
Journal of Number Theory 130 (2010) 2715–2731
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Visibility of ideal classes

René Schoof a, Lawrence C. Washington b,∗
a Dipartimento di Matematica, 2a Università di Roma “Tor Vergata”, I-00133 Roma, Italy
b Department of Mathematics, University of Maryland, College Park, MD 20742, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2008
Revised 19 July 2010
Accepted 19 July 2010
Communicated by David Goss

Keywords:
Ideal class groups
Capitulation
Cyclotomic fields
Shafarevich–Tate group
Visibility

Cremona, Mazur, and others have studied what they call visibility
of elements of Shafarevich–Tate groups of elliptic curves. The
analogue for an abelian number field K is capitulation of ideal
classes of K in the minimal cyclotomic field containing K . We
develop a new method to study capitulation and use it and
classical methods to compute data with the hope of gaining insight
into the elliptic curve case. For example, the numerical data for
number fields suggests that visibility of non-trivial Shafarevich–
Tate elements might be much more common for elliptic curves of
positive rank than for curves of rank 0.
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Let E be an elliptic curve over Q of conductor N . Then there is a modular parametrization
X0(N) → E and a corresponding map E → J0(N) of E into the jacobian of X0(N). This induces a map
of Shafarevich–Tate groups Ш(E) → Ш( J0(N)). Cremona and Mazur [6] study the question of when
an element s of Ш(E) is in the kernel of this map. When this happens, there is a curve defined over
Q and contained in J0(N) that represents s. In other words, s is “visible” in J0(N). Further work on
this topic has been done by Agashe, Stein, and others [1,2].

Let K/Q be an abelian extension of conductor n, so K ⊆ Q(ζn), where n is the conductor of K . This
is the analogue of the modular parametrization above. The ideal class group is the analogue of the
Shafarevich–Tate group (this will be made more precise in Section 1), so the analogue of the above
question is to ask when ideal classes of K become principal in Q(ζn).

Let L/K be an extension of number fields. An ideal class of K that becomes principal in L is said
to capitulate. Many authors have discussed capitulation in various contexts. The hope of the present

* Corresponding author.
E-mail addresses: schoof@mat.uniroma2.it (R. Schoof), lcw@math.umd.edu (L.C. Washington).
0022-314X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2010.07.005

http://dx.doi.org/10.1016/j.jnt.2010.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:schoof@mat.uniroma2.it
mailto:lcw@math.umd.edu
http://dx.doi.org/10.1016/j.jnt.2010.07.005


2716 R. Schoof, L.C. Washington / Journal of Number Theory 130 (2010) 2715–2731
paper is to use results about capitulation for Q(ζn)/K to gain some insight into the situation for
Shafarevich–Tate groups.

For example, for imaginary quadratic fields K , the capitulation in Q(ζn)/K is mostly accounted for
by the ambiguous classes, namely those produced by genus theory, and such classes are easily seen
to capitulate. In examples of small discriminant, the class group consists mostly of ambiguous classes,
so capitulation is very common. However, for large discriminants, most of the ideal class group does
not capitulate (see the discussion after Proposition 4).

The situation for real quadratic fields is quite different. The ambiguous classes capitulate, but nu-
merical data indicates that capitulation of additional classes is very common. The situation for cyclic
cubic fields is similar.

Let’s return to Shafarevich–Tate groups. Cremona and Mazur looked at elliptic curves of conductor
up to 5500. All of their examples of non-trivial Ш(E) had Mordell–Weil rank 0, and capitulation (i.e.,
visibility) was very common. The analogue of the Mordell–Weil group is the unit group of the ring
of integers of a number field. An elliptic curve with Mordell–Weil rank 0 therefore corresponds to
an imaginary quadratic field (or Q). As pointed out above, capitulation is very common for imaginary
quadratic fields with small discriminants. The numerical results of Cremona and Mazur for elliptic
curves match this situation. By analogy, it is natural to ask the following questions. Should we expect
non-visibility to become the rule rather than the exception as the conductor increases? Is there an
analogue of genus theory that accounts for most of the Shafarevich–Tate group for small conductors?
We do not know the answer to either question. Both seem worth investigating. In Section 2, we show
that the visibility of certain elements of Shafarevich–Tate groups, as proved by Cremona and Mazur,
is analogous to the capitulation of ideals of quadratic fields in biquadratic fields. But the Cremona–
Mazur method does not produce non-trivial elements of the Shafarevich–Tate group; it shows only
that they are visible, in contrast to the situation in genus theory for ideal class groups.

Real quadratic fields (along with non-real cubics and totally complex quartics) correspond to el-
liptic curves with Mordell–Weil rank 1. Cyclic cubic fields correspond to elliptic curves of rank 2. The
results for real quadratic fields and cyclic cubic fields suggest that, for elliptic curves of positive rank,
visibility should be very common. There is very little data available; again, this seems to be worth
investigating.

The Cohen–Lenstra heuristics [5] predict that, for totally real fields, the existence of units makes
class numbers tend to be small. Therefore, it is perhaps common that the class number of a totally
real abelian number field has approximately the same class number as the minimal real cyclotomic
field containing it (this is hard to check numerically, since class numbers of real cyclotomic fields are
hard to calculate; but see [18] for some probable examples). This tends to force capitulation of ideal
classes (see part (i) of Lemma 4 in Section 4). Is there is an analogous situation for elliptic curves
of positive rank? Of course, there is a difference in this case between the number field case and the
elliptic curve case. When a number field is properly contained in a cyclotomic field, the rank of the
group of units of the number field is less than that of the cyclotomic field (except when the number
field is the real subfield of the cyclotomic field). There does not seem to be a reason for an analogous
situation for the Mordell–Weil ranks of an elliptic curve and the corresponding J0(N).

1. The analogy between ideal class groups and Shafarevich–Tate groups

In this section we review and make explicit some analogies between ideal class groups and
Shafarevich–Tate groups.

Let E be an elliptic curve defined over Q. The Shafarevich–Tate group is defined to be the group
of everywhere locally trivial elements of H1(GQ, E(Q)), namely

Ш(E) = Ker

(
H1(GQ, E(Q)

) →
∏

p�∞
H1(GQp , E(Qp)

))
.

