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Abstract. The elliptic curve E given by Y2 + (i + 1)XY +iY = X? + iX? acquires good reduction
everywhere over the cyclotomic field Q(Czo). We show, under assumption of GRH, that every
abelian variety over Q({,, ) with good reduction everywhere is isogenous to £2 for some g > 0.
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1. Introduction

For f =1,3,4,5,7,8,9 and 12 there do not exist any abelian varieties over the
cyclotomic field Q(,) that have good reduction modulo every prime. Under as-
sumption of the Generalized Riemann Hypothesis (GRH) the same can be proved
for Q(C,,) and Q({,s). These are the main results of (Schoof, 2001b). For all
other conductors f there do exist abelian varieties over () with good reduction
everywhere.

The techniques of (Schoof, 2001b) still give substantial information about
abelian varieties with good reduction everywhere over cyclotomic fields that are
not in this list. Ordering the fields with respect to their root discriminants, the
first field not in the list is Q(C,, ). Over this field the elliptic curve E given by the
equation

Y24+ (i+ )XY +iY = X° +iX>%

has good reduction everywhere. This can be seen as follows. The discriminant of
the equation is equal to —(1 + 2i)3. Therefore E has good reduction outside the
prime 1 + 2i of the ring Z[i]. Since the reduction at 1 + 2i is of Kodaira type III,
the curve E acquires good reduction everywhere over any Galois extension of Q(i)
for which the ramification indices of the primes over 1 + 2i are divisible by 4. In
particular, E acquires good reduction everywhere over Q(Cy).
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The main result of this paper is the following.

THEOREM 1.1. (GRH) Every abelian variety over Q({,,) that has good reduction
everywhere is isogenous to a power of E.

The theorem is proved under assumption of the Generalized Riemann Hypothe-
sis (GRH) for zeta functions of number fields. The main ingredients are the re-
sults of (Schoof, 2001b). See (Schoof, 2001a) for a similar result, proved without
assuming GRH, for abelian varieties over (( V6).

The proof of the theorem proceeds by analyzing finite flat commutative group
schemes of 2-power order over the ring Z[{y]. We deduce that the 2-divisible
group associated to any abelian variety 4 over Q({,,) with good reduction ev-
erywhere is isogenous to the 2-divisible group associated to E¢ for some g > 0.
Faltings’ isogeny theorem implies then that the abelian varieties A4 and E% are
isogenous over Q({y).

2. 2-group schemes over Z[(y]

Let F denote the number field Q({,,) and let Or = Z({,,). In this section we
study finite flat commutative group schemes of 2-power order over the ring Of
or 2-group schemes for short. Finite flat group schemes of order 2 are examples
of 2-group schemes. Since (2) is the square of the prime ideal generated by 1+
in OF, it follows from the discussion on the first page of (Oort and Tate) there are
three of these. Apart from the group schemes Z/27Z and uj, there is an order 2
group scheme that is local-local at the prime 2. It can be described as follows.
The elliptic curve E of section 1 has j-invariant 1728 and endomorphism ring
isomorphic to Z[i]. The kernel E[f] of the endomorphism f = 1+ in the ring
End(E) is a finite flat group scheme of order 2. Its Hopf algebra is isomorphic to
Or[T)/(T?— (14i)T) with group law ¢ +¢' — (i — 1)¢¢'.

Group schemes of order 2 are simple. Under assumption of GRH, the converse
is true over the ring OF.

THEOREM 2.1. (GRH) The only simple 2-group schemes over Z[Cy] are Z/2Z,
w2 and E[f].

