr ibuted in small and rare 
regions (in a number,  however, still of the order of ]A]). 

Another  nice result  which follows from the results of Sect. 7 and from 
some improvement  [24] of them concerns the behaviour of the equation of state 
near the phase t ransi t ion region at  low (enough) temperatures.  

m'(p) 

- - I  

~(p,h) 

f 

}* 

o0/Idi~) h 

Fig. 4. 

I f  A is finite the graph of ma(fl, h) as a funct ion of h will have a ra ther  dif- 
ferent  behaviour depending on the possible boundary  conditions; e.g., if the 
boundary  condition is (+ )  or (--), one gets respectively the results depicted 
in Fig. 4 and 5. 
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m" (fl) 

--0(1/I~) 

mA(P, h) 

~ )  

Fig. 5, 

With the periodic boundary conditions the state diagram changes as 
in Fig. 6. 

The thermodynamic limit m(fl, h) ~ lim mA(fl, h) exists for all h ¢ 0 and 
A--+co 

the resulting graph is as shown in Fig. 7. 

m*(p) 

--00/{~/~f) 

% (p, h) 

/ 
o(~/~)  h 

Fig. 6. 

m'(p) 

m(,B ,h) 

j J  

0 h 

F i g .  7 .  
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At h = 0 the limit is not well defined and depends on the boundary condi- 
tion (as it must). I t  can be proven that  lim~ (Sm(fl, h)/~h)= •(fl) is a finite 

number (i.e. the angle between the vertical part of the graph and the rest is 
sharp [24]). 

The above considerations and results also furnish a clear idea of what a 
phase transition for a finite system means. 

I t  is often stated that  a finite system (~ does not ~) show (( sharp ~) phase 
transitions; however this statement is always made when considering one 
fixed boundary condition, usually of periodic or perfect-wall type. By taking 
into account the importance of the boundary terms we see what are the phe- 
nomena that  occur in a finite system if the corresponding infinite system has 
a sharp phase transition. 

The next Section is devoted to the discussion of a number of problems 
concerning the generality of the definition of a phase transition as an instability 
with respect to the boundary perturbations and other related problems. Notice 
that  an unpleasant limitation on the results discussed in this Section is the 
condition of low temperature ((( fl large enough ))). 

9. - Results on phase transitions in a wider range of  temperature. 

The results of the preceding Sections show that,  at a low enough temperature, 
the Ising model is unstable with respect to changes in the boundary conditions. 
A natural question is whether one can go beyond the low-temperature region 
and fully describe the phenomena in the region where the instability takes 
place. In the particular case of 2 dimensions it would also be natural to ask 
whether the maximum value of fl to which an instability is associated is the one 
given by eq. (6.9) which corresponds to the value of fl where the infinite- 
volume free energy ](fl) has a singularity. 

The above types of questions are very difficult and are essentially related 
to the, already mentioned, theory of the phase transitions based on the search 
and study of analytic singularities of the thermodynamic functions (which is 
a theory, however, that  has still to be really developed). 

Nevertheless a number of interesting partial results are known which con- 
siderably improve the picture of the phenomenon of the phase transitions as 
we can see from the preceding Sections. A list of these results follows: 

1) I t  can be shown that  the zeros of the polynomial in z----exp [flh] 
given by the product of z IAt times the partition function (2.4) with periodic 
or perfect-wM1 boundary conditions lie on the unit  circle: [z 1 ----1. I t  is easy 
to deduce, with the aid of Vitali's convergence theorem for equibounded 
analytic functions, that  this implies that  the only singularities of ](fl, h ) in  
the region 0 < f l < c %  - - c ~ < h < + c o  can be found at h = 0 .  
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A s ingular i ty  appears  if and only if the po in t  z =  1 s an accumulat ion 

po in t  of the  l imi t ing  (as A -> co) d is t r ibut ion  of the  zeros on the  uni t  circle. 

I n  fact  if  the  zeros in quest ion are z~, ...,z~lAf 

1 21AI 
1 logziAiZ(fl, h, A, periodic) = 2fiJ+ ~[  ~ log (z--z~) (9.11 IA-[ 

iffi 1 

and  if IA( - I .  (number  of zeros of the  fo rm z~ = exp [iOj] with  0 K0~ K0 + d0) 

A - ~  ¢~(0)(d0/2~) in a sui table  sense, we get ,  f rom (9.1), 

(9.2) 

--g 

- - e x p  [iO])e~(O)dO + 2 f iJ--f lh , 

where the  last  t e r m  comes f rom the Izl IAI inser ted  in (9.1). 

The exis tence  of the  measure  Q~(0)(d0/27~) such t h a t  (9.2) is t rue  follows, 

a f t e r  some thought ,  f rom the exis tence of the t he rmodynamic  l imit  l i r a  ]A(fl, h) = 
=/(fl, h)[25]. 