Here G L = Gal(L/L) for any field L, and embeddings Q ↪→ Qp are implicitly fixed.
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Now let’s consider the number field case. Let K be a number field. Since units are the analogue
of points on an elliptic curve, we let E denote the group of all units in the ring of integers of Q.
For a place p of K , let Kp be the completion at p. When p is finite, let p denote the rational prime
below p and let U p be the group of units in the integral closure of Zp in Qp . When p is archimedean,
let U p = C× . Let C K denote the ideal class group of K . The following result has been implicit in the
literature (for example, apply the techniques of [15, pp. 98–99] to the inclusion j: Spec K → Spec
O K for the étale sheaf Gm) and also appears in [7] and [9, Lemma 6.1]. Since we need it and its
proof later, we include it. It shows the strong analogy between ideal class groups and Shafarevich–
Tate groups. The cohomology groups are the standard profinite cohomology groups defined using
continuous cocycles.

Proposition 1. There is an isomorphism

C K � Ker

(
H1(G K , E) →

∏
p

H1(G Kp
, U p)

)
.

Proof. The product is over the places of K . Since H1(GR,C×) = 0 and H1(GC,C×) = 0, the
archimedean primes can be ignored in the statement of the theorem and in the following.

Let I be an ideal of K . Then I becomes principal in some extension of K , so I = (β) for some
β ∈ Q (we use I to denote the lift of I to extension fields). Define cI : Gal(Q/K ) → E by σ �→ βσ−1.
Since σ(I) = I , we have βσ−1 ∈ E . It follows easily that cI is a continuous cocycle. If also I = (β1),
then ε = β/β1 ∈ E , so the cocycle defined using β1 differs from cI by the coboundary σ �→ εσ−1.
Therefore the cohomology class of cI depends only on I . In fact, cI depends only on the ideal class
of I: if a ∈ K × then

caI (σ ) = (aβ)σ−1 = βσ−1 = cI (σ ).

Therefore we have a homomorphism φ : C K → H1(G K , E).
Suppose cI is a coboundary, which means there is some ε ∈ E such that βσ−1 = εσ−1 for all σ .

This means that β/ε ∈ K , so I = (β/ε) is principal in K . Therefore φ is injective.
We now show that cI is locally trivial. Fix a prime ideal p of K . Choose an ideal J in the ideal

class of I with J prime to p. Then J = (γ ) for some γ ∈ Q, and γ ∈ U p via the embedding of
Q ↪→ Qp induced by p. Therefore c J restricted to G Kp

is given by the coboundary σ �→ γ σ−1, so the
cohomology class of cI = c J is locally trivial.

Finally, we show φ is surjective. Let c be a cocycle in H1(G K , E) that is locally a coboundary.
Hilbert’s Theorem 90 says that H1(G K ,Q×) = 0. The map E → Q× therefore sends c to a coboundary,
so c(σ ) = yσ−1 for some y ∈ Q× . Since c is continuous, c has finite order, hence cm is a coboundary
for some m. Therefore, cm(σ ) = εσ−1 for some ε ∈ E . This implies that ym/ε is fixed by all σ , hence
is in K . Let α = ym/ε .

Let p be a prime ideal of K . Since c is a coboundary at p, we have c(σ ) = uσ−1
p for all σ ∈ G Kp

for some up ∈ U p . Therefore, yσ−1 = uσ−1
p for all σ ∈ G Kp

, hence y/up ∈ Kp . Therefore

vp(α) = vp

(
ym) = vp

(
(y/up)m) ≡ 0 (mod m).

Since this happens for all p, we must have (α) = Im for some ideal I of K .
Let ε1 = ε1/m ∈ E . Then I = (y/ε1) in some extension of K . It follows easily that the cohomology

class of cI equals the cohomology class of c. Therefore φ is surjective. �
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Let L/K be a finite Galois extension of number fields and let E L be the units of the ring of integers
of L. Define the locally trivial cohomology group to be

H1
lt(L/K , EL) = Ker

(
H1(Gal(L/K ), EL

) →
∏
p

H1(Gal(Lp/Kp), U Lp

))
,

where Lp denotes the completion of L at one of the primes of L above p and U Lp
is the group of

local units in Lp .
The inclusion map K ↪→ L induces a map C K → CL . The following result appears in [16].

Corollary. There is an isomorphism

Ker(C K → CL) � H1
lt(L/K , EL).

Proof. The beginning of the inflation–restriction exact sequence is

0 → H1(L/K , EL) → H1(G K , E) → H1(G L, E).

An element x ∈ H1
lt(L/K , EL) clearly yields an element of H1(G K , E) that is locally trivial, hence cor-

responds to an element y ∈ C K . The map from H1(G K , E) to H1(G L, E), when restricted to locally
trivial elements, is easily seen to correspond to the map on class groups. Since x is 0 in H1(G L, E), it
follows that y is 0 in CL . Therefore we have a map ψ : H1

lt(L/K , EL) → Ker(C K → CL). The injectivity
of ψ is immediate from the injectivity on the left in the inflation–restriction sequence.

It remains to show that ψ is surjective. An element of Ker(C K → CL) corresponds to a cocycle c
whose class in H1(L/K , EL) is locally trivial when regarded as an element c̃ ∈ H1(G K , E). We must
show that c is locally trivial in H1(L/K , EL). Since c̃ is the inflation of c, we have c̃(σ ) = 1 for all
σ ∈ G L . Let p be a prime ideal of K . The local triviality in H1(G K , E) implies that there exists up ∈ Up

such that c̃(σ ) = uσ−1
p for all σ ∈ G Kp

. Since uσ−1
p = c̃(σ ) = 1 for all σ ∈ G L ∩ G Kp

= G Lp
, we have

up ∈ U Lp
. This means that c ∈ H1

lt(L/K , EL). Therefore ψ is surjective. �
In the case of elliptic curves, the fundamental descent sequence is

0 → E(Q)/nE(Q) → Sn → Ш[n] → 0,

where Sn ⊆ H1(GQ, E[n]) is the n-Selmer group. There is an analogue for number fields. Recall that,
for a number field K ,

H1(G K ,μn) � K ×/
(

K ×)n
.

This follows easily from Hilbert’s Theorem 90.