PROOF. It suffices to show that all simple 2-group schemes have order 2 by the
above discussion. We apply Proposition 2.2 of (Schoof, 2001b) to the prime p =2
and check “condition (A)”. The root discriminant of the field L that appears in that
proposition satisfies §; < 8-5°/4 =26.749. ... Since this number is larger than the
asymptotic value 4me? =~ 22.3... of Odlyzko’s unconditional discriminant bound,
we use his GRH bounds (Martinet, pp. 178-179). These imply that [L : Q] < 600.
By the assumptions of Proposition 2.2 in (Schoof, 2001b), we have the following
inclusions of fields

Q ¢ Fi) <c K cC L.
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Here K = Q(L40, v/€1, /€2, /€3) where the g; are a basis for the unit group of Or
modulo torsion. Let ' = Gal(L/Q). The field F (i) = Q({,,) is the largest abelian
extension of Q inside L. By Theorem 11.1 in (Washington) the class number of
Q(&y,) is 1. In addition, the unit 1 — (49 generates the multiplicative group of the
residue field )¢ of the unique prime over 2. Therefore, by class field theory, the
field Q(C4,) admits no abelian odd degree extension inside L. This implies that
I /T" is a 2-group. By Proposition 3.2 in (Schoof, 2001b) we then see that I’ and
hence Gal(L/F) are 2-groups.

It follows from Proposition 2.2 in (Schoof, 2001b) that all simple 2-group
schemes over O have order 2 as required. O

The next theorem describes various extensions of the three group schemes of
order 2 by one another.

THEOREM 2.2. Over the ring O we have that

(i) Any extension of constant 2-group schemes is constant, any extension of di-
agonalizable 2-group schemes is diagonalizable;
(i) Exty, (12,Z/2Z) = 0;
(iii) the groups Ext},_(E|f],Z/2Z) and Exty, (2, E|f]) are zero;
(iv) the group Ext})F (E[f),E[f]) has order 2; its non-trivial element is represented
by the group scheme E|2] of 2-torsion points of the elliptic curve E.

PROOF. By Proposition 2.6 in (Schoof, 2001b), parts (i) and (ii) follow from the
facts that the class number of O is 1 and that there lies only one prime over 2 in
Or. To prove (iii), consider an extension

0—Z/2Z— G— E[f] —0

over Or. Since E[f] is local, the extension is split over the completion 5F at the
prime T = | 4 i. Therefore G is killed by 2. The quadratic character that gives
the Galois action is everywhere unramified and hence trivial. It follows that G is
locally and generically trivial. Since there lies only one prime over 2, the Mayer-
Vietoris sequence (Corollary 2.4 in (Schoof, 2001b)) then implies that G is split
over Of. This proves (iii).

To prove (iv) consider an extension

0 —E[f] - G—E[f] —0

over Or. We use local results of Cornelius Greither (1992). For n > 0 let U, de-
note the multiplicative group {€ € Oy : € =1 (mod n")}. By Greither’s theorem,
Ethép (E[f1,E[f]) = Us/U; = U;/(Us N (O%)?). Moreover, it follows from the
arguments in (Greither) that the points of the extension G corresponding to a unit

g € U, generate the field Q@ ({y,v/¢). This implies that G is determined by its
Galois module.
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Since +€ = 1 (mod 7?), it follows that the number field generated by the
points of G has conductor at most n* over F. The ray class field of F of con-
ductor m2 has degree 2. This follows from the fact that the global units 1 and
(1—C4,)" generate a subgroup of (1+ (r))/(1+ (n?)) & Fy of index 2. There-
fore the Galois action on the points of G is either trivial or is given by the unique
character of conductor (2). If it is trivial, the action is also locally trivial and
hence G is trivial over Of. By the equivalence of categories of Proposition 2.3 in
(Schoof, 2001b), the extension G is then trivial. If the Galois action is not trivial,
then locally it is also non-trivial. This follows from the fact that the class number
of Of is 1. This fixes the structure of G over O and hence, by Proposition 2.3 in
(Schoof, 2001b), there is only one choice for G. The exact sequence

0 — E[f] — E[2] — E[f] —0

is non-split since the 2-torsion points of £ generate the quadratic extension F' (/1)

of F. Here 1 denotes the unit (1++/5)/2 € O%. Therefore E[2] provides the non-
trivial class in Ext;,_ (E[f],E[f]). O

3. 2-divisible groups over Z[(y]

In this section we prove Theorem 1.1. For any abelian variety 4 over F = Q({y)

with good reduction everywhere, the group scheme A[2"] is a 2-group scheme
over O = Z[Cy].