2) I t  can be shown t h a t  the zeros of the  pa r t i t ion  funct ion do not  move 

too much  under  sm~dl pe r tu rba t i ons  of the  spin-spin po ten t ia l  even if one 

allows (( m a n y  spin ~ interact ions ,  i.e. even if one per tu rbs  the Hami l ton ian  (2.1) 

wi th  perfect -wal l  bounda ry  conditions into 

(9.3) 

H~l(O') = J~A(~)  + (~BA)(O ' )  , 

1 

k ~  l xl . . . . .  x~eA 
" ' " '  X k ) ( Tx l  " ' "  ( ~ k  ' 

where J'(X) is a func t ion  of the  set  X = (Xl, ..., x~) such t ha t  

(9.4) rIJ'rl = sue E IJ'(X)J 
Y~Zv X~y 

is small  enough. 

more  precisely,  if one knows tha t ,  when J ' =  0, the zeros in z = exp [flh] 
of the  pa r t i t ion  funct ion lie in a cer ta in  closed set  N of the z-plane then,  if 

J ' e e 0 ,  t hey  lie in a set  N 1 conta ined  ill a ne ighbourhood of N which can be 

made  as small  as we please when lIJ'j[-~0. 

This resul t  allows us to make  a connect ion be tween  the ana ly t ic i ty  prop- 

ert ies  and the  bounda ry  condit ion ins tab i l i ty  as described below in point  3) [26]. 

3) There  can be a bounda ry  condit ion ins tab i l i ty  only in zero field and,  

in this ease, if and  only if the spec t rum Qp(O) has no gap around 0 - - 0 .  

The proof  of this resul t  relies upon 2) and  the r e m a r k  tha t  the correlat ion 
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functions are the functional  derivatives witi~ respect to J ' (x l ,  ..., xk) of the 
free energ 7 defined by the Hamil tonian (9.3) [26]. 

4) Another  question is whether  the boundary  condition instabil i ty is always 
revealed by  the one-spin correlation funct ion (as in Sect. 7) or whether  i t  might  
be shown only by some correlation functions of higher order. This question 
is answered by  the following result. 

There can be a boundary  condition instabi l i ty  (at h =-0 and fl fixed) if 
and only if 

(9.5) l i m  m(fl, h) :/= ~o-lim m(fl, h) . 

Notice tha t ,  in view of what  was said above (point 3)), m(fl, h) = l i ra  mA(fl, h) 
is boundary  condition independent  as long as h ¢ 0. 

In  other words there is a boundary  condition instabi l i ty  if and only if there 
is spontaneous magnetization.  This rules out the possibility tha t  the phase 
t ransi t ion could manifest  itself through an ins tabi l i ty  of some high-order cor- 
relation function which, practically, might be unobservable from an experi- 
menta l  point  of view [27]. 

5) Point  4) implies tha t  a natura l  definition of the critical temperature  To 
is the least upper bound of the T's such tha t  (9.5) is t rue (T = fl-~). I t  is 
clear that ,  a t  this temperature ,  the gap around 0 = 0 closes and the rune- 
t ion ](fl, h) has a s ingular i ty at  h = 0  for f l > f i ~ = T ~ ;  i t  can in fact  be 
proven tha t  if (9.5) is t rue  for a given flo then  i t  is t rue for all fl > flo [28]. 

6) The location oi the singularities of ](fl, 0) as a funct ion of fl remMns 
on open question, see however FISheR [28]. In part icular  the question of 
whether  there is a s ingular i ty of ](fl, 0) at  /3 is open. This implies tha t ,  a t  
least in principle, i t  is still unproven tha t  the singulari ty of the Onsager 
solution of the two-dimensionM Ising model takes place at  the critical point  
as defined in 5). I t  is, however, clear from the above considerations and from 
the fact,  proven by  YANG (cited in ref. [6]), t ha t  for f l>  flo.0 (9.5) cer tainly 
holds, tha t  flo.o>flo (see (6.9)). 

7) Final ly  another  interest ing question can be raised. For  /3 </3° we 
have instabi l i ty  with respect to the boundary  conditions (see 6) above): How 
strong is this instabil i ty? In  other words, how many  (( pure ~) phases can exist? 

Our intui t ion,  in the case of the Ising model suggests tha t  there should be 
only two different phases: the positively and the negatively magnetized ones. 

To answer the  above question in a rigorous way i t  is necessary to agree 
on what  a pure phase is [29]. We shall call an equilibrium state  a (~ pure 
phase ~) if i t  is translationMly invar iant  and if its correlation functions have 
a cluster proper ty  of the form 

(9.6) <ax~ "'" (%~ av,+a "'" a~+~} ~ <(%, "'" a~,} <(~, "'" a~} , 
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where the convergence is understood in ~ very weak sense, i.e. the weakest 
sense which still permits one to deduce that  the fluctuations of extensive 
quantities are o(]A])[28], i.e. 

1 ~ <o'~ . . .  o'~, o'v, + . . . .  o'y.+a} ~ <o'~, . . .  O'x.))<o';, ... o'..> , (9.7) [AI ~A A-~¢~ 

i.e. the convergence in (9.6) takes place in the Cesaro-limit sense. 
I t  can be proved that, in the case of the Ising model, the two states obtained 

as limits for A-~c~ of finite-volume states (cf. Sect. 3) corresponding to (+)- 
or (--)-boundary conditions are different for fl > fl~ and are pure phases in the 
sense of (9.7) above [30]. 

Actually it can be proved that, in this case, the limits (9.6) exist in the 
ordinary sense [30] rather than in the Cesaro sense, and that, at low tempera- 
ture, they are approached exponentially fast [31]. 