Proposition 2. Let K be a number field and let n � 1. Let

Sn = {
x ∈ K × ∣∣ (x) = In for some ideal I ⊂ K

}
/
(

K ×)n
.

Then there is an exact sequence

1 → E K /(E K )n → Sn → C K [n] → 1,
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where C K [n] denotes the n-torsion in C K and where the map from Sn to C K [n] sends x to the ideal class of I .
Also, Sn is the inverse image of H1

lt(G K , E K )[n] under the maps

K ×/
(

K ×)n � H1(G K ,μn) → H1(G K , E K ).

Proof. The exactness of the sequence is straightforward. To verify the last claim, use the fact that
g �→ g(x1/n)/x1/n gives the cocycle in H1(G K ,μn) corresponding to x. Moreover, I = (x1/n) in K (x1/n),
so this is also the cocycle in H1

lt(G K , E) corresponding to the ideal class of I under the isomorphism
of Proposition 1. �
Remark. In the elliptic curve situation, we are interested in

Ker
(
Ш(E) → Ш

(
J0(N)

)) ⊆ Ker
(

H1(GQ, E(Q)
) → H1(GQ, J0(N)(Q)

))
.

In the number field case, we have

Ker(C K → CL) ↪→ Ker
(

H1(G K , E) → H1(G L, E)
)
.

This map is obtained from the map on Galois groups rather than a map on E , which would be closer
to the geometric situation. However, this can easily be remedied. Let

J L = HomG L

(
Z[GQ], E

) = Maps(GQ/G L, E).

Shapiro’s Lemma says that H1(GQ, J L) � H1(G L, E). Therefore, we have

Ker(C K → CL) ↪→ Ker
(

H1(GQ, J K ) → H1(GQ, J L)
)
,

and the map is obtained from the natural map J K ↪→ J L .

Remark. It is known (see [6]) that Ш(E) becomes trivial in some abelian variety containing E . The
question has been raised whether there are classes of Ш(E) that are not visible in J0(N) but which
become trivial in J0(M) for some M that is a multiple of N . The analogous question can be asked for
number fields. The following example shows that this situation can arise. Consider the cubic subfield
K of Q(ζ163). It was shown by Kummer that the class group of K is the product of two groups of
order 2. Since [Q(ζ163)

+ : K ] = 27, and since the map on ideal classes from the real subfield to the
full cyclotomic field is injective, these classes do not capitulate in Q(ζ163). In [10], G. Gras points out
that the ideal class group of K capitulates in K (

√
13 ). Since

√
13 ∈ Q(ζ13), the ideal class group of K

capitulates in Q(ζ13·163).
In contrast to this example, the result of Brumer [4] given in Section 3 implies that there are ideal

classes in some cyclotomic fields that do not become principal in any cyclotomic field.

2. Creating visible elements

One of the methods Cremona and Mazur use for identifying visible elements of Shafarevich–
Tate groups is the following (see [6, p. 19]). Let E and E ′ be elliptic curves contained in J0(N)
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and assume E[n] = E ′[n] as subgroups of J0(N). Suppose c ∈ Ш(E) ⊆ H1(GQ, E(Q)) is the image of
ξ ∈ H1(GQ, E[n]). If ξ maps to 0 ∈ H1(GQ, E ′(Q)), then c maps to 0 ∈ Ш( J0(N)), hence is visible.

c ∈ H1(GQ, E)

ξ ∈ H1(GQ, E[n])

H1(GQ, J0(N)[n]) H1(GQ, J0(N))

ξ ∈ H1(GQ, E ′[n])

0 ∈ H1(GQ, E ′)

In this situation, there exists R ∈ E ′(Q) such that σ(R) − R = ξ(σ ) for all σ ∈ Gal(Q/Q). Since ξ(σ ) ∈
E ′[n], we have σ(nR) = nR for all σ , so nR ∈ E ′(Q).

When n = 2, this situation is very much analogous to the fact that ideal classes of order 2 in
quadratic fields capitulate in suitably chosen biquadratic fields. Let K = Q(

√
d ) be a quadratic field

of discriminant d and let 1 < d1 < |d| be a fundamental discriminant dividing d (if such a d1 exists).
Let F = Q(

√
d1 ) and L = K (

√
d1 ). Then L/K is an unramified quadratic extension. Moreover, L is

contained in the smallest cyclotomic field containing K .
The number d1 ∈ K ×/(K ×)2 � H1(K ,μ2) yields an ideal J of K with J 2 = (d1). Since d1 represents

the trivial class in F ×/(F ×)2, it also represents the trivial class in L×/(L×)2, so we recover the obvious
fact that J becomes principal in L.

A more interesting example is obtained as follows. Let ε be the fundamental unit of F . Then,
in the notation of Proposition 2, ε represents a non-trivial element of S2(F ) that has trivial image
in C F . Assume that the norm of ε is +1. Let α = 1 + ε−1. The norm of α is a = (1 + ε−1)(1 +
ε) ∈ Z. Let σ be the non-trivial element of Gal(F/Q). Then ασ /α = ε . Therefore the ideal (α) of F
is fixed by Gal(F/Q), and therefore also by Gal(L/K ). Since L/K is unramified, there is an ideal I of
K such that I = (α) in L. Moreover, α2ε = αασ = a ∈ Z, which implies that I2 = (a) in K . The coset
of

a = α2ε ∈ K ×/
(

K ×)2 � H1(G K ,μ2)

maps to the coset of

ε ∈ L×/
(
L×)2 � H1(G L,μ2).
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This coset maps to the trivial ideal class in CL , corresponding to the fact that the ideal class of I
capitulates in L. This is clearly an analogue of the elliptic curve situation described above, where

√
ε

corresponds to the point R .

I ∈ H1(G K , E)

a ∈ K ×/K ×2 = H1(G K ,μ2)

a ∼ ε ∈ H1(G L,μ2) H1(G L, E)

ε ∈ F ×/F ×2 = H1(G F ,μ2)

1 ∈ H1(G F , E)

It is natural to ask about the class of the ideal I just constructed. It can be identified via the
following result.

Lemma 1. Let ε = (x + y
√

d1 )/2 be the fundamental unit of Q(
√

d1 ). Then x + 2 = rw2 for some positive
integers r, w such that r|2d1 and such that r and 4d1/r are not squares.