PROPOSITION 3.1. Let A be an abelian variety over F with good reduction ev-
erywhere. Then the 2-group scheme A[2"] admits for each n > 1, a filtration with
subquotients isomorphic to the group scheme E|f).

PROOF. First consider the 2-torsion subgroup scheme A4[2] over Op. It admits a
filtration with simple subquotients. By Theorem 2.1 the simple subquotients of
this filtration are isomorphic to Z /27, uy or E[f]. By Theorem 2.2 (ii) and (iii)
we can modify the filtration and obtain closed flat subgroup schemes G; and G,
of A[2] for which

0 = G < G < A2, (%)

and where G 1s filtered with group schemes isomorphic to uy, the quotient G, /G,
is filtered with group schemes isomorphic to E[f] and A4[2]/G is filtered with
group schemes isomorphic to Z/27Z. Let 2¢ and 2° denote the orders of G, and
A[2]/ G, respectively.

Next consider the group scheme A[2"]. We filter it with its closed subgroup
schemes A[2'] for i = 1,...,m. All subquotients in this filtration are isomorphic
to A[2] and we filter these as in (*). By Theorem 2.2, (ii) and (iii), we can modify
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this filtration and obtain closed flat subgroup schemes H, and H, of A[2"] for
which

0 =< H <= H <= A", (%)

and where H| is filtered with group schemes isomorphic to u, and has order 2"4,
where the quotient H,/H, is filtered with group schemes isomorphic to E[f]
and where A[2|/H, is filtered with group schemes isomorphic to Z /27 and has
order 2"

By Theorem 2.2, (i), the group scheme A[2"]/H, is constant. It is a closed
subgroup scheme of the abelian variety 4/H,. It follows from Weil’s Riemann
Hypothesis that the order 2°" is bounded as n — 0. This is only possible when
b = 0. Applying the same argument to the Cartier dual H,’ of H, and the abelian
variety 498!/ we see that a = 0 as well. It follows that H, = A[2"] and H; = 0
respectively. O

Theorem 1.1 1s now proved by an application of Proposition 3.2 below. The
endomorphism ring End(E) of the 2-divisible group £ of the elliptic curve E is
isomorphic to the discrete valuation ring Z,[i]. Let f denote the prime element
1 +i € End(E). The kernel of the morphsim f: £ — £ is denoted by E[f]. It is
the group scheme E|[f] of order 2 that appears in section 2. By Proposition 3.1 the
subgroup schemes 4[2"] of an abelian variety 4 with good reduction everywhere
over Q(C,, ) is filtered by group schemes isomorphic to E[f]. By Theorem 2.2 (iv)
and the fact that the points of E[2] are not defined over F, the condition of Propo-
sition 3.2 below is satisfied. It follows that the 2-divisible group of 4 is isogenous
to £# for some g > 0. Faltings’ Theorem implies then that 4 and E# are isogenous
over F' as required, see (Faltings).

PROPOSITION 3.2. Let O be a Noetherian domain of characteristic 0 and let G
be a p-divisible group over O. Suppose that R = End( G) is a discrete valuation
ring with prime element f. Let k = R/ fR. If the connecting homomorphism

Homo(Gl/], Glf)) — Exty(Glf], GIA)

associated to the exact sequence 0 — G[f] = G[f*] = Glf] — 0 is an isomor-
phism of 1-dimensional k-vector spaces, then every p-divisible group over O that
can be filtered with group schemes isomorphic to G[f), is isogenous to a power

of G.

Here a p-divisible group # is said to be filtered by G[f] if the group scheme
H|p] of p-torsion points admits a filtration by closed flat subgroup schemes with
successive subquotients isomorphic to G[f]. The condition implies that all group
schemes # [2"] admit such filtrations. See (Schoof, 2001c¢) for a proof of Proposi-
tion 3.2.
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