Furthermore, if fl is large enough (in 2 dimensions 10 ~o larger than fl~), 
these two pure phases exhaust the set of pure phases. For fi close to fl~, however, 
the question is still open [32]. 

Having discussed the rigorous results about the structure of the phase 
transition and the nature of the pure phases, we shall turn, in the next Section, 
to the phenomenon of coexistence of two pm'e phases. 

1 0 . -  S e p a r a t i o n  a n d  c o e x i s t e n c e  o f  p u r e  p h a s e s .  P h e n o m e n o l o g i c a l  c o n s i d -  

e r a t i o n s .  

Our intuition about the phenomena connected with the classical phase transi- 
tions is usually based on the properties of the liquid-gas phase transition; this 
transition is experimentally investigated in situations in which the total number 
of particles is fixed (canonical ensemble) and in the presence of an external 
field (gravity). 

The importance of these experimental conditions is obvious; the external 
field produces a nontransh~tiona.lly invariant situation and the separation of 
the two phases. The fact that  the total number of particles is fixed deter- 
mines, on the other hand, the fraction of volnme occupied by the two phases. 
For a discussion of the phenomenon of phase separation in the absence of an 
external field see the brief discussion in Sect. 14. 

In the frame of the Ising model it  will be convenient to discuss the phe- 
nomenon of the phase coexistence in the analogue of the canonical ensemble 
q/(A, m) introduced ~nd discussed in Sect. 2 where the total magnetization 
M = mlA I is held fixed. 

To put ourselves in the phase transition region we shall take fl l~rge enough 
and 

(lo.1) m = ~m*(fl) + ( 1 -  ~ ) ( -  m*(~)) = ( 1 - 2 ~ ) m * ( f l ) ,  
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i.e. we put ourselves in the vertical (~ plateau ~) of the diagram (m, h)z (see 
Fig. 7). 

Having fixed m as in (10.1) does not yet  determine the phenomenon of the 
separation of the phases in two different regions; to obtain this effect i t  will 
be necessary to introduce some external cause favouring the occupation of a 
part  of the volume by a single phase. Such an asymmetry can be obtained 
in at least two ways: through a weak uniform external field (in complete analogy 
with the gravitational field of the liquid-vapour transition) or through an asym- 
metric field acting only on the boundary spins. This second way should have 
the same qualitative effect as the first, since, in a phase transition region, a 
boundary perturbation produces volume effects (this last phenomenon, which 
has been investigated in the previous Sections, is often referred to as the 
(( long-range order ~) of the correlations). 

From the mathematical point of view it is simpler to use a boundary asym- 
metry to produce the phase separation since it corresponds to a break-down 
of the up-down symmetry due only to the boundary spins (whose number 
is relatively small). 

To obtain a further, but not really essential, simplification of the problem 
consider the two-dimensionM ]sing model with (+,--)-cylindrical  or ( + ,  +)- 
cylindrical boundary conditions. 

The spins adjacent to the bases of A act as symmetry-breaking external 
fields. 

The ( + ,  +)-cylindricM boundary condition should, clearly, favour the for- 
mation inside A of the positively magnetized phase; therefore it  will be natural 
to consider, in the canonical ensemble, this boundary condition only in the 
ease that  the total magnetization is fixed to be + m*(fl) (see Fig. 7). 

On the other hand the boundary condition ( + ,  --) favours the separation 
of phases (positively magnetized phase near the top of A and negatively mag- 
netized phase near the bottom). 

Therefore it  will be natural to consider this boundary condition in the case 
of u canonical ensemble with magnetization m ~--(1--2~)m*(fl) (cf. (10.1)). 

In this last case one expects, us already mentioned, the positive phase 
to adhere to the top of A, to extend, in some sense to be discovered, up to a 
distance oc ~ from it, and then to change into the negatively magnetized pure 

phase. 
To make precise the above phenomenologicM description we shall describe 

the spin configurations a_e ~(A, m) through the associated sets of disjoint 

polygons (ef. Sect. 6). 
Fix the boundary conditions to be the (+ ,  +)- or (+,--)-cylindrical  

boundary condition and observe that  the polygons associated to a spin con- 
figuration ~ e ~(A,  m) are all closed and of two types: the ones of the first type, 
denoted by ~1, ..., ~,, are polygons which do not encircle A, the second type 
of polygons, denoted by the symbol ~ ,  are the ones which wind up around A. 
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So a spin configuration g will be described by a set of polygons (X~, ..., X-, 
h~, ..., hh). I t  is, perhaps, useful to remark once more that  the same configura- 
tion a_ will be described by different sets of polygons according to which 
boundary condition is used. However, for a fixed boundary condition, the cor- 
respondence between spin configuration and sets of disjoint closed contours 
is one-to-one and the statistical weight of a configuration ~ =  (yl, ..., X-, 
~ ,  ... ,  h,,)is (el. (6A)) 

I t  should also be remarked that  the above notation is not coherent with 
the notation of Sect. 6, where the symbol 2 is used for open polygons (absent 
here); we hope that  this will not cause any confusion. The reason we call 
the contours that  go around the cylinder A is that  they look like open contours 
if one forgets that  the opposite vertical sides of A have to be identified. 

I t  is very important to remark that if we consider the (+, - - ) -boundary 
conditions then the number of polygons of h-type must be odd, while, if we 
consider the ( + ,  +)-boundary condition, then the number of h-type poly- 
gons must be even. 