Proof. We have x2 − d1 y2 = 4, so (x + 2)(x − 2) = d1 y2. If x + 2 or x − 2 is a square, then
√

ε =
1
2 (

√
x + 2 + √

x − 2 ) ∈ Q(
√

d1 ), which is a contradiction. Since gcd(x + 2, x − 2) divides 4, the result
follows easily. �

Since I2 = (a) with a = (1 + ε−1)(1 + ε) = 2 + x = rw2 in the notation of the lemma, we find that
(I/w)2 = (r). Therefore the ideal class of I comes from the class of r in K ×/(K ×)2. The ideal class of
I is non-trivial in K but capitulates in L. This capitulation represents “non-obvious” capitulation in L
(where the “obvious” capitulation is for the ideal whose square is (d1)). Moreover, the factorization of
(1 + ε), which equals I/w in L, into a product of primes gives the “non-obvious” relation in the class
group of F (where the “obvious” relation is that the product of all ramified primes, with a possible
omission of the prime above 2, is principal).

3. Capitulation of ideal classes: General results

Lemma 2. Let K ⊆ L be number fields with [L : K ] = n. Let I be an ideal of K . If I becomes principal in L then
In is principal in K .

Proof. If I is principal in L, its norm is principal in K . But the norm is In . �
Remark. The analogue of this result is true for elliptic curves: If an element of Ш(E) is visible, then
its order divides the degree of modular parametrization of E (see [6]).

Let K/Q be an abelian extension of degree d and of conductor n, so K ⊆ Q(ζn). We say that an
ideal class has potential capitulation if its order divides φ(n)/d. We say that K has maximal capitulation
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if all ideal classes with potential capitulation actually capitulate in Q(ζn), and maximal p-capitulation
if all classes of p-power order with potential capitulation actually capitulate in Q(ζn).

The relevant question to consider is whether classes with potential capitulation actually capitulate.
There is a marked difference in the behaviors of the real and imaginary ideal classes. The real case is
related to the result of Kurihara [12] (see also [10]) that says that if K is totally real, then all ideal
classes of K capitulate in the field K (ζ∞) obtained by adjoining all roots of unity to K . On the other
hand, a result of Brumer [4] says that the class group (defined as a direct limit) of the extension of Q
generated by all roots of unity is isomorphic to a countable direct sum of factors Q/Z. By Kurihara’s
result, these classes cannot arise from class groups of real fields. Of course, both of these results relate
to capitulation in fields much larger than the minimal cyclotomic field containing K . But they give an
indication of the difference between the two cases.

There is an explanation of why there should be a lot of capitulation in the real case. The Cohen–
Lenstra heuristics [5] predict that class numbers of real fields tend to be small. Suppose a prime p
divides the class number of K ⊆ Q(ζn)+ . Since hK tends to be small, it is likely that p2 � hK . Now
suppose that p divides the class number h+

n of the real cyclotomic field. By the same reasoning, it is
likely that p2 � h+

n . By Lemma 4(i) below, the classes of order p in K capitulate in this case. We shall
see examples of this phenomenon in Section 6.

The following result is useful when working with totally real fields K of prime conductor �.
It shows that we need to consider capitulation only from K to the real subfield Q(ζ�)

+ of the cy-
clotomic field.

Proposition 3. Let � be prime. Then the map from the class group of Q(ζ�)
+ to the class group of Q(ζ�) is

injective.

Proof. See [19, Theorem 4.14]. �
4. Classical methods

To treat the imaginary classes, we need the following.

Lemma 3. Let K be a number field contained in the nth cyclotomic field Q(ζn), and let d be the number of
roots of unity in K . Let μm be the group of roots of unity in Q(ζn) (so m = n or 2n). Then H1(GQ(ζn)/K ,μm) is
annihilated by d.

Proof. Let G be a group, let t ∈ G , and let A be a G-module. The automorphism g �→ tgt−1 gives
A a new module structure; call it At . The map ψ : a �→ t−1a is a G-homomorphism from At to A.
Proposition 3 of [3] says that the composite map

H1(G, A) → H1(G, At) ψ∗−→ H1(G, A)

is the identity map.
In our case, identify Gal(Q(ζn)/K ) with a subgroup G of (Z/mZ)× . The module A = μm becomes

Z/mZ with G acting by multiplication. Since conjugation by t ∈ G is trivial, At = A. The map ψ is
multiplication by an integer t′ ≡ t−1 (mod m), so the map on cohomology is also multiplication by t′ .
Therefore

t′ : H1(GQ(ζn)/K ,μm) → H1(GQ(ζn)/K ,μm)

is the identity for all integers t′ ∈ G . Let d = gcd({t′ − 1},m), where t′ runs through all such integers.
Then d annihilates H1(GQ(ζn)/K ,μm).

If ζ ∈ μm , then ζ ∈ K if and only if ζ t′ = ζ for all t′ ∈ G . Therefore ζ ∈ K if and only if ζ d = 1. This
means that there are exactly d roots of unity in K . �
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Proposition 4. Let K be a subfield of Q(ζn) and let d be the number of roots of unity in K . Let I be an ideal of
K that becomes principal in Q(ζn). Then (I/I)d is principal in K (where I denotes the complex conjugate).

Proof. Suppose I = (α) in Q(ζn). Let σ ∈ Gal(Q(ζn)/K ). Then ασ−1 ∈ EQ(ζn) . Therefore, (α/α)σ−1 is a
unit of absolute value 1, hence a root of unity. It follows that the map σ �→ (α/α)σ−1 is a cocycle
for H1(GQ(ζn)/K ,μm), where μm is the group of all roots of unity in Q(ζn). By Lemma 3, there exists
ζ ∈ μm such that (α/α)d(σ−1) = ζσ−1 for all σ . This implies that (α/α)d/ζ ∈ K , hence that (I/I)d is
principal in K . �
Corollary. Let K be a subfield of Q(ζn) and suppose that the only roots of unity in K are ±1. If I is an ideal of
K such that I I is principal in K and I is principal in Q(ζn), then I4 is principal in K .