11. - Separation and coexistence of phases. Results. 

Bearing in mind the geometric description of the spin configuration in 
the canonical ensembles considered with the ( + ,  +)-cylindrical or the ( + ,  --)- 
cylindrical boundary conditions (which we shall denote briefly as q/++(A, m), 
~+-(A, m)) we can formulate the following Theorem [33]: 

Theorem. For 0 < ~ <  1 fixed, then, if fl is large enough, a spin config- 
uration ~ =- (y1,-..,7,, 21..., 2~1,+1) randomly chosen out of ~+-(A, m) (where 
m=(1--2o~)m*(fl)) enjoys the properties 1)-4) below with a probability 
(in ~]I+-(A, m)) approaching 1 as A-~oo: 

1) g contains only one contour of h-type and 

(11.1) Ilhl-(1 + 

where s(fl)> 0 is a suitable (c~-independent) function of fl tending to zero 
exponentially fast as fl-->oo. 

2) If Az, Aj denote the regions above and below 2 we have 

(11.2) IIAII--.IAII < ,( )IAI 
(11.3) [[Aal- (1 --zt)[Al[ < ~(fl)[A]~ , 

where e(fl)->0 exponentially fast as fl-+oo. 
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3) I f  M a =  ~ a ~ ,  we have 
x~Ajl 

(11.4) IMp-- ~*(/?)IAll < ~(~)[Ale 

and a similar inequMity  holds for M~ = Z ( ~  = mlA I --M~. 
~1 '~  

4) I f  Kc~)(g ) denotes  the number  of contours congruent  to a given y and 
lying in A~, then ,  s imultaneously for all the  shapes of y, 

(11.5) IK~w,(g)- 0(Y)~]AIt < C exp [--flJ]r]] ~ / [ ~ ,  C > 0,  

where @(y)<exp [- -2f lJ lyl ]  is the same as the  one in the t e x t  of the  theorem 
of Sect. 8. A similar resul t  holds for the contours  below A (cf. the  com- 
ments  on (8.1)). 

I t  is clear t ha t  the above theorem not  only provides a detailed and ra ther  
sat isfactory description of the phenomenon of phase separation, bu t  also fur- 
nishes a precise microscopic definition of the line of separat ion between the 
two phases which should be identified wi th  A. 

A v e ry  similar resul t  holds in the ensemble ~++(A, m*(fl)) ; in this case 1) 

is replaced by  

1') no A-type polygon is present ,  

2) and 3) become superflons and 4) is modified in the obvious way. In  o ther  
words a typica l  configuration in the  canonical ensemble °][++(A, m*(fl)) has the  
same appearance as a typical  configuration of the grand canonical ensemble 
~(A) wi th  (+ ) -bounda ry  condit ion (which is described by  the Theorem of 
Sect. 8). 

We conclude this Section with a remark  about  the condition tha t  0 < a < 1 
has to be fixed beforehand in the  above Theorem. Actual ly  the  results of the 
Theorem hold at  fixed fl for all the  c~'s such t h a t  e(fl)< min (~, (1 - -cd) ,  i.e. 
for all the  £ s  such tha t  the line ~ cannot  touch the bases of A (in which case 

there  would be addi t ional  physical  phenomena) .  

12. - Surface tension in two dimensions. Alternative descriptions of  the sep- 
aration phenomena. 

A remarkable  applicat ion of the above theorem is the  possibility of giving 
a microscopic definition of surface tension between the two pure  phases [34]. 

We have seen tha t  the par t i t ion  functions 

(12.1) 
a~++(A,m*(fl)) ~F 
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and (if m - -  (1--2~)m*(fl) ,  O<  ~ <  1) 

g~Zl+-(A,m) f 

will essential ly differ, at  low enough tempera ture ,  only because of the line )~ 
(present in ~+-(A,  m) and absent  in ~++(A, m*(fl)), see the preceding Section). 

A natura l  definition (in two dimensions) of surface tension between the 
phases,  based on obvious physical  considerations, can therefore be given in 
terms of the different  asympto t ic  behaviours of Z++(A, fl) and Z+-(A, m): 

02.3) r(fi) ---- l im 1 Z+-(m, A) ~ - ~  ~ log z++(m,@, A)" 

The above l imit  (which should be a- independent  for  e(fl) < rain (e, (1 - -  e)) 
(of. the  concluding remarks  of the preceding Section)) can be exact ly com- 
pu ted  at  low enough t empera tu re  and furnishes 

(12.4) r(fl) = - -  2 f l J - -  log tgh f lJ , 

which is the v,~lue computed  by  O~SAGER [3] using a different definition not  

based on the above detai led microscopic description of the separation of the 
phases and of the line of separation [35]. 

We conclude this Section with a br ief  discussion on one part icular  bu t  ve ry  
convenient  a l ternat ive way of invest igat ing the phenomenon of the coexistence 

of two phases. Another ,  still different,  ~ a y  of invest igat ing the phenomenon 
will be discussed in Sect. 14. 

Consider the grand c:monieal ensemble, bu t  impose as boundary  conditions 
the following: the spins adjacent  to the upper  half of the boundary  of A are 
fixed to be + 1 ,  while the ones adjacent  to the  lower half are - -1 .  This is 
a _s-type bound-wry condit ion (see Sect. 3). 