The corollary applies in particular to imaginary quadratic fields. In this case, the 4-torsion of the
class group is of order at most 4s−1, where s is the number of prime factors of the discriminant. It is
therefore an easy consequence of Siegel’s theorem (that log(h) ∼ 1

2 log(|d|)) that the 4-torsion is only
a small part of the class group when the discriminant is large, and therefore most of the class group
does not capitulate in Q(ζd).

Example. Here is an example where a class of order 4 capitulates. Let K = Q(
√−39 ), whose class

group is cyclic of order 4, generated by the ideal I = (2, 1+√−39
2 ). The ideal J = (3, −3+√−39

2 ) is not
principal but satisfies J 2 = (3), hence has order 2 in the class group of K . Therefore I2 is in the same
class as J . Since J becomes principal in L = Q(

√−39,
√−3 ), namely J = (

√−3 ), it follows that I2 is
principal in L. However, I cannot be principal in L since then the norm from L to K of I , namely I2,
would be principal in K , which is not the case. The class number of Q(ζ39) is 2. Since Q(ζ39)/L is
totally ramified, the norm N : CQ(ζ39) → CL is surjective. If I is not principal in Q(ζ39), then it generates
the class group, hence N(I) = I6 generates the class group of L; contradiction. Therefore I is principal
in Q(ζ39).

For a quadratic field, the classes of order 2 always capitulate in the cyclotomic field. This is easily
seen as follows: Let K = Q(

√
d ), where d is the discriminant of K . The ideal classes of order 2 are

generated by ideals I with I2 = (r) and r dividing d. However, Q(ζ|d|) is the smallest cyclotomic field
containing K , and Q(ζ|d|) contains

√±r for each such r and an appropriate choice of sign. Therefore
each I becomes principal in Q(ζ|d|).

More generally, Furuya [8] has shown that when K/Q is an abelian extension, every ideal fixed by
Gal(K/Q) becomes principal in the genus field of K (i.e., the maximal abelian extension of Q that is
unramified over K ). Since the genus field is contained in the smallest cyclotomic field containing K ,
all such ideals capitulate in the cyclotomic field.

The following result is useful in many cases.

Lemma 4. Suppose � is prime and L/F is an extension of number fields. Also, suppose L/F has no non-trivial
unramified subextensions M/F . Let hF and hL be the class numbers of F and L.

(i) Assume [L : F ] = �a. If � � hL/hF , then the kernel of the map C F → CL is exactly the classes of order
dividing �a.

(ii) Assume � is odd and L/F is Galois of degree �. If the �-power part of the class group of L is cyclic of order
�k and the �-power part of the class group of F has order � f with f < k, then f = k − 1 and the map
C F → CL is injective.

(iii) Assume � is odd and L/F is Galois of degree �. If the �-power part of the class group of L is isomorphic to
Z/�Z × Z/�Z, then all classes of order � in F become principal in L.

Proof. (i) The only possible capitulation occurs in the �a-torsion. Let A F and AL be the �-power parts
of the class groups. Since the norm map from AL to A F is surjective, it must be an isomorphism since
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the groups have the same order. Let I represent a class in A F of order dividing �a . Lifting I to L then
taking the norm back to F yields I�

a
, which is principal. Since the norm is injective, the image of I

in CL must have been trivial.
(ii) The case k = 1 is trivial, so assume k > 1. The map C F → CL is injective on the non-� parts,

so we restrict our attention to A F and AL . By assumption, AL � Z/�kZ. A generator σ of Gal(L/F )

acts on Z/�kZ as an automorphism of order 1 or �, hence by multiplication by 1 + a�k−1 for some a.
It follows easily that N = 1+σ +σ 2 +· · ·+σ �−1 acts as multiplication by �. But N is the composition
of the two maps

AL → A F → AL,

where the first map is the norm and the second is the natural map on class groups. Since the image
of N has order �k−1 and A F is assumed to have order at most this large, A F has order exactly �k−1.
Also, A F → AL must be an injection.

(iii) Let σ generate Gal(L/F ). Then σ is a linear transformation of the �-part of the class group

of L, which is a Z/�Z vector space. The Jordan canonical form of σ is M =
(

1 b
0 1

)
for some b. Therefore,

1 + σ + · · · + σ �−1 = I + M + · · · + M�−1 ≡ 0 (mod �),

so 1 + σ + · · · + σ �−1 annihilates the classes of L of order �. But 1 + σ + · · · + σ �−1 is the norm map
followed by the natural map from the class group of F to the class group of L. Since L/F is totally
ramified, the norm map is surjective. Therefore, all classes of order � in F must become principal
in L. �
5. Galois module methods

In this section, we introduce a method based on [18] that is much more powerful than those of
the previous section when working with totally real abelian fields of prime conductor.

Let p be prime, let � ≡ 1 (mod p) also be prime, and let G = Gal(Q(ζ�)
+/Q). Let π be the maximal

subgroup of G of p-power order and � the maximal subgroup of G of order prime to p. Then G =
π × �. Let pn be the order of π .

Let χ : � → Q×
p be a p-adic valued Dirichlet character and let Oχ be the extension of Zp generated

by the values of χ . It is a Z[�]-algebra via δ ·x = χ(δ)x for δ ∈ � and x ∈ Oχ . For any Z[G]-module M ,
define its χ -eigenspace to be

M(χ) = M ⊗Z[�] Oχ .

The functor M �→ M(χ) is exact. We have that

M �
∏
χ

M(χ),

where χ runs through representatives for the Gal(Qp/Qp)-conjugacy classes of characters of �. The
eigenspace M(χ) has the natural structure of an Oχ [π ]-module. Moreover,

Oχ [π ] � Oχ [[T ]]/(ωn(T )
)
,

where 1 + T corresponds to the choice of a generator of π and ωn(T ) = (1 + T )pn − 1.
Let F be the fixed field of π . So � is identified with Gal(F/Q). Let H ⊆ � be the kernel of χ and

let K ⊆ F be the fixed field of H .
Let AK denote the p-Sylow subgroup of the class group of K , and similarly for other fields.
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Lemma 5. The natural map AK → A F yields an isomorphism AK (χ) � A F (χ).