I t  is clear t ha t  a configuration a c ~(A) is described, under  the above 
boundary  condition, by  one open polygon (surface in 3 dimensions) going from 
one side of A to the opposite side and by  ~ set of disjoint closed polygons 
(polyhedra) 71, ..., Y~. 

Clearly 2 plays now the  role of the polygons encircling A in the ease of 

cylindrical boundary  conditions (and 2 dimensions) and i t  is also clear tha t  

a theorem very  similar to the ones alrc~dy discussed holds in this case. The  
above point  of view is more re levant  in the three-dimensional  case where a 
~ cylindrical ~> boundary  condit ion would have a less clear physical meaning. 

In  the t ln 'ee-dimensional case 2 is a ~ sm'face ~ with a boundary  formed 

by  the  square on ~A, where the ~ break ~> between the spins fixed to be + 1  
and the  ones fixed to be - -1  is located. 

In  the nex t  Section we invest igate  in more detai l  the  s t ructure  of the line 
or surface of separat ion between the phases. 
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13. - The structure of  the line of  separation. W h a t  a straight l ine really is. 

The Theorem of Sect. 11 tells us tha t ,  if fl is large enough, then  the line A 
is almost s traight  (since s(fl) is small). I t  is a natura l  question to ask whether  
the line 2 is s traight  in the following more precise sense: suppose tha t  2, 
thought  of as being a polygon belonging to a _~ ~ ~/+-(A, m) (el. Sect. 11), passes 
through a point  q~A;  then  we shall say tha t  2 is s t raight  or rigid if the prob- 
abi l i ty  ~A tha t  ~ passes also through the site q', opposite to q on the cylinder A, 
does not t end  to zero as A --> c~, otherwise we shall say tha t  ~ is not rigid or 
fluctuates. Of course the above probabilities are to be computed in the en- 
semble ~+-(A, m). 

I t  is rather  clear what  the above notion of r igidity means: the ~( excess ~> 
length s(fl)Z can be obtained in two ways: either the line 2 is essentially 
straight (in the geometric sense) wi th  a few (~ bumps ~ distr ibuted with a density 
of order e(fl) or, otherwise, the line ~ is bent  and, therefore, i t  is only locally 
straight  and par t  of the excess length is gained through the bending. 

In  three dimensions a similar phenomenon is possible. As remarked at  
the end of the last Section, in this case ~ becomes a surface wi th  square boundary  
fixed at  a certain height (i.e. zero), and we ask whether  the centre of the square 
belongs to ~ with a nonvanishing probabil i ty in the l imit  A-> c~. 

The rigidity or not  of 2 can, in principle, be invest igated by optical means; 
one can have interference of coherent light scattered by  regions of 2 separated 
by a macroscopic distance only if 2 is rigid in the above sense. 

I t  has been rigorously proven tha t ,  a t  least a t  low temperature ,  the line of 
separation ~ is not rigid in 2 dimensions (and the fluctuation of the height  
of the middle point  is of the order 0(V/Z)). On the  contrary,  in 3 dimensions 
i t  has been shown tha t  the surface ~ is rigid at  low temperature .  

An interest ing question remains open in the three-dimensional ease and is 
the following: i t  is conceivable tha t  the surface, al though rigid at  low tem- 
perature,  might  become loose at  a temperature  Tc smaller than  the critical 
temperature  Tc (defined as the largest temperature  below which there are at  
least two pure phases). 

I t  would be interest ing to examine the available experimental  data  on the 
s tructure of the surface of separation to set limits on T~--T¢ in the case of 
the liquid-gas phase t ransi t ion where such a phenomenon can conceivably 
occur even though a theory  of i t  is far from being in sight, at  least if one 
requires a degree of rigour comparable to tha t  displayed in the t rea tment  of 
the results so far given for the Ising model. 

We conclude by remarking tha t  the r igidi ty of 2 is connected with the 
existence of translat ionally noninvar iant  equilibrium states (see Sect. 3). 

I t  seems almost certain tha t ,  in 2 dimensions, because of the discussed 
nonrigidity of ~ there are no translat ionally noninvariant  states [36]. 



I N S T A B I L I T I E S  AND P H A S E  T R A N S I T I O N S  IN THE I S I N G  MODEL.  A R E V I E W  159 

Notice tha t  the existence of translat ionally noninvar iant  equilibrium states 
is not  necessary for the  descript ion of the coexistence phenomena.  The theory  
of the 2-dimensional Ising model developed in the preceding Sections is a clear 
proof of such a s t a tement  [36]. 

14. - Phase separation phenomena and boundary conditions. Further results. 

I) the  walls (( 

2) the walls ~( 

3) the wall is 
the  liquid. 

The phenomenon of phase separat ion described in Sect. 10 and l l  is the ferro- 
magnet ic  analog~m to the  phase separat ion be tween a liquid and its vapour  in 

the  presence of the  gravi ta t ional  field. 
I t  is re levant  to ask to what  ex ten t  an external  field (or some equivalent  

boundary  condition) is really necessary;  for instance one can imagine a si tuation 
in which two phases coexist  in the absence of any external  field. 