Proof. Let N : A F (χ) → AK (χ) be the norm map. The natural map AK (χ) → A F (χ) followed by N
is the |H|-th power map. Since p � |H|, this is an injection, so AK (χ) → A F (χ) is injective. Since
χ(H) = 1, the map A F (χ) → A F (χ) given by N followed by the natural map from AK (χ) to A F (χ)

is the |H|-th power map, so AK (χ) → A F (χ) is surjective. �
Remark. The lemma holds more generally if K is replaced by any field between K and F .

In the lemma, we can, for example, take χ to be trivial. We find that A F (1) is trivial. Henceforth,
we assume that χ �= 1. If we take χ to be quadratic of conductor � ≡ 1 (mod 4) and let p be odd, we
find that A F (χ) is isomorphic to the p-Sylow subgroup of the class group of K = Q(

√
� ).

Proposition 5. Let

V = Ker(A F → AQ(ζ�)
+).

If χ �= 1, then

V (χ) � H1(Gal
(
Q(ζ�)

+/F
)
, EQ(ζ�)

+
)
(χ).

Proof. Let p be a prime of F and let q be a prime of Q(ζ�)
+ above p. The exact sequence 0 →

UQ(ζ�)
+
q

→ (Q(ζ�)
+
q )× → Z → 0 yields the exact sequence

K ×
p → Z → H1(π, UQ(ζ�)

+
q
) → 0.

Since the image of the valuation map on K ×
p is eZ, we see that

H1(π, UQ(ζ�)
+
q
) � Z/eZ,

where e is the ramification index of q over p, and the action of � on this cohomology group is trivial.
We know from the corollary to Proposition 1 that V is given by locally trivial cohomology classes.

Since Q(ζ�)
+/F is ramified only at �, and the ramification index there is pn , we have

V � Ker
(

H1(π, EQ(ζ�)
+) → Z/pnZ

)
.

The result follows. �
Let Cycl denote the cyclotomic units of Q(ζ�)

+ , namely, the group generated by elements of the
form (ζ a

� − ζ−a
� )/(ζ b

� − ζ−b
� ). Let

B = EQ(ζ�)
+/Cycl.

Let I be the augmentation ideal of Z[G]. The exact sequence

0 → I → Z[G] → Z → 0

implies that there is an isomorphism of �-modules

Ĥq(π, I) � Ĥq−1(π,Z)
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for all q, where Ĥ denotes a Tate cohomology group. Since G is commutative and π and � have
coprime orders, the group � acts trivially on Ĥq−1(π,Z) and on Ĥq(π, {±1}) (see [17, Lemma 1.1]).
Therefore, if χ �= 1,

Ĥq(π, I)(χ) � Ĥq−1(π,Z)(χ) = 0

and Ĥq(π, {±1})(χ) = 0 for all q. The inverse of the map I → Cycl/{±1} given by

σ − 1 �→ σ(ζ − ζ−1)

ζ − ζ−1

yields an exact sequence (see [19, Proposition 8.11])

0 → {±1} → Cycl → I → 0.

This implies that Ĥ1(π,Cycl)(χ) = 0 for all q. It follows, when χ �= 1, that

V (χ) � H1(π, EQ(ζ�)
+)(χ) � H1(π, B)(χ).

For a finite Galois module M , let Md = HomZ(M,Q/Z) be the dual of M . The Galois action is given
by (σ f )(m) = f (σ−1m), so the pairing between M and Md induces a nondegenerate pairing between
M(χ) and Md(χ−1). Duality theory (see [11]) tells us that H1(π, B)(χ) = H1(π, B(χ)) is dual to
H1(π, Bd(χ−1)). This latter group equals Ĥ−2(π, Bd(χ−1)), which is isomorphic to Ĥ0(π, Bd(χ−1)).
Therefore, ∣∣V (χ)

∣∣ = ∣∣Ĥ0(π, Bd(χ−1))∣∣.
Note that Bd(χ−1) is a module over Oχ [π ] � Oχ [[T ]]/(ωn(T )). In [18], it is shown how to use

cyclotomic units to compute an ideal Iχ−1 ⊆ Oχ [[T ]] such that

Bd(χ−1) � Oχ [[T ]]/Iχ−1 .

Theorem 1. Let χ �= 1. Then V (χ) is dual to{
f ∈ Oχ [[T ]] ∣∣ T f ∈ Iχ−1

}
/
(

Iχ−1 + (
ωn(T )/T

))
.

Proof. Since 1 + T is a generator of π , an element f ∈ Bd(χ−1) is fixed by π if and only if T f = 0.
The norm for π is given by ωn(T )/T . Since Ĥ0 is given by fixed elements modulo norms, the result
follows. �
Corollary. All of AK � A F (χ) capitulates in Q(ζ�)

+ if and only if ωn(T )/T ∈ Iχ−1 .

Proof. Let B F be the units of F modulo the cyclotomic units of F . It is known (see [14]) that
|A F (χ)| = |B F (χ)|. But B F (χ) is isomorphic to the π -invariant subgroup of B(χ) (see [18, Propo-
sition 5.1(i)]). Let σ generate π . Under the pairing between B(χ) and Bd(χ−1), the annihilator of
(1 − σ)Bd(χ−1) is the π -invariant subgroup of B(χ). Therefore, B F (χ) is dual to, and therefore
has the same order as, Bd(χ−1)/(1 − σ)Bd(χ−1), which is the maximal quotient of Bd(χ−1) on
which π acts trivially. This is isomorphic to Oχ [[T ]]/(Iχ−1 + (T )), which has the same order as
{ f ∈ Oχ [[T ]] | T f ∈ Iχ−1 }/Iχ−1 (proof: since Oχ [[T ]]/Iχ−1 is finite, the kernel and cokernel of multi-
plication by T have the same order). Therefore, the order of A F (χ) equals the order of V (χ) if and
only if ωn(T )/T ∈ Iχ−1 . �
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The ideals Iχ−1 for small p and for � < 10 000 are listed in [18, Tables 4.3 and 4.4]. We give three
examples of how to apply Theorem 1.

Example 1. l = 2089, p = 3, and χ quadratic. In this case π has order 9 and the ring Oχ is equal
to Z3. In [18, Table 4.4], we find that Iχ−1 = (T − 3,27). This implies that the 3-part of the class
group of the quadratic field has order 3, namely, the order of Oχ [[T ]]/(Iχ−1 + (T )). We have that
T · f ∈ Iχ−1 if and only if 9 divides f (3). These power series form an ideal of index 9 in Z3[[T ]].
On the other hand, ω2(T )/T is congruent to (49 − 1)/3 = 9 · 3059 modulo Iχ−1 , so that the ideal
Iχ−1 + (ω2(T )/T ) has index 9 as well. It follows that the module in Theorem 1 is trivial. Therefore
there is no capitulation.

Example 2. l = 7489, p = 2 and χ is cubic. In this case π has order 32 and the ring Oχ is the ring
Z2[ζ ] where ζ denotes a cube root of unity. By [18, Table 4.4], the ideal Iχ−1 is equal to (T +2+4ζ,8).
This implies that the 2-part of the class group of the cubic field has order 4. Since

ω5(T )/T ≡ (
(−1 − 4ζ )32 − 1

)
/(−2 − 4ζ ) ≡ 0 (mod Iχ−1),

all classes capitulate.

Example 3. l = 9337, p = 2 and χ is cubic. In this case π has order 4 and the ring Oχ is as in the
previous example. By [18, Table 4.4], the ideal Iχ−1 is equal to (T +4−2ζ,8). Once again the 2-part of
the class group of the cubic field has order 4. We have that T · f ∈ Iχ−1 if and only if 4 divides f (2ζ ).
These power series form an ideal of index 16 in Oχ [[T ]]. On the other hand, ω2(T )/T is congruent to
((−3 + 2ζ )4 − 1)/(−4 + 2ζ ) ≡ 4ζ (mod Iχ−1 ). Therefore the ideal Iχ−1 + (ω2(T )/T ) also has index 16,
the module of Theorem 1 is trivial, and there is no capitulation.

6. Numerical data

6.1. Imaginary quadratic fields

Consider imaginary quadratic fields Q(
√−d ), where −d is the discriminant. There are 31 examples

with d < 100. Of these, 8 have trivial class groups, 14 have non-trivial class groups that completely
capitulate, and the remaining 9 fields (d = 23,31,47,59,71,79,83,87,95) have elements in their
class groups that have orders not dividing 4 and hence do not capitulate. As pointed out above, for
sufficiently large d there will always be some elements of the class group that do not capitulate. In
fact, most elements will not capitulate.

6.2. Real quadratic fields; � = 3

In Section 4, we saw that capitulation was fairly predictable for imaginary quadratic fields. It was
restricted to the 4-torsion of the class group, and a lot of it could be explained by genus theory. The
situation for real quadratic fields seems to be entirely different.

The ideal classes of order 2 capitulate in the cyclotomic field, as we showed in Section 4. However,
Proposition 4 gives us no additional information. In fact, it seems that there is no easy way to predict
when capitulation occurs.

Consider the 3-parts of the class groups for fields K = Q(
√

� ), where � ≡ 1 (mod 4) is prime.
There are 52 primes � < 10 000 with � ≡ 5 (mod 12) and such that the 3-class group of Q(

√
� ) is

non-trivial. Since 3 � φ(�)/2, the ideal classes of order 3 do not capitulate.
On the other hand, when � ≡ 1 (mod 12), the ideal classes of order 3 (and sometimes those of

orders 9, 27, . . . ) have potential capitulation.



2728 R. Schoof, L.C. Washington / Journal of Number Theory 130 (2010) 2715–2731
Here are the results of some computations.

Q(
√

� ), � ≡ 1 (mod 12), � < 10 000

32: non-trivial 3-class group
26: maximal 3-capitulation

6: no 3-capitulation

There seems to be no reason to expect that these are small exceptional cases. In fact, a suit-
able extension of the Cohen–Lenstra heuristics to include the class groups of a field and a subfield
possibly would predict that certain cases of capitulation (covered by part (i) of Lemma 4) and of
non-capitulation (covered by part (ii) of Lemma 4) occur with positive density (however, we have not
tried to formulate such an extension of the heuristics)

A reasonable prediction from the data is that capitulation is fairly common, and probably fairly
random, for cases of potential capitulation.

Here are the details of the computations. They were carried out in PARI.
Part (i) of Lemma 4 shows that there is maximal 3-power capitulation for the following primes:

229, 733, 1129, 1489, 2557, 2677, 2713, 2857, 2917, 3877,

3889, 4597, 4729, 5521, 5821, 6133, 6997, 7057, 7537, 7573,

7753, 8713, 9133.

All of the capitulation in these examples occurs in the sextic subfield of Q(ζ�).
Part (ii) of Lemma 4 shows that there is no 3-power capitulation for the following primes:

3229, 5281, 6637, 8017, 8581.

In each of these examples, the 3-part of the class group of the sextic field L is cyclic and 3 � [Q(ζ�) : L],
so no capitulation can occur from L to Q(ζ�).

There are four primes remaining: 2089, 4933, 7873, 8761. They can be treated by the methods of
Section 5. We find the following:

2089: The class group of K is Z/3Z. There is no capitulation.
4933: The class group of K is Z/3Z. It capitulates in the cyclotomic field.
7873: The class group of K is Z/9Z. The capitulation kernel has order 3, which is maximal capitu-

lation.
8761: The class group of K is Z/27Z. The capitulation kernel has order 3, which is maximal capit-

ulation.
In all of the above examples, the class group of K is cyclic, and the capitulation, when it occurs,

is maximal. For a non-cyclic class group, consider � = 114889. The class group is Z/3Z × Z/3Z. A
calculation with PARI shows that the capitulation in the sextic field, hence in Q(ζ�), has order 3.
Therefore only part of the potential capitulation is actual capitulation in this case.