Le t  us discuss first some phenomenological  aspects of the liquid-gas phase 

separat ion in the absence of outer  fields. One imagines that ,  if the  densi ty  is 

fixed and corresponds to some value on the (( plateau ~ of the phase diagram, then  
the space will be filled by  vapour  and drops of liquid in equilibrium. Observe 
tha t  the drops will move and, f rom t ime to t ime, collide; since the surface 

tension is negat ive the drops will t end  to cluster together  and, eventually,  
in an equil ibrium si tuat ion there  will be just  one big drop. The location of 
the  drop in the  box A will depend on how the walls are made and how they  
in te rac t  with the particles within A. 

Le t  us consider some ext reme eases: 

repel~) the drops, 

a t t r ac t  ~ the drops, 

perfec t  and does not  distinguish between the vapour  and 

In  the  first case the  drops will s tay  away f rom the boundary  8A of A. 
In  the  second ease the  drop will spread on the walls, which will be wet as much 
as possible. In  the  th i rd  case i t  will not  ma t t e r  where the drop is; the drop 
will be located in a posi t ion tha t  minimizes the ((free)~ par t  of its boundary  

(g.e. the  pa r t  of the  boundary  of the  drop not  on 8A). This means tha t  the 
the  drop will p re fe r  to s tay  near  a corner  ra ther  than  wet t ing  all the  wall. 

Le t  us t rans la te  the above pic ture  into Ising-model language. Assume fl 

is large and m ---- (1--2~)m*(fl)  (see Fig. 7) (i.e. assume tha t  the magnet izat ion 

is on the  ver t ica l  p la teau of the (m, h)f diagram (see Fig. 7)). 

Then  conditions 1), 2), 3) can be realized as: 

1) The spins ad jacent  to the boundary  are all fixed to be +1 .  This 
favours the  adherence to the  boundary  of the posi t ively  magnetized phase. 
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2) The spins adjacent to the boundary are all fixed to be --1. This 
favours the adherence to the boundary of the negatively magnetized phase. 

3) Then are no spins adjacent to the boundary, i.e. we consider per]ect- 
wall boundary conditions. 

The rigorous results available in the ease of the Ising model eonfu'm the 
phenomenologicM analysis based on the liquid-vapour coexistence [23]: 

Theorem. Fix 0 ~ 1  and consider (+)-boundary conditions. Then 
spin configuration g randomly extracted from the canonical ensemble with 
magnetization m = (1--2zt)m*(fl) has, if fl is large enough, properties 1)-3) 
below with a probability tending to 1 as A--> c~. 

1) There is only one ~ such that  l y [ :>  (1/333) log[At and it has the 
property 

(x4.1) [Irl - 4 ~ / ( 1 -  o~)tAll< ~(~) I v ~  

with 6(fl)-->0 as fl--> c~ (exponentially fast); 

2) the area enclosed by y is 0(y): 

(1~t.2) ] o ( r ) -  (~ - ~)IA]I < ~(b')lAt "~ ; 

3) the magnetization M(O(y)) inside y is on the average equM to --m*(fl) 
and, more precisely, 

(14.3) [M(0(7,))  -[- m*(/~)(1 - -  ~)IAI[ < ~(~)IAI e , 

and therefore the average magnetization outside y is ÷ m*(fl). 

This Theorem holds also in 3 dimensions but the exponents of IAI on the 
r.h.s, of (14.1)-(14.3) change. 

The above Theorem shows that  a typieM configuration consists of a posi- 
tively magnetized pure phase adherent to the boundary and of a ~(drop )~ of 
negatively magnetized phase not adhering to the boundary (since y is closed). 

The size of the drop is ~ / ( 1 - - ~ ) I A  ] (as it should be). 
Notice that  the drop is Mmost square in shape (as follows from (14.1), 

(14.2)); this should not be astonishing since the space is discrete and the 
isoperimetrie problem on a square lattice has the square as a solution (rather 
than a circle). 

The opposite situation is realized if one fixes a (--)-boundary condition; 

a square drop forms in the middle of the box with side ~V~IA I and average 
magnetization -k m*(fl). 

Finally, if the boundary condition is of the perfect-wM1 type (2t(a_)~0), 
then the above Theorem does not hold and one can except to prove (say, in 
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2 dimensions) that  a typical spin configuration has just one open contour 
(with ends on ~A) which separates the space in two parts which are occupied 
by the opposite phases; the line ~ should be the shortest possible compatible 
with the condition that  the volume A is divided by it into two regions of volume 
~IAI and (1--~)IA[ (respectively occupied by the positively magnetized phase 
and by the negatively magnetized phase). The results just described for the 
case ~A(g)~0  have never been proven though there is evidence of their 
t ruth  [32]. 

If  one interprets the spins equal to +1 as particles and the spins equal 
t o - - 1  as empty sites, then one has a lattice gas model which undergoes a 
liquid-vapour phase transition which presents the phenomenological aspects 
outlined at the beginning of this Section for these transitions. 

To conclude we remark that,  in the phase separation phenomenon, the 
finiteness of the box only plays the role of fixing the density and keeping the 
vapour tension. The detailed structure of the phenomenon depends on the 
boundary conditions which, in experimental situations, turn out to be some- 
thing intermediate between the three extreme cases discussed above. 