The majority of the above cases have � ≡ 1 (mod 12) and 3‖hK . When 3 exactly divides the class
number h6 of the sextic subfield of Q(ζ�), we are guaranteed to have capitulation. Computations for
� < 500 000 yield the following:

K = Q(
√

� ), � ≡ 1 (mod 12), and � < 500 000

Condition on class number: 3|hK 3‖hK 3‖h6

Number of fields: 1343 1181 787

This agrees with the philosophy stated earlier as to why capitulation is common for totally real fields.
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6.3. Cyclic cubic fields; � = 2

The situation for cyclic cubic fields is similar to that for real quadratic fields. Potential capitulation
is very often actual capitulation, except for an obstruction that we describe below. We examined the
611 cyclic cubic fields K of prime conductor � < 10 000. Of these cubic fields, 505 have trivial class
groups. Of the remaining 106, the most common (61 occurrences) class group is Z2 × Z2. Since the
2-rank of the class group must be even (see [19, Theorem 10.8]) and the class number is prime to
3 (see [19, Theorem 10.4]), this is the smallest possible non-trivial class group. We therefore start by
looking at the 2-primary part of the class group.

There are 69 fields with non-trivial 2-primary part of the class group. All classes of order 2 have
potential capitulation since � − 1 is even. Only three cases considered have classes of order 4. One of
these has � ≡ 3 (mod 4) and therefore there is no capitulation (see below). The remaining two primes
(1777 and 4297) have class groups Z4 × Z4 and these classes have potential capitulation. All classes
capitulate for 1777, and the capitulation is Z2 × Z2 for 4297.

An interesting phenomenon arises. If � ≡ 3 (mod 4), then Q(ζ�)
+/K has odd degree, so no class

of even order capitulates in this subextension. Moreover, the map from the class group of Q(ζ�)
+ to

that of Q(ζ�) is injective (see [19, Theorem 4.14]). Therefore, the 2-part of the class group of K does
not capitulate in Q(ζ�). Of the 69 fields, 34 have � ≡ 3 (mod 4), hence there is no capitulation in the
2-part. An interesting question is whether there is an elliptic curve analogue of this phenomenon.

Of the remaining 35 fields (those with � ≡ 1 (mod 4)), six have none of the 2-part of the class
group capitulate, 28 have the entire 2-part capitulate, and one (� = 4297) has partial capitulation. The
following summarizes the computations:

[K : Q] = 3, K ⊂ Q(ζ�), � < 10 000

69: non-trivial 2-class group
34: � ≡ 3 (mod 4), therefore no 2-capitulation
28: � ≡ 1 (mod 4), maximal 2-power capitulation

1: � ≡ 1 (mod 4), partial 2-capitulation
6: � ≡ 1 (mod 4), no 2-capitulation

For 23 of the fields with � ≡ 1 (mod 4), the 2-parts of the class groups of both the cubic field K
and the sextic subfield of Q(ζ�) are Z2 × Z2. Part (i) of Lemma 4 implies that the 2-part of the class
group of K capitulates.

The remaining cases are treated by the methods of Section 5.
As in the quadratic case, we extended these calculations to count, for � < 500 000 and � ≡

1 (mod 12), how often 4‖hK (so the 2-part of the class group is Z/2Z × Z/2Z) and 4‖hL . In this
case, capitulation is guaranteed by Lemma 4(i). This situation accounts for a majority of the cases
where capitulation occurs.

[K : Q] = 3, � ≡ 1 (mod 12), � < 500 000

Condition on class number: 2|hK 4‖hK 4‖hL

Number of fields: 1447 1328 933

Again, this agrees with the philosophy stated earlier as to why capitulation is common for totally real
fields.

There are 24 primes less than 10 000 where the 7-part of the class group is non-trivial. Of these, 21
have � �≡ 1 (mod 7), therefore do not have potential capitulation. The remaining 3 cases have maximal
capitulation. The most interesting case is 7351, which has class group Z49 and can be treated by the
method of Section 5.

For the remaining cubic fields K with non-trivial class group, there is no potential capitulation for
any ideal classes. This is not surprising since, for example, we expect only 1/18 of the primes with 19
in the class number of K to have � ≡ 1 (mod 19), and there are not enough examples (7 in the case
of 19) for this to be very likely.
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6.4. Real quadratic fields; � = 5

There are 259 primes � < 500 000 such that � ≡ 1 (mod 20) and the class number of Q(
√

� ) is a
divisible by 5. We have the following data:

K = Q(
√

� ), � ≡ 1 (mod 20), � < 500 000

259: non-trivial 5-class group
227: maximal 5-capitulation

32: no capitulation

For � < 400 000, the quadratic fields with non-trivial 5-class group were found, and then the class
group of the degree 10 subfield of Q(ζ�) was computed using PARI. In these 203 cases, there are
168 where the class group of both the quadratic field and the tenth degree field have 5-class group
cyclic of order 5. Therefore, Lemma 4 implies that all classes of order 5 capitulate. Moreover, of the
203 fields with � < 400 000, there are 147 such that the entire class group (not just the 5-part) of
the quadratic field is isomorphic to the class group of the tenth degree field. This agrees with the
philosophy that high degree totally real fields tend to have small class numbers.

For 400 000 < � < 500 000, the class number calculations started taking a long time, so the meth-
ods of Section 5 were used to determine the capitulation behavior. They were also used for the smaller
prime � = 154 501 to determine that its 5-class group capitulates in Q(ζ154 501). These methods are
much faster than computing the full class number. This is to be expected, since we need only the 5-
part of the class number (however, calculating the 5-part of the units modulo cyclotomic units could
be used to compute the 5-part of the class number quickly, thus yielding an alternative approach for
the present purposes).

It seems worth mentioning a few details of computing the tenth degree field. For a prime � ≡ 1
(mod 10), the polynomial of the fifth degree subfield of Q(ζ�) can be computed using formulas of
Tanner and Lehmer [13]. This yields a degree 5 polynomial P (X). The following lemma shows that
P (X +√

� )P (X −√
� ), which can be computed numerically to sufficient accuracy and then rounded to

a polynomial with integral coefficients, is then the irreducible tenth degree polynomial that gives the
desired field. This method works well for small primes, but is slow for large primes �, say � > 400 000.

Lemma 6. Let L/K be a Galois extension of fields such that Gal(L/K ) is cyclic of order mn with gcd(m,n) = 1.
Let F1 be the subfield of degree m over K and let F2 be the subfield of degree n over K . Write F1 = K (α) and
F2 = K (β). Then L = K (α + β).

Proof. Since n = [K (α)(α + β) : K (α)] divides [K (α + β) : K ], and similarly m divides this degree, the
degree is at least mn = [L : K ]. �
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