Notice that  (14.1) does not provide a satisfactor ymeasure of 141 since the 
allowed error is still of the order of ~ ;  it is an open problemto obtain a bet- 
ter estimate of t~l of the type (11.1). I t  is also an open problem to find an 
expression for the surface tension of the square drop (which is expected to be 
the same as (12.3) in two dimensions); see the Introduction to [34]. A third 
problem is the investigation of the dependence of the correlation functions on 
the distance from the surface of the drop. 

The analogues of the first two questions just raised have been satisfactorily 
answered rigorously in the 2-dimensional Ising model with cylindrical boundary 
conditions (see Sect. 11 and 12), i.e. in the case of an ((infinite ~ drop with a 
fiat surface. 

The third problem has been only approximately studied even in the case 
of a flat drop [37]. 

15. - Conclusions and open problems.  

In the preceding Sections we have dealt with the case of a nearest-neighbour 
Ising model. I t  has become customary, in the literature, to call with the name 
Ising model more general models in which the (~ bulk ~) Hamiltonian has the 
form 

(~5.~) h ~ a~, + ~ J2(x,, x~)(~ (7~j + ~ Ja(x~, x~, x~)c6.jT~j~ + ..., 
xt i<i  i <J <k 

where the potentials Jn(xl, ...,xn) are translationally invariant functions of 
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(x~, ..., x~) and satisfy certain decrease conditions of the type 

(15.2) 

x)] < + 

IJ3(O, x, y)l < + 

etc. 
If only pair potentials are present, i.e. if the bulk Humiltonian is of the 

form 

(15.3) h ~ (~, + ~ J(x~--xj)~(~, 
i<i  

and if J(r)<0, then most of the results described in this paper and appro- 
priately reformulated have either already been proved, or are being proved 
or are very reasonable conjectures [38]. 

Many results shall stay true for more general pair potentials and for other 
models (like continuous gases) at  least from the qualitative point of view; 
in fact it  is reasonable that  the selected rigorous results should have, at least 
qualitatively, an analogue in the (( general )) case of a classical (as opposed to 
quantum) phase transition. 

Results such as analytieity and absence of phase transitions at high tem- 
perature are a peculiarity of the lattice models and have been, therefore, left 
out [39]. We have made some exceptions to the above rule of selection of 
results by quoting some of the exact results from Onsager's solution of the 
2-dimensional Ising model. 

Below we list u number of rather randomly chosen interesting and open 
problems suggested by the topics of this article: 

1) I t  would be interesting to fill the gap between T~ and the maximum 
value of T (~--10 ~o of T, in 2 dimensions) for which one can prove that  there 
are only two pure phases. This is related to other problems such as the conjec- 
tured identity, in 2 dimensions, of fl~ and fl,.o (see (6.9) and point 4) in 

Sect. 9). 

2) The solution of the 2-dimensional Ising model is bused on the so- 
culled (( transfer matrix )). The investigation of the transfer matrix has been 
pursued in some detail in the case of periodic or open boundary conditions 
in two or three dimensions [40], see also [3, 41]. 

I t  would be of interest to study the transfer matrix with nonsymmetrie 
boundary conditions. In particular it  would be of interest to study the transfer 
matrix between two rows (or planes) where the line (or surface) of separation 
should puss (if strMght). A quMitutive difference should arise between two 
and three dimensions (see, for more details, the Appendix). 
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3) In  Fig. 7 we see tha t  the isotherm m(fl, h) as a funct ion of h~>0 

ab rup t ly  ends at  h : 0. I t  is still an open quest ion whether  h : 0 is an analyt ic  
s ingular i ty  of m(fl, h) or whether  m(fl, h) can be analyt ical ly continued to h <  0. 

There  is strong evidence for the existence of a singulari ty [42]. 

4) In  the case the answer to 3) is in agreement  wi th  the conjecture,  how 

one can explain the metas tab i l i ty  phenomena [43]? 

5) I t  would be of in teres t  to find generalizations of the  phase coexistence 
theory  to o ther  lat t ice models for whieh phase transi t ions are proven to take 

place [44]. 

6) The existence of phase transi t ions has recent ly  been proved,  for 
the first t ime,  for a continuous system. I t  would be of in teres t  to analyse the 

phenomenon of the phase coexistence in this case [45]. 

7) If ,  for a system, a phase t rans i t ion is known to take place, when can 

one answer the quest ion of how many  pure phases exist? 

8) A detai led descript ion of the correlat ion functions near  the line or sur- 
face of separat ion between two phases has still to be presented (see [36, 37]). 

9) I t  would be of in teres t  to invest igate  the microscopic definition of 

surface tension in the par t icular  c~lse of the 3-dimensional Ising model (which, 

so far, has not  been studied).  

10) I t  would be of in teres t  to prove tha t ,  in 3 dimensions, the surface 

tension v(fl) is such tha t  z(fl) _L 2flJ is analyt ic  in exp [--f lJ] .  

11) I t  would be of in teres t  to  invest igate  the phase transi t ions in models 

not  showing the up-down s y m m e t r y  like the ones obta ined by  choosing in (15.1) 
Js ¢ 0 [46]. 

12) Three  more open problems are listed at  the end of Sect. 14. 

A P P E N D I X  

Transfer matrix in the Ising model. 

Consider the  one-dimensional Ising model with periodic boundary con- 
ditions. The par t i t ion function can be wri t ten  as (if aL+ l -  a~) 

(A.I) 
L 

z(A, ~, h) = Z r I  (e~p [~J~,~÷,+ ~h~]) = 
ai.. ,0. L i = l  

= ~ exp hai exp [/3Ja~at+l]exp ha~+l = 
0.1, , . 0.L 

~. Vo~, V0.~0.,... V ~  = Tr V ~ 
°'1 • • • 0.L 
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where V is a two-by-two mat r ix  such tha t  

(A.2) 
V,,,,= exp [~ h(r + flJ(rcr'-]- ~ h(r'] , 

V = (exp ~t ,  + / 3 J ]  exp [--/~g] 
\ exp [--/~J] exp [-- ~h-- ~J]]" 

o',(I' = ± 1 ,  

I f  ~+ and 4_ (4+ > 4_) are the  two eigenvalues of V, we find 

(A.3) 

(A.4) 

Z(A, fi, h)= 4~ + 4~_ , 

flJ(fl, h) = l i m  1 z - ~  L log Z = log 4+. 

I t  is easy to cheek tha t  4+(fi, h) is analyt ic  in fi and h for 0 </~ < + co 
a n d -  co < h <  + co, i.e. there are no phase transit ions (as singularities of 

/(fl, h)). 
A similar method c~n be applied to the two-dimensional Ising model (A is 

now ~n M×2V box). Suppose, for simplicity, h =  0: 

(A.5) 

= ~ "'" Z. ~ ~=: t'=: exp ac~o'i/+: + 15J~/a,+l/+ a,+l/ a,+:. ;+l 

where in the second line we denote by  g, = (0"il ~ . . . ,  O~isr) all the spins on the 
i - th  row of A; the boundary  conditions impose _~: ~-g~+~ and a ~ : -  a~+x. 

Clearly, if we define the 2~× 2 z' mat r ix  

(A.6) 

L+I 1 2 

t where ~1 ~ ~ + , ,  a'l -- ~+1, we realize tha t  

(A.7) Z(A, t~) --= Tr  V * . 

We have dealt ,  so far,  only with periodic boundary  conditions. We could 
introduce transfer  matrices also in the case of other boundary  conditions. 

For  instance, assume, for simplicity, tha t  there  are periodic boundary  con- 
ditions along the columns; we shall consider the three cases below: 

1) <~ perfect  wall >> boundary  conditions along the rows; 

2) boundary  conditions on the rows corresponding to the existence 
on the latt ice sites adjacent  to the end points of the rows, of fixed spins 
s ~ = + l  (or s ~ = - - l )  for all i 's;  
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3) boundary  conditions which are of the same type  as in 2) but  hall of 
the rows end in a posit ive spin (say the upper  half) and half in a negative spin. 

We shall now wri te  down a t ransfer  mat r ix  expression for Z(./I, fi) in the 
a b o v e  e a s e s .  

I n  ease 1) 

(A.8) Z(A, fil Tr V ~)'~ 

where 

(A.9) 

In  case 2) 

I~!  = exp ((~faJ+l-/ aj a~+l Jaja~ . 
L ] = I  j = l  d 

where 

(A.IO) 

Z(A,  3) = Tr V ~IM, 

V ( ± )  I ; x7  Tr(1)  ~,_,-- exp [~_ fiJ(a~q- alq-  a~vq- a ~ ) ] v , , , .  

I n  case 3), assuming here the height of A to be M + ]  and M even, we have  

(A.1~) 

where 

(A.1.9) 

Z(A,  fi) : Tr (V+) M/2 V(3)(V-) ~I-" , 

(3) [ V,~. = exp [fiJ(a[ + a.,. - -  a~ - -  a~)] V2~' • 

The t ransfer  ma t r ix  V in (A.7) is the one tha t  has been diagonalized exact ly 
in the famous paper  by  ONSAGER [3]. The ma t r ix  V (1) has been diagonalized 
exact ly  in ref. [47]. 

The matr ices  V (±) have,  so far,  never  been studied,  nei ther  has been studied 
the  ma t r ix  V (~). 

A similar formulat ion of the problem of the computa t ion  of Z can be for- 
mula ted  in three  dimensions. 

Some very  interest ing results on the spectral  propert ies  of the generaliza- 
t ion to three  dimensions of the ma t r ix  V (periodic boundary  conditions) have 
been obta ined in ref. [48]. 

I n  three dimensions one expects t ha t  the  analogue of V (3) (in contras t  to 
V (1), V +, V ) has spectral  propert ies  which radical ly differ from those of V. 
I n  2 dimensions this phenomenon should not  occur and all the above matr ices  
should have the  sa.me spec t rum (asymptot ical ly  as A - >  c~). As ment ioned 
in Sect. 15, problem 2), this should be related to the fact  tha t  V (3) should contain 
some informat ion about  the r igidity of the line or surface of phase separation 
which is (~ si t t ing ~> r ight  near  the two lines between which V (3) (( transfers ~). 

A very  interest ing nonrigorous analysis of the spin correlation functions 
in te rms of the t ransfer  ma t r ix  has been done in ref. [49]. The paper  of ref. [48] 
(wri t ten independent ly  of [49]) has been devoted to t ry ing  to make  this analy- 
sis rigorous. 

11  - Rivis ta del Nuovo Cimento. 
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